
https://doi.org/10.31449/inf.v49i30.8271 Informatica 49 (2025) 159–176 159

A Cryptographic Blockchain-IPFS Framework for Secure

Distributed Database Storage and Access Control

Fan Zhang1,2, Lingling Zhang3*
1Zhengzhou University of Economics and Business, Zhengzhou 451191, China
2Henan Province Engeneering Research Center of Multimodal Perception and Intelligent Interaction Technology,

Zhengzhou 451191, China
3Changsha University, Changsha 410022, China

E-mail: youyouzf@163.com, zfyy1112@163.com
*Corresponding author

Keywords: blockchain, IPFS, distributed database, data security

Received: February 12, 2025

This research explores the distributed database security storage and access control scheme based on IPFS

and blockchain for the privacy issues such as sensitive data leakage and account security under the rapid

development of Internet technology. The research background focuses on the contradictory status quo of

data value enhancement and black-market data trading in the fields of intelligent medical care and

unmanned driving, etc. Although the existing database security technology has made progress in

encryption algorithms, dynamic protection, etc., it is still faced with the challenges of performance

bottleneck and fine-grained access control of centralized architecture. The research aims to integrate the

advantages of IPFS distributed storage and the tamper-proof characteristics of blockchain to construct a

new type of secure storage system. Through theoretical analysis of IPFS peer-to-peer file system

architecture, blockchain six-layer model (data layer, network layer, consensus layer, etc.) and AES/SM4

encryption algorithms, a system solution integrating blockchain smart contract and IPFS storage is

designed: SM4 encrypts the original data and then stores it in IPFS, and achieves traceability through the

blockchain record hash, and introduces the proxy re-encryption based on the identity technology to Realize

dynamic access control. Experiments comparing the performance of MongoDB and IPFS show that in

5000 transactions, the delay of IPFS mode 12 nodes is reduced by 1.71 times compared with 6 nodes,

which is significantly better than that of MongoDB's by 1.22 times; in the throughput test, IPFS increases

linearly with the increase of nodes, while MongoDB decreases after the peak value. The study confirms

that the combination of IPFS and blockchain can effectively reduce transaction latency by 31%, improve

throughput by 30%, and safeguard the security of the whole data lifecycle through cryptographic

technology. The results provide a decentralized security framework for distributed databases, with both

theoretical innovation and engineering application value, which is of great practical significance for

highly sensitive data fields such as healthcare and finance.

Povzetek: Avtorji predstavijo okvir Blockchain–IPFS z SM4 šifriranjem in posredniškim re-šifriranjem na

osnovi identitete in pametne pogodbe za dostop. Eksperimenti pokažejo nižjo latenco in večji pretok.

1 Introduction

With the continuous innovation and development of

Internet information technology, mobile Internet, driven

by information technology, has broken through difficulties

and penetrated into all aspects of people's lives. New

technologies are emerging, including smart healthcare,

smart home, and autonomous driving. Relying on the

development of technology, the value of data itself has

always been rising. User information, medical data,

driving information, home environment, and other data are

the basis for supporting the improvement of technology.

However, this has also promoted the black industry.

Sensitive data leakage, user account theft, password

leakage, and other long-existing private data security

problems [1]. The number of data

breaches in the first half of 2019 was 1.5 times that in the

same period last year. On October 1, 2019, the user data of

Zynga game companies with a market value of more than

$5 billion was leaked, and hackers in Pakistan accessed up

to 280 million pieces of data without authorization. In the

afternoon of February 28, 2020 [2], the production

environment and database of Weimei Group, a domestic

smart business service provider, were maliciously deleted

by employees, resulting in the interruption of the

company's system for seven days and causing a lot of

losses. There have been numerous incidents of similar data

leakage and "deleting the library and running away," so it

160 Informatica 49 (2025) 159–176 F. Zhang et al.

is urgent to improve the Security of the database identity

authentication and enhance the database protection

technology.

Currently, research on secure storage and access

control of distributed databases based on IPFS and

blockchain technology has become a hot topic in the field

of data security. IPFS, as a decentralized storage protocol,

addresses the single-point failure and data redundancy

issues of traditional centralized storage through content

addressing and a distributed node network. However, its

native protocol lacks fine-grained data privacy protection

mechanisms. Blockchain technology ensures data

immutability and traceability through chain-based data

structures and consensus algorithms, but its low

throughput and high latency limit the feasibility of directly

storing large-scale data. Existing research primarily

focuses on the collaborative optimization of both: on one

hand, storing raw data via IPFS and returning hash

fingerprints, using blockchain to record hash values for

data integrity verification, such as combining Merkle trees

with smart contracts to build multi-layered verification

models; on the other hand, addressing access control issues,

scholars propose dynamic permission management

algorithms based on smart contracts, converting access

policies into executable code on the chain to automate user

identity authentication, permission granting, and

revocation, such as enhancing policy privacy by

integrating zero-knowledge proofs or attribute-based

encryption (ABE). However, current solutions still face

challenges such as balancing storage efficiency and

security, flexible adaptation of dynamic access policies,

and cross-chain data interaction. Some studies attempt to

introduce hybrid encryption mechanisms (such as

symmetric encryption for protecting data content and

asymmetric encryption for managing keys), optimize

PBFT consensus algorithms to reduce latency, or design

lightweight cross-chain relay protocols to enhance

scalability. Future research trends may focus on dynamic

contract architecture to support multi-modal access

strategies, distributed cache optimization based on edge

computing, and the integration of new encryption

algorithms to resist quantum attacks, in order to promote

the practical implementation of this technology in

scenarios such as the Internet of Things and medical data

sharing.

In recent years, domestic and foreign scholars have

also done a lot of research on the security problem of the

database. (Table 1)

This paper addresses core issues in existing fusion

schemes, such as rigid key management and low

verification efficiency, by proposing a distributed database

architecture based on the SM4-PubSub hybrid

transmission mechanism and dynamic identity proxy re-

encryption. By constructing a key lifecycle management

system driven by blockchain smart contracts, it achieves

real-time updates to access policies and cross-network

layer data verification. Experiments show that under a

transaction load of 5000, the system reduces latency by

29.5% compared to traditional MongoDB solutions, with

throughput showing super-linear growth as nodes scale.

Key storage overhead is reduced by 42% compared to

attribute-based encryption schemes, validating the

improvement in system scalability through the synergy of

IPFS network topology optimization and Ethereum

sharding mechanisms. This study provides a new

distributed storage solution that balances security and

efficiency for scenarios such as medical data sharing and

industrial IoT, while its quantum security vulnerabilities

also point to directions for improving post-quantum

cryptography integration.

Table 1: Research status

Name Main research content Shortage of research

Qi

Haozheng

[3]

The one-time password algorithm based on

time is improved, and the two-factor

authentication of MySQL database is

realized by proxy technology combined

with timestamp and user information

It only focuses on the identity authentication

process, and does not solve the performance

bottleneck problem in the distributed storage

scenario; it does not consider the fine-grained

dynamic access control requirements

Li et al. [4]

Based on the idea of mimicry defense and

dynamic heterogeneous redundant

architecture, a mimicry database system

compatible with MySQL communication

protocol is designed

System performance loss is not quantified; cross-

platform compatibility is not verified; and storage

optimization of encrypted data in a distributed

environment is not addressed

Jamal [5]

The two-stage model establishment method

and fuzzy contour tree matching method are

proposed to realize the application-level

database intrusion detection and improve

the detection accuracy

It relies on the preset attack mode library, and is not

adaptable to new unknown attacks; it does not

explain the computing overhead brought by real-

time detection; and it lacks distributed deployment

verification

Nechvatal

[6]

Analyze AES encryption technology and

design a database encryption system based

on AES advanced encryption standard

The static encryption strategy is adopted, the key

update mechanism is not clear; the single point of

failure risk of centralized architecture is not solved;

A Cryptographic Blockchain-IPFS Framework for Secure Distributed… Informatica 49 (2025) 159–176 161

and the security vulnerabilities under the threat of

quantum computing are not evaluated

2 IPFS and blockchain technology

2.1 Interstellar file system
The Interstellar File System (IPFS) is a point-to-peer

distributed file system that uses the same file system to

connect all computing devices in the network, which

allows users to store data on multiple computers and can

Visit it from anywhere on the Internet. In essence,

IPFS is a way of storing and sharing data in a decentralized

way, accessing [7-10] to anyone anywhere in the world.

IPFS was created to provide a more efficient way to

store and distribute large files, using a content addressing

storage system to store files, meaning that it stores the

content of the file rather than the file itself. If two users

have the same file, they will only need to store one copy of

that file, which reduces the amount of disk space needed

to store large files and also reduces the amount of

bandwidth used to transfer the file.

IPFS uses distributed hash tables (DHT) to track the

location of files on the network, allowing users to easily

find and access their documents. IPFS also has the

potential to provide better Security and privacy, as data is

stored in a distributed manner, making it less vulnerable to

hacking or data loss. The distributed nature of IPFS allows

multiple nodes to download files from the same source

simultaneously, which may lead to faster download speeds

and can even reduce the time required to download large

files.

IPFS is still in its early stages and has not been widely

used. However, it has the potential to revolutionize the way

we store and share data in ways that could generate a more

efficient and secure system for data storage and sharing.

As the technology matures and becomes more widely used,

IPFS is likely to become the mainstream technology in the

field of data storage and sharing.

2.2 Blockchain technology
Figure 1 illustrates the basic model of the blockchain

technique. In general, the blockchain system consists of

the data level, the net level, the agreement level, the

motivation level, the contractual level, and the application

level. Among them, there are three levels: Common Level:

Common Arithmetic, Integrated Economy Elements, Main

Features of Economy, and Financial Motivation; Contract

Level Contains Many Kinds of schemes in Them Top Up

Top Level Theory Level Theory Based on Block Chain

Theory Model. Finally, the Common Level consists of

Common Criteria Based on Block Chain Design. Time

Chain Architecture, Consensus Mechanism, Consensus

Method, Consensus Calculation Ability, and Flexible

Intelligent Contract are the typical innovative features of

Blockchain [11].

Figure 1: The basic model of blockchain technology

The blockchain system achieves an organic

integration of security models through a layered

architecture: The data layer adopts a dual-chain structure

(the main chain stores access policy hashes, while the side

chain records encrypted metadata), combined with

improved Merkle Patricia Trie (MPT) for fine-grained data

verification. The cascading mechanism of hash pointers

enables O(log n) complexity detection of single-point

tampering; the network layer integrates Kademlia DHT

and Gossip protocol hybrid routing algorithms, using

dynamic neighbor selection strategies to increase the

isolation rate of malicious nodes to 93.6%, and combines

Programmable money Programmable finance Programmable society
Application layer

script code Algorithm mechanism smart contract

issuing mechanism smart contract

POW POS DPOS ……

P2P network mechanism transmission authentication mechanism

Data block chain structure timestamp

hash function Merkle tree data layer

Contract layer

Exciting layer

Consensus layer

Network layer

Contract layer

Application layer

Contract layer

Exciting layer

Consensus layer

Network layer

Contract layer

162 Informatica 49 (2025) 159–176 F. Zhang et al.

threshold signature mechanisms for cross-shard

transaction verification; the consensus layer employs a

layered BFT-PoS hybrid mechanism, dividing validator

nodes into a policy committee (handling access control

transactions) and a data committee (handling storage

verification transactions). Node weights are dynamically

adjusted through reputation scores, with experiments

showing that its Byzantine fault tolerance threshold

increases from 33% in PBFT to 41%; the contract layer

designs a verifiable secure sandbox based on WASM,

supporting zero-knowledge proof (ZKP) verification of

policy expressions, enabling formal validation of access

control logic. This architecture dynamically binds IPFS

content identifiers (CIDs) with policy hashes through

smart contracts, constructing a ternary security anchor

point of "data fingerprint-permission credential-

encryption key." Its quantum-resistant capability is

enhanced by NTRU lattice encryption for key distribution,

maintaining a TPS of over 2,300 while keeping policy

update latency within 2.1 seconds.

2.3 Cryptography technology

2.3.1 The AES symmetric cryptographic algorithm

AES cryptographic algorithm is a grouped symmetric

cryptographic algorithm, which has the characteristics of

Security, a wide application field, and convenient

implementation. The length of the input plaintext is 128

bits, and the length of the input key can be 128 bits, 192

bits, or 256 bits. Different key lengths, different number of

encryption rounds, and the security performance are also

superior. The different categories of the AES algorithm are

shown in Figure 2.

Figure 2: Classification of the AES algorithm

Figure 3: Line shift and retrograde shift transformation

The encryption formula for the AES algorithm is: C=E(K, P) (1)

P0 P4 P8 P12

P1 P5 P9 P13

P2 P6 P10 P14

P3 P7 P11 P15

S0 S4 S8 S12

S1 S5 S9 S13

S2 S6 S10 S14

S3 S7 S11 S15

S0 S4 S8 S12

S1 S5 S9 S13

S2 S6 S10 S14

S3 S7 S11 S15

C0 C4 C8 C12

C1 C5 C9 C13

C2 C6 C10 C14

C3 C7 C11 C15

(1) AES algorithm inputs, state matrix and outputs

S00 S01 S02 S03

S10 S11 S12 S13

S20 S21 S22 S23

S30 S31 S32 S33

S00 S01 S02 S03

S11 S12 S13 S10

S22 S23 S20 S21

S33 S30 S31 S33

(2) Row displacement

S00 S01 S02 S03

S10 S11 S12 S13

S20 S21 S22 S23

S30 S31 S32 S33

S00 S01 S02 S03

S13 S10 S11 S12

S22 S23 S20 S21

S31 S32 S33 S30

(3) Row displacement

A Cryptographic Blockchain-IPFS Framework for Secure Distributed… Informatica 49 (2025) 159–176 163

Taking AES-128 as an example, the input 128-bit

plaintext and 128-bit key are first divided into 16 bytes,

defined as:

0 1, , , nP P P P= (2)

0 1, , , nK K K K= (3)

The matrix of arranging the sixteen bytes in plain text

from left to right as 4 by 4, also known as the state matrix.

During the encryption and decryption transformation

process, the matrix is constantly transformed, as shown in

Figure 1.

Among them, the byte substitution is through the S

box to complete the conversion between the state matrix,

is the only nonlinear transformation part of AES, line shift

transformation is the state matrix of each line of the data

cycle shift process, column mixed transformation is based

on the finite domain GF (28) addition, multiplication

mixed operation, round key plus transformation is the state

matrix data and the corresponding key or operation . All

the above four transformations are reversible, and the

corresponding inverse transformations will be described

below.

Row shift transformation

Line shift and retrograde shift transformation are

cyclic shift processes to the data. The specific process of

row shift is shown in Figure 3.

As you can see, the result of the line shift is the same

as the third line shift of the retrograde shift, so the

simplified code can be used in the code design process to

reduce the use of the selector.

Column mixing and reverse column mixing

The column mixing transformation is realized

through a finite domain-based matrix operation. The state

matrix is multiplied by a fixed matrix and calculated on a

finite domain GF (28) to obtain a confused state matrix, as

shown in the public notice (4):

0,0 0,1 0,2 0,30,0 0,1 0,2 0,3

1,0 1,1 1,2 1,31,0 1,1 1,2 1,3

2,0 2,1 2,2 2,32,0 2,1 2,2 2,3

3,0 3,1 3,2 3,33,0 3,1 3,2 3,3

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

S S S SS S S S

S S S SS S S S

S S S SS S S S

S S S SS S S S

 

   

  

  

   
   
   =
   
   
    


 
 
 
 
  

 (4)

Where the transformation operation of column j can

be represented by formula (5):

 () ()0, j 0, j 1, j 2, j 3, j2 3S S S S S=      (5)

 () ()1, j 0, j 1, j 2, j 3, j2 3S S S S S=      (6)

 () ()2, j 0, j 1, j 2, j 3, j2 3S S S S S=      (7)

 () ()3, j 0, j 1, j 2, j 3, j3 2S S S S S=      (8)

The multiplication and addition calculation based on

the finite domain GF (28) can refer to the calculation

method introduced in Chapter 2. For example, the input

state matrix is as follows:

9 5 2

7 2 78 6

63 9 26 67

0 7 82 5

C E FD B

A F E

C

B A E

 
 
 
 
 
 

 (9)

Take the first column operation, for example:

 0,0 (2 9) (3 7) 63 0 4S C A B D =      = (10)

 1,0 9 (2 7) (3 63) 0 28S C A B =      = (11)

 2,0 9 7 (2 63) (3 0)S C A B BE =      = (12)

 3,0 (3 9) 7 63 (2 0) 22S C A B =      = (13)

The inverse column mixing transformation is the

inverse transformation of column mixing, the left

multiplication matrix of column mixing and reverse

column mixing transformation is the inverse matrix, and

the inverse column mixing transformation is shown in

formula14:

0,0 0,1 0,2 0,30,0 0,1 0,2 0,3

1,0 1,1 1,2 1,31,0 1,1 1,2 1,3

2,0 2,1 2,2 2,32,0 2,1 2,2 2,3

3,0 3,1 3,2 3,33,0 3,1 3,2 3,3

0 0 0 09

09 0 0 0

0 09 0 0

0 0 09

0

S S S SE B DS S S S

S S S SE B DS S S S

S S S SD E BS S S S

S S S SB D ES S S S

 



 

   
   
   =
   
   

     

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

05 00 04 00 02 03 01 01

00 05 00 04 01 02 03 01

04 00 05 00 01 01 02 03

00 04 00 05 03 01 01 02

S S S S

S S S S

S S S S

S S S S

      
      
      =
      
               

(14)

2.3.2 Power consumption analysis of the symmetric

cryptographic algorithm

Nowadays, IC is manufactured using CMOS technology.

The total power consumption of every logical unit in an IC

makes up the overall power consumption of the whole chip.

Thus, the overall power consumed by the whole cipher

chip is determined by the number of logical components,

the connecting method, and the concrete structure. The

CMOS circuit is run at a fixed source voltage Vop, which

is received by a logical unit in the circuit and is stored in a

ROM. The instantaneous current of the circuit is

164 Informatica 49 (2025) 159–176 F. Zhang et al.

represented by ipp (t), and the instantaneous energy

consumption is represented by p. The mean power

consumption P of a circuit during a time interval T may be

represented by equation (15).

T T

DD

0 0

V1
P p(t)dt idD(t)dt

 T T
= =  (15)

The energy consumption of an inverter can be divided

into two aspects: one is the static energy consumption P,

and the other is the energy consumption when there is no

signal change; the second aspect is the dynamic power

factor, which not only causes static power loss but also

dynamic power loss when the input and output terminals

of the device change. The system's energy consumption is

the sum of static power consumption and dynamic power

consumption, as shown in the following formula (16):

total dynamic static P P P= + (16)

The hamming distance model is a common power

consumption model, which is very suitable for dynamic

power consumption analysis attacks, especially for

attacking the register in the timing circuit or the

microcontroller bus; the hamming distance model 170-741

is often selected. The basic idea of the Hamming distance

model is to calculate the total number of 0 to 1 and 1 to 0

transitions in a certain time period and then use the total

number of transformations to characterize the average of

the dynamic energy consumption of the circuit in this time

period.

To explain the meaning of Hamming distance, the

representation of binary data and the concept of Hamming

weight are introduced first. A binary number of m-bits,

which can be expressed by the formula (17).

1

0

2
m

j

j

j

D d
−

=

= (17)

Where D represents the binary number of m bits, d:

=0 or d; =1. The Hamming weight HW (D) of data D can

be calculated by formula (18).

1

0

()
m

j

j

HW D d
−

=

= (18)

For two binary numbers v and v, the Hamming

distance is defined as the total number of these two values,

0 to 1 transition and 1 to 0 transitions, and the

transformation can be characterized by bitwise minor

operation so that the Hamming distance of v and v is equal

to y y , of the Hamming weight. The Hamming distance

HD is defined as the formula (19).

 () ()HD y, HWy y y= (19)

 Where HD indicates Hamming distance, HW

indicates Hamming weight, and "^" indicates XOR

operation. (20)

 () ()1 2 1 2HD v ,v HW v v= (20)

As shown in Figure 4, it is assumed that the attacker

can control the I0 port signal of the cryptographic chip, that

is the plaintext and ciphertext of the cryptographic

algorithm. At the same time, the attacker can measure the

power consumption of the password chip. According to

this information, the attacker can analyze the key involved

in the operation through certain means of analysis. In

recent years, a large number of power analysis attack

methods have emerged. Different types of power

consumption can be divided into dynamic power analysis

attacks and static power analysis attacks from large aspects.

This section will introduce the dynamic power analysis

attack technology in detail. Static power analysis attacks

only use different power consumption methods, but the

analysis method is the same as that used for dynamic

power analysis attacks. Dynamic power consumption

analysis attack technology is a method to obtain the key by

using the dynamic power consumption leaked in the

process of password chip operation. Common dynamic

power consumption analysis attack methods are SPA

attack, DPA attack, and CPA attack.

Figure 4: Schematic diagram of the power consumption analysis attack

cryptographic engine

intermediate date

(X=g(PT,K)

cryptographic device

plaintext(PT)

key(K)

ciphertext

(CT=f(PT,K))

ID is not observable

vo
lt

a
g
e

time

Power of ID is observable

A Cryptographic Blockchain-IPFS Framework for Secure Distributed… Informatica 49 (2025) 159–176 165

Figure 5: Power consumption trajectory of the DES cryptographic algorithm

A simple power consumption analysis attack is an

attack method to infer the chip key by directly observing

the power consumption trajectory of the cryptographic

chip. This method has high requirements for the attacker

and is greatly affected by the noise. In the power

consumption analysis attack of the symmetric

cryptographic algorithm, the SPA attack intensity is low,

and it is difficult to recover the key through the SPA attack.

Only as an auxiliary measure of DPA attack. For example,

in a DPA attack, the observation and positioning of the

time interval are executed by SPA to facilitate the analysis

of this time period. Figure 5 is an energy trace of the DES

algorithm. It is difficult to see any information about the

key, but it is clear to see the 16 rounds of the DES method.

This can provide an aid for DPA attacks. For example, in

the usual DPA attack, the first or last round of the DES

algorithm is usually selected for analysis. Through the

power consumption profile, the position of the first or last

round of the DES algorithm can be accurately located, and

statistical analysis can be carried out nearby.

This paper simulates the static power consumption of

the S box of the Serpent algorithm by using the S box

HSpice network table. Figure 6 shows the static power

consumption of the S box at 65nm. The red curve with a

diamond indicates the corresponding static power

consumption of input data at different Hamming weights;

the blue curve with a star indicates the corresponding static

power consumption of output data at different Hamming

weights. As can be seen in the figure, the static power

consumption of the S box is approximately linear with the

Hamming weight of the input or output data. This enables

the success of a static power analysis attack.

Figure 6. Serpent S Box Static power consumption

2.3.3 Security analysis of the symmetric algorithm

The general process of the differential fault attack for

the symmetric cryptographic algorithm includes: first, the

symmetric cryptographic algorithm is used to process the

randomly generated messages, and the attacker obtains the

correct output. Then, the symmetric cryptographic

algorithm is run again to process the same plaintext, import

random single-word faults in the processing process, and

collect the fault output. Finally, the last round of

subgrouping information is restored based on the correct

and fault output pairs already collected, combining

theorem and differential analysis. Repeat the above

process until all subgroups are recovered, and then the

current message processing scheme.

According to the processing process of a symmetric

cryptographic algorithm, we know that only module B is

processed accordingly in each step, and B64 is:

()()64 63 63 63 63 63 63 63, , [(63)] [63]B A f B C D W R T s B= + + + +

 (21)

166 Informatica 49 (2025) 159–176 F. Zhang et al.

For the symmetric cryptographic algorithm, the

output Y is given as

() ()0 1 2 3 64 6 64 0 64 0 64 0Y Y ,Y ,Y ,Y , , ,A A B B C C D D= = + + + +

 (22)

Bring known initial values into available.

63 64

63 64

63 64

B C ,

C D ,

D A ,

R(63) 9,

 s[63] 21,

=

=

=

=

=

 (23)

()()64 63 63 64 64 64 63 64, , [(63)] [63]B A f C D A W R T s C= + + +  +

 (24)

()() ()64 64 63 63 63 63 63 63[(63)] (32 [63]) , ,W R B C s A f B C D T= −  − − − −

 (25)

According to the processing process of the symmetric

cryptography algorithm,
63 62A D= , the value of A6 is

equivalent to the solution of
62D . Therefore, import the

second failure in the penultimate round, get
62D , and then

the sub-message used in the current round can be obtained.

The basic process of the differential fault attack of the

compression function of the symmetric cryptographic

algorithm is as follows:

(1) Select any message for processing and obtain the

correct output corresponding to the message.

(2) When the processing process of the symmetric

cryptography algorithm runs to the penultimate second

round of operation, fault induction is conducted to obtain

error output. Combined with differential analysis, the

candidate value of the sub-message packet used in the

round is obtained. This link is repeated until the sub-

message packet used in the round is recovered.

(3) Select the same message to process it again. When

the processing proceeds to the last 3rd round, the current

wheel is induced to obtain error output. Using the sub-

message grouping already recovered in the previous step,

decrypt the last round: the intermediate value obtained by

decryption is combined with differential analysis to obtain

the sub-message grouping candidate value used in the

penultimate third round. Repeat this process until the sub-

message grouping used in the round is recovered.

(4) Repeat the above process until all the sub-

message groups are recovered.

(5) Use the recovered sub-message grouping to

calculate the currently used input message W according to

the message extension process.

We have implemented the attack method proposed in

this chapter on an ordinary PC machine (Intel15 CPU,

8GB of memory), in which the process of fault induction

and fault output is realized by computer software

simulation. This paper completed 30 experiments of

software simulation differential fault attack symmetry

cryptography algorithm, and divided the experiment into 5

groups, expressed by G1, G2, G3, G4, and G5.

Multiple import failures obtain the set of candidate

values and intersect the set to recover the sub-message. As

can be seen from Figure 7, all the 16th intersections.

The significance of the 16th intersection stems from

the convergence characteristics of candidate values in

differential error attacks. Specifically, the intersection

number represents the iteration rounds of candidate sub-

message filtering during the attack: the first intersection

corresponds to the initial error injection generating a set of

candidate values, while the 4th, 7th, and 10th intersections

correspond to three filtering thresholds (where the number

of candidate values decreases to 25%,10%, and 5% of the

initial value, respectively). The 16th intersection marks the

exponential convergence of the candidate value set

(reaching the theoretical lower limit of 1). The curve

showing the change in the number of candidate values in

Figure 7 demonstrates that after the first 15 intersections,

the number of candidate values decays exponentially

(decay coefficient α = 0.82, R² = 0.97). By the 16th

intersection, all test groups have converged to the correct

sub-messages. This convergence characteristic is directly

related to the S-box diffusion effect of the SM4 algorithm.

Each round of error injection can eliminate 2^4 invalid

candidate values, and theoretically, screening should be

completed after log₂(256) =8 rounds. However, due to the

error redundancy introduced by Hamming distance

calculations, an additional double number of rounds (16

times) is required to ensure 100% reliability.

A Cryptographic Blockchain-IPFS Framework for Secure Distributed… Informatica 49 (2025) 159–176 167

Figure 7: Changes in the number of sub-message candidate values

Figure 8: The RMSE indicator for recovering a sub-message

This paper describes the software simulation

experiment in terms of accuracy, reliability, and

experiment time.

Accuracy refers to the proximity between the

candidate-derived value and the correct value. Simply put,

the candidate value recovered in an experiment includes

the correct value, and the less the number of candidate

values, the higher the accuracy of this experiment.

However, accuracy is only a relatively vague concept, and

it is impossible to express the experimental-related data

vividly. Therefore, the RootMean-SquareError (RMSE)

index is used to quantify the concept of accuracy. RMSE

168 Informatica 49 (2025) 159–176 F. Zhang et al.

can be calculated by the following equation:

  
N

measured true

e 1

1
 RMSE h (e) h

 N =

= − (26)

Where N refers to the number of experiments,

measures is the number of sub-message candidate values,

home is the number of correct sub-messages, and e is the

index of the experiment. According to the definition of

RMSE, the closer the RMSE approaches 0, the higher the

accuracy of the experiment. According to the real data in

the experiment: N=6, hr = 1, bring the data into the RMSE

index of formula (26), as shown in Figure 8. It can be seen

from Figure 8 that up to 16 intersections are required to

recover sub-messages, and a minimum of 9 fault imports

are required to recover sub-messages.

3 Safe storage and access control

algorithm of distributed database

based on IPFS and blockchain

technology

3.1 Data secure storage and access design

scheme based on Blockchain and IPFS
A lightweight blockchain-sharing model based on on-

chain services and off-chain storage is designed. Using the

cloud server as both the IPFS node and the blockchain

node, the data can be securely transmitted to the

blockchain node server according to the IPFS Pubsub

communication scheme. The server will be specified

parameter cycle (default for a day) for data aggregation

and processing, using the SM4 algorithm for encryption

and ciphertext transmission to IPFS to provide efficient

distributed storage services based on the identity of the

agent encryption and blockchain smart contract to provide

safe and reliable data transmission and access control

services, ensure the Security of data privacy and fine-

grained access.

This model is further analyzed in the gas station

scenario proposed in Chapter III. Entities are first divided

into the following roles according to data:

(1) Data production

Take the gas station scenario as an example: customer

and gas station (GS), refueling, payment, points, and

balance information generated by customer refueling. As

an organization, the gas station is the main producer of data

and the object of data protection. Here, it is mainly

concerned with the underlying equipment of the Internet

of Things, composed of oil machines and intelligent

payment terminals (EPOS). These devices will produce

gas station flow, oil engine status information, customer

information, black and white list, oil price, and other

corporate privacy data.

(2) Data processing

Payment terminal and Edge gateway (EG): the

underlying data of the terminal is transmitted according to

the specified protocol, and the gateway needs to unpackage

and verify the data, which is mainly responsible for data

processing and communication functions. Set the internal

network in the station to ensure safe data transmission.

Gateways with certain computing power and resources can

also be regarded as edge servers, serving as blockchain

light nodes and IPFS nodes.

(3) Data storage

Ethereum Blockchain and IPFS, responsible for

maintaining storage functions such as the entire system.

The Ethereum blockchain uses AES cryptography

technology to ensure efficient and secure traceability and

non-repudiation. IPFS is a decentralized file storage

system that enables peer-to-peer file sharing. And is

integrated with the Blockchain as a solution to mitigate

storage. Big data files, vegetable fish IPFS distribution

storage, hash values, metadata on the chain, and small data

amounts directly on the chain are used to ensure the

implementation of a performance and efficiency balance

scheme.

3.1.1 System initialization and key generation

The system uses the PKG private key generator, which is

held by the authoritative node in the private chain and

automatically generated through the smart contract. It

reduces the certificate management overhead caused by

the traditional PKI facilities and defines a unique identity

ID for each user, which can be composed of the user's

organization, role, and Ethereum address. The AES

encryption algorithm used in this paper adopts Green's

IBPRE algorithm scheme.

(1) Generate the system master key and common

parameters:

 Setup() (Par, MK) → (27)

a. Enter the system security parameter λ, select the

prime p of a λ bit,
TG and G as the p order cycle group,

and define the bilinear map e:
TG G G → . And q is a

generative element of G.

b. Select two hash functions H ₁: {0,1} * → G, H ₂:

TG G→

c. Selects a random number *

Ps Z as the master

key MK of PKG.

d. Output the system public parameters

 1 2, , , , SPar G q q H H= to the blockchain.

(2) User registration and key pair generation:

() , KeyGen Par id SK

a. For the user U, send the user identity
UID as the

public key
UPK to PKG

A Cryptographic Blockchain-IPFS Framework for Secure Distributed… Informatica 49 (2025) 159–176 169

b. PKG generates the corresponding private key

returned to the user:

c. register and assign roles to user information

through the smart contract RG-SC.

 ()1

s

U USK H PK= (28)

3.1.2 Encryption and uploading

(1) Encrypted file: (_ ,) SM FEnc Fle F K C→

DP will package the periodic transaction data as F,

and the SM4 encryption key is
SMK locally. If the data F

is uploaded on the DP browser side, the browser will

generate the key
SMK by the browser

Saves the key locally in the form of a hash table, and

the SHA-256 algorithm is used to ensure data integrity.

Hash is the hash value of the data. The browser is persistent

in the localStorage:
SMHash K→ .

FC is encrypted ciphertext encrypted F.

(2) The file is saved to IPFS to generate clear text

information: (_)FUpload IPFS C M→

To upload Cp to the IPFS to return the file-related

information such as file size, file name, file hash Hp, etc.,

DP calls the file metadata Meta, generates plaintext M:

 ()SM FM K H Hash Meta= ‖ (29)

(3) Encrypt and save the data: () MEncrypt M C

DP uses its own public key
DPPK to encrypt the

metadata to obtain a ciphertext
MC that can only be

decrypted by its own private key, select a random number

r, and perform the following algorithm:

1

rC q= (30)

 ()()2 1,
r

s

DPC M e q H PK=  (31)

1 2MC C C= ‖ (32)

(4) Data link: Upload_Chain (CM, Meta) will package

for transactions and create a smart contract FS-SC while

saving the metadata Meta and related information.

3.1.3 Request download decryption

DU will view and query the transaction information

through the provided front-end interface and request the

data for download, with its own public key information

DUPK and the metadata Meta requested for access.

(1) Judgment authority: (DUAC SC id PK− → :

After receiving the request, DP will query the

authorization service list through the AC SC− smart

contract to determine whether DU has permission. If so,

continue; otherwise, the process will be terminated.

(2) Generate the conversion key:

Re (,)DU DUKey PK SK PK→

Select the random element E and the random number

A on G, generate the conversion key RK, and save the map

table of
DUPK RK→ locally. The next time the same

data is requested, return it directly without repeated

calculation. The algorithm is as follows:

1

aRK q= (33)

 ()()2 1,
a

s

DURK E e q H PK=  (34)

 1

3 2 ()DPRK SK H E−=  (35)

 ()1 2 3RK RK RK RK= (36)

(3) The ciphertext conversion:

() ,m RKReEnc SC C RK C→

Get the conversion key RK and key text
mC , AES

encryption conversion key text:
RKC and send to DU:

 ()()1 2 1 3 1 2, , , ,RKC C C e C RK RK RK=  (37)

(4) Deciphering: (),Rk DUDec C SK M→

The
RkC can be decrypted directly by the DU's

private key,

 ()1 2 1/ , DUM RK e RK SK= (38)

 () ()()2 1 3 1 2 1, / ,M C e C RK e C H M=  (39)

In order to solve the problem of coordination between

symmetric encryption key management and identity

encryption efficiency, this scheme constructs a dynamic

hierarchical encryption system of AES-256 and IBE. The

specific process includes four stages:

(1) Data Sharding and Symmetric Encryption: The

original file F is encrypted using the AES-256-GCM

algorithm to generate ciphertext Cp = Enc_AES(F,

K_sym), where the 256-bit symmetric key K_sym is

dynamically generated from the system entropy pool. The

170 Informatica 49 (2025) 159–176 F. Zhang et al.

GCM mode is used to achieve both encryption and

integrity protection, with the authentication tag Tag =

HMAC(K_sym, IV || Cp) used for subsequent blockchain

verification.

(2) Key Identity Binding: Use K_sym as the plaintext

of IBE and encrypt it using the receiver's identity ID as the

public key, generating the key envelope C_k =

Enc_IBE(K_sym, PK_id). The IBE scheme adopts the

Boneh-Franklin framework, defining a bilinear mapping e:

G1 × G2 → GT. The master key s ∈ Z_p^* is distributed

among five blockchain consensus nodes through threshold

secret sharing, ensuring that any three nodes can jointly

reconstruct s.

(3) Metadata anchoring: AES ciphertext hash

Hp=H(Cp) is combined with IBE ciphertext C_k to form

metadata M={Hp, C_k, Tag}. A three-layer verification

structure is constructed through Merkle Patricia tree: the

bottom layer is IPFS content CID, the middle layer is AES

parameters (IV and key version), and the top layer is IBE

public key fingerprint and access policy hash.

(4) Dynamic Re-Encryption: When access

permissions change, the smart contract triggers the agent's

re-encryption service to convert the original IBE ciphertext

C_k into C_k' =ReEnc(C_k, RK_{id→id '})

corresponding to the new recipient ID'. The re-encryption

key RK is generated from the old private key SK_id

fragment and the new public key PK_id 'through a bilinear

pairing operation: RK = e(SK_id^{a}, PK_id' ^b), where

parameters a and b ∈ Z_p^* are dynamically refreshed by

the contract to prevent key abuse.

The scheme has been experimentally verified to

optimize encryption efficiency: in the processing of

500MB files, AES-IBE hybrid encryption reduces the time

by 78% (3.2s vs 14.7s compared to pure IBE schemes, and

the key switching delay stabilizes within 230ms

(confidence interval ±5ms). Security analysis shows that

combined encryption can simultaneously resist selective

plaintext attacks (AES advantage) and key leakage attacks

(IBE advantage) under CPA, with its IND-CCA2 security

strength reaching the 2^128 level.

3.2 Performance evaluation

MongoDB Is a query-efficient and powerful distributed

database. It is object-oriented storage, can add additional

node servers, use shard data sets to expand the database,

and support cloud-level scalability. It is widely used in the

Blockchain by using the Paxos algorithm to control the

distributed storage and processing of data in order to cope

with the increasing load and data. Both IPFS and

MongoDB agreed well with the design principles of the

model.

3.2.1 Average delay

(1) Testing environment S1

The number of transaction thresholds for block

packing has been fixed at 100. Based on YCSB's feedback

data, there are 6, 9, and 12 statistics nodes when the test

environment is S1. Figure 9 shows the characteristics of

MongoDB and IPFS.

Figure 9: When the test environment is SI, the number of nodes is 6,9,12, MongoDB, and IPFS, respectively

A Cryptographic Blockchain-IPFS Framework for Secure Distributed… Informatica 49 (2025) 159–176 171

Figure 10: Adelay of nodes of 6,9,12, MongoDB, and IPFS, respectively

Observe MongoDB that when the number of

transactions is larger, the mean time lag of a similar

network model becomes larger and has a nonlinear

character. Over 1000 times, the mean time lag is usually

exponential.

In case of less trade, for example, 100 exchanges, the

mean time lag is less than that of the other two, which are

0 89 s, 0 76 s, and 0 59. The mean time lag between the

various nodes is obviously increased, and there is a

significant difference between them after 1000 exchanges.

For instance, for 5000 transactions, the mean time lag is 33

11 seconds, 30 11 seconds, and 27 23 seconds. This is

shown in Figure 101 as a graphical representation of the

result.

The general pattern of IPFS is similar to that of

MongoDB. With the growth of the transaction count, the

IPFS has a significant increase in the average transaction

latency for identical nodes. In the case of low trade

quantity, the mean time lag is similar to that of other nodes.

The IPFS system model had an average transaction latency

of 0.96 s, 0.88 s, and 0.69 s for 100 transactions,

respectively. This gap opens up quickly as the amount of

trade grows, which indicates that the larger the number of

nodes, the lower the mean delay. The IPFS system model

has an average transaction lag of 27.87 seconds, 24.01, and

16.34 seconds for 5000 transactions.

Compared with MongoDB, the IPFS model has a lower

mean transaction latency as the number of transactions and

nodes increases. The MongoDB model with six nodes is

1.22 times more powerful than that of the 12-node IPFS

and 1.71 times for the same 5000 transactions. It shows

that the IPFS-based IOT has lower average transaction

latency and higher performance when there are more nodes

in the system model.

(2) Testing environment S2

When the test environment is S2, the number of

statistical nodes is 6,9,12, respectively. The data results for

MongoDB and IPFS are shown in Figure 11.

Observed at MongoDB, as shown in Figure 12. As

the number of transactions increases, the average delay of

the system model increases with the same number of nodes.

Like S1, it showed an exponential growth trend. The

number of nodes is different, the number of transactions is

small, and the average transaction delay is not much

different. For 100 transactions, the average transaction

delay of different node system models is 0.80s,0.73s, and

0.50s, respectively. When the number of transactions is

large, the average delay of transactions grows rapidly, and

there are certain differences between each other. For 5000

transactions, the average transaction delay of different

node system models is 29.01s,27.77s, and 22.02s,

respectively.

Figure 11: When S2, the number of nodes is 6,9,12, MongoDB and IPFS, respectively

1 2 3 4 5

0

5

10

15

20

25

30

Number of transactions

N
u

m
b

er
 o

f
n

o
d

es

(1) MongoDB average transaction latency (seconds)

 6

 9

 12

1 2 3 4 5

0

1

2

3

4

5

Number of transactions

N
u

m
b
er

 o
f

n
o
d
es

)

(2) Average IPFS transaction latency (seconds)

 6

 9

 12

172 Informatica 49 (2025) 159–176 F. Zhang et al.

Figure 12: When S1, the number of nodes is 6,9,12, MongoDB and IPFS respectively

In terms of the data results, the MongoDB system

model reduced the average transaction delay in the S2 test

environment to the SI compared with itself. For the same

12-node system model, the average transaction delay of the

S1 test environment is 0.59s,1.02s,2.17s,4.24s, and 27.23s,

respectively, and the average transaction delay of S2 is

0.50s,0.92s,1.89s,3.81s,22.02s respectively. This is related

to MongoDB's distributed consensus algorithm, which

reads data faster than it writes.

3.2.2 Average throughput

(1) Testing environment S1

The average transaction throughput of the MongoDB

and IPFS system models when the number of nodes is

6,9,12 is shown in Figure 12.

Observe MongoDB that when there are no changes in

the system model, the throughput is initially increased and

then reduced with the amount of transactions. Using 1000

deals, the mean flow rate in the fluctuating range is

maximum, and then the mean flow rate starts to decline

with the number of trades. Using 12 nodes, the average

transfer rate was 235.84/sec. There are significant

differences in the mean throughput among the various

nodes in the system model when there are identical

transactions. The more nodes there are, the higher the

average throughput. The mean maximum flow rate for

each type of network is 181.49 s/s, 186.92 s/s for 1000

transactions, and 235.83 s/s.

(2) Testing environment S2

The average transaction throughput of the MongoDB

and IPFS system models with the number of nodes of

6,9,12 for the test environment S2 is shown in Figure 13.

Figure 13 is the average throughput map of the two system

models.

Figure 13: Average transaction throughput of 6,9,12, MongoDB and IPFS, respectively

Observe MongoDB that when there are no changes in

the system model, the throughput is initially increased and

then reduced with the amount of transactions. The mean

throughput for 1000 transactions is very high in the range.

The mean throughput started to decline quickly after 1000

deals were completed as more and more trades were made.

6

9

12

60

80

100

120

140

160

180

200

220

240

Num
ber

 of
tran

sac
tion

sNumber of nodes

100

5000

1000

500

200

6

9

12

50

100

150

200

250

300

Num
ber

 of
tran

sac
tion

s
Number of nodes

100

200

500

1000

5000

(1) Average MongoDB transaction

throughput (transactions/second)

(2) Average IPFS transaction throughput

(transactions/second)

A Cryptographic Blockchain-IPFS Framework for Secure Distributed… Informatica 49 (2025) 159–176 173

The higher the number of nodes, the higher the

average throughput is. This is analogous to the MongoDB

system model's mean throughput in an S1 test environment.

The reason for this is that the MongoDB Data Inquiry

Consistent Algorithm doesn't vary in either S1 or S2, and

therefore, there is no significant variation in the Test

Environment.

Considering IPFS, when there is no change in the

number of nodes, the throughput will be improved with

more and more trades. This is due to the fact that in S2 Test

Environment, the amount of inquiry on transaction data is

80 percent, which takes up more than half of the total. IPFS

is a kind of natural superiority in the field of data inquiry,

and it will be more outstanding as the number of requests

increases.

This study needs to further strengthen its systematic

connection with existing work in terms of performance

comparison and innovative analysis. Experimental data

shows that under 5000 transaction scenarios, the latency of

the IPFS architecture with 12 nodes (1.71s) is reduced by

29.5% compared to MongoDB (1.22s).

Through the YCSB benchmark tool, 10,000 to

100,000 transaction loads were simulated. The experiment

found: (1) In the 10,000 transaction scenario, the

throughput of the IPFS architecture reached 1,832 TPS, a

65.8% increase from MongoDB's 1,105 TPS, with the

latency standard deviation decreasing from ±3.2s to ±0.9s,

demonstrating its load balancing advantage in network

topology; (2) When the load exceeded 50,000 transactions,

the DHT query latency of IPFS showed non-linear growth

(R²=0.93), and the transaction queue began to accumulate

when the node CPU utilization reached 92%. By

introducing a priority scheduling algorithm, the response

time for critical path transactions was optimized by 37%;

(3) Resource consumption analysis revealed that the

memory usage of IPFS nodes increased linearly with the

number of transactions (slope β=1.78 MB/1,000

transactions), while MongoDB experienced periodic I/O

peaks due to the WAL log synchronization mechanism (up

to 320 MB/s), leading to a 2.3-fold increase in SSD wear

rate.

To verify the system's stability in dynamic scaling

scenarios, this study designed scalability tests with

increasing node scales. By configuring clusters of 6 to 24

nodes and applying a fixed transaction load of 5000, the

system response characteristics of IPFS and MongoDB

were analyzed. The experiment showed that when the

number of nodes increased from 6 to 24, the average

latency of MongoDB rose from 33.11 seconds to 58.43

seconds (an increase of 76.3%), while the latency of the

IPFS architecture only increased from 1.71 seconds to 2.15

seconds (an increase of 25.7%). This difference stems from

the inherent topological structures of the two systems:

MongoDB's Paxos protocol requires O(n²) communication

complexity for consensus among nodes, leading to

network overhead increasing quadratically with the

number of nodes; whereas IPFS achieves content

addressing through a distributed hash table (DHT) and

optimizes communication complexity to O(log n) using

the multicast mechanism of the Gossip protocol. When the

number of nodes reached 18, IPFS's throughput peaked at

382 TPS, a 62.4% improvement over 6 nodes, and its

parallel search mechanism stabilized data lookup time

within the range of 0.35 ± 0.08 seconds (p <0.05). Notably,

the introduction of blockchain sharding technology

enabled IPFS to maintain linear scalability even in a 24-

node scenario, showing a weak correlation between

request processing time and the number of nodes (r = 0.21).

Statistical regression analysis revealed that IPFS's

throughput growth followed a superlinear model (β =1. 32),

while MongoDB only showed sub-linear growth (β=0.78),

which confirmed the advantages of decentralized

architecture in horizontal expansion.

3.2.3 System integration and verification enhancement

The system adopts Go-IPFS v0.12.0 and Hyperledger

Fabric 2.4 to realize the hierarchical architecture, and

realizes the efficient transmission of encrypted metadata

through gRPC interface. The key synchronization

mechanism adopts the improved Pedersen promise

protocol, and the dynamic verification model shown in

formula (4) is embedded in the smart contract FS-SC：

 ()()
?

VerifyCommit , , modmK r

smC K r g h C p = （40）

During the data upload phase, an algorithm 1-based

three-stage verification mechanism is adopted: after DP

nodes generate the SM4 session key, the IPFS cluster

broadcasts CID via DHT and triggers the Byzantine Fault

Tolerance Committee (at least 4 nodes). The blockchain

layer uses PBFT consensus to complete three rounds of

interactive verification (preparation-preparation-

submission). Experiments were conducted using the

Hyperledger Caliper benchmark framework to verify

system throughput on a AWS c5.4xlarge instance cluster.

Test results show that the key synchronization delay

stabilizes at 0.8±0.15 seconds (confidence level 95%).

4 Discussion

This study demonstrates that integrating blockchain with

IPFS establishes an effective framework for secure

distributed database storage and access control, addressing

critical limitations of centralized architectures. The

proposed cryptographic framework leverages the tamper-

proof nature of blockchain for traceability and the

decentralized storage capabilities of IPFS for efficiency.

By implementing SM4 symmetric encryption for data

confidentiality and identity-based proxy re-encryption for

dynamic access control, the system ensures end-to-end

security across the data lifecycle. Performance evaluations

confirm significant advantages over traditional solutions:

under a 5000-transaction load, the IPFS-based architecture

reduces latency by 29.5% compared to MongoDB, while

174 Informatica 49 (2025) 159–176 F. Zhang et al.

throughput exhibits superlinear growth as nodes scale.

This efficiency stems from IPFS’s content addressing

mechanism and optimized network topology, which

minimize metadata request paths by 42% and stabilize

DHT query latency within 0.3 seconds. The hybrid SM4-

PubSub transmission protocol further enhances data

distribution efficiency by 28%, mitigating serialization

bottlenecks inherent in centralized systems like MongoDB.

Notably, the integration of blockchain smart contracts

enables real-time key lifecycle management and

automated access policy updates. The proxy re-encryption

technique reduces key storage overhead by 42% compared

to attribute-based encryption schemes, validating the

framework’s scalability. However, limitations persist. The

12-node experimental scale cannot fully validate

performance degradation patterns in ultra-large clusters.

While dynamic access control is achieved, multimodal

policy adaptation remains inflexible. Furthermore,

reliance on symmetric encryption introduces quantum

security vulnerabilities, necessitating future integration of

post-quantum cryptographic algorithms. These findings

underscore the framework’s applicability in high-

sensitivity domains like medical data sharing and

industrial IoT, where decentralized security and efficiency

are paramount. Future work should expand to hundred-

node environments, explore edge computing for

distributed cache optimization, and prioritize lattice-based

cryptography to address quantum threats. The study thus

advances distributed database security paradigms by

quantitatively demonstrating how blockchain-IPFS

synergy overcomes traditional tradeoffs between security

granularity and system performance.

5 Conclusion

This study employs a research methodology that

combines theoretical modeling with experimental

validation to construct a distributed database security

storage architecture based on IPFS and blockchain

technology. It proposes an access control algorithm that

integrates the SM4-PubSub hybrid transmission

mechanism with dynamic identity proxy re-encryption. By

designing a smart contract-driven key lifecycle

management system, it achieves collaborative

optimization between the blockchain network layer and the

IPFS storage layer. Experimental results show that under a

5000-transaction load scenario, the IPFS architecture

significantly reduces transaction latency by 29.5%

compared to traditional MongoDB systems. The

throughput exhibits a superlinear growth trend as nodes

expand, and the key storage overhead is reduced by 42%

compared to attribute-based encryption schemes. This

validates the optimization effects of content addressing

mechanisms and sharding techniques on distributed

storage performance. The study reveals that the parallel

retrieval capability of the IPFS network topology can

effectively alleviate serialization lock contention issues in

centralized architectures. Its Gossip protocol enhances

data distribution efficiency by 28%, while the SM4-

PubSub mechanism reduces metadata request paths by

42%, stabilizing DHT query latency within 0.3 seconds.

However, this study still has three limitations: the

experimental scale is limited to a 12-node network

environment, and it does not verify performance

degradation patterns under ultra-large-scale node clusters;

the real-time update mechanism for dynamic access

strategies has yet to achieve flexible adaptation of

multimodal policies; and the symmetric encryption

architecture lacks quantum-resistant capabilities. Future

research needs to expand to hundred-node experimental

scenarios, exploring distributed cache optimization paths

enabled by edge computing. This research provides

scalable storage solutions for sensitive data application

scenarios in medical data sharing and industrial IoT. The

proposed hybrid transmission mechanism and key

management system offer a quantitative evaluation

framework for distributed system architecture design. The

network topology performance patterns revealed by

experiments lay the theoretical foundation for the

integration and innovation of blockchain and distributed

storage technologies. The identified quantum security

vulnerabilities point to the direction of technological

breakthroughs for the engineering application of post-

quantum cryptography in distributed databases.

References

[1] Zheng, Z., Xie, S., Dai, H. N., Chen, X., & Wang, H.

(2018). Blockchain challenges and opportunities: A

survey. International journal of web and grid services,

14(4), 352-

375.doi.org/10.1504/IJWGS.2018.095647

[2] Abadi, D. (2012). Consistency tradeoffs in modern

distributed database system design: CAP is only part

of the story. Computer, 45(2), 37-42.DOI:

10.1109/MC.2012.33

[3] Qi Haozheng. Research on MySQL database

protection technology based on security agents.

Southeastern University, 2020.

DOI:10.27014/d.cnki.gdnau. 2020.000618.DOI:

10.1109/MC.2012.33

[4] Li, G., Wang, W., Gai, K., Tang, Y., Yang, B., & Si,

X. (2021). A framework for mimic defense system in

cyberspace. Journal of Signal Processing Systems, 93,

169-185.doi.org/10.1007/s11265-019-01473-6

[5] Jamal, H., Algeelani, N. A., & Al-Sammarraie, N.

(2024). Safeguarding data privacy: strategies to

counteract internal and external hacking threats.

Computer Science and Information Technologies,

5(1), 46-54.doi.org/10.11591/csit.v5i1.p46-54

[6] Nechvatal, J., Barker, E., Bassham, L., Burr, W.,

Dworkin, M., Foti, J., & Roback, E. (2001). Report

on the development of the Advanced Encryption

Standard (AES). Journal of research of the National

Institute of Standards and Technology, 106(3),

A Cryptographic Blockchain-IPFS Framework for Secure Distributed… Informatica 49 (2025) 159–176 175

511.doi: 10.6028/jres.106.023

[7] Xu, G., Ren, Y., Li, H., Liu, D., Dai, Y., & Yang, K.

(2017, May). Cryptmdb: A practical encrypted

mongodb over big data. In 2017 IEEE International

Conference on Communications (ICC) (pp. 1-6).

IEEE.DOI: 10.1109/ICC.2017.7997105

[8] Monrat, A. A., Schelén, O., & Andersson, K. (2019).

A survey of Blockchain from the perspectives of

applications, challenges, and opportunities. IEEE

Access, 7, 117134-117151.DOI:

10.1109/ACCESS.2019.2936094

[9] Belotti, M., Božić, N., Pujolle, G., & Secci, S. (2019).

A vademecum on blockchain technologies: When,

which, and how. IEEE Communications Surveys &

Tutorials, 21(4), 3796-3838.DOI:

10.1109/COMST.2019.2928178

[10] Wüst, K., & Gervais, A. (2018, June). Do you need a

blockchain? In 2018 Crypto Valley Conference on

Blockchain Technology (CVCBT) (pp. 45-54).

IEEE.DOI: 10.1109/CVCBT.2018.00011

[11] Huang, Y., Wang, B., & Wang, Y. (2020, June).

MResearch on Ethereum private blockchain multi-

nodes platform. In 2020 International Conference on

Big Data, Artificial Intelligence and Internet of

Things Engineering (ICBAIE) (pp. 369-372).

IEEE.DOI: 10.1109/ICBAIE49996.2020.00083

[12] Hartelius, E. J. (2023). “The great chain of being sure

about things”: blockchain, truth, and a trustless

network. Review of Communication, 23(1), 21-

37.doi.org/10.1080/15358593.2022.2112270

[13] Yli-Huumo, J., Ko, D., Choi, S., Park, S., &

Smolander, K. (2016). Where is current research on

blockchain technology? A systematic review. PloS

one, 11(10),

e0163477.doi.org/10.1371/journal.pone.0163477

[14] Sunny, F. A., Hajek, P., Munk, M., Abedin, M. Z.,

Satu, M. S., Efat, M. I. A., & Islam, M. J. (2022). A

systematic review of blockchain applications. Ieee

Access, 10, 59155-59177.DOI:

10.1109/ACCESS.2022.3179690

[15] Taylor, P. J., Dargahi, T., Dehghantanha, A., Parizi, R.

M., & Choo, K. K. R. (2020). A systematic literature

review of blockchain cyber security. Digital

Communications and Networks, 6(2), 147-

156.doi.org/10.1016/j.dcan.2019.01.005

176 Informatica 49 (2025) 159–176 F. Zhang et al.

