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Abstract: With the widespread use of Internet of Things technology, network threats are increasing, posing 

a serious challenge to the security of Internet of Things systems. To address this challenge, an efficient 

network threat detection system is designed by combining digital twin technology and federated learning 

algorithms. The research first uses the decentralized and immutable characteristics of blockchain 

technology to securely store and verify the data in the Internet of Things network, while combining the 

digital twin technology to carry out virtual mapping of the Internet of Things entity, real-time monitoring 

of its status, and timely detection of potential threats. Subsequently, a comprehensive simulation of the 

Internet of Things system is conducted via the digital twin network to generate data samples. Following 

this, the federated learning algorithm is employed, enabling multiple participants to collaboratively train 

the model. This approach enhances the model's detection capabilities while safeguarding the privacy of 

local data. Additionally, a distributed architecture is adopted to facilitate the efficient processing and 

analysis of large-scale Internet of Things data. Finally, the proposed system is tested. The test results 

show that in terms of registration time, when the number of attributes is 10, the registration time of the 

research system is about 0.57 seconds, the registration time of the micro-step online threat intelligence 

platform is about 0.59 seconds, and the registration time of the Check Point Infinity platform is about 0.62 

seconds. When the number of access policies is 10, the shortest encryption time of the research system is 

0.52 seconds, the second is 0.54 seconds of the micro-step online threat intelligence platform, and the 

longest is 0.58 seconds of the Check Point Infinity platform. In comparison to the benchmark system, the 

proposed research system demonstrates superior efficiency during the registration and encryption phases. 

This is primarily attributed to the precise modeling of Internet of Things devices using digital twin 

technology and the efficient data processing capabilities inherent in the federated learning algorithm. 

Consequently, the research system offers a swifter and more effective solution for detecting network 

threats within the Internet of Things environment. 

Povzetek: Združuje digitalne dvojčke, verigo blokov ter federativno učenje za decentralizirano zaznavanje 

groženj v IoT. Poudarjen je zasebnostno ohranjen trening in razlaga modela, je preizkušeno na 

simulacijah in resničnih scenarijih. 

 

1 Introduction 
In recent times, with the swift advancement of 

Internet of Things (IoT) technology, more and more 

devices are connected to the network through information 

sensing devices and protocol agreements, achieving 

intelligent recognition, positioning, tracking, and 

monitoring functions [1, 2]. With the increasing severity 

of network threats, it poses a serious threat to the security 

and reliability of IoT systems [3]. Therefore, developing 

an efficient and reliable network threat detection system is 

extremely important for ensuring the normal operation of 

the IoT. Federated Machine Learning (FML), as a highly 

promising technological approach, has received 

widespread attention [4]. FML, also known as Federated 

Learning (FL), united learning, or alliance learning, is 

based on deep learning and can combine data from  

 

multiple devices to improve model accuracy while 

maintaining device data privacy [5]. Ma applied FL to the  

advancement of a smart tourism service system based on 

the IoT and machine learning, which not only improved 

the system's performance but also ensured data privacy 

[6]. Digital Twin (DT) technology greatly enhances the 

data processing capabilities of physical entities by 

constructing virtual images in the digital space, providing 

powerful technical support for deeper analysis and 

monitoring of the status of IoT devices [7, 8]. For 

example, Zhao et al. raised an efficient communication FL 

method for industrial IoT DT systems, further optimizing 

the efficiency of data processing and model training [9]. 

In addition, blockchain technology also serves as a crucial 

component in ensuring the security of IoT data. By 

offering tamper-resistant data storage and transmission 

capabilities, blockchain can effectively safeguard data 
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against tampering and theft, thereby establishing secure 

and dependable connections among IoT nodes. Currently, 

there is a wealth of research focused on the application of 

blockchain technology in the IoT domain. For example, 

Sasikumar et al. [10] proposed a blockchain-based trust 

mechanism for DT industrial IoT, while Zheng et al. [11] 

further explored the integration of blockchain and DT 

technology in the context of trusted DT for IoT, aiming to 

balance data privacy protection and the secure and reliable 

operation of the system. The detailed work summary table 

is shown in Table 1. 

Table 1: Summary of related work 
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technologies are 
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From Table 1, the existing DT research relies on 

centralized data aggregation and fails to make full use of 

FL's distributed privacy protection capability. The 

proposed system realizes local data non-sharing through 

FL and combines blockchain encryption storage to double 

guarantee privacy. The existing FL model lacks the real-

time virtual mapping of DT and cannot respond to threats 

dynamically. The proposed system uses DT to provide 

real-time device status image and FL model to update 

dynamically to improve the timeliness of threat detection. 

The blockchain scheme introduces high latency, which is 

difficult to apply to large-scale IoT, and the proposed 

system optimizes FL participation node selection, reduces 

the frequency of blockchain transactions, and balances 

security and efficiency. The proposed system innovatively 

integrates FL, DTs, and blockchain technologies to enable 

efficient and secure cyber threat detection. The system 

demonstrates excellent performance on the IoT network 
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threat dataset, achieving high detection accuracy with low 

computing costs, and boasts a high level of security. These 

attributes compensate for some of the limitations in 

previous literature, offering a more comprehensive and 

advanced solution for the IoT network security domain. It 

is anticipated to foster technical advancements and 

practical applications in this field. 

2 Methods and materials 

2.1 IoT network threat detection based on 

blockchain technology and DT 

technology 

With the increase in the number of IoT devices, the 

amount of data and requests that central nodes need to 

process has significantly increased, seriously affecting the 

system's response speed [12]. In the traditional centralized 

model of IoT, data processing and management are highly 

dependent on the central node, and once the node fails or 

suffers a cyber attack, the entire system may be paralyzed. 

This issue underscores the vulnerability of existing IoT 

systems when faced with large-scale device access, and it 

also reveals the core challenge of the research: How to 

construct an efficient and reliable network threat detection 

system under a decentralized architecture using DT and 

FL technologies, in order to enhance the security and 

stability of IoT systems. The distributed ledger of 

blockchain technology can store data on multiple nodes 

instead of relying on a single central node [13]. The 

incorporation of blockchain technology in the IoT 

significantly mitigates the risk of a single point of failure, 

thereby enhancing the system's robustness and resilience 

to faults [14]. The flowchart illustration of the IoT 

blockchain architecture is in Figure 1.
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Figure 1: Flowchart illustration of the IoT blockchain architecture

From Figure 1, in the intelligent transportation 

system, IoT devices such as traffic signal controllers and 

vehicle sensors are faced with network threats such as 

distributed denial of service attacks and false data 

injection. DT technology can build a virtual image of the 

traffic network, simulate the attack propagation path, and 

rehearse defense strategies. In a smart home environment, 

where devices such as home gateways and smart 

appliances are vulnerable to man-in-the-middle attacks or 

new types of malware, the blockchain alliance chain can 

restrict the data access rights of manufacturers and user 

nodes, ensuring the privacy and security of device data. In 

the food supply system, the cold chain sensors in the 

supply chain nodes may be physically tampered with, 

leading to the falsification of temperature records. 

Moreover, blockchain technology can store the detection 

results of each link on the chain for regulators to trace, thus 

effectively preventing data falsification and leakage. In 

order to accurately detect threats to the IoT network, a 

blockchain regulatory framework that supports multi-

party participation is studied. The framework combines 

symmetric encryption algorithms to quickly encrypt data 

generated by IoT devices. The key generation center will 

query the local database to see if the regulatory center has 

completed registration. After registration, the key 

generation center generates a registration record 

expression, as shown in equation (1). 

 Re( )k

s gR U iw N t  (1) 

In equation (1), the customer set is represented by 

symbol U , the central signature is represented by symbol 

N , and the regulatory center is represented by symbol 

siw . Re gt is time. The data information expression of the 

regulatory center is shown in equation (2). 

 1 1 R( )A RAM m C J t id     (2) 
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In equation (2), the data to be regulated is represented 

by symbol m , customer information data is represented 

by symbol C , the time required for regulation is 

represented by symbol R At , and the regulatory code is 

represented by symbol RAid . The calculation formula for 

regulatory results information by regulatory agencies is 

shown in equation (3). 

 1 ( )m BC RAJ id C id Q      (3) 

In equation (3), RA  stands for supervisory center, 

the code to be regulated is represented by symbol mid , 

and the audit judgment result is represented by symbol 

RA . The business chain code is represented by symbol 

BCid . The ciphertext 1b  expression corresponding to the 

symmetric key k  in the regulatory center is shown in 

equation (4). 

 1 . ( , , )b A Enc PK k T=     (4) 

In equation (4), PK  represents the common 

parameters in the attribute based encryption algorithm and 

T  represents the access structure in the attribute based 

encryption algorithm. The ciphertext 2b  expression is 

shown in equation (5). 

 2 1. ( , )b F Enc k M=     (5) 

The encrypted data 1 2( , )b b  will be handed over to 

the regulatory authority for another regulatory judgment, 

and the judgment formula is shown in equation (6). 

 2 2( )S SM m C J t id     (6) 

In equation (6), St  represents the time during which 

the regulatory authority conducted supervision, and 2J  

represents the regulatory outcome information. A smart 

contract is a self-executing protocol with terms that are 

encoded in the blockchain as code, which automatically 

triggers an action when a predefined condition is satisfied. 

The smart contract will compare the supervision results 

before and after the two times, and the supervision results 

of the regulator and the regulator node are consistent, and 

the supervision information expression is shown in 

equation (7). 

 ( )proL M t     (7) 

In equation (7), prot  represents the data processing 

time. A DT Network (DTN) is a virtual digital model of a 

physical network facility created by the DT technology. It 

can create a virtual image of a physical network facility to 

simulate the propagation path and impact scope of a 

network attack. This enables security teams to simulate 

potential cyber threats in a controlled environment, 

evaluate the effects of different defense strategies, and 

select the optimal response [15, 16]. In the IoT blockchain 

architecture, DTNs can leverage the distributed ledger, 

smart contracts, and consensus mechanisms of blockchain 

to enhance data security, privacy protection, and trust 

building. The schematic diagram of the DTN is in Figure 

2.
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Figure 2: Schematic diagram of DTN

As shown in Figure 2, the DTN includes physical 

space, data space, and inter entity communication. The 

DTN collects real-time data of physical entities through 

IoT technology and transmits it to the digital space for 

processing and analysis. Data space is the core of DTNs, 

used to store and process multi-source data from physical 

space. The bidirectional data flow between physical 

entities and DTs is used for real-time synchronization of 

status and feedback optimization. The information sharing 

and collaboration between DTs break the limitations of 
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physical space, enabling federated simulation and 

optimization of complex tasks. Bloom Filter (BF) is an 

efficient space saving data structure used to determine 

whether an element belongs to a set. In the cache 

penetration problem, the BF can store the key existing in 

the database in advance. When the query request arrives, 

the BF determines whether the key exists first, so as to 

avoid invalid database queries. Therefore, the study adopts 

BF to quickly determine whether data already exists, 

avoiding duplicate storage and processing of the same 

data, thereby saving storage space and improving system 

efficiency. The flowchart illustration of BF is in Figure 3.
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Figure 3: Flowchart illustration of the BF

In Figure 3, when inserting an element x  into the BF, 

each hash function ( )ih x  is used to hash element x , and 

the corresponding bit for each position calculated by the 

hash function is set to 1. When querying whether an 

element Z  exists in BF, the same hash function ( )ih Z  

is used to hash element Z , and it is necessary to check 

whether the bits corresponding to each position calculated 

by the hash function are all 1. The false positive of BF 

refers to BF incorrectly determining that an element exists 

in the set, but in reality, the element is not in the set. False 

positives are an important characteristic of BF, and their 

probability of occurrence is closely related to the 

parameters of BF. Assuming the false positive rate is f , 

the calculation formula is shown in equation (8). 

 
1

(1 1(1 ) ) (1 )
n k

n k k kmf e
m



= − −  −     (8) 

In equation (8), n  is the number of elements 

contained in the set, k  is the number of hash functions in 

the filter, and m  is the number of bits. In the IoT 

environment, BF can be combined with distributed 

intrusion detection systems to distribute detection 

functions on edge nodes of the IoT. Each node can 

independently run BF to quickly detect abnormal behavior 

in the local network. 

2.2 Design of IoT network threat detection 

system integrating DTN and FL 

support 

The previous section studied the use of blockchain 

technology and DT technology to optimize the IoT 

network threat detection performance. However, in the 

complex IoT ecosystem, device heterogeneity results in 

significant variations in data formats, processing 

capabilities, and communication protocols among 

different devices. This heterogeneity seriously hinders the 

unified and efficient modeling and management of IoT 

devices using DT technology. FL not only protects data 

privacy, but also allows different devices to participate in 

model training according to their own computing power 

and data characteristics. Distributed learning methods 

enable IoT devices to jointly optimize detection models 

without sharing original data, thus overcoming the 

obstacles caused by device heterogeneity. Therefore, the 

introduction of FL provides a more flexible and efficient 

solution for IoT network threat detection. Unlike 

traditional centralized learning methods, FL typically 

requires consolidating all data into a central location for 

model training. Among them, the expression of the local 

model parameter a  is in equation (9). 

 arg min ( , )a aD


  =     (9) 

In equation (9), aD  represents the local dataset. The 

expression of the global model parameter new  is shown 

in equation (10). 
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In equation (10), n  indicates the number of clients 

participating in FL. FL can be divided into horizontal FL, 

vertical FL, and federated transfer learning. Among them, 

horizontal FL is suitable for scenarios where the 

participating datasets have the same feature space but 

different sample spaces. Horizontal FL treats data as 

horizontally partitioned in a tabular view, where each 

participant has different samples but the feature 

dimensions of the samples are the same. The schematic 

diagram of the training process for horizontal FL is shown 

in Figure 4. 
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Figure 4: Horizontal federation learning training process 

diagram 

In Figure 4, the central server first initializes a global 

model parameter, which is sent to all participating parties. 

After receiving the global model parameters, each 

participant uses their local dataset to train the model 

locally. The training process may involve multiple 

iterations until a predetermined local training standard is 

reached. After completing local training, each participant 

will receive a locally trained model parameter. After 

receiving the local model parameters uploaded by all 

participants, the central server aggregates these 

parameters using the federated averaging algorithm. After 

completing the model aggregation, the central server 

sends the updated global model parameters back to all 

participants. After receiving the new global model 

parameters, each participant updates the parameters based 

on them. The entire process is repeated until a certain 

global convergence standard is reached or the preset 

maximum number of iterations is reached. Support Vector 

Machines (SVMs) can effectively solve regression and 

classification problems in high-dimensional feature 

spaces. The linear SVM model expression is shown in 

equation (11). 

 
2

,

1
min . . ( ) 1

2

T

i i
w b

s t y x b  +      (11) 

In equation (11),   represents the normal vector of 

the hyperplane and b  represents the intercept. The 

formula for solving hyperplanes is in equation (12). 

 ( ) Tg x x b= +     (12) 

The Karush-Kuhn-Tucker condition is a set of 

necessary conditions in optimization problems used to 

solve nonlinear programming problems with constraints. 

The study uses the Karush-Kuhn-Tucker condition b , and 

the result of the Karush-Kuhn-Tucker conditional function 

( )f x  represents the expression of the classification 

prediction result, as shown in equation (13). 

 
1

( ) ( )
g

T

i i i

i

f x sign y x x b
=

= +     (13) 

In equation (13), sign is the sign function and x  is the 

input quantity vector. This research adds SVMs on the 

basis of horizontal FL to construct a horizontal FL support 

system framework, as shown in Figure 5. 
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Figure 5: Horizontal FL support system framework 

 

In Figure 5, during the preprocessing stage, the data 

owner is responsible for preprocessing the local data, 

collaborating with the computing cloud to execute the 

subset selection algorithm, encrypting the local training 

data using the encryption key supplied by the service 

cloud, and generating a ciphertext dataset. The computing 

cloud collaborates with data owners and service clouds to 

complete standardized operations and subset selection 

algorithms. Encrypted datasets uploaded by data owners 

are received and stored in a secure environment. The 

service cloud distributes encryption keys to data owners 

and collaborates with the computing cloud to complete 

standardized operations. During the model training and 

interactive computation phase, the computing cloud 

conducts model training on a ciphertext dataset, and all 

computation processes are completed within the 

ciphertext to ensure data privacy. Meanwhile, it interacts 

with the service cloud for interactive computation to 

update and aggregate model parameters. The service cloud 

interacts with the computing cloud for computation, 
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providing decryption keys to support ciphertext 

calculation. The data owner remains offline and does not 

directly participate in the calculation process. When 

needed, the data is obtained from the service cloud to 

obtain the final trained model for local inference or other 

applications. In the model distribution and service phase, 

the service cloud obtains the final global model after the 

model training is completed. The data owner obtains the 

final model from the service cloud and uses it locally for 

inference or other applications. In other applications, data 

owners can utilize the model to analyze the energy 

consumption of IoT devices. By evaluating the energy 

utilization efficiency through the trends in energy 

consumption data output by the model, they can then 

formulate energy-saving optimization strategies. These 

strategies may include adjusting equipment operating 

parameters and scheduling equipment operating times 

reasonably, thereby achieving the goal of energy 

conservation and emission reduction. The design diagram 

of an IoT network threat detection system that integrates 

DTN and FL support is shown in Figure 6.
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Figure 6: Design of IoT network threat detection system supported by DTN and FL

As shown in Figure 6, intelligent IoT devices collect 

real-time data and transmit it to local servers through 

encrypted communication protocols. Then, through the 

DT system, real-time monitoring and anomaly detection 

of intelligent IoT devices can be achieved. In each round 

of FL, the local server utilizes local data and computing 

resources to train the local model. The local server sends 

the updated model parameters to the cloud server for 

aggregation, generating a new global model. The cloud 

server sends the new global model parameters back to the 

local server for the next round of training. The main role 

of the cloud server in the system is the model aggregation 

center, which receives updated model parameters 

uploaded from various local servers, performs aggregate 

calculation based on these parameters, fuses multi-party 

data features, and generates new global model parameters. 

The updated global model parameters can 

comprehensively capture the overall characteristics of the 

local data involved in FL, enhance the model's 

generalization ability, and subsequently provide a more 

representative model foundation for the next round of 

training on the local server. This, in turn, improves the 

threat detection performance of the entire system. The 

local server uses model compression technology to 

compress personalized models into lightweight models, 

and deploys the compressed models to intelligent IoT 

devices to achieve offline threat detection. The DT system 

and local model jointly monitor the status of intelligent 

IoT devices and trigger alerts when abnormal behavior is 

detected. Assuming there are a total of N customers, set as 

F, each user's IoT device is represented by a symbol jD , 

and the corresponding DT generated by the local server is 

represented by symbol jDT . The expression for jDT  at 

time t  is shown in equation (14). 

  ( ) ( ), ( ), ( )j j j jDT t Model t DATA t Comp t=

 (14) 

In equation (14), ( )jModel t  represents device, 

( )jComp t  represents available computing resources, 

and ( )jDATA t  represents historical data. To achieve 

load balancing, training tasks can be decomposed into 

multiple subtasks and then assigned to different devices. 

The expression for the computing task vTask  assigned to 

device v  is shown in equation (15). 

 
1

( )

( )

v
v M

vv

Comp t
Task Task

Comp t
=

=


    (15) 

In equation (15), ( )vComp t  represents the available 

computing resources of the device v  at time t . To 
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improve the interpretability of threat detection model, 

XAI module is embedded in FL multi-level model. Each 

client uses SHapley Additive exPlanations (SHAP) to 

calculate input features (contribution to local threat 

classification results), generating feature importance heat 

maps. The server identifies cross-domain consistency 

threat features by aggregating the SHAP value distribution 

of each client through federation. For complex admixture 

samples, Local Interpretable Model-agnostic 

Explanations (LIME) was used to reconstruct 

interpretable alternative models in DT virtual 

environments. Based on Ubuntu16.04 operating system 

and using Python and Solidity programming languages, 

the research used Eclipse Hono to connect IoT devices and 

collect relevant information, and gathers data to a single 

AMQP 1.0 endpoint. The Python library that interacts 

with the Ethereum blockchain through Web3.py enables 

the deployment and invocation of smart contracts. 

Solana.py was used to interact with the Python library of 

Solana blockchain, Paho-MQTT was used to achieve 

MQTT protocol communication between IoT devices and 

servers, and InfluxDB was used to store and query time 

series data. Finally, a network threat detection system with 

DT and FL support for IoT was constructed. 

3 Results 

3.1 Algorithm performance testing 

To confirm the accuracy and scientificity of the 

research outcomes, a simulation experimental 

environment was set up, as shown in Table 2. 

Table 2: Simulation experiment environment setting 

table 

Name Disposition 

Processor 
Intel(R) Core(TM) i7 

6700H @ 3.40 GHz 

Operating system Windows 10 64 

Graphics card 
NVIDIA Geforce RTX 

3060 

Internal memory 16 GB 

Hard disk 1 TB 

The simulation experiment used two datasets, Moon 

and Circle. The Moon dataset was usually a two-

dimensional synthetic dataset used to demonstrate and test 

classification algorithms. The data points in this dataset 

were sampled from two noisy crescent shape data 

distributions, each containing two features. The Circle 

dataset referred to a dataset that generates circular 

distributions, consisting of two sets of points with circular 

distributions, used to test the algorithm's ability to process 

complex shaped data. Ring dataset is a multi-modal, 

multi-version annotated dataset mainly used for target 

detection tasks, including ring images in various scenes, 

which is suitable for the research in the field of computer 

vision and target detection. The Pumpkin Seeds dataset is 

an agricultural classification dataset that contains 2,500 

grayscale and binary images of pumpkin seeds for the 

classification task. The hyper-parameter settings of the 

four types of data sets are shown in Table 3. 

Table 3: Hyper-parameter setting table 

Data 

set 

Lo

t 

siz

e 

Penalt

y 

factor 

Object 

mapping 

dimensi

on 

Learnin

g rate 

Gamm

a 

value 

Moon 16 1.0 100 0.001 2.0 

Circle 16 1.0 100 0.001 2.0 

Ring 16 1.0 100 0.002 0.1 

Pumpki

n Seeds 
16 1.0 100 0.01 0.1 

The generated graphs of the research algorithm on 

two datasets are shown in Figure 7. 
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Figure 7: Generated graphs of the research algorithm on two datasets

Figure 7 (a) shows the generated image of the Moon 

dataset. From Figure 7 (a), on the real dataset Moon, the 

research algorithm could clearly distinguish the data in the 

Moon dataset, and ultimately present it as two crescent 

shapes. Figure 7 (b) shows the generated image of the 

Circle dataset. From Figure 7 (b), on the real dataset 

Circle, the research algorithm accurately classified the 

data points into two circular distributions, presenting clear 
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circular contours. In the simulation experiment, the data 

set was divided into training set and test set. Among them, 

the training set accounted for 80%, which was used for the 

training of the model. The test set accounted for 20% and 

was used to evaluate the performance of the model after 

training. The maximum number of iterations for algorithm 

training was set to 30. In each iteration, participants 

updated the locally trained algorithm parameters and 

interacted with other participants via secure 

communication protocols. The variation trend of accuracy 

and error of the algorithm on different data sets is shown 

in Figure 8.
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Figure 8: The trend of accuracy and error of the algorithm on different datasets

Figure 8 (a) indicates the accuracy variation of the 

research algorithm on various datasets. From Figure 8 (a), 

the research algorithm had the highest accuracy on Circle 

dataset, reaching 97.3%, and the lowest accuracy on 

dataset Pumpkin Seeds, reaching 83.6%. This indicated 

that even in the face of more complex datasets, the 

research algorithm could still maintain good data 

monitoring performance. Figure 8 (b) shows the error 

variation of the research algorithm on different datasets. 

From Figure 8 (b), the error of the research algorithm 

fluctuated up and down within the range of -1×10-4 to 

1×10-4 on the four types of datasets, with a relatively small 

fluctuation range. 

3.2 System performance analysis 

To verify the performance advantages of the proposed 

system in network threat detection, comparative 

experiments were carried out in the Distributed Denial of 

Service attack (DDoS) scenario based on the real object 

networking dataset ToN-IoT. Check Point Infinity 

platform and Weibu online threat intelligence platform 

were selected as the baseline system to conduct 

quantitative analysis from two dimensions of computing 

cost and response time. The experimental results are 

shown in Figure 9.
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Figure 9: The total computational cost of the system proposed by this study and the Check Point Infinity platform 

Figure 9 (a) shows the computational cost of the 

research system in different dimensions of the dataset. 

From Figure 9 (a), as the sample size increased, the 

computational cost time of the research system increased 

linearly. When the sample size reached 2000, the 

computational cost time of the research system was 23 

seconds in 10 dimensions, 38 seconds in 20 dimensions, 

and 42 seconds in 30 dimensions. This was because the 

real-time attack traffic simulation and node isolation 

capability of the DT module significantly reduced 

redundant computation. The dynamic client scheduling 

mechanism of FL module avoided the resource bottleneck 



462 Informatica 49 (2025) 453–466 F. Sun 

caused by single point dependence. Figure 9 (b) shows the 

computational cost of the Check Point Infinity platform in 

different dimensions of the dataset. As shown in Figure 9 

(b), when the sample size reached 2000, the computational 

cost time of the Check Point Infinity platform in the three 

dimensions was 3280 s, 12580 s, and 30060 s, 

respectively. This gap stemmed from the baseline 

platform's lack of virtualized attack rehearsal and 

distributed collaborative learning capabilities, resulting in 

inefficient processing of high-dimensional attack data. In 

the system running architecture, the registration process 

allowed the system to verify the identity of users or 

devices and assign corresponding permissions to them. 

Authorized users or devices could access system 

resources. This built a solid defense line at the access 

control level, greatly enhancing the security and stability 

of the system, and effectively resisting potential illegal 

access and malicious attacks. The study also introduced a 

micro step online threat intelligence platform for 

comparative experiments. The experiment outcomes are in 

Figure 10.
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Figure 10: Comparison of the efficiency of different IoT network threat detection systems

Figure 10 (a) shows the time spent on registration. 

According to Figure 10 (a), when the number of attributes 

was 10, the registration time of the research system was 

about 0.57 seconds. When the number of attributes 

increased to 50, the time taken to research system 

registration increased by only about 0.31 seconds. Figure 

10 (b) shows the time diagram of the encryption phase. 

From Figure 10 (b), the increase of policies would lead to 

the increase of system encryption time. When the number 

of access policies was 10, the shortest encryption time of 

the research system was 0.52 seconds. To analyze the 

impact of privacy budget on the performance of the 

network threat detection system model supported by DT 

and FL for the IoT, two datasets of MNIST and Fashion 

MNIST were respectively used for analysis. The 

experimental results are shown in Figure 11.
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Figure 11. Impact of privacy budget on system performance on different data sets

Figure 11 (a) shows the impact of privacy budget on 

system performance on the MNIST dataset. From Figure 

11 (a), as the privacy budget rose, the accuracy of the 

research system also improved. When the privacy data 

was 0.8, the accuracy of the research system was 92%, 

indicating that the system could still maintain excellent 

detection performance at higher levels of privacy 

protection. Figure 11 (b) shows the impact of privacy 

budget on system performance on the Fashion MNIST 

dataset. From Figure 11 (b), although the accuracy of the 

research system decreased under different privacy budgets 

in this dataset, overall, the accuracy of the research system 
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was around 88%, indicating that even with an increase in 

privacy protection requirements, the network threat 

detection system still exhibited good detection ability and 

stability, verifying its practicality and effectiveness in the 

IoT environment. To comprehensively verify the 

effectiveness of the proposed method, ablation 

experiments were conducted on a large data set CIFAR-

10, and the experimental results were shown in Table 4. 

Table 4 Ablation experiment table 

Model 

setup 

Accurac

y rate 

(%) 

Erro

r 

rate 

(%) 

Computation

al overhead 

(seconds) 

Privac

y 

budget 

Basic 

model 
65.7 30.0 20 / 

DT 

module 
78.5 25.6 22 / 

FL 

module 
72.2 27.1 21 1.2 

Researc

h 

system 

82.3 20.2 24 0.8 

 

From Table 4, after the introduction of DT module, 

the accuracy rate increased from 65.7% to 78.5%, 

indicating that DT technology could significantly improve 

the classification performance of the model. After the 

introduction of FL module, the accuracy rate increased 

from 65.7% to 72.2%, indicating that FL technology could 

improve the classification performance of the model. The 

accuracy of introducing DT and FL module was 82.3%, 

which was significantly higher than other settings, 

indicating that the combination of DT and FL could 

further improve the classification performance of the 

model. 

4 Discussion and conclusion 

4.1 Discussion 

Given the swift advancement of the IoT, network 

threat detection becomes a key task in ensuring the 

security of the IoT. Traditional network threat detection 

systems often face problems such as high computational 

overhead, insufficient privacy protection, and limited 

ability to process complex data. To address these issues, 

the research proposes an IoT network threat detection 

system that integrates DTN and FL support. 

The research first tested the IoT network threat 

detection algorithm that integrated DTN and FL support. 

The results showed that the research algorithm could 

clearly distinguish sub-nodes and present clear shape 

contours on the Moon and Circle datasets. On the Circle 

dataset, the accuracy of the system was as high as 97.3%, 

and on the more complex Pumpkin Seeds dataset, the 

accuracy reached 83.6%. This indicated that the research 

algorithm could maintain good classification performance 

when facing data of different complexities, which is 

consistent with the results obtained by Choi W et al. in 

their DT research in the power generation industry [17]. 

Then, the performance of the IoT network threat detection 

system that integrated DTN and FL support was evaluated. 

The experiment outcome indicated that under the same 

testing environment and dataset dimensions, the 

computational cost time of the research system was much 

lower than that of the Check Point Infinity platform. This 

was because the research system adopted DT technology, 

which reduced redundant computing and significantly 

lowers computational overhead [18]. The study introduced 

a micro step online threat intelligence platform for 

comparative experiments, and the experimental outcomes 

indicated that the study could cope with the dynamic 

changes in the number of attributes in the IoT 

environment. This was because the research system 

adopted a lightweight registration mechanism, which 

significantly reduced registration time by optimizing the 

registration process and reducing unnecessary calculation 

steps. This is consistent with the results of Landrum et al. 

in a study of a lightweight chemical registration and data 

storage system [19]. Finally, experiments were conducted 

based on two datasets, MNIST and Fashion MNIST, 

respectively. The experimental results showed that under 

the condition of privacy protection, the detection 

performance of the research system was somewhat 

reduced, but it could still maintain excellent detection 

performance. It is consistent with the research of Yuan et 

al. on knowledge sharing of vehicle Internet privacy 

protection based on low-cost federal generalized learning 

[20]. This was mainly due to the synergy of horizontal FL 

architecture and DT technology, which effectively 

guaranteed data privacy by allowing data to be directly 

processed and model trained on local devices, while 

significantly reducing data transfer costs. DT technology 

further improved the detection accuracy and response 

speed of the system by modeling physical devices and 

synchronizing real-time data. This combination not only 

ensured high performance of the model, but also provided 

a more efficient and secure solution for cyber threat 

detection in IoT environments. 

On the large data set CIFAR-10, the computational 

overhead of the research system was 24 seconds, which 

was slightly increased compared with the basic model, but 

still within the acceptable range, indicating that the system 

had good scalability when processing large-scale data sets. 

Although the introduction of DTs and FL modules 

increased the computational overhead, this increase was 

linear and did not lead to an exponential increase in 

computational time, indicating that the system could adapt 

to the increase in data volume. The research system 

showed the highest accuracy and the lowest error rate on 

large data sets, indicating that the combination of DT and 

FL could effectively improve the classification 

performance of the model. Even in the case of a large 

amount of data, the performance improvement indicated 

that the system could maintain a high detection accuracy 

and had good scalability when processing large-scale data 

sets. The privacy budget of the research system was 0.8, 

indicating that a good balance was achieved between 

privacy protection and performance. Even on large data 

sets, the system could provide effective privacy protection 
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while maintaining high detection performance. The 

system had good scalability in privacy protection and 

could adapt to scenarios with different privacy 

requirements. 

In summary, the research system adopted an FL 

architecture, DT technology, privacy budget mechanism, 

and efficient encryption technology. These technologies 

and strategies protected privacy while minimizing the 

impact on detection performance, ensuring that the system 

had efficient, secure, and reliable threat detection 

capabilities in the IoT environment. 

4.2 Conclusion 

In response to the challenges posed by IoT network 

threats, an innovative IoT network threat detection system 

that integrated DTNs and FL support was proposed. 

Performance testing was conducted on the research 

algorithm, and in regard to classification performance, the 

accuracy of the research algorithm on the Circle dataset 

was as high as 97.3%. Even on the more challenging 

Pumpkin Seeds dataset, the accuracy reached 83.6%, 

indicating that the research algorithm could still maintain 

good monitoring performance when processing complex 

datasets. In addition, the error fluctuation range of the 

research algorithm on the four types of datasets was 

extremely small, ranging from -1×10-4 to 1×10-4, further 

demonstrating the stability and reliability of its 

performance. In terms of privacy protection, as the privacy 

budget increased, the accuracy of the system substantially 

improved. When the privacy budget was 0.8, the system 

accuracy reached 92%, indicating that at a higher level of 

privacy protection, the system could not only effectively 

protect data privacy but also maintain excellent detection 

performance. In summary, the system proposed by the 

research showed excellent performance in classification 

performance, computational efficiency, and privacy 

protection, and could effectively respond to complex and 

changing network threats in the IoT environment, which 

had important practical application value. In the IoT 

environment, real-time data processing is very important. 

In the future, edge computing and real-time data analysis 

technology can be combined to further improve the real-

time performance and response speed of the system. 
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