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With the rapid advancement of artificial intelligence, sentiment analysis has expanded beyond traditional 

text-based approaches to include speech and image modalities. Traditional sentiment analysis methods, 

which rely solely on single-modal data, fail to capture the complementary nature of different modalities, 

leading to optimal performance. This study proposes a novel multi modal sentiment analysis framework 

that integrates textual, speech, and image data through a weighted fusion mechanism. Text data is 

processed using a per-trained Bidirectional Encoder Representations from Transformers (BERT) model, 

which extracts contextualized semantic features. Speech data undergoes feature extraction using a hybrid 

Long Short-Term Memory (LSTM) and Convectional Neural Network (CNN) architecture to capture both 

temporal and local acoustic characteristics. Image data is analyzed with a Residual Network (Res-net) to 

extract facial expression features relevant to sentiment classification. A weighted fusion strategy is then 

applied to integrate the extracted features from the three modalities, assigning optimal weights 

dynamically based on their contribution to sentiment classification. Our model outperforms uni modal 

approaches, achieving an accuracy of 93.8%, which surpasses baseline models including single-modality 

BERT (91.2%), LSTM-CNN (89.7%), and ResNet (88.3%). Statistical significance tests confirm that the 

performance improvement is significant (p < 0.05). These results highlight the efficacy of multi modal 

fusion in sentiment analysis, providing new insights for sentiment classification tasks in complex 

environments. 

Povzetek: Članek predstavi večmodalni model za analizo sentimenta, ki z uteženim združevanjem značilk 

iz BERT, ResNet in LSTM-CNN presega enomodalne pristope. 

 

1 Introduction 
Sentiment analysis is an important task of natural 

language processing, which is widely used in social 

media, market research, public opinion monitoring and 

other fields. Most of the traditional sentiment analysis 

methods rely on text data and use algorithms such as bag-

of-words model, support vector machine, and plain Bayes. 

Uni modal analysis methods face challenges in dealing 

with sentiment analysis. With the continuous emergence 

of multi modal numbers (e.g., text, speech, images, etc.), 

research in sentiment analysis has gradually shifted to 

multi modal fusion techniques. Multi modal fusion 

algorithms combine information from multiple data 

modalities to identify and analyze complex sentiment 

more accurately. Currently, research on sentiment analysis 

and multi modal fusion technology has become a hot topic 

in the fields of information science, psychology, and 

computer science, etc. Wang proposed Mr Lab, an 

intelligent laboratory system based on virtual reality and 

multi modal fusion, which explores the potential of virtual 

reality and multi modal fusion to enhance the interactive 

experience. Virtual reality combined with multi modal 

fusion technology can enhance user immersion and 

interactivity, providing a new perspective on multi modal 

sentiment analysis technology [1]. Sun explored a driver  

 

anger recognition method based on multi modal data  

fusion. Multi modal information such as speech, facial 

expression and physiological data are fused to reveal the 

influence of emotional state on driving behavior. Multi 

modal fusion can provide more accurate and 

comprehensive emotion assessment results, which is 

important to improve traffic safety [2]. Wang investigated 

a multi modal fusion method for emotion recognition in 

flight training, and proposed an emotion recognition 

model that combines visual, speech and physiological 

signals. Emotional states in flight training have an impact 

on learning outcomes, and emotion monitoring through 

multi modal fusion techniques can improve training 

efficiency [3]. Lang proposed HMMCF, a human-

machine collaborative algorithm based on reverse active 

fusion, which emphasizes the role of human-computer 

interaction in dynamic emotion recognition. The reverse 

active fusion technique can improve the efficiency of 

human-computer collaboration by analyzing the 

emotional state more accurately and adapting to the needs 

of users in different contexts [4]. Luo introduced a 

machine learning-based data fusion method to analyze the 

trustworthiness of micro enterprises. The fusion of multi 

modal data improves the accuracy of sentiment analysis 

and enhances the level of trust assessment in business 

decision-making [5]. Zhang proposed a learning 
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engagement assessment method based on multi modal fast 

and slow neural networks, which combines multiple data 

sources such as students' behavioral data, facial 

expressions, and physiological feed backs, to more 

comprehensively assess the students' affective state and 

learning engagement, and to provide a new technical path 

for educational Sentiment analysis provides a new 

technical path [6]. Mamyrbayev predisposed a multi 

modal speech recognition system that utilizes multiple 

sources of information such as speech, images, and text to 

perform sentiment analysis [7]. Luri et al. explored the 

impact of consumer sentiment on the market through 

metaphor-driven sentiment analysis of the market, and 

emphasized the auxiliary role of sentiment analysis in the 

prediction of market trends [8]. Gandía and Huguet 

explored the practical application of sentiment analysis in 

corporate financial decision-making in a study of text 

analysis and sentiment analysis in the accounting field, 

where sentiment analysis can provide more insight into 

financial management [9]. 

Table 1: Summary of related works in multi modal 

sentiment analysis 

Study Methodology 
Data 

set 

Performa
nce 

Metrics 

Limitations 

Wan

g [1] 

Mr Lab system 

integrating virtual 

reality with multi 

modal fusion 

Cust

om 

data 

set 

Enhanced 

user 

engagem

ent 

Lacks quantitative 

sentiment 

classification 

accuracy 

Sun[
2] 

Multi modal 

fusion of speech, 

facial expression, 
and physiological 

data 

IEM

OC
AP 

85.3% 
accuracy 

Does not consider 

text modality, 

limiting textual 
sentiment 

understanding 

Wan

g [3] 

Visual, speech, 

and physiological 

signal fusion for 

emotion 

recognition in 
flight training 

C 

MU-

MO

OSE 

87.5% 

F1-score 

Lacks dynamic 

weighting for 

modality fusion 

Lang

[4] 

Human-machine 

collaborative 

algorithm 

(HMMCF) with 

reverse active 

fusion 

Cust

om 

data 

set 

Improved 

dynamic 

emotion 

recogniti

on 

No explicit 

sentiment 

classification 

evaluation 

Luo[

5] 

Machine learning-
based multi modal 

fusion for micro 

enterprise trust 

assessment 

Fina

ncial 

data 

set 

Increased 

classificat

ion 

accuracy 

Not specifically 

designed for 

sentiment analysis 

Zhan

g [6] 

Fast-Slow Neural 

Network for 

learning 
engagement 

analysis 

Edu

catio

nal 
data 

set 

83.9% 

accuracy 

Focuses on 

learning behavior 

rather than general 
sentiment analysis 

 

To strengthen the literature review, we include more 

directly related works on multi modal fusion (Table 1): 

Wang et al. [3] investigated adaptive weighting for multi 

modal embed dings. Zhang et al. [6] proposed cross-

attention fusion for sentiment detection. Luo et al. [5] 

improved fusion robustness using reinforcement learning. 

This study constructs a sentiment analysis framework 

based on multi modal fusion algorithm to solve the 

problem of existing sentiment analysis models' 

dependence on single modal data. By integrating multi 

modal data such as text, speech and image, and exploring 

the complementary relationship between different 

modalities, a multi modal sentiment analysis method 

based on weighted fusion strategy is proposed. The 

research will also explore the key techniques in multi 

modal data fusion, including modality selection, feature 

extraction, model optimization, etc., to provide new ideas 

and methods in the field of sentiment analysis. The 

application of multi modal fusion algorithms in sentiment 

analysis has important theoretical and practical 

significance. This study provides a new technical 

framework for multi modal fusion of sentiment analysis 

models and promotes the development of multi modal 

learning and deep learning in natural language processing. 

It provides new ideas for the field of multi modal learning 

and promotes the development of sentiment analysis 

technology in the direction of more efficient and smarter. 

With the popularity of social networks, sentiment analysis 

is widely used in the fields of user comment analysis, 

emotion recognition, and public opinion monitoring. The 

use of multi modal fusion algorithms can improve the 

performance of sentiment analysis in complex and 

diversified situations, which has a strong impetus to 

practical applications and has a far-reaching impact on the 

decision-making and development of related industries. 

To address these challenges, we propose a multi modal 

fusion sentiment analysis model that integrates text, 

speech, and image data using a weighted fusion strategy.  

The research is driven by the following core research 

questions (RQs): 

RQ1: How does multi modal fusion improve 

sentiment classification compared to bimodal approaches? 

RQ2: What is the optimal weighting strategy for 

integrating text, speech, and image modalities in sentiment 

classification? 

RQ3: How does the proposed model compare to 

standard early and late fusion techniques in terms of 

accuracy, precision, recall, and F1-score? 

Based on these research questions, we propose the 

following hypotheses (H): 

H1: The multi modal fusion model will outperform 

bimodal models in sentiment classification accuracy. 

H2: The weighted fusion strategy will enhance 

classification performance compared to traditional early 

and late fusion methods. 

H3: The impact of each modality on sentiment 

classification will vary depending on the specific emotion 

category, with text contributing more to neutral 

sentiments, speech to anger/fear, and image to 

joy/sadness. 

2 Materials and methods 

2.1 Data collection and sample selection 

2.1.1 Data collection 

In order to realize multi modal fusion sentiment analysis, 

the sources and characteristics of the three main 

modalities of text, speech and image are focused on in the 

data collection process. The data set covers different 
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sentiment categories based on the misrepresentations and 

richness of the data, which is highly pervasive in practical 

application scenarios. To ensure the diversity of the data, 

publicly available sentiment analysis datasets, such as 

SST-2 and Emo React, which contain a large amount of 

textual data and multiple sentiment expressions, are used. 

To enhance the multi modal features of the data, this study 

also collects multi modal datasets of image and speech 

data, such as C MU-MOOSE and IEMOCAP datasets, 

which provide annotation information for speech 

sentiment and video sentiment analysis. These datasets 

have high quality of sentiment annotation and support 

tasks such as sentiment classification and sentiment 

intensity prediction. Data balance is considered during 

data collection to avoid over-concentration of data in a 

single sentiment category, which affects the accuracy of 

the analysis [10]. Text data are selected to include 

positive, negative and neutral emotion labels; speech data 

involve a variety of emotional expressions, such as joy, 

sadness and anger; and image data cover the diversity of 

facial expressions [11]. The combination of multi modal 

data captures complex emotional information more 

accurately in sentiment analysis and enhances the 

comprehensiveness and depth of analysis. It is shown in 

Table 2 below. 

Table 2: Data set overview 

Data 
set 

Name 

Data 
Mod

ality 

Emotion Categories 
Data 

Volume 
Main Source 

SST-
2 

Text Positive, Negative 67349 Stanford 

C 

MU-

MOO

SE 

Audi

o, 

Vide

o 

Happy, Sad, Angry, 

Disgust, Fear, 

Surprise, Neutral 

23,500 

labeled 

samples 

Carnegie 

Mellon 

University 

IEM

OCA
P 

Audi
o, 

Vide

o 

Happy, Sad, Angry, 

Neutral, Frustrated, 
Excited 

12,000 

utterance
s 

University of 

Southern 
California 

 

2.1.2 Sample selection 

The diversity of data, the accuracy of sentiment 

labeling, and the misrepresentations of data sources are 

considered when selecting samples. To ensure the 

effectiveness of multi modal fusion analysis, sentiment 

data from different sources and formats are used. Sample 

selection for text data is based on the balance of sentiment 

labels, ensuring that the amount of data in each sentiment 

category is roughly equivalent, and avoiding over-

concentration in one category. Sample selection for 

speech data focuses on the diversity of emotional 

intonation and pronunciation styles, which can cover 

emotional expressions in different age groups, genders 

and cultural backgrounds [12]. Sample selection for image 

data considers the changes of facial expressions in 

different emotional states, and selects high-quality video 

data containing rich facial expressions to improve the 

accuracy of emotion recognition. The sample selection 

criteria require the data to be strictly labeled to cover 

multiple dimensions of emotion, including basic emotions 

(e.g., joy, sadness, anger, etc.) and compound emotions 

(e.g., anxiety, surprise, etc.) [13]. Each type of emotion 

data possesses a clearer labeling to avoid the possible 

interference of overly subjective emotion labeling. All 

samples were manually validated to ensure the accuracy 

of emotion labeling. The selection of samples takes into 

account the diversity of emotional expressions and covers 

emotional fluctuations in different contexts. As shown in 

Table 3 below. 

Table 3: Sample selection criteria 

Data 

Moda

lity 

Selection 

Criteria 
Description 

Text 
Emotion Label 

Balance 

The number of samples per 

emotion category is 

approximately equal to prevent 

bias. 

Audio 
Emotion 

Diversity 

Includes a range of pitch, 

intonation, speech speed, and 

emotional intensity from speakers 

of different age groups, genders, 

and cultural backgrounds. 

Video 
Rich Facial 

Expressions 

High-quality video data 

containing diverse and clearly 

defined facial emotion 

expressions. 

 

2.1.3 Data multiprocessing details 

To ensure optimal feature extraction across different 

modalities, we apply specific multiprocessing techniques 

for text, speech, and image data before feeding them into 

the model. The multiprocessing steps for each modality 

are detailed below: 

Text Multiprocessing (BERT Feature Extraction). 

The input text is tokenism using Piecework and then 

processed with a ore-trained BERT model (base-uncased). 

We extract the hidden states from the last four layers and 

compute their mean-pooling representation to obtain 

contextualized word bedding. Stop words are not 

removed, as BERT leverages context from all words for 

better semantic understanding. 

Speech Multiprocessing (MFCC and Log-Mel 

Spectrometer Features), Raw speech data is first 

resampled to 16kHz for consistency across different 

datasets. We extract 40-dimensional Mel-Frequency 

Ancestral Coefficients (MFCCs), which capture spectral 

features relevant to emotion recognition. A pell-mell 

spectrometer (128 frequency bins, 25ms window, 10ms 

step) is also computed to retain temporal variations in 

pitch and tone. Both MFCCs and pell-mell hectograms are 

normalized before feeding into the LSTM-CNN model. 

Image P reprocessing (Res Net Feature Extraction), 

Images are converted to grayscale and re sized to 224×224 

pixels to ensure uniform input dimensions. Standard data 

augmentation techniques (rotation, horizontal flipping, 

brightness adjustment) are applied to improve model 

robustness. Facial features are extracted using ResNet-50, 

utilizing the final average pooling layer to obtain a 2048-
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dimensional feature vector for sentiment classification 

(Table 4). 

Table 4: Comparison of available sentiment analysis 

datasets 

Dataset 
Modalitie

s 

Emotion 

Labels 

Data 

Volum

e 

Annotatio

n Quality 

Reason for 

Selection 

SST-2 Text 
Positive, 

Negative 
67349 High 

Strong text-based 

sentiment labels 

C MU-

MOOS

E 

Text, 

Audio, 

Video 

6-class 

emotions 
23500 High 

Rich multimodal 

expressions 

IEMOC

AP 

Audio, 

Video 

6-class 

emotions 
12000 High 

High-quality 

speech annotation 

MELD 

Text, 

Audio, 

Video 

7-class 

emotions 
13000 Medium 

Lower audio 

clarity 

AFEW Video 
7-class 

emotions 
30000 Medium 

No text or speech 

data 

 

2.1.4 Data augmentation and resampling 

strategies 

To address class imbalance, we apply synthetic data 

augmentation and resampling techniques: GAN-based 

Image Augmentation: Generates diverse facial 

expressions for underrepresented emotions. Pitch Shifting 

& Time Stretching (Speech): Expands speech emotion 

variability. Stratified Resampling: Ensures balanced 

representation across sentiment categories. These 

strategies increase the minority class representation by 

35%, leading to more robust model performance. 

2.2 Model construction   

2.2.1 Model selection 

Sentiment analysis involves a variety of modal data such 

as text, speech and image, and different modal data present 

sentiment information in different ways, choosing an 

appropriate base model. In this study, mainstream 

sentiment analysis models are considered, and combined 

with the characteristics of multi modal fusion, a deep 

learning model is selected as the basic framework [14]. 

For text analysis, a pre-trained language model based on 

the BERT (Bidirectional Encoder Representations from 

Transformers) model is selected [15]. BERT has achieved 

excellent results in natural language processing tasks with 

powerful contextual understanding, and it is suitable for 

handling long text in sentiment analysis and complex 

contextual information. For speech sentiment analysis, a 

combined model of Long Short-Term Memory Network 

(LSTM) and Constitutional Neural Network (CNN) is 

used. LSTM can capture the temporal features in the 

speech signal and CNN can extract the local features of 

the audio, and the combination of the two improves the 

accuracy of the speech sentiment recognition. For image 

analysis, Res Net (Residual Network) model is used, 

which solves the problem of gradient disappearance in 

deep network training through residual connection, 

extracts the subtle changes in facial expression, and 

improves the accuracy of emotion classification. Table 3 

below shows the comparison of different models [16]. 

To adapt standard sentiment analysis models for multi 

modal fusion, we extend their architectures as follows: 

BERT for Text Analysis: Instead of using BERT for text 

classification alone, we extract hidden states from the last 

four layers to obtain rich contextual embed dings. These 

embed dings are used in conjunction with speech and 

image features, ensuring they complement each other 

during fusion [17]. 

LSTM-CNN for Speech Analysis: Speech features 

(MFCC, pell-mell hectograms) are processed using a 

CNN for local feature extraction and LSTM for sequential 

dependency modeling. This hybrid structure ensures that 

speech nuances (e.g., tone variations) are captured. 

Res-net for Image Analysis: ResNet-50 extracts high-

dimensional visual features from facial expressions. The 

final feature vector (2048-d) is used to provide emotion-

related embed dings that align with text and speech data 

(Table 5). 

Table 5: Comparison of different models 

Model 
Applicatio

n Domain 
Advantages Limitations 

BERT 
Text 

Analysis 

Strong 

contextual 

understanding

, excels at 

long texts 

High 

computationa

l resource 

requirements 

LSTM 

+ 

CNN 

Audio 

Analysis 

Captures both 

sequential and 

local features 

Training time 

is 1.5× longer 

than BERT 

due to 

sequential 

processing 

overhead 

ResNe

t 

Image 

Analysis 

Addresses 

gradient 

vanishing in 

deep 

networks 

Requires 

high-

resolution 

(≥224×224) 

images for 

accurate 

emotion 

recognition 

2.2.2 Model architecture design 

In terms of model architecture design, considering the 

multi modal characteristics of sentiment analysis, the 

multi modal fusion network architecture is designed to 

fully exploit the complementary between text, speech and 

image data. The input layer of the model corresponds to 

text data, speech data and image data respectively. Each 

part is processed by the corresponding feature extraction 

network to extract the feature representation of the 

corresponding modality [18]. The text data input is 

encoded by the BERT model, the speech data input is 

subjected to temporal and local feature extraction by 

LSTM and CNN, and the image data is subjected to facial 

expression feature extraction by Res Net. After feature 

extraction, the features of the three modalities are 

combined through a modal fusion layer [19]. The modal 

features are weighted and summed by a weighted fusion 
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method, and the weight values are adjusted according to 

the importance of each modality to the sentiment analysis 

task. The fused features are input to the fully connected 

layer for processing, and finally the sentiment 

classification is performed through the soft max layer to 

output the final sentiment categories. To improve the 

training efficiency and accuracy of the model, techniques 

such as Batch Normalization and Residual Connections 

are used to ensure that the network can be trained better 

and to avoid over fitting problems. The loss function of 

the sentiment analysis model is given in the following 

Equation (1). 

1

log( )
N

i i

i

y p
=

= −L                     (1) 

L  is the loss function, N is the number of samples, 

iy  is the true label, and 
ip  is the probability predicted by 

the model. 

The extracted features are concatenated and passed 

through a trainable attention-based gating mechanism, 

which dynamically adjusts the importance of each 

modality: 

1 2 3( )fusion text speech imageX W X W X W X= + +        (2) 

In Equation (2), W1, W2, W3 are trainable weights 

learned via self-attention mechanisms, and σ is a non-

linear activation function (ReLU). 

To improve stability and convergence, Batch 

Normalization (BN) and Residual Connections are 

integrated into different components of the architecture: 

BERT (Text Processing):BN is applied after embedding 

extraction to stabilize variance across input sequences. 

LSTM-CNN (Speech Processing): Residual connections 

are incorporated within CNN layers, improving feature 

preservation. ResNet-50 (Image Processing):BN layers 

enhance training stability for facial feature extraction. 

 

2.2.3 Model optimization method 

The gradient descent method and its variants, such as the 

Adam optimizer, are considered in the model optimization 

process. The Adam optimizer combines the advantages of 

Momentum and RMS prop, deceptively adjusts the 

learning rate, and is suitable for handling large-scale 

datasets and complex deep learning models. The Adam 

optimizer accelerates convergence during training and 

reduces the effect of local minima [16]. Learning rate 

decay and Early Stopping strategies are used to improve 

model performance. Learning rate decay gradually 

reduces the learning rate during the training process to 

avoid the model falling into a local optimum, while the 

Early Stopping strategy terminates the training early when 

the loss in the validation set is no longer decreasing to 

prevent over fitting [17]. In addition to the optimization 

algorithm using L2 regularization and dropout techniques 

to reduce the complexity of the model and improve the 

generalization ability of the model is shown in Table 4 

below. 

To ensure optimal performance, we conduct hyper 

parameter tuning using both grid search and Bayesian 

optimization. Grid search provides exhaustive evaluation 

across a predefined range of hyper parameters, while 

Bayesian optimization leverages probabilistic models to 

efficiently explore the search space. 

The hyper parameters tuned in our model include: 

BERT fine-tuning: Learning rate η ∈ {1e-5, 3e-5, 5e-5}, 

batch size ∈  {16, 32}, dropout rate ∈  {0.1, 0.3, 

0.5}LSTM-CNN (speech processing): LSTM hidden units 

∈ {128, 256}, CNN kernel size ∈ {3, 5}, number of 

CNN filters ∈ {64, 128}ResNet-50 (image processing): 

Feature extraction layer ∈  {avg pooling, fully 

connected}, optimizer ∈  {Adam, SGD with 

momentum}Fusion model: Weighted fusion learning rate 

∈ {1e-4, 5e-4}, weight decay ∈ {0, 1e-5, 1e-4}. 

Table 6: Comparison of optimization algorithms 

Optimization 

Algorithm 
Advantages Limitations 

Adam 

Adaptive 

learning rate, 

fast 

convergence 

Sensitive to 

hyperparameter 

tuning 

SGD 
Simple, avoids 

local minima 

Slower 

convergence 

RMS prop 

Handles non-

stationary 

objectives 

High learning 

rate tuning 

required 

2.2.4 Fusion Strategy Implementation 

The weighted fusion strategy plays a critical role in 

optimizing multimodal sentiment analysis. Instead of 

manually assigning fixed weights, our approach employs 

an adaptive learning mechanism to determine optimal 

weights dynamically. Specifically, we introduce a 

trainable weight vector, where each weight is initialized 

randomly and updated through back propagation during 

training. The final fused representation is computed as 

Equation (3): 

fuse text text speech speech image imageX w X w X w X=  +  +          (3) 

where 1text speech imagew w w+ + = to maintain 

interpretability. The weights are updated using gradient 

descent based on their contribution to classification 

accuracy, allowing the model to dynamically adjust the 

importance of each modality depending on the sentiment 

context. 

We also compare different fusion strategies: Feature-

Level Concatenation (Early Fusion) – All feature vectors 

are concatenated before classification, preserving raw 

feature information but increasing model complexity. 

Weighted Fusion (Our Approach) – Each mobility's 

contribution is deceptively adjusted, leading to improved 

robustness and interchangeability. Decision-Level 

Majority Voting (Late Fusion) – Predictions from each 

bimodal classifier are aggregated via majority voting, but 

this method struggles with conflicting modality 

predictions. 
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2.3 Experimental design and evaluation 

index 

2.3.1 Experimental design 

This study designs a systematic experimental scheme to 

test the effectiveness of the proposed multi modal fusion 

sentiment analysis model. During the experiment, the data 

set is divided into training set, validation set and test set to 

ensure that the training, tuning and evaluation of the model 

can be carried out on different data subsets to enhance the 

fairness of the experiment. The training set accounts for 

70% of the total data and trains the model parameters; the 

validation set accounts for 15% and tunes the hyper 

parameters and prevents over fitting; and the test set 

accounts for 15% and ultimately evaluates the 

performance of the model. Cross-validation was used to 

optimize the model during the training process. To avoid 

the model's over-reliance on single-modal data, data 

enhancement techniques are used in the training process, 

and enhancement strategies such as rotation, cropping, and 

noise addition are used in the processing of image and 

speech data to improve the model's robustness. The 

hardware devices used include high performance GPU 

servers to accelerate the training process. The experiments 

use NVIDIA Tesla V100 GPUs with deep learning 

frameworks such as TensorFlow and PyTorch for model 

training. During the training process, a smaller initial 

learning rate is set and dynamically adjusted according to 

the training progress of the model. To improve the 

generalization ability of the model, dropout regularization 

and L2 regularization techniques are also used to reduce 

the over fitting phenomenon. This is shown in Table 7 

below. 

The data set is systematically partitioned into training 

(70%), validation (15%), and test (15%) subsets, ensuring 

proper evaluation of model generalization. Stratified 

sampling is applied to maintain an equal distribution of 

sentiment categories across all three splits. The validation 

set is used for hyper parameter tuning and early stopping, 

while the test set remains untouched until final evaluation. 

Additionally, data augmentation techniques (e.g., 

random rotation for images, pitch-shifting for audio) are 

applied only to the training set to avoid information 

leakage into validation and test sets. This ensures an 

unbiased performance assessment. 

Table 7: Experimental parameter settings 

Parameter Setting Value 

Dataset Split 
70% training, 15% validation, 

15% testing 

Learning Rate 
Initial learning rate 0.0001, 

dynamically adjusted 

Batch Size 32 

Training Epochs 50 

Framework TensorFlow, PyTorch 

Data Augmentation 
Image rotation, cropping, noise 

addition for speech 

Regularization Dropout, L2 regularization 

2.3.2 Performance evaluation metrics 

In order to comprehensively evaluate the performance of 

the multimodal sentiment analysis model, several 

evaluation metrics are used, the accuracy rate, precision 

rate, recall rate and F1 value, which are commonly used in 

classification tasks. Accuracy rate reflects the proportion 

of correct predictions made by the model for all samples. 

Precision rate measures the proportion of samples 

predicted by the model to be in the positive category that 

are actually in the positive category; recall rate the 

proportion of samples predicted by the model to be in the 

positive category out of all samples that are actually in the 

positive category. The F1 value combines the precision 

rate and the recall rate to provide a comprehensive 

evaluation of the overall performance of the model [20]. 

For the sentiment analysis task, the precision rate is the 

most basic evaluation metric that can measure the overall 

prediction effect of the model. The category imbalance 

problem in the sentiment analysis task affects the 

evaluation effect of single accuracy rate, and precision 

rate, recall rate and F1 value are used as auxiliary 

evaluation indexes. F1 value is applicable to the task with 

category imbalance, which balances the precision rate and 

recall rate to a certain extent, and obtains a more objective 

evaluation. In this study, the confusion matrix is 

introduced to show the model's prediction of different 

sentiment categories in detail. The confusion matrix 

reveals the bias of the model in the classification process, 

where certain emotion categories are classified as other 

categories, providing a strong basis for model 

optimization. The accuracy is calculated as in Equation (4) 

Accuracy
TP TN

TP TN FP FN

+
=

+ + +
              (4) 

TP is the number of true category samples, TN is the 

number of true-negative category samples, FP is the 

number of false-positive category samples, and FN is the 

number of false-negative category samples. Accuracy is 

the most commonly used evaluation metric and visually 

represents the overall prediction correctness of the model 

across all samples. 

Precision (P) measures the proportion of correctly 

predicted positive samples relative to all samples 

predicted as positive: 
TP

P
TP FP

=
+

                        (5) 

To provide a comprehensive evaluation of our multi 

modal sentiment analysis model, we extend our 

performance metrics beyond accuracy, precision, recall, 

and F1-score by incorporating Receiver Operating 

Characteristic - Area Under Curve (ROC-AUC) for binary 

classification performance. For each sentiment category, 

we compute micro- and macro-averaged ROC-AUC 

scores: 

1

1
ROC-AUC AUC

n

micro i

in =

=               (6)  

1

1
ROC-AUC AUC

n

macro i i

ii

w
w =

= 


          (7) 
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where AUCi represents the AUC score for each 

sentiment class, and 
iw  denotes the class weight to 

address data imbalance. 

2.4 Workflow of proposed model 

The workflow of the proposed multi modal sentiment 

analysis model consists of four main stages, as illustrated 

in Figure 1: 

 

Figure 1: Flow of work 

2.5 Algorithm for multi modal sentiment 

analysis 

The following pseudo code outlines the proposed 

sentiment analysis process: Algorithm: Weighted Fusion-

Based Multi modal Sentiment Analysis 

Input: Text (T), Speech (S), Image (I) 

Output: Sentiment Label 

(1) Preprocess input data: 

Tokenism T, extract BERT embed dings. 

Compute MFCCs, pell-mell hectograms for S. 

Resize, extract ResNet-50 features from III. 

(2) Extract modality-specific features: 
( )

( )

( )

 

T

S

I

X BERT T

X LSTM CNN S

X ResNet I

=

= −

=

                   (8) 

(3) Compute confidence scores for each modality: 

softmax( ), softmax( ), softmax( )T T S S I Iw X w X w X= = =        (9) 

(4) Apply weighted fusion: 

fusion T T S S I IX w X w X w X= + +               (10) 

(5) Predict sentiment category using soft max 

classifier. This algorithm ensures dynamic modality 

adaptation, preventing bias towards any single data type. 

Ensures Modality Adaptability: The dynamic weight 

adjustment mechanism prevents over-reliance on any 

single modality. Maintains Interchangeability: All weights 

sum to 1, ensuring balance in sentiment feature 

contributions. Reduces Over fitting: The 

compartmentalized weights stabilize training and prevent 

modality dominance. 

 

2.6 System architecture of proposed model 

This architecture diagram illustrates how input data is 

processed, transformed, and fused in the proposed model 

for sentiment classification (Figure 2). 

 

Figure 2: System Architecture diagram 

3 Results and discussion 

3.1 Results 

3.1.1 Data analysis results 

Data analysis is an inescapable part of sentiment analysis, 

providing the basis for subsequent model construction and 

optimization. In order to comprehensively understand the 

impact of different data modalities on sentiment analysis, 

text, speech and image data are analyzed in detail. The 

distribution of the dataset, the distribution of sentiment 

labels and the characteristics of each type of data are 

statistically analyzed to reveal the characteristics of 

different modal data and their potential contribution to 

sentiment analysis. 

The results of the data analysis are shown in Figure 3 

below, for text data, the positive and negative sentiment 

labels are more balanced, and there are relatively few 

samples for certain sentiment categories (e.g., anger, fear). 

The sentiment distribution of the speech data is even, with 

differences in performance across gender and age groups 

of speakers. The distribution of emotion labels for the 

image data is concentrated, with the emotion categories of 

joy and sadness accounting for the majority of the 

samples, and fewer image data for other emotion 
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categories. The preliminary analysis of the data reveals 

that the speech data and text data have a strong balance in 

the distribution of emotion labels, and the image data has 

the problem of category imbalance, which has an impact 

on the fusion effect of the modalities in the model training 

process. 

 

Figure 3: Data analysis results 

3.1.2 Model training results 

The model training phase focuses on evaluating the 

performance of different modalities when they are trained 

individually, as well as their effects after multi modal 

fusion. Text data performs relatively well after processing 

through the BERT model and excels in sentiment 

classification accuracy. Speech data is slightly inferior to 

text data in terms of accuracy after being trained by the 

LSTM-CNN model, and has an advantage in dealing with 

the finesse of emotion and the capture of temporal 

information. Image data processed by Res Net model has 

outstanding recognition effect for two categories of 

emotion, joy and sadness, and has bias in the recognition 

of other emotion categories. The training results are shown 

in Figure 4 below. Text data converges faster during 

training, has higher accuracy, and has a strong advantage 

in the emotion classification task. Speech and image data 

have lower accuracy, and the performance of the model 

improves with deeper training. The BERT model for text 

data performs well, the models for speech and image data 

show fluctuations during training, and all bimodal models 

show more stable convergence. 

 

 

Figure 4: Training results comparison 

To provide a clearer understanding of the dataset’s 

composition, Figure 5 presents the distribution of 

sentiment labels in the image modality.it is evident that 

Joy (38.2%) and Sadness (32.5%) dominate the data set, 

while Anger (12.1%) and Fear (9.8%) are less frequent, 

potentially leading to imbalanced model predictions. To 

address this, data augmentation techniques such as 

synthetic resampling and GAN-based image synthesis are 

applied to increase the representation of underrepresented 

categories. 

 

Figure 5: Emotion category distribution in image data 

3.1.3 Multi modal fusion results 

A weighted fusion strategy is used to fuse data from three 

modalities: text, speech and image. The weight of each 

modality is dynamically adjusted during the fusion 

process according to the training effect and feature 

contribution of each modality. As shown in Figure 7, the 

overall accuracy of the model is improved after multi 

modal fusion, and the fusion model shows an advantage 

when dealing with the more difficult emotions (e.g., anger, 

fear) in emotion classification. Compared with the single 

modality, the multi modal fused model improves in all 

evaluation metrics. Precision improves by about 4.5%, F1 

value improves by about 3.2%, and recall increases 

accordingly. The combination of different modalities 

effectively compensates for the inadequacy of single 

modality in emotion recognition, especially in the case of 

more complex emotion categories, the fusion model can 

provide more accurate classification results. The multi 

modal fusion accuracy is shown in Equation (11) below. 
1 1 2 2 3 3

1 1 1 2 2 2 3 3 3

Accuracy
( ) ( ) ( )

fuse

w TP w TP w TP

w TP FN w TP FN w TP FN

 +  + 
=

 + +  + +  +     (11) 

1 2 3, ,w w w  are the weights of text, speech and image 

modalities, 
1 2 3, ,TP TP TP  are the true instances of each 

modality, and 
1 2 3, ,FN FN FN  are the false negative 

instances of each modality. The weighted fusion accuracy 

formula combines the weights of each modality and is 

weighted and evaluated according to the contribution of 

each modality. 

The weights in the weighted fusion strategy are 

dynamically adjusted based on modality reliability and 

classification confidence scores. The key adjustment 

principles are: Higher Confidence → Higher Weight: If a 

modality produces a high-confidence prediction (e.g., 

BERT outputs a probability > 0.8 for "neutral"), its weight 

is increased during fusion. Cross-Modality Agreement → 

Weight Reinforcement: If two or more modalities agree on 

the predicted sentiment, their weights are reinforced. Low 
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Certainty → Weight Reduction: If a modality has low 

classification confidence (e.g., Res Net struggles with fear 

recognition, F1-score = 77.1%), its weight is reduced. 

To further analyze the classification errors in multi 

modal sentiment analysis, we present the confusion matrix 

in Table 8. The confusion matrix highlights the 

classification tendencies across different emotion 

categories. 

Table 8: Confusion Matrix for Multi modal Fusion 

Model 

Predicted / 

Actual 

Jo

y 

Sadne

ss 

Ang

er 

Fea

r 

Neutr

al 

Joy 
32

8 
12 5 4 21 

Sadness 10 310 18 16 22 

Anger 3 14 280 45 28 

Fear 2 10 38 290 20 

Neutral 16 18 24 15 327 

 

 

Figure 7: Multi-Modal fusion results 

3.1.4 Model evaluation 

The model evaluation stage understands the performance 

of the model and uses evaluation metrics such as precision, 

recall, and F1 value. The evaluation results of the fusion 

model and the bimodal model are shown in Figure 8 

below. The fusion model performs well on the evaluation 

metrics for each emotion category, and the bimodal model 

improves by 3-5 percentage points in terms of precision 

and F1 value. In the emotion categories “anger” and 

“fear”, the bimodal model performs weakly, while the 

multi modal fusion model has an advantage in these 

categories, with improved precision and recall. In the 

more common emotion categories of “Joy” and 

“Sadness”, the multi modal fusion model shows more 

stable performance, with higher precision and F1-score 

than the single-modal model. The F1-Score is calculated 

as follows Equation (12) 
2 Precision Recall

F1-Score
Precision Recall

 
=

+
                (12) 

Precision is the precision rate and Recall is the recall 

rate. The F1 value integrates the precision and 

comprehensiveness of the model in the classification 

process, which can reflect the comprehensive performance 

of the model more accurately. The multi modal fusion 

model outperforms the single-modal model in all 

evaluation indexes. The multi modal fusion model 

integrates the features of text, speech and image, which 

improves the overall performance of the sentiment 

analysis task. 

To ensure that the performance improvements of our 

multi modal fusion model are statistically significant, we 

conducted paired t-tests and one-way ANOVA (Analysis 

of Variance) tests against baseline models. 

Paired t-test Results: Compared to the best bimodal 

model (BERT-only, 91.2% accuracy), our model (93.8%) 

achieved a statistically significant improvement (t = 4.37, 

p < 0.001). Compared to the early fusion model (90.5%) 

and late fusion model (92.1%), our approach was also 

significantly better (p < 0.005). 

ANOVA Test for Model Performance: The one-way 

ANOVA test for accuracy, precision, recall, and F1-score 

across different models yielded F(4, 95) = 11.62, p < 

0.001, confirming that the observed improvements were 

not due to random variance. 

 

 

Figure 8: Model evaluation results 

3.1.5 Deployment considerations 

To evaluate the practical feasibility of deploying our 

multimodal fusion sentiment analysis model, we assess 

computational resource requirements and latency impacts. 

Computational Resources: Our model is trained using 

an NVIDIA Tesla V100 GPU (16GB VRAM), requiring 

approximately 22 hours for full convergence. Real-time 

inference is tested on an NVIDIA RTX 3090 GPU (24GB 

VRAM), with a processing time of 78 ms per multi modal 

input, making it feasible for near real-time applications. 

On CPU-only deployment (Intel i9-12900K, 64GB 

RAM), the inference time increases to 320 ms per sample, 

which is slower but still applicable for batch processing in 

non-time-sensitive applications. 

Fusion Latency Analysis: The feature extraction 

phase (BERT, LSTM-CNN, Res Net) contributes ~60% of 

the processing time. The weighted fusion operation adds 

an overhead of 5-7 ms, which is ~35% lower latency than 

standard concatenation-based early fusion. In real-world 

settings, with optimized Tensor Rt inference acceleration, 

the processing delay can be further reduced to ~50 ms per 

sample. 
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3.1.6 Comparison with existing methods 

Table 9 compares the performance of the proposed model 

with existing multimodal sentiment analysis methods, 

highlighting their strengths and limitations. 

Table 9: Performance Comparison with Existing 

Methods 

Model 

Data 

Modaliti

es 

Fusion 

Strategy 

Accu

racy 

(%) 

Strengths Limitations 

BERT 

(Baseline

) 

Text - 91.2 
Strong text 

representation 

No 

multimodal 

data 

LSTM-

CNN 

(Baseline

) 

Speech - 89.7 

Captures 

speech 

dynamics 

Poor 

performance 

in silent 

emotions 

Res Net 

(Baseline

) 

Image - 88.3 
Strong visual 

processing 

Limited for 

subtle 

emotions 

Early 

Fusion 

Text + 

Speech + 

Image 

Feature 

concaten

ation 

90.5 

Retains raw 

feature 

information 

High 

dimensionalit

y 

Late 

Fusion 

Text + 

Speech + 

Image 

Decision 

aggregat

ion 

92.1 
Simplifies 

training 

Loss of 

feature-level 

interactions 

Proposed 

Model 

Text + 

Speech + 

Image 

Weighte

d Fusion 
93.8 

Adaptive 

weighting for 

each modality 

Higher 

computational 

cost 

This comparison demonstrates that weighted fusion 

outperforms both early and late fusion strategies, 

effectively leveraging multi modal complementary. 

3.1.7 Baseline model comparison 

To contextualize our results, Table 10 compares our model 

with existing benchmark models on the C MU-MOOSE 

data set. 

Table 10: Comparison with State-of-the-Art Models 

Model Fusion Strategy 
Accurac

y (%) 

F1-

Score 

(%) 

MISA 

(2021) 

Modality 

Alignment 
92.1 90.8 

MAG-

BERT 

(2020) 

Attention-based 

Fusion 
91.5 89.7 

TFN (2019) Tensor Fusion 90.2 88.9 

Proposed 

Model 

Weighted 

Dynamic Fusion 
93.8 92.4 

 

3.2 Discussion 

3.2.1 Problem summary 

To comprehensively evaluate the effectiveness of the 

proposed multimodal fusion framework, a comparative 

performance analysis is conducted against prior sentiment 

analysis models. Table 6 summarizes the accuracy, 

precision, recall, and F1-score of our approach in 

comparison to previous methods. 

Table 11: Comparative performance analysis of 

sentiment analysis models 

Model 
Accura

cy (%) 

Precisi

on (%) 

Recal

l (%) 

F1-

Score 

(%) 

BERT (Text-

only) 
91.2 89.8 88.5 89.1 

LSTM-CNN 

(Speech-only) 
89.7 87.4 85.9 86.6 

ResNet (Image-

only) 
88.3 85.5 84.2 84.8 

Early Fusion 

(Concatenation) 
90.5 89.1 87.9 88.5 

Late Fusion 

(Majority 

Voting) 

92.1 91 89.3 90.1 

Proposed 

Weighted 

Fusion 

93.8 92.4 91.2 91.8 

 

As shown in Table 11, the results demonstrate that our 

proposed weighted fusion approach achieves superior 

performance compared to both bimodal models and 

standard multimodal fusion techniques (early fusion and 

late fusion). The statistical significance of our 

improvements (p < 0.05) confirms that dynamically 

adjusting modality weights based on sentiment 

characteristics enhances classification accuracy. 

Data imbalance negatively affects training stability 

and classification accuracy, leading to: Bias Toward 

Overrepresented Classes: The model becomes biased 

toward joy and sadness (70.7% of samples) while under 

performing on anger and fear due to insufficient training 

examples. Poor Generalization on Minority Classes: The 

recall for fear (75.2%) and anger (78.4%) is lower 

compared to joy (94.1%), indicating that the model 

struggles to generalize on underrepresented emotions. 

Training Instability: In early training stages, the model 

exhibits high loss fluctuations, as it initially learns to 

recognize dominant classes before adjusting to minority 

categories. 

3.2.2 Research recommendations 

The key advantage of our weighted fusion strategy lies in 

its ability to dynamically optimize the contribution of each 

modality to sentiment classification. Unlike early fusion 

(which concatenates features and treats all modalities 

equally) and late fusion (which aggregates separate 

modality predictions through voting or averaging), our 

approach assigns adaptive weights to each modality based 

on its relevance to specific sentiment categories. 

Feature Extraction Strength: Textual Features 

(BERT): Captures context-dependent semantics, making 

it highly effective for neutral and subjective sentiments. 

Speech Features (LSTM-CNN): Preserves temporal 

variations in tone and pitch, enhancing the recognition of 

emotions such as anger and fear. Image Features (Res 

Net): Detects subtle facial expressions, which 

significantly contributes to recognizing emotions like joy 

and sadness. 

Modality Complementary: The text modality 

struggles with detecting sarcasm and irony, which the 
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speech modality can clarify using prosody features. The 

image modality can resolve ambiguities in speech-based 

sentiment recognition by incorporating facial cues. 

Weighted Fusion vs. Standard Late Fusion: Unlike 

majority voting fusion, our weighted approach prioritizes 

more reliable modalities for different sentiment 

categories. For anger and fear, speech features receive 

higher weights, while for joy and sadness, image features 

are emphasized. Our adaptive weighting mechanism is 

trained via back propagation, continuously refining the 

contribution of each modality based on real-time 

classification performance. By dynamically adjusting 

fusion weights rather than relying on fixed aggregation 

rules, our model effectively mitigates modality bias and 

achieves higher accuracy in sentiment classification. 

While Synthetic Minority Over-sampling Technique 

(SMOTE) is a common approach to address data 

imbalance, it may introduce over generalization issues, 

including: Synthetic Samples Lack Realistic Variability: 

SMOTE generates artificial samples by interpolating 

existing data, potentially reducing emotion-specific 

subtleties in the speech and image modalities. Increased 

False Positives: Over-augmentation may cause the model 

to classify neutral expressions as emotions due to the 

presence of synthetic patterns that do not exist in real-

world data. Mitigation Strategy: Instead of direct SMOTE 

application, data augmentation techniques (GAN-based 

image generation, pitch augmentation for speech) are 

preferred, ensuring greater diversity in training data 

without compromising natural variations. 

4 Conclusion 
This study addresses the application of multi modal fusion 

algorithms in sentiment analysis with systematic 

exploration and experimental analysis. The core objective 

is to fuse information from three different modalities, text, 

speech and image, to improve the accuracy and 

adaptability of sentiment analysis. The experimental 

results are analyzed, which show that the multi modal 

fusion method improves the accuracy of the sentiment 

analysis model. In the separate training of text, speech and 

image modalities, the BERT model shows high accuracy 

in text sentiment analysis, and Rennet is equally 

prominent in image sentiment analysis. Despite the fact 

that single modality sentiment analysis is still limited and 

cannot fully capture the complexity and subtlety of 

emotions. After combining the information from the three 

modalities, the overall performance of the model is 

improved, and the accuracy rate reaches 93.8%, which is 

higher than that of the single-modality analysis. The 

results validate the effectiveness of multi modal fusion 

and provide new solution ideas for the field of sentiment 

analysis. The data analysis results support the positive 

effect of multi modal fusion on emotion recognition, and 

the text and speech modalities differ greatly in recognizing 

emotion categories, with the BERT model for text data 

having an advantage in recognizing neutral and happy 

emotions, and speech data performing better in 

recognizing angry and fearful emotions. The Rennet 

model for image data shows advantages mainly in subtle 

changes in emotions (e.g., joy vs. sadness). By fusing the 

features of the three modalities, the model is able to 

synthesize the advantages of different modalities and 

improve the recognition of complex emotions. 

The multi modal fusion method achieved more 

satisfactory results, and data imbalance and the fusion 

strategy between modalities are still important factors 

affecting the performance of the model. In the unbalanced 

distribution of emotion categories, certain emotion 

categories have fewer samples, which affects the model's 

ability to recognize a few categories to some extent. Future 

research could explore data augmentation and sample 

resampling methods to ensure a balanced data set. The 

weighted fusion strategy improves the performance of the 

model, and the static weight assignment of this strategy 

does not fully reflect the variability of different modalities 

across emotion categories. More flexible fusion strategies 

can be investigated in the future, using dynamic 

adjustment to adapt to the different characteristics of 

emotion categories. The convergence and stability of the 

model play a role in multi modal fusion, and the models 

of different modalities show different convergence speeds 

and stability during training, and the processing of speech 

and image data is more complex than text data. In the 

actual training process, the convergence of modalities is 

optimized to improve the model training efficiency and 

accuracy. 

This study provides a systematic theoretical 

framework and experimental support for multi modal 

sentiment analysis, and verifies the potential of multi 

modal fusion algorithms in improving the accuracy of 

sentiment recognition. The results demonstrate the 

advantages of multi modal fusion and reveal the 

shortcomings and improvement directions of current 

methods. Future research continues to focus on optimizing 

data processing methods, enhancing the intelligence of 

fusion strategies, and improving the stability of model 

training. We will explore the deep mechanism of multi 

modal sentiment analysis, bring new breakthroughs in the 

field of sentiment computing, and promote the wide 

application of intelligent customer service, mental health 

assessment, social network analysis and other application 

areas. 
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Appendix A: Variable and constant 

definitions 

Table A1: Variables and constants used in the study 

Symbol Definition 

XT Text feature vector from BERT 

XS Speech feature vector from LSTM-CNN 

XI Image feature vector from ResNet-50 

wT,wS,

wI 
Weights assigned to each modality 

Xfusion Fused representation after weighted fusion 

Y Sentiment label (positive, negative, neutral) 

MFCC 
Mel-Frequency Cepstral Coefficients for 

speech 

LR Learning rate for model training 

 

This table provides clarity on variable definitions, 

making the mathematical notations in the manuscript 

easier to interpret. 

 


