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In the increasingly complex electromagnetic environment, wireless communication technology faces 

multiple challenges such as noise, interference, multi-path effects, and attenuation, which seriously 

threaten the reliability and efficiency of communication systems. Therefore, research was conducted on 

broadband communication signal detection based on deep convolutional autoencoders and spectral 

center networks. The experiment used a dataset of real-world signals and conducted comprehensive 

evaluations under various signal-to-noise ratios, signal-to-noise ratios, as well as different code lengths 

and colored noise backgrounds. The evaluation indicators included computational complexity indicators 

such as detection accuracy, F1 score, recall rate, specificity, and inference time. The experimental results 

showed that on the training set, the loss values of convolutional autoencoder networks 1 and 5 decreased 

rapidly, and their relatively stable loss function values were both around 10-5. The loss value of 

Convolutional Autoencoder Network 10 decreased the slowest, with a minimum loss function value of 

about 10-6. Moreover, the method achieved detection accuracy, F1 score, and recall rate of 98.5%, 0.99, 

and 0.98, respectively, with an average inference time of 0.025 seconds. Compared with the existing state-

of-the-art methods, it improved detection accuracy by 13.5% compared to energy detection and 5.3% 

compared to deep learning detection. The maximum improvement in F1 score and recall was 0.11 and 

0.16, respectively. The research results indicated that the proposed method was significantly superior to 

existing methods in complex electromagnetic environments, with higher detection accuracy and 

robustness. This method offers insights for the design, technology, and solutions of future communication 

systems, which helps to promote the continuous development and progress of communication technology. 

Povzetek: Članek uvaja metodo zaznavanja širokopasovnih komunikacijskih signalov z uporabo 

globokega konvolucijskega avtoenkoderja in spektralnega omrežja za natančno oceno šumskega dna ter 

izboljšano robustnost pri nizkem SNR. 

 

1 Introduction 
In modern communication systems, signal detection is a 

crucial step in the receiving process, responsible for 

identifying and extracting useful information from noise 

and interference. Its accuracy and efficiency directly affect 

the quality and reliability of information transmission [1, 

2]. In complex electromagnetic environments, 

communication signal detection faces challenges such as 

noise, interference, and multi-path effects. Especially 

under low signal-to-noise ratio conditions, existing 

methods are difficult to meet the requirements of high 

accuracy and robustness [3]. Conventional approaches 

exhibit inadequate accuracy when dealing with low signal-

to-noise ratios, coupled with high computational 

complexity and subpar real-time performance. 

Alternatively, they may only achieve satisfactory results 

under very specific circumstances [4, 5]. The powerful 

feature extraction and pattern recognition capabilities of 

Deep Learning (DL) provide new ideas for communication 

signal detection. Convolutional Autoencoder (CAE), as a 

type of DL model, can effectively learn high-level feature 

representations from data. Spectrum Center Network 

(SCN) is an end-to-end CNN model used for carrier signal 

detection in broadband power spectra. Therefore, a 

broadband communication signal detection method based 

on Deep Convolutional Autoencoder (DCAE) and SCN 

has been proposed to achieve noise floor estimation and 

carrier signal detection by capturing multi-level features of 

the signal and dynamically adjusting the feature response. 

The innovation of this research lies in the formulation of a 

broadband communication signal detection method 

grounded in DCAE. This method enables the efficient 

extraction of pertinent information from complex signals. 

Furthermore, the investigation into the dynamic 

embedding of excitation and compression network 

modules subsequent to convolutional layers, aimed at 

dynamically modulating the feature response of each 

channel, serves to augment the network's representational 

prowess. The significance of the research lies in providing 

new theoretical and technological foundations for future 

research in the field of communication signal detection, 
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which helps to promote further development in related 

fields. 

 

2 Related works 
As communication technology evolves, the characteristics 

of signal modulation, transmission rate, and bandwidth are 

also constantly changing. These changes require signal 

detection technology to adapt to different signal 

characteristics and achieve accurate detection of various 

signals. To fulfill the detection needs of faint broadband 

communication signals, Xiao L proposed a random 

resonance signal detection approach grounded on local 

spectrum of broadband signals for small unmanned aerial 

vehicle reconnaissance and communication scenarios. The 

research outcomes indicated that in comparison with 

traditional methods, this method optimized performance 

by about 6 db. For lower signal-to-noise ratio (SNR) 

situations, a dual channel collaborative detection method 

combining random resonance and cross-correlation 

detection was proposed to further improve detection 

performance [6]. 

Jiang X proposed a new signal detection algorithm to 

optimize the accurate detection of signals in satellite 

communication systems and reduce inter signal 

interference. The algorithm utilizes stochastic resonance 

technology to enhance the SNR of input signals and 

combines energy detection and dual thresholding for 

accurate judgment. The test outcomes demonstrated that 

the algorithm could validly detect signals under low SNR 

conditions, improving the performance of the entire 

satellite communication system [7]. Li S proposed a 

method based on Quadrature Amplitude Modulation-

Orthogonal Frequency Division Multiplexing (QAM-

OFDM) echo to construct a Constructed Step Linear 

Frequency Modulated (CStep-LFM) signal for detecting 

weak targets in integrated radar communication signals. 

The research results indicated that when compared to 

various existing integrated signals, the CStep-LFM signal 

not only enhanced the detection capability for weak targets 

but also exhibited superior communication performance 

[8]. Chen Y proposed a novel detector considering a 

random flow model to investigate the impact of 

environmental signal source flow on the detection 

performance of backscatter communication systems. The 

research results indicated that random source traffic could 

significantly degrade the performance of existing detectors, 

resulting in an error plateau at low SNRs. The new detector 

could significantly improve the detection performance in 

the presence of source traffic by weighting samples. The 

gain could exceed 3db in some cases, but as the SNR 

increased and the sample size decreased, the gain might 

turn negative due to the use of heuristic detection 

thresholds [9]. 

DL technology has yielded notable outcomes in areas like 

image recognition and speech processing, and its potent 

capabilities in feature extraction and pattern recognition 

offer fresh perspectives for detecting communication 

signals. To improve the performance of underwater 

acoustic communication preamble signal detection and 

cope with complex channel environments, Liu Z proposed 

a compact neural network grounded on Lenet-5, which 

adopts deep separable convolution and global average 

pooling techniques, and combines filter pruning and post 

training quantization techniques to enhance network 

compression further. The research outcomes indicated that 

the detection ability of this lightweight neural network was 

close to that of classical Convolutional Neural Networks 

(CNNs), and the parameters and computational 

complexity were considerably decreased, meeting the 

requirements of timeliness and low power consumption for 

underwater acoustic communication [10]. Arya S proposed 

a novel statistical model based on the assumption of single 

scattering to improve the fault-tolerant cooperative signal 

detection performance of short-range optical terahertz 

wireless communication. The research results indicated 

that when using the optimal voting rule and a given target 

bit error rate, the number of collaborative users required 

by the network was less than the overall user count in the 

optical network [11]. 

In summary, many scholars have conducted research on 

communication signal detection and achieved certain 

results. Comparing the performance of different methods 

in terms of detection accuracy, SNR performance, and 

computational efficiency, it can be seen that although the 

ED method had low computational complexity, its 

detection accuracy was poor under low SNR conditions, 

making it difficult to effectively distinguish between signal 

and noise. Its detection accuracy was 85%, SNR was 1db, 

and inference time was 0.015 seconds. Although the DLD 

method had a high detection accuracy of 93.2%, it had high 

computational complexity, a long inference time of 0.03 

seconds, high hardware resource requirements, and an 

SNR of 0db. The stochastic resonance detection method 

performed well under low SNR conditions, with an SNR 

of -6 db, but had high computational complexity and 

limited adaptability, with a detection accuracy of 90% and 

inference time of 0.02 seconds. The QAM-OFDM method 

was suitable for radar communication integrated signals, 

with a high detection accuracy of 92%, an SNR of -10 db, 

and an inference time of 0.025 seconds. However, its 

robustness to noise and interference was poor. Although 

the compact neural network based on Lenet-5 had fewer 

parameters, high computational efficiency (inference time 

of 0.02 seconds), detection accuracy of 94%, and SNR of 

-5 db, its adaptability to complex channel environments 

was limited. However, these existing methods still have 

limitations in their performance in complex 

electromagnetic environments, especially under low SNR 

and high interference conditions. In contrast, the 

communication signal detection method based on DCAE 

proposed in the study achieved noise floor estimation and 

carrier signal detection by processing the signal power 

spectrum through convolutional and deconvolution layers, 

and dynamically embedded excitation and squeezing 

network modules after the convolutional layer, thereby 

improving the detection accuracy and robustness in 
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complex electromagnetic environments, providing an 

effective solution for communication signal detection in 

complex electromagnetic environments. 

3 Methods and materials 

3.1 Signal noise floor estimation based on 

DCAE 
Communication signal detection refers to identifying and 

determining whether there is an expected signal from the 

received signal. This process is the first step in determining 

whether the communication system can successfully 

receive information and whether the information can be 

accurately separated from noise. Communication signals 

are transmitted through information transmission systems 

[12]. In the field of communication, the information 

transmission system model is a fundamental framework 

for describing the process of information transmission 

from the sender to the receiver. This model covers multiple 

key aspects of information encoding, modulation, 

transmission, reception, and demodulation, and is the 

foundation for understanding and designing 

communication systems. Its structure is shown in Fig. 1. 
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Figure 1: Diagrammatic representation of the information transmission system model 

 

In Fig. 1, the model describes the transmission process of 

information from the source to the terminal processing 

device. The source information, as the starting point of the 

information transmission system, contains the content to 

be transmitted. The transmitter is responsible for 

converting the source information into a form suitable for 

transmission in the channel. This may include signal 

modulation, amplification, and other processing to ensure 

that the signal can effectively pass through the channel. 

Wireless channel is a medium for signal transmission, 

which can be in wired or wireless form. In wireless 

channels, signals may be affected by various interferences 

and noise sources, which can affect the transmission 

quality of the signal. The receiver is located at the other 

end of the channel, and its function is opposite to that of 

the transmitter, responsible for extracting the original 

information from the received signal. This may include 

signal demodulation, filtering, and other processing. The 

terminal processing device is the endpoint of information 

transmission, responsible for further processing of the 

information output by the receiver, such as decoding, 

display, etc., for use by the end user. The communication 

system model provides a fundamental framework for 

understanding the transmission characteristics of signals in 

complex electromagnetic environments, covering the 

entire transmission process from the source to the terminal 

processing equipment. The noise introduced by wireless 

channels in communication system models is one of the 

key factors affecting signal transmission quality. The 

DCAE method can effectively estimate the noise floor by 

learning the feature representation of the signal, thereby 

improving the accuracy and robustness of signal detection. 

This process simulates the transmission of signals in 

wireless channels, especially the signal changes under the 

influence of noise and interference. To quantify the 

effective transmission efficiency of signals in complex 

electromagnetic environments, the amount of information 

transmitted in a single target selection is calculated, as 

shown in equation (1). 

2 2 2

1
log log (1 ) log

1

P
B N P P P

N

− 
= + + −  

− 
(1) 

In equation (1), B   is the bit rate. N   is the number of 

optional targets. P  is the accuracy of target recognition. 

This indicator reflects the accuracy and reliability of signal 

detection and recognition under noise interference. 

Estimating the broadband noise floor is a crucial area of 

focus within signal processing technology, which directly 

affects the efficiency of signal detection, especially in 

broadband carrier detection. CNN represents a type of 

feedforward neural network characterized by 

convolutional computations and a deep architecture. It 

stands as one of the emblematic algorithms in the realm of 

DL. CAE is a variant of autoencoder that can learn how to 

recover the original input from contaminated input [13, 14]. 

Its main goal is to learn higher-level features of input data, 

rather than relying on details. Therefore, the study 

proposes a broadband noise floor estimation method based 

on DCAE by combining the two. DCAE uses 

convolutional and deconvolution layers to replace fully 

connected layers in autoencoders. The convolutional layer 

extracts local features of the input signal, captures noise 
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patterns and structures, and generates abstract feature 

representations. The deconvolution layer reconstructs the 

noise base based on these features and generates a noise 

estimate with the same size as the original input. This 

structure enables DCAE to recover the original input from 

contaminated signals and separate the signal from noise. 

Combining the two-dimensional data processing 

capability of CNN can improve the accuracy of DCAE 

noise floor estimation and enhance the robustness of the 

model. The diagrammatic representation of its structure is 

in Fig. 2. 
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Fig. 2. Schematic representation of the one-dimensional DCAE structure 

 

As depicted in Fig. 2, the DCAE network typically 

comprises two components: an encoder and a decoder. The 

encoder, made up of convolutional and pooling layers, is 

tasked with compressing the input data into a lower-

dimensional hidden representation. Conversely, the 

decoder, which includes a deconvolutional layer, 

reconstructs the original data from this hidden 

representation. The encoding process usually involves 

mapping the input data [15]. The specific calculation is 

shown in equation (2). 

( )z f Wx b= +   (2) 

In equation (2), z   represents a low dimensional latent 

space. x  is input data. W  is the weight matrix (WM). b  

is a bias vector. 
f

  is the activation function (AF). The 

decoding process usually involves reconstructing the 

original data. The detailed computation is illustrated in 

equation (3). 

ˆ ( )x g W z b + =   (3) 

In equation (3), x̂   is the reconstructed output data. 

g  is the AF. W   is the WM for the decoder. b  is the bias 

vector for the decoder. The accuracy of noise floor 

estimation determines the accuracy and efficiency of 

signal detection. In broadband communication systems, 

noise may cause the noise floor of the signal power 

spectrum to be unstable, which requires accurate 

identification and differentiation of signals and noise 

through noise floor estimation [16, 17]. However, the 

traditional method of calculating the average bottom noise 

power is difficult to accurately estimate the noise level 

when the noise base is uneven, resulting in an increase in 

the missed detection rate of signal detection. Therefore, 

research is based on DCAE to estimate the signal noise 

floor. The process is shown in Fig. 3. 
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Figure 3: Schematic diagram of the noise bottom estimation method based on DCAE 
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As shown in Fig. 3, firstly, the time-domain signal (TDS) 

to be processed is input into the system. This signal may 

contain noise and useful information. Then the input TDS 

is preprocessed to enhance the effectiveness and precision 

of subsequent processing. The preprocessing steps include 

filtering, denoising, normalization, and other operations. 

Then, the preprocessed TDS is converted to the frequency 

domain, and Welch is sampled to calculate its power 

spectrum. The power spectrum reflects the power 

distribution of a signal at different frequencies. The 

calculated power spectrum is further input into DCAE. 

This network extracts features and denoises the power 

spectrum through convolutional and deconvolution layers 

to estimate the noise floor. Ultimately, the noise floor 

estimation outcomes are output for subsequent signal 

processing or analysis. Welch's calculation of the power 

spectrum of broadband communication signals is shown in 

equation (4). 

( ) ( ) 2

1

|
1 1

|
K

Welch k
k

P m X m
K U=

=    (4) 

In equation (4), K  is the number of segments. U  is the 

normalization factor for the window function. 
( )kX m

 is 

the result of the discrete Fourier transform of the k  th 

segment signal. The results are further normalized. The 

noise floor estimation result of the final input power 

spectrum is shown in equation (5). 

(max( ) min( )) min( ))Y Y I I I= − +   (5) 

In equation (5), Y  is the normalized value. Y  is the value 

of the original data. I  is the entire collection of raw data. 

3.2 Communication signal detection based on 

SCN 
The research focused on the estimation of the noise floor 

for communication broadband signals utilizing the DCAE 

approach. Through automatic learning and extraction of 

noise features, DCAE can accurately estimate the noise 

floor, providing a foundation for signal detection. However, 

noise floor estimation is only a part of signal detection, and 

in order to achieve complete communication signal 

detection, further research is needed to identify useful 

communication signals. However, traditional 

communication signal detection methods have multiple 

limitations in terms of anti-interference ability, adaptability, 

automation level, and the trade-off between complexity 

and performance. These limitations are particularly 

evident in complex electromagnetic environments and low 

SNR conditions, which affect the accuracy and reliability 

of signal detection [18, 19]. The core idea of SCN is to 

treat the Broadband Power Spectrum Sequence (BPS) as a 

one-dimensional image and each sub-carrier on the 

broadband as the target object, thereby transforming the 

carrier signal detection problem into a semantic 

segmentation problem on a one-dimensional image [20]. 

However, due to the large length of the power spectrum of 

broadband communication signals, it is difficult to match 

the image. Therefore, research is being conducted to 

improve the deep Residual Backbone Network (ResNet 

backbone) in the SCN model and detect communication 

signals based on the optimized SCN. The optimized SCN 

model structure diagram is shown in Fig. 4. 
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Figure 4: Structural diagram of the SCN model 

 

As shown in Fig. 4, the SCN is mainly composed of three 

parts. The improved deep residual backbone network 

(ResNet) utilizes residual blocks and skip connections to 

effectively solve the problem of gradient vanishing in deep 

network training, enhancing the model's ability to learn 

complex signal features. Feature Pyramid Network (FPN) 

improves the detection performance of carrier signals by 

constructing a top-down information flow and combining 

horizontal connections to fuse high-level semantic 

information with low-level spatial information. Regulated 

Network (RegNet) parameterizes the width and depth of 

the network through quantized linear functions, and the 

optimized network structure improves the accuracy of 

frequency center and bandwidth prediction. The 



152   Informatica 49 (2025) 147–162  B. Wei 

overlapping of adjacent carrier frequency edges can lead 

to a reduction in the frequency gap of the signal power 

spectrum, thereby affecting the accuracy of feature 

extraction in SCNs. The study dynamically adjusted the 

feature response of each channel by embedding the 

Squeeze and Excitation Net (SENet) module after the 

convolutional layer, further improving the detection 

accuracy. These improvements enable SCN to perform 

well in complex electromagnetic environments, enabling 

more accurate identification of carrier signals and 

demonstrating higher robustness and adaptability 

compared to traditional methods. The SENet structure is in 

Fig. 5. 
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Figure 5: Illustration of the SENet module structure 

 

As shown in Fig. 5, The SENet module consists of two 

main operations: squeeze and excitation. Firstly, the SENet 

module compresses the spatial dimension of each channel 

in the input feature map through global average pooling 

operation, thereby obtaining the global description of each 

channel. Next, the SENet module utilizes a self gating 

mechanism consisting of two fully connected layers and a 

nonlinear activation function to generate weights for each 

channel. These weights reflect the importance of each 

channel, allowing the model to dynamically adjust the 

level of attention given to different channels. Finally, the 

SENet module applies the generated weights to the 

original feature map, re-calibrates each channel, enhances 

the model's focus on key features, and improves the 

accuracy of feature extraction. Through this mechanism, 

the SENet module can effectively address the challenges 

posed by reducing frequency gaps and improve the 

detection performance of the model in complex 

electromagnetic environments. The calculation of the 

dimensionality enhancement layer is shown in equation (6). 

( )i is Ws y= +   (6) 

In equation (6), is
 represents the final channel weight, W  

and 
y

 represent the weight and bias of the FCL. is
 is the 

output of the dimensionality reduction layer.   is a non-

linear AF. The specific calculation of global average 

pooling is shown in equation (7). 

, ,
1 1

1 H W

i u v
u v

iz F
H W = =

= 


  (7) 

In equation (7), iz
 is the global average pooling result of 

the i  th channel. H   and W   are the height and width of 

the feature map. , ,i u vF
 is the value of the input feature map 

F  in the i th channel, u th row, and v th column. Usually, 

after the second FCL, a Sigmoid AF serves to guarantee 

that the output weights lie within the range of 0 and 1, 

which can effectively recalibrate the channels of the 

original feature map. The specific calculation is shown in 

equation (8). 

2 1 1 2Sigmoid( ( ) )i cs W W z y y= + +   (8) 

In equation (8), 1W
, 1y

, 2W
, and 2y

 are the WM and bias 

vector of the FCLs in the first and second layers, 

respectively. The communication signal detection process 

based on SCN is in Fig. 6. 
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Figure 6: Flow chart of communication signal detection based on SCN 

 

In Fig. 6, the first step is the input and preprocessing of 

TDSs. The preprocessed signal is converted to the 

frequency domain to generate a BPS. Then, the BPS is 

input into the SCN for identifying and locating carrier 

signals in the power spectrum. In the SCN, ResNet is 

responsible for extracting features of different length 

scales, the FPN is responsible for fusing features and 

outputting them, RegNet predicts frequency centers and 

bandwidths, and detects subcarrier targets through non 

maximum suppression. Finally, the SCN outputs the 

estimation results of power spectral density and bandwidth. 

These results are then utilized for regression conversion, 

which ultimately yields the final carrier detection outcome. 

 

4 Results 

4.1 Testing conditions and configuration 

settings 
To verify the performance of communication signal 

detection methods based on DCAE and SCN, the study 

was conducted on the Ubuntu 20.04 LTS operating system 

experimental platform. From a hardware perspective, the 

selection of the GeForce RTX 3080Ti GPU stemmed from 

its exceptional computational prowess and substantial 

video memory capacity. These attributes enabled it to 

effectively manage training tasks associated with intricate 

models like DCAE networks. However, its high-power 

consumption and heat dissipation requirements limited the 

flexibility of the experimental environment, and an 

efficient heat dissipation system must be equipped to 

ensure stable operation. Paired with Intel (R) Bronze 3204 

CPU, its multi-threaded processing capability can meet the 

needs of data preprocessing and model evaluation; 64 GB 

of memory can handle large-scale datasets. In terms of 

software, although the Ubuntu 20.04 LTS operating system 

is stable and highly compatible, its Linux-based features 

require users to have certain command line operation skills. 

By utilizing the PyTorch 1.10.0 deep learning framework, 

which is celebrated for its dynamic computation graphs, 

intuitive design, and the extensive array of community-

provided resources, a robust platform was established. 

Nevertheless, for particular specialized tasks, it may be 

essential to conduct further code optimization or 

incorporate additional tools, such as Horovod, to achieve 

efficient parallel computing. The specific parameter 

configuration of the experiment environment is shown in 

Table 1. 

 

Table 1 Setting of the experiment environment 

 Configure Model/version 

Hardware configuration 

CPU GeForce RTX 3080Ti 

GPU Intel(R) Bronze 3204 

Storage 64 GB 
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Software configuration 

Operating system Ubuntu 20.04 LTS 

DL framework 
And PyTorch1.10.0 based on the Python 

language 

SCN parameter Settings 

Model input length 32,768 

Batch size 32 

Optimizer Adam 

 

The process of selecting hyper-parameters for the 

experiment was as follows. The batch size was determined 

based on the balance between training speed and 

generalization ability, and was selected after testing 

multiple values through experiments. The learning rate 

adopted a combination of grid search and random search 

to find the optimal value within the range of 0.001 to 0.1. 

Dropout rate was determined by testing different ratios and 

selecting values that effectively prevented overfitting 

without affecting performance. The network structure of 

the DCAE-SCN model in the study consisted of an encoder 

and a decoder, each containing three convolutional and 

deconvolution layers, with a kernel size of 3x3 and a stride 

of 1. The encoder normalized and prevented overfitting 

through Batch Normalization and Dropout, while the 

decoder used ReLU activation function. In terms of 

computational complexity, the average inference time of 

the DCAE model was 0.025s, which was slightly longer 

than the 0.015s of the ED method, but the detection 

performance was significantly better. Similar to the 0.03s 

of DLD method, the performance was better. Sensitivity 

analysis of model parameters was conducted in the 

experiment, including learning rate, batch size, and 

dropout rate. The results showed that when the learning 

rate was set to 0.01, the model achieved the highest 

detection accuracy of 98.5%, indicating that a moderate 

learning rate helped the model learn effectively. When the 

batch size was 64, the model performed the best with a 

detection accuracy of 98.1%, indicating that a moderate 

batch size was helpful for stable training of the model. 

When the Dropout rate was 0.3, the model accuracy was 

the highest at 98.5%, indicating that an appropriate 

Dropout rate could effectively prevent overfitting and 

improve the model's generalization ability. The experiment 

trained a communication signal detection method based on 

DCAE and SCN, using a dataset of real signal samples 

with a total of 10000 samples, including 7000 for training, 

2000 for validation, and 1000 for testing. The model 

training went through 50 iteration cycles, with each cycle 

performing forward and backward propagation on all 

training samples. 

 

4.2 Performance analysis of communication 

signal detection methods 
To verify the performance of DCAE, a Dropout layer was 

added in the experiment, and model scales of 1, 5, and 10 

were selected for comparative experiments. The model 

size refers to the number of convolutional and 

deconvolution layers in DCAE, covering network 

structures from simple to complex on three scales. For 

example, model scale 1 indicates that there is only one 

convolutional layer and one deconvolution layer in the 

network, which is the simplest structure with low 

computational complexity. By selecting network structures 

of different depths, the impact of model complexity on 

detection performance can be evaluated. The results from 

the experiment are depicted in Fig. 7. 
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Figure 7: DCAE training process loss change curve 
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Figs. 7 (a) and (b) show the variation curves of the loss 

function of the DCAE function on the training and 

validation sets, respectively. The loss function was 

normalized to mean squared error (MSE), therefore its 

values were in dimensionless units. As the number of 

training rounds increased, the loss values of the functions 

at all three model scales gradually decreased, with a 

decreasing trend of first fast and then slow, and then 

gradually stabilizing. As shown in Fig. 7 (a), the loss 

values of DCAE-1 and DCAE-5 models decreased rapidly, 

and their relative stable loss function values were both 

around 10-5. The initial loss value of DCAE-10 was the 

lowest, the loss value decreased the slowest, and the 

minimum loss function value was about 10-6. As shown in 

Fig. 7 (b), the functions of the three model scales gradually 

stabilized after 750 training iterations, with DCAE-1 

having the highest loss function value when stable, 

followed by DCAE-5, and DCAE-10 having the lowest. 

The experimental results showed that none of the three loss 

functions exhibited overfitting, indicating that the loss 

function had good performance. To verify the feasibility of 

the broadband communication signal detection method 

based on DCAE and SCN proposed by the research, ED 

and DLD were selected for comparative experiments. The 

experiment tested the differences in detection performance 

of various algorithms under different SNR conditions. The 

obtained results are shown in Fig. 8. 
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Figure 8: Performance comparison diagram of each signal detection method 

 

Figs. 8 (a) and (b) show the detection probability (DP) and 

false alarm probability (FAP) of each signal detection 

method, respectively. As shown in Fig. 8 (a), the DP of 

each signal detection method gradually increased with the 

increase of SNR. When the DP was 0, the SNRs of DCAE-

SCN, DLD, and ED were -3db, 0db, and 1db, respectively. 

The DP of the three signal detection methods reached its 

maximum value of 1 when the SNR was 16db, 8db, and 

3db, respectively. As shown in Fig. 8 (b), the FAP of each 

signal detection method gradually decreased with the 

increase of SNR. When the FAP of DCAE-SCN, DLD, and 

ED was 0, the SNRs were 13db, 8db, and 3db, respectively. 

Overall, the DCAE-SCN method performed the best in 

both DP and FAP, followed by DLD and ED. This may be 

due to the DCAE-SCN method adopting a more complex 

model structure and optimization algorithm, which 

enabled it to more effectively extract features and reduce 

noise impact when processing signals, thus exhibiting 

higher DP and lower FAP under various SNR conditions. 

The feature extraction ability of DLD and ED methods 

may be relatively weak, especially under low SNR 

conditions, making it difficult to effectively distinguish 

between signals and noise, resulting in a lower DP. To 

further confirm the stability of the raised communication 

signal detection method, different Interference-to-Signal 

Ratio (ISR) conditions were set up in the experiment, and 

different communication signal detection methods were 

used for signal detection experiments. The specific results 

obtained are shown in Fig. 9. 
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Figure 9: Results plot of DP of each test method under ISR at different methods 

 

Figs. 9 (a) and (b) show the DPs of each signal detection 

method at ISR levels of -10db and 0db, respectively. From 

Fig. 9 (a), the DPs of each signal detection method showed 

an upward trend with the increase of ISR, and the rate of 

change was first fast and then slow. After the DP reached 

1, it no longer changed. DCAE-SCN reached a stable state 

as quickly as possible, with an ISR of -13db. DLD and ED 

reached stability at around -11db and -6db, respectively. 

As shown in Fig. 9 (b), DCAE-SCN exhibited a rapid 

increase in DP and approached 1 when the SNR was 

greater than 2db, demonstrating superior performance in 

medium SNR environments. When the SNR was greater 

than 4db, the DP of DLD increased rapidly. When the SNR 

was greater than 6db, the DP of ED started to significantly 

increase, and reached its maximum value of 0.6 at 14db. 

Overall, DCAE-SCN performed the best in DP under 

various SNR environments, followed by DLD, and the ED 

method performed the worst. DCAE-SCN may have 

undergone more refined parameter tuning and 

comprehensive experimental design, enabling the 

algorithm to achieve optimal performance under various 

SNR conditions. Although the performance of DLD was 

not as good as DCAE-SCN, its DP rapidly increased when 

the SNR was greater than 4db, indicating that this method 

had certain feature extraction and noise suppression 

capabilities under moderate SNR conditions, but might not 

be as comprehensive or optimized as DCAE-SCN. The ED 

method had weak feature extraction and noise suppression 

capabilities under low and medium SNR conditions, 

possibly due to a simple algorithm design or insufficiently 

complex models. The experiment further validated the 

detection probability of the communication signal 

detection method proposed by the research under different 

code length signal conditions. The specific results obtained 

are shown in Fig. 10. 
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Figure 10: Comparison diagram of the detection performance of each signal detection method 

 

Fig. 10 (a) shows the DPs of various methods for signals 

of different code lengths, and Fig. 10 (b) shows the DPs of 

various methods for communication signals under 

different colored noise backgrounds. As shown in Fig. 10 
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(a), the DP of DCAE-SCN rapidly increased with the 

increase of SNR, and the DP was 1 at an SNR of -16db. 

The probability of DLD detection started to increase when 

the SNR was greater than -20 db, and approached 1 when 

the SNR was -10 db. The probability of ED detection 

started to increase when the SNR was greater than -25db, 

but the rate of increase was slow and did not reach 1 when 

the SNR reached 0db. As shown in Fig. 10 (b), DCAE-

SCN, DLD, and ED reached their maximum DPs at SNRs 

of -16db, -12db, and -6db, respectively, and did not change 

thereafter. DCAE-SCN performed well in different colored 

noise backgrounds, indicating that it may have had better 

noise modeling and suppression capabilities, and could 

effectively distinguish between signals and noise. The 

slow performance improvement of the DLD and ED 

methods in different colored noise backgrounds may have 

indicated their limited ability to handle non-Gaussian or 

correlated noise. To evaluate the importance of different 

components in the DCAE-SCN model, ablation 

experiments were conducted, and the results are shown in 

Table 2. 

 

Table 2: DCAE-SCN ablation experiment data table 

Model configuration 
Detection accuracy 

(%) 
F1 Recall (%) Detection tim (s) 

DCAE-SCN 98.5 ± 0.4 0.99 0.98 0.025 

No SENet 97.0 ± 0.5 0.98 0.96 0.023 

No convolutional layer 92.0 ± 0.6 0.94 0.91 0.021 

No deconvolution layer 95.0 ± 0.5 0.96 0.94 0.024 

Reduce the number of convolutional 

layers (5 layers) 
96.5 ± 0.4 0.97 0.95 0.022 

Reduce the number of deconvolution 

layers (5 layers) 
96.0 ± 0.5 0.96 0.94 0.022 

 

According to Table 2, in the complete DCAE-SCN 

model, the detection accuracy reached 98.5%, the F1 value 

was 0.99, the recall rate was 98%, and the detection time 

was 0.025 seconds, demonstrating the high accuracy and 

efficiency of the model. When the SENet module was 

removed, the detection accuracy dropped to 97.0%, 

indicating that SENet played an important role in 

improving model performance, possibly by enhancing 

feature selectivity to improve the model's generalization 

ability. Further removal of convolutional layers resulted in 

a significant decrease in accuracy to 92.0%, highlighting 

the importance of convolutional layers in extracting key 

features. The removal of the deconvolution layer also led 

to a decrease in performance, but the impact was relatively 

small, with an accuracy of 95.0%, which might be because 

the model could still learn some features through the 

remaining structure. Reducing the number of 

convolutional and deconvolution layers also led to a 

performance degradation of 96.5% and 96.0%, 

respectively, which validated the necessity of deep 

structures for learning complex features. These results 

indicated that each part of the model contributed to the 

final performance, especially the crucial role of 

convolutional layers in feature extraction and the 

importance of SENet modules in improving the model's 

generalization ability. To verify the robustness of the 

proposed method under adversarial noise conditions, 

experiments were conducted to test the performance of 

each algorithm under four different types of noise: uniform 

noise, impulse noise, salt and pepper noise, and speckle 
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noise, as well as narrowband interference and broadband interference. The obtained results are shown in Fig. 11. 
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Figure 11: Performance comparison results of different algorithms under adversarial noise conditions 

Note: * * * indicates that the difference is statistically significant, p<0.01. 

 

As shown in Fig. 11 (a), under uniform noise and impulse 

noise conditions, the DCAE-SCN algorithm had the 

highest accuracy, approaching 95% and 90% respectively, 

demonstrating its superior performance in handling these 

noises. In contrast, the ED algorithm had lower accuracy 

under these two types of noise, especially under impulse 

noise, where the accuracy dropped to about 80%. Salt and 

pepper noise, as well as speckle noise, posed challenges to 

all algorithms, but DCAE-SCN still maintained relatively 

high accuracy rates of 90% and 92%, respectively. This 

might be due to DCAE-SCN's ability to better learn noise 

patterns and effectively suppressed them. As shown in Fig. 

11 (b), under narrowband interference and broadband 

interference conditions, DCAE-SCN still had the highest 

accuracy, about 90% and 85% respectively, indicating its 

advantage in handling spectrum selective interference. The 

impact of periodic interference on all algorithms was 

relatively small, but DCAE-SCN still led with an accuracy 

of about 90%. The performance of DLD algorithm was 

inferior to DCAE-SCN under all interference conditions, 

while ED algorithm performed the worst under broadband 

interference, with accuracy dropping to about 65%. This 

might be because ED algorithm was difficult to adapt to 

the spectral characteristics of broadband interference. To 

verify the robustness of the proposed algorithm in practical 

situations, further experiments were conducted to test the 

signal detection performance of each method in real 

electromagnetic environments. The specific results 

obtained are shown in Table 3. 

 

Table 3: Performance comparison outcomes of each test method 

Testing 

environment 
Laboratory environment Real electromagnetic environment 

Test method DCAE-SCN DLD ED DCAE-SCN DLD ED 

Detection 

accuracy (%) 
98.5 ± 0.4 93.2 ± 0.5 85.0 ± 0.6 97.2 ± 0.4 92.0 ± 0.5 82.5 ± 0.7 

Confidence 

interval (test 

accuracy) 

[98.1, 98.9] 
[92.7, 

93.7] 
[84.4, 85.6] [96.8, 97.6] 

[91.5, 

92.5] 

[81.8, 

83.2] 

F1 0.99 0.95 0.88 0.98 0.94 0.85 

Recall (%) 0.98 0.94 0.82 0.97 0.93 0.81 

Detection tim (s) 0.025 0.030 0.015 0.025 0.030 0.015 
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According to Table 3, the detection accuracy of DCAE-

SCN method in laboratory environment was 98.5%, F1 

value was 0.99, and recall rate was 0.98, demonstrating its 

superior performance under ideal conditions. In contrast, 

the detection accuracies of DLD and ED methods were 

93.2% and 85.0%, respectively, with F1 values of 0.95 and 

0.88, and recall rates of 0.94 and 0.82, respectively, both 

lower than DCAE-SCN. This indicated that DCAE-SCN 

was more effective in feature extraction and signal 

recognition, especially when dealing with complex signals. 

In the real electromagnetic environment, the detection 

accuracy of DCAE-SCN slightly decreased to 97.2%, but 

it was still higher than DLD (92.0%) and ED (82.5%). This 

might be due to the more complex signal interference and 

noise in real environments, but DCAE-SCN better adapted 

to these changes through its DL architecture. The detection 

time of DCAE-SCN was 0.025 seconds in both 

environments, demonstrating its excellent real-time 

performance while maintaining high detection 

performance. The confidence interval provided statistical 

validity for the detection accuracy. The standard error of 

DCAE-SCN in both environments was 0.4%, with 

confidence intervals of [98.1, 98.9] and [96.8, 97.6], 

indicating that the estimation of its detection accuracy was 

stable and reliable. The standard error of DLD method was 

relatively large at 0.5%, but its performance in two 

environments also showed good stability. In contrast, the 

standard error of the ED method under laboratory and real 

conditions was 0.6% and 0.7%, respectively, indicating 

that its results fluctuated greatly and its reliability was 

relatively low. Overall, DCAE-SCN exhibited high 

robustness and accuracy in different environments, 

validating its effectiveness as an advanced detection 

method. Although the ED method had the shortest running 

time, it was not as accurate and robust as DCAE-SCN, 

possibly due to the limitations of its algorithm in 

processing complex signals. The DLD method had the 

longest detection time, possibly due to its algorithm or 

implementation efficiency not being as optimized as 

DCAE-SCN. 

 

5 Discussion 
The proposed method based on DCAE and SCN signal 

noise floor estimation and communication signal detection 

achieved significant improvements in multiple key 

performance indicators. Firstly, DCAE-SCN, through its 

DCAE network structure, utilized convolutional and 

deconvolution layers to effectively capture multi-level 

features of signals. Secondly, under low SNR conditions, 

signals were often overwhelmed by noise, and traditional 

methods might experience performance degradation due to 

their inability to effectively extract signal features. The 

SENet module in DCAE-SCN's network architecture 

could dynamically adjust feature responses, enhance the 

model's attention to key features, and thus improve 

detection accuracy. 

In terms of computational cost, DCAE-SCN had a certain 

increase in computational complexity compared to simpler 

signal detection methods. Although the computational 

complexity increased, DCAE-SCN ensured that its 

inference time was still relatively short by optimizing the 

network structure and training process, which could meet 

the requirements of real-time communication systems. 

Compared with other DL methods such as DLD, DCAE-

SCN further optimized computational efficiency by 

introducing improvement measures such as SENet while 

maintaining high performance. 

From the perspective of practical deployment, DCAE-

SCN had a high feasibility in real-time communication 

systems. Its moderate computational complexity and short 

inference time enabled it to operate in resource constrained 

environments, while its high detection accuracy and 

robustness ensured reliable operation of the system in 

complex electromagnetic environments. In addition, the 

DL architecture of DCAE-SCN allowed it to adapt to 

different communication scenarios and signal types 

through further training and optimization. 

 

6 Conclusion 
With the swift advancement of information technology, 

communication systems are becoming increasingly crucial 

in various fields of society. To develop a new signal 

detection method to improve detection accuracy in 

complex electromagnetic environments and low SNR 

conditions, the study proposed a communication signal 

detection method based on DCAE and utilized SCN for 

carrier signal detection. The experiment outcomes 

indicated that when the DP was 0, the SNRs of DCAE-

SCN, DLD, and ED were -3db, 0db, and 1db, respectively. 

The three signal detection methods had a maximum DP of 

1 when the SNR was 16db, 8db, and 3db, respectively. 

When the FAP of DCAE-SCN, DLD, and ED was 0, the 

SNRs were 13db, 8db, and 3db, respectively. Under the DP 

condition of -10db ISR, the DPs of each signal detection 

method showed an upward trend with the increase of ISR, 

and their change rate was fast at first and then slowed down. 

After the DP reached 1, it no longer changed. DCAE-SCN 

reached a stable state as quickly as possible, with an ISR 

of -13db. DLD and ED reached stability at around -11db 

and -6db, respectively. The experiment showed that this 

method outperformed the ED and DLD methods in 

performance indicators such as detection accuracy, F1 

value, and recall, providing an effective solution for 

communication signal detection within intricate 

electromagnetic surroundings. However, the research was 

mainly conducted in specific datasets and experimental 

environments, without exploring the generalization ability 

of the method in unknown environments or data. Therefore, 

future research will increase the diversity and complexity 

of training data to enhance the model's generalization 

ability to signals in different environments and conditions, 

in order to enable it to play a greater role in a wider range 
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of application scenarios. In addition, future work can focus 

on optimizing model structures, improving robustness to 

non Gaussian noise, and applying this technology to 

interdisciplinary fields such as radar signal processing and 

biomedical signal analysis to expand its application scope 

and deepen theoretical research. Future endeavors could 

also delve into integrating emerging technologies, like 

quantum computing, to further enhance the precision and 

efficiency of signal detection. 
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