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Facial expression recognition and virtual animation character generation are crucial for animation
production and human-computer interaction, but traditional models often perform poorly in complex
scenes. This paper proposes a novel expression recognition and generation framework based on an
improved Multi-Task Convolutional Neural Network (MTCNN), augmented by a High-Resolution
Parallel Convolutional Network (HR-PCN) and Octave Convolution (OctConv). Specifically, HR-PCN
enhances multi-scale feature extraction for facial keypoint detection, while OctConv improves
frequency-aware representation learning. In terms of facial expression generation, Graph
Convolutional Networks (GCNs) are adopted to model the semantic relationships between facial Action
Units (AUs) and further enhanced with SE-ResNet50 for better spatial attention. The proposed MTCNN
model was evaluated on the AFEW and CK+ datasets, achieving 89.70% and 93.50% accuracies,
surpassing MTCNN’s 78.90% and 85.30% and SSD s 85.40% and 90.10%. RMSE was reduced to 0.1
after 30 iterations, and inference time was kept within 40 ms/frame. For expression generation, the
SE-ResNet50-GCN model attained a generation accuracy of up to 93.5%, significantly outperforming
ResNets0-GCN (90.8%) and GCN (80.2%). These results validate the proposed framework’s
effectiveness in improving both recognition accuracy and expression realism under complex conditions.

Povzetek: Za realnocasno prepoznavo in generiranje obraznih izrazov pri virtualnih likih je razvit
IMMTCNN-GCN okvir, ki zdruzuje izboljsani MTCNN s HR-PCN in OctConv za vecmerno zaznavanje

obraznih znacilk ter SE-ResNet50-GCN za semanticno generacijo izrazov.

1 Introduction

The recognition and generation of Virtual Animated
Character Expressions (VACE) has become an important
research direction in animation production, game
development, and Human-Computer Interaction (HCI)
systems in recent years. In animation and virtual scenes,
natural and realistic facial expressions can enhance user
experience and play a key role in intelligent interactive
devices. However, complex backgrounds, diverse
lighting, and dynamically changing scenes pose
significant challenges for Facial Expression Recognition
(FER) and generation. For example, uncontrolled
lighting conditions, non frontal facial orientation,
occlusion, cluttered background, and spontaneous
emotional expression that appears in naturalistic videos.
Traditional methods, such as rule-based expression
analysis or simple classification algorithms, often

struggle to maintain robustness in complex environments.

Especially in cases where multiple expressions are mixed
or Action Units (AUs) are not obvious, it leads to a
significant decrease in recognition accuracy and
generation quality [1]. However, existing methods have
poor robustness in complex scenes, and facial expression
generation often lacks naturalness and realism. For
example, Multi-Task Convolutional Neural Networks
(MTCNN) perform well in facial keypoint localization,
but there is still room for improvement in feature

extraction and multi-scale fusion capabilities [2]. In
addition, facial expression generation technology has
achieved certain results by introducing methods such as
Generative Adversarial Networks (GAN) and Graph
Convolutional Networks (GCN), but the modeling of
facial details and AU relationships is still insufficient.
Therefore, this paper designs a VACE recognition and
generation method based on an improved MTCNN
algorithm. This method improves feature extraction
efficiency and localization accuracy by introducing
High-Resolution (HR) - Parallel Convolutional Networks
(PCN) and Octave Convolution (OctConv) modules into
MTCNN. It uses GCN to model the semantic
relationships between AUs in expression generation,
optimizing the quality of generation. .

This study aims to address various challenges guided by
the following core research questions: (1) How can the
integration of HR-PCN into MTCNN improve the
extraction of multi-scale facial features and enhance
localization accuracy in complex scenarios? (2)
Compared to standard convolution operations, in what
ways can introducing OctConv contribute to more
efficient and frequency aware representation learning? (3)
How does the combination of SE-ResNet50 and GCN
enhance the modeling of semantic relationships between
facial AUs to improve the realism and accuracy of
expression generation? Therefore, the main objective of
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the study is to design and evaluate a dual module
framework. This framework integrates an improved
MTCNN for FER and a GCN-based semantic modeling
method for expression generation. This framework aims
to achieve high precision and real-time performance
under various challenging environmental conditions.

2 Related works

With the widespread application of facial recognition
technology, recognition methods built on video data have
attracted much attention because of their rich information.
Estephe Arnaud et al. proposed a dual exogenous
endogenous representation method. This method
performed well on multiple datasets, especially in FER
tasks that deal with exogenous variables such as identity,
which was significantly better than existing methods [3].
To optimize video FER, Liu Y et al. put forward an
emotion-rich feature learning network grounded on
segment perception. On multiple datasets, the
performance of this model has significantly improved
compared to existing methods, verifying its effectiveness
and robustness [4]. To lift the precision of FER, Liu P et
al. proposed a point adversarial self-mining method. This
method simulated the human learning process, combined
point adversarial attacks with teacher network guidance,
and iteratively generated and optimized adaptable
learning samples. This method was significantly superior
to existing technologies in FER, demonstrating its
excellent practicality [5]. To enhance the robustness of
user FER in Virtual Reality (VR) metaverse applications,
Ho Seung C et al. proposed a FER system based on facial
electromyography and adopted covariate displacement
adaptation technology to address electrode displacement
issues. This system significantly improved the
recognition accuracy caused by electrode position
changes, increasing from 79% to 86%, and was expected
to greatly enhance the practicality of the model and its
potential applications in the VR metaverse [6].

Otberdout et al. proposed a conditional manifold valued
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Wasserstein GAN to generate videos of 6 basic facial
expressions given neutral facial images. This method
significantly enhanced the efficiency of dynamic facial
expression generation, transfer, and data processing [7].
Fan X et al. proposed a facial micro-expression
generation model based on deep motion redirection and
transfer learning to address the lack of data in generating
facial micro-expressions. This model effectively
improved the efficiency of generating facial
micro-expressions [8]. Liu et al. put forth a new
two-stage network to address the lack of detail and
vividness in facial expressions generated by existing
methods. This network generated facial expressions by
annotating AUs, and inputting AU groups and facial
images into the generation network, thereby making
facial expressions more rich and vivid. This method
effectively improved the quality of facial expression
generation [9]. To improve the accuracy of facial
expression prediction, Sathya T et al. proposed a new
method of integrating convolutional recurrent neural
networks and constructed an adaptive neural fuzzy
reasoning system as the integration layer. The results
showed that this method achieved 99.52% accuracy,
99.35% F1 score, and 0.95 AUC value on the face
recognition and EMOTIC datasets, which was
significantly superior to the existing methods [10].

In summary, many scholars have researched facial
recognition and feature extraction, and have achieved
certain results. However, most scholars adopt a single
algorithm model and have not made enhancements to
deal with the constrains of the model. Therefore, the
paper proposes a VACE recognition and generation
method based on an improved MTCNN algorithm, which
introduces HR-PCN and OctConv modules into MTCNN.
The study attempts to optimize the entire process of FER
and generation, to achieve more precision recognition
and natural facial expression generation in complex
scenes.

Table 1. Comparative summary of FER and generation methods

Key Performance

Research Method Research Content Dataset Used Metrics Reference
Improves FER
X Dual robustness by Outperfo_rmed
Estephe exogenous—endogenous removin Multiple FER conventional
Arnaud et g 109 . - g P FER methods in [3]
representation + identity-related datasets . . o
al. (2023) o . identity-sensitive
conditional tree gating exogenous features scenarios
in dynamic scenes
. Higher emotional
Segment-perception localization
LiuY et Clip-aware expressive based emotional Multiple video-based ACCUracY” [4]
al. (2022) feature learning network feature encoding for datasets reduced v?:j,eo
video-based FER
redundancy
Point adversarial Simulated human acScISrnalzlcar;tin
LiuPet o : learning to generate FER datasets with Y9
self-mining with teacher - A over [5]
al. (2022) ; adaptive samples for identity bias .
guidance FER conventional
FER methods
Ho-Seung  Facial EMG + domain Robust FER under VR-based EMG Accuracy [6]
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Cetal. adaptation electrode dataset improved from
(2023) displacement for 79% to 86% in
VR/Metaverse electrode shift
scenarios
Facial expression Efficient
Otberdout Conditional manifold video generation on Six-basic-expression dynamic famal
etal. \Wasserstein GAN hypersphere with dataset expression [7]
(2020) dynamic motion transfer and
modeling generation
Better
Facial generalization in
Fan X et  Deep motion redirection MIcro-expression Micro-expression Iow'-datg
: generation using regimes; [8]
al. (2021) + transfer learning . dataset
macro-expression enhanced
knowledge transfer generation
quality
Generates realistic Improved
LiuS & Two-stage facial expressions AU-annotated vividness and
Wang H AU-annotated face based on expression dataset realism of [9]
(2023) generation model AU-annotated generated
image pairs expressions
3 Methods

The proposed method consists of two main components:
an improved MTCNN-based FER model and an
improved GCN-based expression generation model. The
MTCNN model integrates multi-task learning with
feature enhancement modules and HR-PCN to enable
efficient multi-scale feature extraction and accurate facial
keypoint localization. The GCN-based generation model
is designed to capture semantic dependencies between
facial AUs, thereby enhancing the realism and detail of
generated expressions.

3.1 Expression recognition model based on

improved MTCNN algorithm

VACE recognition and generation is one of the key
technologies in animation production, game development,
and HCI systems. However, traditional FER methods
lack robustness in complex scenes, and facial expression
generation technology faces challenges of low quality
and poor naturalness. This study proposes a VACE model
built on an improved MTCNN, as shown in Figure 1.
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Figure 1: Expression recognition model based on
improved MTCNN

In Figure 1, the image is first input and a multi-scale
image

pyramid is generated through a feature fusion module to
meet the needs of face detection at different scales.
Subsequently, the features are processed through three
stages: P-Net, R-Net, and O-Net. P-Net generates
candidate regions containing faces through rapid
screening. R-Net further refines trustworthy facial
regions [11]. O-Net optimizes the detection results and
outputs high-precision facial regions and keypoints. Each
sub-network is explicitly labeled with its internal layer
configuration. For example, P-Net contains a 3x3
convolution layer with 10 filters followed by RelLU
activation and a 2x2 max pooling layer, a 3x3
convolution with 16 filters, and a final 1x1 convolution
outputting a 32-channel feature map for three branches.
Similar structures are presented for R-Net and O-Net.
The OctConv module is marked to highlight the
decomposition of feature channels into high-frequency
and low-frequency components. The HR network is
labeled with four multi-resolution branches, showing
upsampling, downsampling, and lateral connections that
facilitate multi-scale feature fusion. MTCNN has three
layers of CNNSs, each responsible for different stages of
face detection tasks. P-Net is the first layer of MTCNN,
mainly responsible for generating candidate boxes and
conducting preliminary screening. The input image
undergoes multi-scale image pyramid processing to
generate images of different resolutions to adapt to
detecting faces of different sizes [12-13]. Next, P-Net
performs convolution operations on the images at each
scale, and finally uses non maximum suppression to
remove duplicate or overlapping candidate boxes, while
retaining high confidence candidate boxes. The P-Net
belongs to the binary classification problem, and the face
detection classification loss function is the cross-entropy
function, which is expressed as equation (1).
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L =—(y™ log(p,) +@— y{*)(L—log(p,)) (1)

det
In equation (1), ' s the classification loss for sample

I P is the P-Net's prediction probability that i
det
beIo_ngs to the face category, and Yi is the true label

of !. R-Net is the second layer network of MTCNN,
responsible for further screening and refining the
candidate boxes generated by P-Net. Firstly, it is
necessary to receive the candidate boxes of P-Net as
input, and further classify these candidate boxes with
higher accuracy [14-15]. Through convolution operations
and fully connected layers, it is determined whether the
candidate box contains a face and the boundaries of the
candidate box are refined. Finally, the NMS algorithm is
used to remove overlapping candidate boxes and further
optimize the detection results. R-Net belongs to the
boundary box regression problem, and its loss function
expression is given by equation (2).
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. ybox ybox
loss of 1. Yi and 7i  are the predicted and true

bounding box coordinates of !. O-Net is the third layer
of MTCNN, responsible for optimizing the candidate
boxes generated by R-Net and outputting high-precision
detection results and keypoint positions [16]. The loss
function during the feature point localization process is
shown in equation (3).
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In equation (3), L is the keypoint prediction loss

of !, reflecting the deviation between the predicted
~landmark

keypoints and the true keypoints. Yi is the

predicted facial keypoint coordinates of ! , and
landmark . . H .

Yi is the true keypoint coordinates of !. This L2

loss captures the spatial deviation between predicted and
true landmark positions and is essential for
high-precision facial structure modeling. The convolution
operation has been improved, and the improved P-Net
framework is displayed in Figure 2.
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Figure 2: Improved P-Net network structure

In Figure 2, the improved P-Net structure begins with an
input image of size 12x12x3, which passes through a
3x3 convolution layer to extract low-level features,
resulting in an output of 5x5x12. The convolutional
pipeline includes a pair of separable convolutions that
together simulate a 3x3 Kkernel while reducing
computational complexity. To avoid confusion, only one
input path is shown in the updated image. All
intermediate tensors are labeled according to their
functional roles to ensure clarity. The final layer outputs
are separated into three heads for classification, bounding
box regression, and facial landmark localization. An
image with an input size of 12x12x3 is first processed

through a 3x3 convolutional layer to extract low-level
features, resulting in an output size of 5x5x12. Next,
downsampling is performed using a 2x2 max pooling
layer with a stride of 2 to further compress the feature
map size. Next is another 3x3 convolutional layer with
an output size of 3x3x16 to extract deeper features.
Subsequently, size compression is performed through a
convolution operation with a stride of 4. The last layer of
3x3 convolution generates a feature map with a size of
1x1x32, which is used for subsequent multitasking
branch processing. The network output includes three
branches: The face classification branch, which is used to
determine whether it is a face; Candidate box regression
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branch is used to predict facial bounding boxes; Facial
feature point localization branch, which is utilized to
predict keypoint positions. Due to the limited number of
convolutional layers in MTCNN's hierarchical structure,
it cannot fully extract facial details. To address this
limitation, this study introduces OctConv into the R-Net
and O-Net stages of the original MTCNN architecture.
Specifically, the standard convolutional layers in these
networks are replaced with OctConv operations, which
decompose feature maps into high-frequency and
low-frequency components. This design allows
low-frequency information to be processed at reduced
spatial resolution, reducing redundancy while enabling
the network to focus HR computations on the most
informative parts of the facial regions. OctConv is
applied after initial feature extraction in R-Net and then
applied again in the refinement stage of O-Net. These
substitutions enhance the network’s ability to capture
fine-grained semantic differences across multi-scale
facial areas, thereby improving both feature richness and
computational efficiency. Therefore, a new convolution
operation is introduced in R-Net to replace the original
convolution [17]. This study uses OctConv instead of the
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original convolution. OctConv decomposes the input
feature map into high and low frequency components.
The expression for outputting high-frequency signals is
shown in equation (4).

YH :YHHH +YL~>H (4)

In equation (4), YR s the high-frequency output
generated through convolution operation from the

high-frequency input. YR s the high-frequency
output generated through convolution operation after
upsampling from low-frequency input. The formula for
outputting low-frequency signals is shown in equation

®).
YL :YL~>L +Y H~>L(5)

. oL .
In equation (5), Y7 s the low-frequency output
generated through convolution operation from the

. H-oL .
low-frequency input. Y is the low-frequency
output generated through convolution operation after
downsampling from high-frequency input [18]. To
further capture facial expressions, this study selects a
feature extractor with the structure shown in Figure 3.
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Figure 3: High-resolution PCN

In Figure 3, the input image enters four stages after the
initial convolution module extracts initial features. Stage
1 extracts HR features and obtains basic features through
convolution and pooling operations. Stage 2 begins by
introducing multi-resolution feature streams to generate
feature maps of two resolutions, with HR preserving
details and low resolution extracting global information.
In stages 3 and 4, more resolution feature streams are
gradually added to achieve multi-scale feature extraction
from high to low. The feature flow within each stage
achieves interaction and fusion of multi-resolution
features through upsampling, downsampling, and
horizontal connections, enhancing the ability to express
global contextual information and local details. The final
stage of the network applies a convolutional decoding
layer to the fused features, transforming them into the
final generated expression image. As shown in Figure 3,
the output node is clearly labeled as “Generated Target
Expression Image”, indicating the end of the forward
inference path.

To facilitate reproducibility, the study provides a detailed

description of the proposed Improved Multi-task
Cascaded Convolutional Network (IMMTCNN) model
pipeline, particularly focusing on the integration of
OctCon and HR-PCN. The entire architecture maintains
the three-stage cascade of the original MTCNN-P-Net,
R-Net, and O-Net-but with key enhancements at each
stage. In the P-Net stage, OctConv is introduced to
decompose input features into high-frequency and
low-frequency components, thereby improving the
network’s ability to preserve fine-grained spatial
information. These enhanced features are used to predict
candidate face regions and preliminary landmarks. The
R-Net further refines these candidates using deeper
OctConv blocks to improve localization accuracy and
robustness. Finally, the O-Net incorporates HR-PCN to
perform multi-resolution feature extraction in parallel
branches. This enables the model to retain both global
contextual and local detailed information, which is
critical for precise landmark detection and expression
classification. After passing through O-Net, the fused
multi-scale features are concatenated and passed to a
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classifier head with a Softmax function, yielding the final
expression label. This hierarchical structure ensures both
spatial detail and semantic understanding are preserved
throughout the recognition process.

The selection of OctConv and HR-PCN is grounded in
their theoretical capacity to address fundamental
challenges in FER. Traditional convolution operations
that uniformly process all spatial frequency information
often result in redundant calculations and reduced
sensitivity to low-frequency contextual clues. OctConv
decomposes feature maps into high-frequency and
low-frequency components, allowing the network to
capture coarse semantic structures (large facial areas) and
fine-grained details (wrinkles, micro-expressions) in a
decoupled and effective manner. This frequency-aware
representation enables improved discriminative power
for subtle or compound expressions. Meanwhile,
HR-PCN preserves HR representations throughout all
layers, avoiding the repeated downsampling typical of
conventional CNN. This structural design ensures the

Multi scale
feature extraction Global
feature

v
Input SE- 4|+ extraction

ResNet50

Mask Mask
\ - \ -

—>

O
£

F. Zhou

preservation of spatial accuracy without sacrificing
semantic richness, which is crucial for accurately
locating landmarks and key expression areas. The
multi-resolution fusion strategy employed in HR-PCN
theoretically facilitates better spatial-semantic interaction
across scales, which is essential in scenarios where
expressions are partially occluded or vary in intensity.
These characteristics are consistent with information
theory and empirical research results, proving that
integrating them into the IMMTCNN framework is
reasonable.

3.2 Expression generation method based on

improved GCN

After completing the expression recognition, the
recognized expressions are generated. This study
proposes an expression generation model based on GCN,
and its architecture is illustrated in Figure 4.

—{ ROI Align O
GCN |-
\
Attention _T
map

Figure 4: Expression generation method based on improved GCN

In Figure 4, Firstly, the input facial image is used to
extract global features through multi-layer convolution
based on residual networks, while utilizing prior
knowledge to obtain regions of interest and focus on
locating key facial regions. Then, the local feature
extraction module performs feature alignment on the
regions of interest and uses ROI Align to obtain
high-quality feature maps for each region. In the
expression generation pipeline, the ROI Align module is
used to extract HR local features from specific facial
regions (e.g., eyes, mouth) based on predefined
landmarks. These aligned features are then processed by
an attention mechanism, which generates an attention
map that emphasizes emotionally salient regions. The
output of ROI Align serves as the input to the attention
module, whose weighted features are then fused with the
global representation for final expression synthesis. The
semantic information of local AUs is further extracted
through convolution operations and region segmentation
[19]. Next, these features enter the GCN-based modeling
module. Finally, the output module generates facial
expression AU detection results based on the predicted
activation status of AUs, combined with expert priors and
semantic features. The propagation formula of GCN is
given by equation (6).

HO = o (AHOW®) (6)

141
In equation (6), H is the feature matrix of the

graph node. w® is a learnable weight matrix. A s
the normalized adjacency matrix of the graph,
representing the relationships between nodes, as
expressed in equation (7).

1 1
A=D 2AD 2(7)

In equation (7), A isthe original adjacency matrix, D

A

is the degree matrix of A , and the diagonal elements are
the degrees of the nodes. The core idea of GCN is to
update the features of nodes through graph structure, and
the formula for updating node features is given by
equation (8).

WD =g ¥ 1 powo
N, fd.d,
®)
(1+1)

In equation (8), ' is the eigenvector, N s the set

. . . 0}
of neighboring nodes, d is the node degree, and w
is the learnable weight matrix. The overall process of the
feature extraction module is shown in Figure 5.
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Figure 5: Overall process of feature extraction module

In Figure 5, the input facial image is first subjected to
multi-scale feature extraction using SE-ResNet50. The
network consists of five stages from StageO to Stage4,
gradually extracting global features from low to high
levels. The feature maps output at each stage are fused
step by step to form a multi-scale global feature
representation, and then multiple regions of interest are
selected through specific modules. Through ROI Align
operation, each region of interest feature is aligned to a
fixed size to ensure consistency of subsequent features.
Next, local features are extracted through convolution
operations and enhanced with attention mechanisms to
highlight important regions. After combining local
features with global features, they are input into
GCN-based modules. The final result annotates the
predicted feature regions on the entire image, achieving
precise detection and annotation of specific facial AUs.
Due to the higher resolution and more information
contained in shallow facial features, the SE-ResNet50
network is improved by adding a multi-scale feature
extraction module, as shown in Figure 6.
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Figure 6: Multi-scale feature extraction module

As shown in Figure 6, the input feature maps are
extracted from multiple stages of the expression
recognition network, including early convolutional layers
for shallow spatial details (e.g., 32x32x64), intermediate
layers capturing structural contours (e.g., 16x16x128),
and deeper layers representing semantic attributes (e.g.,
8x8x256). These multi-scale features are fused to form a
comprehensive representation for downstream expression
generation. Each feature map is first subjected to channel

compression through 1x1 convolution to reduce
computational complexity while preserving key features.
Next, the compressed feature map undergoes
downsampling to adjust all features to a uniform spatial
resolution, providing consistency for subsequent fusion.
The processed features are separately generated into low
dimensional representations, which are fused through
step-by-step addition operations. By combining the
detailed information of shallow features with the high
semantic information of deep features, a unified
multi-scale feature map is generated.

Compared to conventional GCN-based expression
generation approaches, the model introduces a
semantic-aware adjacency matrix that explicitly encodes
facial AU co-activation patterns derived from annotated
training samples. Unlike the static fully connected graph
used in baseline GCNs, this study utilizes a statistical AU
co-occurrence matrix and adaptively adjusts edge
weights based on AU strength correlation. This allows
the network to focus on context-relevant relationships
among facial regions, which is especially beneficial in
complex scenarios involving subtle expressions, partial
occlusions, or blended emotions. In addition, although
previous studies have focused on the temporal dynamics
or spatial positions of Emotion-GCN and ST-GCN
models, the research methods emphasize semantic
coupling between expression units, which directly affects
the fidelity of generation. In practical conditions such as
non-frontal poses or noisy lighting, the model’s ability to
propagate contextual cues via semantically weighted
edges significantly improves output consistency and
realism. This differentiates the method from prior GCN
implementations that either rely on fixed topology or
overlook AU-specific dependencies.

4 Results

The first section evaluated the Accuracy (ACC), Root
Mean Square Error (RMSE), and inference time of the
improved MTCNN model on the AFEW and
CK+datasets, and compared it with the SSD and
MTCNN models. The second section conducted



227  Informatica 49 (2025) 227-232

experimental analysis on the expression generation
model based on improved GCN, evaluating its
performance in generating accuracy, error rate, and
different  expression types. In  addition to
classification-based metrics such as accuracy, RMSE is
employed to evaluate the pixel-level deviation between
the generated expression outputs and ground-truth facial
features. RMSE is particularly relevant to facial
expression generation tasks as it quantifies the average
Euclidean distance between predicted facial regions and
actual keypoints or intensity values, reflecting the fidelity
of generated expressions at the granular level. Lower
RMSE indicates that the generated expression closely
aligns with the real facial motion or emotion template,
which is critical for assessing subtle differences in
emotion rendering and AU activation. RMSE serves as a
complementary metric to accuracy, capturing spatial
realism and structural consistency in generated facial
expressions.

To assess the impact of architectural hyperparameters on
model performance, several controlled experiments are
conducted. For the OctConv module, this study sets the
octave ratio o to 0.5, as this value provides the best
balance between preserving high-frequency and
low-frequency features. The change in o value from 0.25
to 0.75 indicates a marginal benefit exceeding 0.5, while
higher values introduce redundant calculations. In the
HR-PCN structure, the study uses two parallel branches
with 3 and 5 convolutional layers. The ablation
experiment shows that increasing depth beyond this
setting will lead to overfitting of the AFEW dataset,
while decreasing depth will weaken the accuracy of
landmark localization. For the GCN module, the study
empirically selects 3 layers to balance topological
expressiveness and computational efficiency. Due to
excessive smoothing, using more than 3 layers can lead
to performance degradation. These observations indicate
that the selected hyperparameter configuration is
empirically optimal on the test dataset and provides
stable  performance across different expression
categories.

4.1 Performance analysis of FER model
based on improved MTCNN algorithm

F. Zhou

The dataset adopts Acted Facial Expressions in the Wild
(AFEW) and Extended Cohn-Kanade (CK+) public
datasets. The AFEW dataset contains approximately
1,809 labeled video clips extracted from real movie
scenes, distributed across seven emotion categories:
Angry (300), Disgust (150), Fear (200), Happy (350),
Sad (350), Surprise (250), and Neutral (209). The video
clips cover diverse conditions including varying lighting,
pose changes, and occlusion, making it a challenging
benchmark for evaluating expression recognition models
in natural environments. The CK+ dataset contains 593
image sequences from 123 subjects, with each sequence
beginning with a neutral frame and ending at the peak
expression. The dataset provides both categorical
emotion labels and Facial Action Coding System
(FACS)-based AU annotations. Emotion distribution in
CK+ includes: Angry (45), Contempt (18), Disgust (59),
Fear (25), Happy (69), Sad (28), Surprise (83), and
Neutral (266). These datasets enable comprehensive
evaluation in both constrained and unconstrained
scenarios, with CK+ focusing on HR expression detail
and AFEW simulating real-world variability. To ensure
reproducibility, the training and testing settings of all
experiments are described as follows. The proposed
IMMTCNN model and the baseline models are
implemented using Python with the PyTorch framework.
Training is conducted using an NVIDIA RTX 3090 GPU
with 24 GB memory. The initial learning rate is set to
0.001 and optimized using the Adam optimizer. A batch
size of 64 is used for both training and validation. The
total number of training epochs is set to 150, with an
early stopping strategy based on the validation loss.
Cross-entropy loss is used for expression classification,
and smooth L1 loss is employed for bounding box
regression. For landmark localization, the Mean Squared
Error (MSE) loss is adopted. All input facial images are
re-sized to 96x96 pixels. During testing, the models are
evaluated using the same preprocessing and
normalization protocols to ensure consistency across
datasets. This study compares the Single Shot MultiBox
Detector (SSD) algorithm with traditional MTCCN to
analyze the performance of the research model. The ACC
results of the improved MTCNN to IMMTCNN are
shown in Figure 7.
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Figure 7: ACC and RMSE for various models
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Figs.7 (a) and (b) compare the ACC and RMSE of three
models. In Figure 7 (a), IMMTCNN performs the best
throughout the entire iteration process, with its ACC
steadily increasing from 0.6 to 0.9 and stabilizing after
the 30th iteration. The final average accuracy of
IMMTCNN on the CK+ dataset reaches 93.50% with a
95% confidence interval of [92.84%, 94.16%], while on
AFEW, the ACC is 89.70% [88.91%, 90.49%]. In
contrast, MTCNN achieves 85.30% [84.22%, 86.38%]
and 78.90% [77.71%, 80.09%], while SSD records
90.10% [89.43%, 90.77%] and 85.40% [84.56%, 86.24%]
on the CK+ and AFEW datasets. These results confirm
that IMMTCNN has higher ACC and significant
improvements in statistics compared to the baseline
model. In Figure 7 (b), the RMSE of IMMTCNN in the
initial stage is about 0.6 and rapidly decreases, stabilizing
around 0.1 after the 30th iteration. The final RMSE of
IMMTCNN is 0.102 £ 0.007 (95% CI), significantly
lower than that of MTCNN (0.204 + 0.012) and SSD
(0.314 £ 0.015), indicating that the proposed model
achieves a more stable and precise prediction
performance. This indicates that the proposed model has
high ACC and low RMSE. The results of analyzing the
recognition performance of each model are shown in
Figure 8. Figure 8 (a) shows the original image. Figs.8 (b)
to (d) show the recognition performance of SSD,
MTCNN, and IMMTCNN. In Figure 8, the SSD only
labels a rectangular box, roughly locating the position of
the face. However, it does not further annotate facial
keypoints, and the accuracy of the detection box is not
high enough, resulting in boundary deviation.
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Figure 8: Analysis of recognition performance of various

models

MTCNN provides more detailed facial detection, able to
locate the positions of eyes, nose, and mouth, while also
drawing more accurate bounding boxes. The research
model has excellent model performance. Table 2
analyzes the comprehensive performance of each model.

Table 2: Performance of various models in different datasets

Model Dataset Accuracy Precision Recall F1 Score Inference Time
ssD AFEW 85.40% 83.20% 84.50% 83.80% 35 ms/frame
CK+ 90.10% 88.70% 89.50% 89.10% 30 ms/frame
MTCNN AFEW 78.90% 76.50% 77.80% 77.10% 50 ms/frame
CK+ 85.30% 83.00% 84.00% 83.50% 45 ms/frame
IMMTCNN AFEW 89.70% 87.50% 88.20% 87.80% 40 ms/frame
CK+ 93.50% 92.00% 92.80% 92.40% 35 ms/frame

Note: The bar in Figure 7 reflects the averaged
performance over 5 experimental runs, while Table 2
reports the best single-run result.

All inference time values reported in this study are
measured on a single NVIDIA GeForce RTX 4080Ti
GPU with batch size = 1. That is, each expression frame
or video clip is processed individually in sequence (i.e.,
frame-wise testing mode) to reflect realistic usage in
streaming or online deployment scenarios. No
parallelization or batch acceleration is applied during
testing to ensure fairness in comparing real-time
responsiveness across different models. In Table 2,
IMMTCNN performs the best on the AFEW and CK+
datasets, with 89.70% and 93.50% accuracies,
significantly  higher than SSD and MTCNN,
demonstrating strong overall classification ability. In
terms of precision, IMMTCNN has 87.50% and 92.00%
accuracy rates and 88.20% and 92.80% recall rates, both
of which are superior to the other two models, indicating

that it is more accurate in extracting and classifying
emotional features. In terms of F1 scores, IMMTCNN
achieves 87.80% and 92.40% on two datasets. Although
the inference time of SSD is slightly faster on two
datasets, at 35 ms/frame and 30 ms/frame. The inference
time of IMMTCNN remains at 40 ms/frame and 35
ms/frame, indicating high efficiency. The inference time
of MTCNN is relatively slow, at 50 ms/frame and 45
ms/frame. This indicates that IMMTCNN achieves a
good balance between accuracy and efficiency, making it
the best performing model for sentiment analysis and
expression detection tasks in complex scenarios.

Although the IMMTCNN model achieves strong
performance across the AFEW, CK+, and JAFFE
datasets, notable cross-dataset variability can be observed.
Specifically, the ACC on the AFEW dataset is lower
compared to the more strictly controlled CK+ and JAFFE
datasets. This variation is largely attributed to differences
in data distribution, including lighting conditions,
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background complexity, expression intensity, and video
resolution. The high performance on CK+and JAFFE
demonstrates the model's ability to capture fine-grained
facial features under standardized conditions, while the
relatively robust results on AFEW demonstrate its
potential for real-world generalization. To further
validate generalization, models trained on CK+ and
tested on JAFFE are evaluated. Although the
performance slightly decreases due to domain shift, the
model maintains a reasonable recognition rate, indicating
moderate cross-domain portability. These findings
highlight the need for incorporating domain adaptation or
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augmentation strategies when applying the model in
diverse deployment environments. Overall, IMMTCNN
has strong generalization ability for unseen data
(especially in semi-controlled situations) and also
achieves good results under unconstrained conditions.

4.2 Performance of expression generation
model based on improved GCN

This study selects GCN and ResNet50-GCN as
comparative models to analyze the generation accuracy
and errors of each model, as shown in Figure 9.
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Figure 9: Analysis of accuracy and error rates of various models

Figs.9 (a) and (b) show the accuracy and error rate
analysis of three models. In Figure 9 (a),
SE-ResNet50-GCN achieves optimal performance, with
its accuracy rapidly approaching 1.0 when the dataset
size exceeds 200, indicating its excellent classification
ability in both small and large dataset environments.
GCN performs the worst throughout the entire process,
with an accuracy consistently below 0.75 and limited
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improvement in small datasets. In Figure 9 (b), the error
rate gradually decreases with the increase of dataset size.
SE-ResNet50-GCN has the fastest descent speed, and the
error rate quickly drops to nearly O when the dataset size
reaches 200, demonstrating strong robustness and
convergence ability. The proposed model performs
excellent. Figure 10 shows the generation of six different
facial expressions.
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Figure 10: Comparison of the accuracy and time of generating different expressions by various models

In Figure 10, the labels "Emoji type A—F" correspond to
six representative facial expression categories selected

from the CK+ dataset. Specifically, they are mapped as
follows: A — Angry, B — Disgust, C — Fear, D — Happy, E
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— Sad, and F — Surprise. Figs.10 (a) and (b) show a
comparison of the accuracy and generation time of
different facial expressions generated by various models.
SE-ResNet50-GCN shows the highest accuracy across all
expression types, approaching 0.95 in expression type A.
The accuracy of ResNet50-GCN is about 0.85, while the
accuracy of GCN is less than 0.8. Similarly, in expression
type F, the accuracy of SE-ResNet50-GCN exceeds 0.9,

significantly better than the comparison

model.

Informatica 49 (2025) 221-232 230

ResNet50-GCN performs second, while GCN performs
the worst, with accuracy generally below 0.8. In Figure
10 (b), GCN has the longest inference time, with an
average time of less than 500 milliseconds for all
expression types. This indicates that the research model
has excellent performance. An ablation experiment is
conducted on the SE-ResNet50-GCN model, as listed in

Table 3.

Table 3: Analysis of ablation experiment results

Inference Time

Model Accuracy Precision Recall F1 Score

(ms/frame)

SE-ResNet50-GCN 93.50% 92.00% 92.80% 92.40% 521

ResNet50-GCN 90.80% 88.50% 89.30% 88.90% 478

SE-GCN 88.30% 86.10% 87.00% 86.50% 385

SE-ResNet50 85.70% 83.50% 84.40% 83.90% 451

SE-ResNet50 (w/o GCN) 82.60% 80.90% 81.70% 81.30% 429

Baseline 80.20% 77.50% 78.30% 77.90% 309

In the ablation study, two core components of the
proposed model are examined: the ResNet module and
the GCN module. The ResNet module refers to the
residual learning unit embedded in the encoder stage
of the expression generation network, which facilitates
deeper feature extraction by mitigating vanishing
gradients. The GCN module denotes the GCN-based
decoder component responsible for modeling the
topological and spatial relationships between facial
landmarks to enhance expression reconstruction
accuracy. By selectively removing each module, the
study assess its individual contribution to the overall
model performance. In Table 3, SE-ResNet50-GCN
performs the best with 93.5% accuracy, 92.0%
precision, 92.8% recall, and 92.4% F1 score. After
removing the SE module, the accuracy of
ResNet50-GCN decreases to 90.8% and the F1 score
decreases to 88.9%. After removing the ResNet50
structure, the accuracy of SE-GCN further decreases
to 88.3% and the F1 score is 86.5%. After removing
the GCN module, the accuracy of SE-ResNet50 is
only 85.7% and the F1 score is 83.9%. The accuracy
of the basic model is the lowest, only 80.2%, with an
F1 score of 77.9%. This indicates that the integration
of attention mechanism, deep residual network, and
GCN module is the key to achieving high performance
of the model. To further evaluate the independent
contribution of the GCN module, an additional
ablation experiment is conducted by removing only
the GCN structure from the SE-ResNet50-GCN model,
while keeping the SE and ResNet50 components intact.
The results indicate that the model's accuracy drops
from 93.5% to 82.6%, and the F1 score decreases from
92.4% to 81.3%. This substantial decline demonstrates
the critical role of GCN in modeling the semantic
relationships between facial AUs, enabling the system
to generate more structurally consistent and realistic
facial expressions. Compared with the SE-ResNet50
variant and the baseline, the removal of GCN results
in more performance degradation, highlighting its

distinct contribution.

Although inference time performance is reported
quantitatively, it is important to contextualize this
metric against practical application scenarios. The
proposed IMMTCNN achieves an average inference
time of 224 ms/frame, which corresponds to
approximately 44.6 frames per second. This frame rate
meets the real-time requirements of most FER tasks in
interactive applications, such as virtual avatar
animation, HCI systems, and live video-based emotion
monitoring. In addition, the inference speed remains
stable under different lighting conditions and facial
postures, making the model suitable for deployment
on mid-to-high-end GPU devices in production
environments. However, in highly
resource-constrained embedded platforms  (e.g.,
mobile AR/VR devices), further optimization such as
model pruning or quantization may be required to
meet stricter latency demands.

5 Discussion

Compared with the traditional MTCNN and SSD
models, the improved IMMTCNN  model
demonstrates significant advantages in terms of
recognition accuracy, error convergence, and
robustness. On the AFEW and CK+ datasets,
IMMTCNN achieves 89.70% and 93.50% accuracies,
outperforming MTCNN (78.90%, 85.30%) and SSD
(85.40%, 90.10%). Although SSD has a slightly faster
inference time (35 ms/frame), IMMTCNN maintains
real-time performance at 40 ms/frame while ensuring
higher accuracy. In terms of robustness, IMMTCNN
benefits from the multi-scale feature pyramid and HR
parallel structure, enabling accurate facial recognition
under complex lighting and background conditions.
On unseen subsets of the AFEW dataset, IMMTCNN
still maintains stable performance, while SSD shows
evident performance degradation due to its lack of
facial keypoint modeling capability. The HR-PCN
module significantly enhances multi-scale feature
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representation by preserving both HR and
low-resolution feature flows, allowing better fusion of
global and local context. Compared with traditional
downsampling structures and standard convolution
modules, HR-PCN effectively preserves fine-grained
facial details at each stage. The introduction of
OctConv further improves efficiency by decomposing
feature channels into high and low frequency
components, thereby accelerating convergence speed
and expression ability. Nevertheless, there are still
limitations in the current model. The generalization
ability to unseen scenarios such as extreme occlusion,
motion blur, or multi-person expressions has not been
fully verified. The model does not explicitly handle
occlusions, which may affect detection accuracy when
key facial regions are blocked. Although this model
can meet the real-time requirements of GPU platforms,
there are still challenges in deploying the complete
pipeline of IMMTCNN and SE-ResNet50-GCN on
resource limited edge devices. Future research will
focus on enhancing model generalization through
domain adaptation, occlusion-aware learning, and
adversarial robustness, as well as exploring
lightweight network variants to improve deployment
scalability.

6 Conclusion

In response to the challenges of VACE recognition and
generation in complex scenarios, this study proposed
an improved MTCNN-based expression recognition
method and a GCN-based expression generation
method. The introduced feature enhancement modules,
HR-PCN, and OctConv operations were introduced
into MTCNN. In the experiment, on the AFEW and
CK+ datasets, the ACC of the IMMTCNN model
reached 89.70% and 93.50%, much higher than the
78.90% and 85.30% of MTCNN. Meanwhile, the
inference time was controlled within 40 milliseconds,
and the balance between performance and efficiency
made it suitable for real-time scenarios. In contrast,
although the SSD model had slightly faster inference
speed, its accuracy was lower, only 85.40% and
90.10%. In the expression generation task, by
introducing GCN to model the semantic relationships
of AUs, the SE-ResNet50-GCN model achieved
nearly 95% accuracy rate in generating multiple
expression  types, significantly  better  than
ResNet50-GCN and GCN. Future research can
combine GAN, multi-modal data fusion, and
self-supervised learning techniques to enhance the
robustness and naturalness of FER and generation,
providing more comprehensive technical support for
animation production, HCI, and VR applications.
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