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Facial expression recognition and virtual animation character generation are crucial for animation 

production and human-computer interaction, but traditional models often perform poorly in complex 

scenes. This paper proposes a novel expression recognition and generation framework based on an 

improved Multi-Task Convolutional Neural Network (MTCNN), augmented by a High-Resolution 

Parallel Convolutional Network (HR-PCN) and Octave Convolution (OctConv). Specifically, HR-PCN 

enhances multi-scale feature extraction for facial keypoint detection, while OctConv improves 

frequency-aware representation learning. In terms of facial expression generation, Graph 

Convolutional Networks (GCNs) are adopted to model the semantic relationships between facial Action 

Units (AUs) and further enhanced with SE-ResNet50 for better spatial attention. The proposed MTCNN 

model was evaluated on the AFEW and CK+ datasets, achieving 89.70% and 93.50% accuracies, 

surpassing MTCNN’s 78.90% and 85.30% and SSD’s 85.40% and 90.10%. RMSE was reduced to 0.1 

after 30 iterations, and inference time was kept within 40 ms/frame. For expression generation, the 

SE-ResNet50-GCN model attained a generation accuracy of up to 93.5%, significantly outperforming 

ResNet50-GCN (90.8%) and GCN (80.2%). These results validate the proposed framework’s 

effectiveness in improving both recognition accuracy and expression realism under complex conditions. 

Povzetek: Za realnočasno prepoznavo in generiranje obraznih izrazov pri virtualnih likih je razvit 

IMMTCNN–GCN okvir, ki združuje izboljšani MTCNN s HR-PCN in OctConv za večmerno zaznavanje 

obraznih značilk ter SE-ResNet50-GCN za semantično generacijo izrazov. 

 

1  Introduction 
The recognition and generation of Virtual Animated 

Character Expressions (VACE) has become an important 

research direction in animation production, game 

development, and Human-Computer Interaction (HCI) 

systems in recent years. In animation and virtual scenes, 

natural and realistic facial expressions can enhance user 

experience and play a key role in intelligent interactive 

devices. However, complex backgrounds, diverse 

lighting, and dynamically changing scenes pose 

significant challenges for Facial Expression Recognition 

(FER) and generation. For example, uncontrolled 

lighting conditions, non frontal facial orientation, 

occlusion, cluttered background, and spontaneous 

emotional expression that appears in naturalistic videos. 

Traditional methods, such as rule-based expression 

analysis or simple classification algorithms, often 

struggle to maintain robustness in complex environments. 

Especially in cases where multiple expressions are mixed 

or Action Units (AUs) are not obvious, it leads to a 

significant decrease in recognition accuracy and 

generation quality [1]. However, existing methods have 

poor robustness in complex scenes, and facial expression 

generation often lacks naturalness and realism. For 

example, Multi-Task Convolutional Neural Networks 

(MTCNN) perform well in facial keypoint localization, 

but there is still room for improvement in feature  

 

extraction and multi-scale fusion capabilities [2]. In 

addition, facial expression generation technology has  

achieved certain results by introducing methods such as 

Generative Adversarial Networks (GAN) and Graph 

Convolutional Networks (GCN), but the modeling of 

facial details and AU relationships is still insufficient. 

Therefore, this paper designs a VACE recognition and 

generation method based on an improved MTCNN 

algorithm. This method improves feature extraction 

efficiency and localization accuracy by introducing 

High-Resolution (HR) - Parallel Convolutional Networks 

(PCN) and Octave Convolution (OctConv) modules into 

MTCNN. It uses GCN to model the semantic 

relationships between AUs in expression generation, 

optimizing the quality of generation. . 

This study aims to address various challenges guided by 

the following core research questions: (1) How can the 

integration of HR-PCN into MTCNN improve the 

extraction of multi-scale facial features and enhance 

localization accuracy in complex scenarios? (2) 

Compared to standard convolution operations, in what 

ways can introducing OctConv contribute to more 

efficient and frequency aware representation learning? (3) 

How does the combination of SE-ResNet50 and GCN 

enhance the modeling of semantic relationships between 

facial AUs to improve the realism and accuracy of 

expression generation? Therefore, the main objective of 

mailto:xyz123452024@126.com


221   Informatica 49 (2025) 221–232 F. Zhou 

the study is to design and evaluate a dual module 

framework. This framework integrates an improved 

MTCNN for FER and a GCN-based semantic modeling 

method for expression generation. This framework aims 

to achieve high precision and real-time performance 

under various challenging environmental conditions. 

2  Related works 
With the widespread application of facial recognition 

technology, recognition methods built on video data have 

attracted much attention because of their rich information. 

Estèphe Arnaud et al. proposed a dual exogenous 

endogenous representation method. This method 

performed well on multiple datasets, especially in FER 

tasks that deal with exogenous variables such as identity, 

which was significantly better than existing methods [3]. 

To optimize video FER, Liu Y et al. put forward an 

emotion-rich feature learning network grounded on 

segment perception. On multiple datasets, the 

performance of this model has significantly improved 

compared to existing methods, verifying its effectiveness 

and robustness [4]. To lift the precision of FER, Liu P et 

al. proposed a point adversarial self-mining method. This 

method simulated the human learning process, combined 

point adversarial attacks with teacher network guidance, 

and iteratively generated and optimized adaptable 

learning samples. This method was significantly superior 

to existing technologies in FER, demonstrating its 

excellent practicality [5]. To enhance the robustness of 

user FER in Virtual Reality (VR) metaverse applications, 

Ho Seung C et al. proposed a FER system based on facial 

electromyography and adopted covariate displacement 

adaptation technology to address electrode displacement 

issues. This system significantly improved the 

recognition accuracy caused by electrode position 

changes, increasing from 79% to 86%, and was expected 

to greatly enhance the practicality of the model and its 

potential applications in the VR metaverse [6]. 

Otberdout et al. proposed a conditional manifold valued 

Wasserstein GAN to generate videos of 6 basic facial 

expressions given neutral facial images. This method 

significantly enhanced the efficiency of dynamic facial 

expression generation, transfer, and data processing [7]. 

Fan X et al. proposed a facial micro-expression 

generation model based on deep motion redirection and 

transfer learning to address the lack of data in generating 

facial micro-expressions. This model effectively 

improved the efficiency of generating facial 

micro-expressions [8]. Liu et al. put forth a new 

two-stage network to address the lack of detail and 

vividness in facial expressions generated by existing 

methods. This network generated facial expressions by 

annotating AUs, and inputting AU groups and facial 

images into the generation network, thereby making 

facial expressions more rich and vivid. This method 

effectively improved the quality of facial expression 

generation [9]. To improve the accuracy of facial 

expression prediction, Sathya T et al. proposed a new 

method of integrating convolutional recurrent neural 

networks and constructed an adaptive neural fuzzy 

reasoning system as the integration layer. The results 

showed that this method achieved 99.52% accuracy, 

99.35% F1 score, and 0.95 AUC value on the face 

recognition and EMOTIC datasets, which was 

significantly superior to the existing methods [10]. 

In summary, many scholars have researched facial 

recognition and feature extraction, and have achieved 

certain results. However, most scholars adopt a single 

algorithm model and have not made enhancements to 

deal with the constrains of the model. Therefore, the 

paper proposes a VACE recognition and generation 

method based on an improved MTCNN algorithm, which 

introduces HR-PCN and OctConv modules into MTCNN. 

The study attempts to optimize the entire process of FER 

and generation, to achieve more precision recognition 

and natural facial expression generation in complex 

scenes. 

 

Table 1: Comparative summary of FER and generation methods 

Research Method Research Content Dataset Used 
Key Performance 

Metrics 
Reference 

Estèphe 

Arnaud et 

al. (2023) 

Dual 

exogenous–endogenous 

representation + 

conditional tree gating 

Improves FER 

robustness by 

removing 

identity-related 

exogenous features 

in dynamic scenes 

Multiple FER 

datasets 

Outperformed 

conventional 

FER methods in 

identity-sensitive 

scenarios 

[3] 

Liu Y et 

al. (2022) 

Clip-aware expressive 

feature learning network 

Segment-perception 

based emotional 

feature encoding for 

video-based FER 

Multiple video-based 

datasets 

Higher emotional 

localization 

accuracy; 

reduced video 

redundancy 

[4] 

Liu P et 

al. (2022) 

Point adversarial 

self-mining with teacher 

guidance 

Simulated human 

learning to generate 

adaptive samples for 

FER 

FER datasets with 

identity bias 

Significant 

accuracy gain 

over 

conventional 

FER methods 

[5] 

Ho-Seung Facial EMG + domain Robust FER under VR-based EMG Accuracy [6] 
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C et al. 

(2023) 

adaptation electrode 

displacement for 

VR/Metaverse 

dataset improved from 

79% to 86% in 

electrode shift 

scenarios 

Otberdout 

et al. 

(2020) 

Conditional manifold 

Wasserstein GAN 

Facial expression 

video generation on 

hypersphere with 

dynamic motion 

modeling 

Six-basic-expression 

dataset 

Efficient 

dynamic facial 

expression 

transfer and 

generation 

[7] 

Fan X et 

al. (2021) 

Deep motion redirection 

+ transfer learning 

Facial 

micro-expression 

generation using 

macro-expression 

knowledge transfer 

Micro-expression 

dataset 

Better 

generalization in 

low-data 

regimes; 

enhanced 

generation 

quality 

[8] 

Liu S & 

Wang H 

(2023) 

Two-stage 

AU-annotated face 

generation model 

Generates realistic 

facial expressions 

based on 

AU-annotated 

image pairs 

AU-annotated 

expression dataset 

Improved 

vividness and 

realism of 

generated 

expressions 

[9] 

3  Methods 
The proposed method consists of two main components: 

an improved MTCNN-based FER model and an 

improved GCN-based expression generation model. The 

MTCNN model integrates multi-task learning with 

feature enhancement modules and HR-PCN to enable 

efficient multi-scale feature extraction and accurate facial 

keypoint localization. The GCN-based generation model 

is designed to capture semantic dependencies between 

facial AUs, thereby enhancing the realism and detail of 

generated expressions. 

 

3.1 Expression recognition model based on 

improved MTCNN algorithm 
VACE recognition and generation is one of the key 

technologies in animation production, game development, 

and HCI systems. However, traditional FER methods 

lack robustness in complex scenes, and facial expression 

generation technology faces challenges of low quality 

and poor naturalness. This study proposes a VACE model 

built on an improved MTCNN, as shown in Figure 1. 

Feature 

fusion

Input
Generate 

image pyramid
Selected Area
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Face
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P-Net R-Net O-Net
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Figure 1: Expression recognition model based on 

improved MTCNN 

 

 

 

In Figure 1, the image is first input and a multi-scale 

image  

pyramid is generated through a feature fusion module to  

meet the needs of face detection at different scales.  

Subsequently, the features are processed through three  

stages: P-Net, R-Net, and O-Net. P-Net generates 

candidate regions containing faces through rapid 

screening. R-Net further refines trustworthy facial 

regions [11]. O-Net optimizes the detection results and 

outputs high-precision facial regions and keypoints. Each 

sub-network is explicitly labeled with its internal layer 

configuration. For example, P-Net contains a 3×3 

convolution layer with 10 filters followed by ReLU 

activation and a 2×2 max pooling layer, a 3×3 

convolution with 16 filters, and a final 1×1 convolution 

outputting a 32-channel feature map for three branches. 

Similar structures are presented for R-Net and O-Net. 

The OctConv module is marked to highlight the 

decomposition of feature channels into high-frequency 

and low-frequency components. The HR network is 

labeled with four multi-resolution branches, showing 

upsampling, downsampling, and lateral connections that 

facilitate multi-scale feature fusion. MTCNN has three 

layers of CNNs, each responsible for different stages of 

face detection tasks. P-Net is the first layer of MTCNN, 

mainly responsible for generating candidate boxes and 

conducting preliminary screening. The input image 

undergoes multi-scale image pyramid processing to 

generate images of different resolutions to adapt to 

detecting faces of different sizes [12-13]. Next, P-Net 

performs convolution operations on the images at each 

scale, and finally uses non maximum suppression to 

remove duplicate or overlapping candidate boxes, while 

retaining high confidence candidate boxes. The P-Net 

belongs to the binary classification problem, and the face 

detection classification loss function is the cross-entropy 

function, which is expressed as equation (1). 
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( log( ) (1 )(1 log( ))det det det

i i i i iL y p y p= − + − − (1) 

In equation (1), 
det

iL
 is the classification loss for sample 

i , ip
 is the P-Net's prediction probability that i  

belongs to the face category, and 
det

iy
 is the true label 

of i . R-Net is the second layer network of MTCNN, 

responsible for further screening and refining the 

candidate boxes generated by P-Net. Firstly, it is 

necessary to receive the candidate boxes of P-Net as 

input, and further classify these candidate boxes with 

higher accuracy [14-15]. Through convolution operations 

and fully connected layers, it is determined whether the 

candidate box contains a face and the boundaries of the 

candidate box are refined. Finally, the NMS algorithm is 

used to remove overlapping candidate boxes and further 

optimize the detection results. R-Net belongs to the 

boundary box regression problem, and its loss function 

expression is given by equation (2). 
2

2
ˆbox box box

i i iL y y= − (2) 

In equation (2), 
box

iL
 is the bounding box regression 

loss of i . 
ˆbox

iy
 and 

box

iy
 are the predicted and true 

bounding box coordinates of i . O-Net is the third layer 

of MTCNN, responsible for optimizing the candidate 

boxes generated by R-Net and outputting high-precision 

detection results and keypoint positions [16]. The loss 

function during the feature point localization process is 

shown in equation (3). 
2

2
ˆlandmark landmark landmark

i i iL y y= − (3) 

In equation (3), 
landmark

iL  is the keypoint prediction loss 

of i , reflecting the deviation between the predicted 

keypoints and the true keypoints. ˆ landmark

iy  is the 

predicted facial keypoint coordinates of i , and 
landmark

iy  is the true keypoint coordinates of i . This L2 

loss captures the spatial deviation between predicted and 

true landmark positions and is essential for 

high-precision facial structure modeling. The convolution 

operation has been improved, and the improved P-Net 

framework is displayed in Figure 2. 
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Figure 2: Improved P-Net network structure 

 

In Figure 2, the improved P-Net structure begins with an 

input image of size 12×12×3, which passes through a 

3×3 convolution layer to extract low-level features, 

resulting in an output of 5×5×12. The convolutional 

pipeline includes a pair of separable convolutions that 

together simulate a 3×3 kernel while reducing 

computational complexity. To avoid confusion, only one 

input path is shown in the updated image. All 

intermediate tensors are labeled according to their 

functional roles to ensure clarity. The final layer outputs 

are separated into three heads for classification, bounding 

box regression, and facial landmark localization. An 

image with an input size of 12×12×3 is first processed 

through a 3×3 convolutional layer to extract low-level 

features, resulting in an output size of 5×5×12. Next, 

downsampling is performed using a 2×2 max pooling 

layer with a stride of 2 to further compress the feature 

map size. Next is another 3×3 convolutional layer with 

an output size of 3×3×16 to extract deeper features. 

Subsequently, size compression is performed through a 

convolution operation with a stride of 4. The last layer of 

3×3 convolution generates a feature map with a size of 

1×1×32, which is used for subsequent multitasking 

branch processing. The network output includes three 

branches: The face classification branch, which is used to 

determine whether it is a face; Candidate box regression 
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branch is used to predict facial bounding boxes; Facial 

feature point localization branch, which is utilized to 

predict keypoint positions. Due to the limited number of 

convolutional layers in MTCNN's hierarchical structure, 

it cannot fully extract facial details. To address this 

limitation, this study introduces OctConv into the R-Net 

and O-Net stages of the original MTCNN architecture. 

Specifically, the standard convolutional layers in these 

networks are replaced with OctConv operations, which 

decompose feature maps into high-frequency and 

low-frequency components. This design allows 

low-frequency information to be processed at reduced 

spatial resolution, reducing redundancy while enabling 

the network to focus HR computations on the most 

informative parts of the facial regions. OctConv is 

applied after initial feature extraction in R-Net and then 

applied again in the refinement stage of O-Net. These 

substitutions enhance the network’s ability to capture 

fine-grained semantic differences across multi-scale 

facial areas, thereby improving both feature richness and 

computational efficiency. Therefore, a new convolution 

operation is introduced in R-Net to replace the original 

convolution [17]. This study uses OctConv instead of the 

original convolution. OctConv decomposes the input 

feature map into high and low frequency components. 

The expression for outputting high-frequency signals is 

shown in equation (4). 
H H H L HY Y Y→ →= + (4) 

In equation (4), 
H HY →

 is the high-frequency output 

generated through convolution operation from the 

high-frequency input. 
L HY →

 is the high-frequency 

output generated through convolution operation after 

upsampling from low-frequency input. The formula for 

outputting low-frequency signals is shown in equation 

(5). 
L L L H LY Y Y→ →= + (5) 

In equation (5), 
L LY →

 is the low-frequency output 

generated through convolution operation from the 

low-frequency input. 
H LY →

 is the low-frequency 

output generated through convolution operation after 

downsampling from high-frequency input [18]. To 

further capture facial expressions, this study selects a 

feature extractor with the structure shown in Figure 3. 

Output

Feature 

map Convolution

Down-sampling

Up-sampling

 
Figure 3: High-resolution PCN 

 

In Figure 3, the input image enters four stages after the 

initial convolution module extracts initial features. Stage 

1 extracts HR features and obtains basic features through 

convolution and pooling operations. Stage 2 begins by 

introducing multi-resolution feature streams to generate 

feature maps of two resolutions, with HR preserving 

details and low resolution extracting global information. 

In stages 3 and 4, more resolution feature streams are 

gradually added to achieve multi-scale feature extraction 

from high to low. The feature flow within each stage 

achieves interaction and fusion of multi-resolution 

features through upsampling, downsampling, and 

horizontal connections, enhancing the ability to express 

global contextual information and local details. The final 

stage of the network applies a convolutional decoding 

layer to the fused features, transforming them into the 

final generated expression image. As shown in Figure 3, 

the output node is clearly labeled as “Generated Target 

Expression Image”, indicating the end of the forward 

inference path. 

To facilitate reproducibility, the study provides a detailed 

description of the proposed Improved Multi-task 

Cascaded Convolutional Network (IMMTCNN) model 

pipeline, particularly focusing on the integration of 

OctCon and HR-PCN. The entire architecture maintains 

the three-stage cascade of the original MTCNN-P-Net, 

R-Net, and O-Net-but with key enhancements at each 

stage. In the P-Net stage, OctConv is introduced to 

decompose input features into high-frequency and 

low-frequency components, thereby improving the 

network’s ability to preserve fine-grained spatial 

information. These enhanced features are used to predict 

candidate face regions and preliminary landmarks. The 

R-Net further refines these candidates using deeper 

OctConv blocks to improve localization accuracy and 

robustness. Finally, the O-Net incorporates HR-PCN to 

perform multi-resolution feature extraction in parallel 

branches. This enables the model to retain both global 

contextual and local detailed information, which is 

critical for precise landmark detection and expression 

classification. After passing through O-Net, the fused 

multi-scale features are concatenated and passed to a 
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classifier head with a Softmax function, yielding the final 

expression label. This hierarchical structure ensures both 

spatial detail and semantic understanding are preserved 

throughout the recognition process. 

The selection of OctConv and HR-PCN is grounded in 

their theoretical capacity to address fundamental 

challenges in FER. Traditional convolution operations 

that uniformly process all spatial frequency information 

often result in redundant calculations and reduced 

sensitivity to low-frequency contextual clues. OctConv 

decomposes feature maps into high-frequency and 

low-frequency components, allowing the network to 

capture coarse semantic structures (large facial areas) and 

fine-grained details (wrinkles, micro-expressions) in a 

decoupled and effective manner. This frequency-aware 

representation enables improved discriminative power 

for subtle or compound expressions. Meanwhile, 

HR-PCN preserves HR representations throughout all 

layers, avoiding the repeated downsampling typical of 

conventional CNN. This structural design ensures the 

preservation of spatial accuracy without sacrificing 

semantic richness, which is crucial for accurately 

locating landmarks and key expression areas. The 

multi-resolution fusion strategy employed in HR-PCN 

theoretically facilitates better spatial-semantic interaction 

across scales, which is essential in scenarios where 

expressions are partially occluded or vary in intensity. 

These characteristics are consistent with information 

theory and empirical research results, proving that 

integrating them into the IMMTCNN framework is 

reasonable. 

 

3.2 Expression generation method based on 

improved GCN 
After completing the expression recognition, the 

recognized expressions are generated. This study 

proposes an expression generation model based on GCN, 

and its architecture is illustrated in Figure 4. 
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Figure 4: Expression generation method based on improved GCN 

 

In Figure 4, Firstly, the input facial image is used to 

extract global features through multi-layer convolution 

based on residual networks, while utilizing prior 

knowledge to obtain regions of interest and focus on 

locating key facial regions. Then, the local feature 

extraction module performs feature alignment on the 

regions of interest and uses ROI Align to obtain 

high-quality feature maps for each region. In the 

expression generation pipeline, the ROI Align module is 

used to extract HR local features from specific facial 

regions (e.g., eyes, mouth) based on predefined 

landmarks. These aligned features are then processed by 

an attention mechanism, which generates an attention 

map that emphasizes emotionally salient regions. The 

output of ROI Align serves as the input to the attention 

module, whose weighted features are then fused with the 

global representation for final expression synthesis. The 

semantic information of local AUs is further extracted 

through convolution operations and region segmentation 

[19]. Next, these features enter the GCN-based modeling 

module. Finally, the output module generates facial 

expression AU detection results based on the predicted 

activation status of AUs, combined with expert priors and 

semantic features. The propagation formula of GCN is 

given by equation (6). 

( )( 1) ( ) ( )l l lH AH W+ = (6) 

In equation (6), 
( 1)lH +

 is the feature matrix of the 

graph node. 
( )lW  is a learnable weight matrix. A  is 

the normalized adjacency matrix of the graph, 

representing the relationships between nodes, as 

expressed in equation (7). 
1 1

2 2ˆˆ ˆA D AD
− −

= (7) 

In equation (7), A  is the original adjacency matrix, D̂  

is the degree matrix of Â , and the diagonal elements are 

the degrees of the nodes. The core idea of GCN is to 

update the features of nodes through graph structure, and 

the formula for updating node features is given by 

equation (8). 

( 1) ( ) ( )

( )

1l l l

i j
j i

i j

h h W
d d

+



 
 = 
 
 

N

(8) 

In equation (8), 

( 1)l

ih +

 is the eigenvector, N  is the set 

of neighboring nodes, d  is the node degree, and 
( )lW  

is the learnable weight matrix. The overall process of the 

feature extraction module is shown in Figure 5. 
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Figure 5: Overall process of feature extraction module 

 

In Figure 5, the input facial image is first subjected to 

multi-scale feature extraction using SE-ResNet50. The 

network consists of five stages from Stage0 to Stage4, 

gradually extracting global features from low to high 

levels. The feature maps output at each stage are fused 

step by step to form a multi-scale global feature 

representation, and then multiple regions of interest are 

selected through specific modules. Through ROI Align 

operation, each region of interest feature is aligned to a 

fixed size to ensure consistency of subsequent features. 

Next, local features are extracted through convolution 

operations and enhanced with attention mechanisms to 

highlight important regions. After combining local 

features with global features, they are input into 

GCN-based modules. The final result annotates the 

predicted feature regions on the entire image, achieving 

precise detection and annotation of specific facial AUs. 

Due to the higher resolution and more information 

contained in shallow facial features, the SE-ResNet50 

network is improved by adding a multi-scale feature 

extraction module, as shown in Figure 6. 

1×1 Conv

1×1 Conv

1×1 Conv

Down-sampling

Down-sampling

Down-sampling

F1

F2

F3

 
Figure 6: Multi-scale feature extraction module 

 

As shown in Figure 6, the input feature maps are 

extracted from multiple stages of the expression 

recognition network, including early convolutional layers 

for shallow spatial details (e.g., 32×32×64), intermediate 

layers capturing structural contours (e.g., 16×16×128), 

and deeper layers representing semantic attributes (e.g., 

8×8×256). These multi-scale features are fused to form a 

comprehensive representation for downstream expression 

generation. Each feature map is first subjected to channel 

compression through 1×1 convolution to reduce 

computational complexity while preserving key features. 

Next, the compressed feature map undergoes 

downsampling to adjust all features to a uniform spatial 

resolution, providing consistency for subsequent fusion. 

The processed features are separately generated into low 

dimensional representations, which are fused through 

step-by-step addition operations. By combining the 

detailed information of shallow features with the high 

semantic information of deep features, a unified 

multi-scale feature map is generated. 

Compared to conventional GCN-based expression 

generation approaches, the model introduces a 

semantic-aware adjacency matrix that explicitly encodes 

facial AU co-activation patterns derived from annotated 

training samples. Unlike the static fully connected graph 

used in baseline GCNs, this study utilizes a statistical AU 

co-occurrence matrix and adaptively adjusts edge 

weights based on AU strength correlation. This allows 

the network to focus on context-relevant relationships 

among facial regions, which is especially beneficial in 

complex scenarios involving subtle expressions, partial 

occlusions, or blended emotions. In addition, although 

previous studies have focused on the temporal dynamics 

or spatial positions of Emotion-GCN and ST-GCN 

models, the research methods emphasize semantic 

coupling between expression units, which directly affects 

the fidelity of generation. In practical conditions such as 

non-frontal poses or noisy lighting, the model’s ability to 

propagate contextual cues via semantically weighted 

edges significantly improves output consistency and 

realism. This differentiates the method from prior GCN 

implementations that either rely on fixed topology or 

overlook AU-specific dependencies. 

4  Results 
The first section evaluated the Accuracy (ACC), Root 

Mean Square Error (RMSE), and inference time of the 

improved MTCNN model on the AFEW and 

CK+datasets, and compared it with the SSD and 

MTCNN models. The second section conducted 
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experimental analysis on the expression generation 

model based on improved GCN, evaluating its 

performance in generating accuracy, error rate, and 

different expression types. In addition to 

classification-based metrics such as accuracy, RMSE is 

employed to evaluate the pixel-level deviation between 

the generated expression outputs and ground-truth facial 

features. RMSE is particularly relevant to facial 

expression generation tasks as it quantifies the average 

Euclidean distance between predicted facial regions and 

actual keypoints or intensity values, reflecting the fidelity 

of generated expressions at the granular level. Lower 

RMSE indicates that the generated expression closely 

aligns with the real facial motion or emotion template, 

which is critical for assessing subtle differences in 

emotion rendering and AU activation. RMSE serves as a 

complementary metric to accuracy, capturing spatial 

realism and structural consistency in generated facial 

expressions. 

To assess the impact of architectural hyperparameters on 

model performance, several controlled experiments are 

conducted. For the OctConv module, this study sets the 

octave ratio α to 0.5, as this value provides the best 

balance between preserving high-frequency and 

low-frequency features. The change in α value from 0.25 

to 0.75 indicates a marginal benefit exceeding 0.5, while 

higher values introduce redundant calculations. In the 

HR-PCN structure, the study uses two parallel branches 

with 3 and 5 convolutional layers. The ablation 

experiment shows that increasing depth beyond this 

setting will lead to overfitting of the AFEW dataset, 

while decreasing depth will weaken the accuracy of 

landmark localization. For the GCN module, the study 

empirically selects 3 layers to balance topological 

expressiveness and computational efficiency. Due to 

excessive smoothing, using more than 3 layers can lead 

to performance degradation. These observations indicate 

that the selected hyperparameter configuration is 

empirically optimal on the test dataset and provides 

stable performance across different expression 

categories. 

 

4.1 Performance analysis of FER model 

based on improved MTCNN algorithm 

The dataset adopts Acted Facial Expressions in the Wild 

(AFEW) and Extended Cohn-Kanade (CK+) public 

datasets. The AFEW dataset contains approximately 

1,809 labeled video clips extracted from real movie 

scenes, distributed across seven emotion categories: 

Angry (300), Disgust (150), Fear (200), Happy (350), 

Sad (350), Surprise (250), and Neutral (209). The video 

clips cover diverse conditions including varying lighting, 

pose changes, and occlusion, making it a challenging 

benchmark for evaluating expression recognition models 

in natural environments. The CK+ dataset contains 593 

image sequences from 123 subjects, with each sequence 

beginning with a neutral frame and ending at the peak 

expression. The dataset provides both categorical 

emotion labels and Facial Action Coding System 

(FACS)-based AU annotations. Emotion distribution in 

CK+ includes: Angry (45), Contempt (18), Disgust (59), 

Fear (25), Happy (69), Sad (28), Surprise (83), and 

Neutral (266). These datasets enable comprehensive 

evaluation in both constrained and unconstrained 

scenarios, with CK+ focusing on HR expression detail 

and AFEW simulating real-world variability. To ensure 

reproducibility, the training and testing settings of all 

experiments are described as follows. The proposed 

IMMTCNN model and the baseline models are 

implemented using Python with the PyTorch framework. 

Training is conducted using an NVIDIA RTX 3090 GPU 

with 24 GB memory. The initial learning rate is set to 

0.001 and optimized using the Adam optimizer. A batch 

size of 64 is used for both training and validation. The 

total number of training epochs is set to 150, with an 

early stopping strategy based on the validation loss. 

Cross-entropy loss is used for expression classification, 

and smooth L1 loss is employed for bounding box 

regression. For landmark localization, the Mean Squared 

Error (MSE) loss is adopted. All input facial images are 

re-sized to 96×96 pixels. During testing, the models are 

evaluated using the same preprocessing and 

normalization protocols to ensure consistency across 

datasets. This study compares the Single Shot MultiBox 

Detector (SSD) algorithm with traditional MTCCN to 

analyze the performance of the research model. The ACC 

results of the improved MTCNN to IMMTCNN are 

shown in Figure 7. 
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Figure 7: ACC and RMSE for various models 
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Figs.7 (a) and (b) compare the ACC and RMSE of three 

models. In Figure 7 (a), IMMTCNN performs the best 

throughout the entire iteration process, with its ACC 

steadily increasing from 0.6 to 0.9 and stabilizing after 

the 30th iteration. The final average accuracy of 

IMMTCNN on the CK+ dataset reaches 93.50% with a 

95% confidence interval of [92.84%, 94.16%], while on 

AFEW, the ACC is 89.70% [88.91%, 90.49%]. In 

contrast, MTCNN achieves 85.30% [84.22%, 86.38%] 

and 78.90% [77.71%, 80.09%], while SSD records 

90.10% [89.43%, 90.77%] and 85.40% [84.56%, 86.24%] 

on the CK+ and AFEW datasets. These results confirm 

that IMMTCNN has higher ACC and significant 

improvements in statistics compared to the baseline 

model. In Figure 7 (b), the RMSE of IMMTCNN in the 

initial stage is about 0.6 and rapidly decreases, stabilizing 

around 0.1 after the 30th iteration. The final RMSE of 

IMMTCNN is 0.102 ± 0.007 (95% CI), significantly 

lower than that of MTCNN (0.204 ± 0.012) and SSD 

(0.314 ± 0.015), indicating that the proposed model 

achieves a more stable and precise prediction 

performance. This indicates that the proposed model has 

high ACC and low RMSE. The results of analyzing the 

recognition performance of each model are shown in 

Figure 8. Figure 8 (a) shows the original image. Figs.8 (b) 

to (d) show the recognition performance of SSD, 

MTCNN, and IMMTCNN. In Figure 8, the SSD only 

labels a rectangular box, roughly locating the position of 

the face. However, it does not further annotate facial 

keypoints, and the accuracy of the detection box is not 

high enough, resulting in boundary deviation. 

（a）Original image （b）SSD

（c）MTCNN （d）IMMTCNN
 

Figure 8: Analysis of recognition performance of various 

models 

 

MTCNN provides more detailed facial detection, able to 

locate the positions of eyes, nose, and mouth, while also 

drawing more accurate bounding boxes. The research 

model has excellent model performance. Table 2 

analyzes the comprehensive performance of each model. 

 

Table 2: Performance of various models in different datasets 

Model Dataset Accuracy Precision Recall F1 Score Inference Time 

SSD 
AFEW 85.40% 83.20% 84.50% 83.80% 35 ms/frame 

CK+ 90.10% 88.70% 89.50% 89.10% 30 ms/frame 

MTCNN 
AFEW 78.90% 76.50% 77.80% 77.10% 50 ms/frame 

CK+ 85.30% 83.00% 84.00% 83.50% 45 ms/frame 

IMMTCNN 
AFEW 89.70% 87.50% 88.20% 87.80% 40 ms/frame 

CK+ 93.50% 92.00% 92.80% 92.40% 35 ms/frame 

 

Note: The bar in Figure 7 reflects the averaged 

performance over 5 experimental runs, while Table 2 

reports the best single-run result. 

All inference time values reported in this study are 

measured on a single NVIDIA GeForce RTX 4080Ti 

GPU with batch size = 1. That is, each expression frame 

or video clip is processed individually in sequence (i.e., 

frame-wise testing mode) to reflect realistic usage in 

streaming or online deployment scenarios. No 

parallelization or batch acceleration is applied during 

testing to ensure fairness in comparing real-time 

responsiveness across different models. In Table 2, 

IMMTCNN performs the best on the AFEW and CK+ 

datasets, with 89.70% and 93.50% accuracies, 

significantly higher than SSD and MTCNN, 

demonstrating strong overall classification ability. In 

terms of precision, IMMTCNN has 87.50% and 92.00% 

accuracy rates and 88.20% and 92.80% recall rates, both 

of which are superior to the other two models, indicating  

 

that it is more accurate in extracting and classifying 

emotional features. In terms of F1 scores, IMMTCNN 

achieves 87.80% and 92.40% on two datasets. Although 

the inference time of SSD is slightly faster on two 

datasets, at 35 ms/frame and 30 ms/frame. The inference 

time of IMMTCNN remains at 40 ms/frame and 35 

ms/frame, indicating high efficiency. The inference time 

of MTCNN is relatively slow, at 50 ms/frame and 45 

ms/frame. This indicates that IMMTCNN achieves a 

good balance between accuracy and efficiency, making it 

the best performing model for sentiment analysis and 

expression detection tasks in complex scenarios. 

Although the IMMTCNN model achieves strong 

performance across the AFEW, CK+, and JAFFE 

datasets, notable cross-dataset variability can be observed. 

Specifically, the ACC on the AFEW dataset is lower 

compared to the more strictly controlled CK+ and JAFFE 

datasets. This variation is largely attributed to differences 

in data distribution, including lighting conditions, 



229   Informatica 49 (2025) 229–232 F. Zhou 

background complexity, expression intensity, and video 

resolution. The high performance on CK+and JAFFE 

demonstrates the model's ability to capture fine-grained 

facial features under standardized conditions, while the 

relatively robust results on AFEW demonstrate its 

potential for real-world generalization. To further 

validate generalization, models trained on CK+ and 

tested on JAFFE are evaluated. Although the 

performance slightly decreases due to domain shift, the 

model maintains a reasonable recognition rate, indicating 

moderate cross-domain portability. These findings 

highlight the need for incorporating domain adaptation or 

augmentation strategies when applying the model in 

diverse deployment environments. Overall, IMMTCNN 

has strong generalization ability for unseen data 

(especially in semi-controlled situations) and also 

achieves good results under unconstrained conditions. 

 

4.2 Performance of expression generation 

model based on improved GCN 
This study selects GCN and ResNet50-GCN as 

comparative models to analyze the generation accuracy 

and errors of each model, as shown in Figure 9. 
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Figure 9: Analysis of accuracy and error rates of various models 

 

Figs.9 (a) and (b) show the accuracy and error rate 

analysis of three models. In Figure 9 (a), 

SE-ResNet50-GCN achieves optimal performance, with 

its accuracy rapidly approaching 1.0 when the dataset 

size exceeds 200, indicating its excellent classification 

ability in both small and large dataset environments. 

GCN performs the worst throughout the entire process, 

with an accuracy consistently below 0.75 and limited 

improvement in small datasets. In Figure 9 (b), the error 

rate gradually decreases with the increase of dataset size. 

SE-ResNet50-GCN has the fastest descent speed, and the 

error rate quickly drops to nearly 0 when the dataset size 

reaches 200, demonstrating strong robustness and 

convergence ability. The proposed model performs 

excellent. Figure 10 shows the generation of six different 

facial expressions. 
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Figure 10: Comparison of the accuracy and time of generating different expressions by various models 

 

In Figure 10, the labels "Emoji type A–F" correspond to 

six representative facial expression categories selected 

from the CK+ dataset. Specifically, they are mapped as 

follows: A – Angry, B – Disgust, C – Fear, D – Happy, E 
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– Sad, and F – Surprise. Figs.10 (a) and (b) show a 

comparison of the accuracy and generation time of 

different facial expressions generated by various models. 

SE-ResNet50-GCN shows the highest accuracy across all 

expression types, approaching 0.95 in expression type A. 

The accuracy of ResNet50-GCN is about 0.85, while the 

accuracy of GCN is less than 0.8. Similarly, in expression 

type F, the accuracy of SE-ResNet50-GCN exceeds 0.9, 

significantly better than the comparison model. 

ResNet50-GCN performs second, while GCN performs 

the worst, with accuracy generally below 0.8. In Figure 

10 (b), GCN has the longest inference time, with an 

average time of less than 500 milliseconds for all 

expression types. This indicates that the research model 

has excellent performance. An ablation experiment is 

conducted on the SE-ResNet50-GCN model, as listed in 

Table 3. 

 

Table 3: Analysis of ablation experiment results 

Model Accuracy Precision Recall F1 Score 
Inference Time 

(ms/frame) 

SE-ResNet50-GCN 93.50% 92.00% 92.80% 92.40% 521 

ResNet50-GCN 90.80% 88.50% 89.30% 88.90% 478 

SE-GCN 88.30% 86.10% 87.00% 86.50% 385 

SE-ResNet50 85.70% 83.50% 84.40% 83.90% 451 

SE-ResNet50 (w/o GCN) 82.60% 80.90% 81.70% 81.30% 429 

Baseline 80.20% 77.50% 78.30% 77.90% 309 

 

In the ablation study, two core components of the 

proposed model are examined: the ResNet module and 

the GCN module. The ResNet module refers to the 

residual learning unit embedded in the encoder stage 

of the expression generation network, which facilitates 

deeper feature extraction by mitigating vanishing 

gradients. The GCN module denotes the GCN-based 

decoder component responsible for modeling the 

topological and spatial relationships between facial 

landmarks to enhance expression reconstruction 

accuracy. By selectively removing each module, the 

study assess its individual contribution to the overall 

model performance. In Table 3, SE-ResNet50-GCN 

performs the best with 93.5% accuracy, 92.0% 

precision, 92.8% recall, and 92.4% F1 score. After 

removing the SE module, the accuracy of 

ResNet50-GCN decreases to 90.8% and the F1 score 

decreases to 88.9%. After removing the ResNet50 

structure, the accuracy of SE-GCN further decreases 

to 88.3% and the F1 score is 86.5%. After removing 

the GCN module, the accuracy of SE-ResNet50 is 

only 85.7% and the F1 score is 83.9%. The accuracy 

of the basic model is the lowest, only 80.2%, with an 

F1 score of 77.9%. This indicates that the integration 

of attention mechanism, deep residual network, and 

GCN module is the key to achieving high performance 

of the model. To further evaluate the independent 

contribution of the GCN module, an additional 

ablation experiment is conducted by removing only 

the GCN structure from the SE-ResNet50-GCN model, 

while keeping the SE and ResNet50 components intact. 

The results indicate that the model's accuracy drops 

from 93.5% to 82.6%, and the F1 score decreases from 

92.4% to 81.3%. This substantial decline demonstrates 

the critical role of GCN in modeling the semantic 

relationships between facial AUs, enabling the system 

to generate more structurally consistent and realistic 

facial expressions. Compared with the SE-ResNet50 

variant and the baseline, the removal of GCN results 

in more performance degradation, highlighting its 

distinct contribution. 

 

Although inference time performance is reported 

quantitatively, it is important to contextualize this 

metric against practical application scenarios. The 

proposed IMMTCNN achieves an average inference 

time of 22.4 ms/frame, which corresponds to 

approximately 44.6 frames per second. This frame rate 

meets the real-time requirements of most FER tasks in 

interactive applications, such as virtual avatar 

animation, HCI systems, and live video-based emotion 

monitoring. In addition, the inference speed remains 

stable under different lighting conditions and facial 

postures, making the model suitable for deployment 

on mid-to-high-end GPU devices in production 

environments. However, in highly 

resource-constrained embedded platforms (e.g., 

mobile AR/VR devices), further optimization such as 

model pruning or quantization may be required to 

meet stricter latency demands. 

5  Discussion 
Compared with the traditional MTCNN and SSD 

models, the improved IMMTCNN model 

demonstrates significant advantages in terms of 

recognition accuracy, error convergence, and 

robustness. On the AFEW and CK+ datasets, 

IMMTCNN achieves 89.70% and 93.50% accuracies, 

outperforming MTCNN (78.90%, 85.30%) and SSD 

(85.40%, 90.10%). Although SSD has a slightly faster 

inference time (35 ms/frame), IMMTCNN maintains 

real-time performance at 40 ms/frame while ensuring 

higher accuracy. In terms of robustness, IMMTCNN 

benefits from the multi-scale feature pyramid and HR 

parallel structure, enabling accurate facial recognition 

under complex lighting and background conditions. 

On unseen subsets of the AFEW dataset, IMMTCNN 

still maintains stable performance, while SSD shows 

evident performance degradation due to its lack of 

facial keypoint modeling capability. The HR-PCN 

module significantly enhances multi-scale feature 
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representation by preserving both HR and 

low-resolution feature flows, allowing better fusion of 

global and local context. Compared with traditional 

downsampling structures and standard convolution 

modules, HR-PCN effectively preserves fine-grained 

facial details at each stage. The introduction of 

OctConv further improves efficiency by decomposing 

feature channels into high and low frequency 

components, thereby accelerating convergence speed 

and expression ability. Nevertheless, there are still 

limitations in the current model. The generalization 

ability to unseen scenarios such as extreme occlusion, 

motion blur, or multi-person expressions has not been 

fully verified. The model does not explicitly handle 

occlusions, which may affect detection accuracy when 

key facial regions are blocked. Although this model 

can meet the real-time requirements of GPU platforms, 

there are still challenges in deploying the complete 

pipeline of IMMTCNN and SE-ResNet50-GCN on 

resource limited edge devices. Future research will 

focus on enhancing model generalization through 

domain adaptation, occlusion-aware learning, and 

adversarial robustness, as well as exploring 

lightweight network variants to improve deployment 

scalability. 

6  Conclusion 
In response to the challenges of VACE recognition and 

generation in complex scenarios, this study proposed 

an improved MTCNN-based expression recognition 

method and a GCN-based expression generation 

method. The introduced feature enhancement modules, 

HR-PCN, and OctConv operations were introduced 

into MTCNN. In the experiment, on the AFEW and 

CK+ datasets, the ACC of the IMMTCNN model 

reached 89.70% and 93.50%, much higher than the 

78.90% and 85.30% of MTCNN. Meanwhile, the 

inference time was controlled within 40 milliseconds, 

and the balance between performance and efficiency 

made it suitable for real-time scenarios. In contrast, 

although the SSD model had slightly faster inference 

speed, its accuracy was lower, only 85.40% and 

90.10%. In the expression generation task, by 

introducing GCN to model the semantic relationships 

of AUs, the SE-ResNet50-GCN model achieved 

nearly 95% accuracy rate in generating multiple 

expression types, significantly better than 

ResNet50-GCN and GCN. Future research can 

combine GAN, multi-modal data fusion, and 

self-supervised learning techniques to enhance the 

robustness and naturalness of FER and generation, 

providing more comprehensive technical support for 

animation production, HCI, and VR applications. 
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