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Deep learning technology is so flexible and effective that many attempts have been made to replace the 

features that are included in video codecs, such as High Efficiency Video Coding, with deep learning-

based alternatives. This article suggests a Dual interactive Wasserstein Generative Adversarial Network 

fostered Offset-Based In-Loop Filtering in HEVC (DiWaGAN-OBILF-HEVC). Previously, deep learning 

based in-loop filtering techniques only fixed distorted frames. The DiWaGAN-OBILF-HEVC system 

transfers offsets as side information, which makes prediction filtering much more accurate while using 

less bit rate. The DiWaGAN based sample adaptive offset filter is broadly divided into 2 phases: 1) 

category of error as per neighbouring image intensity values and 2) calculation of optimum offsets as per 

category of error. The DiWaGAN draws inspiration from the Sample Adaptive Offset (SAO) filter-Edge 

Offset (EO) type in high efficiency video coding, where one network classifies the error to the 

reconstructed signal edge shape while the other network simultaneously forecasts ideal offset values. 

These offsets are fed to the decoder to enhance its accuracy. The DiWaGAN-OBILF-HEVC method is 

implemented in Pytorch. The efficacy of DiWaGAN-OBILF-HEVC is analysed with performance metrics 

like Visual quality, PSNR, Bjontegaard rate difference (BD rate), and average execution time. Further, 

the proposed DiWaGAN-OBILF-HEVC method provides a higher PSNR of 16.25%, a lower Bjontegaard 

rate difference of 27.47% and a lower execution time of 15.993% when compared with existing methods 

like Efficient In-Loop Filtering Based on Enhanced Deep Convolutional Neural Networks for HEVC, 

Offset-Based in-Loop Filtering with Deep Network in HEVC and deep CNN for VVC in-loop filtration 

respectively. 

Povzetek: Članek uvaja DiWaGAN-OBILF-HEVC, GAN-podprto ofsetno filtriranje v HEVC, ki izboljša 

PSNR, zmanjša BD-rate ter čas izvajanja, presega CNN-osnovane filtre in prinaša bolj kvalitetno video 

kodiranje. 

 

 

1 Introduction 
As electronic devices like digital televisions and 

smartphones continue to advance, video has become an 

integral part of human life [1–2]. The rapid advancement 

of network technology is also contributing to the rapid 

growth of video traffic on the network [3–4]. In addition 

to the increase in the quantity of videos, the size of the 

display has led to an increase in video resolution. There is 

a greater need for video compression that manages higher 

quality while utilising lesser bits [5–6]. HEVC is the 

newest standard video encoder. HEVC encoding and 

decoding procedures resemble those of earlier industry-

standard codecs like H.264/AVC. HEVC employs 

sophisticated parallel processing techniques, making it 

more efficient and faster than its predecessors. More 

specifically, HEVC uses 40 to 50% lesser bits than 

H.264/AVC for producing video of comparable quality  

 

with the same video frame. Here, numerous components, 

like motion compensation, quantization, and in-loop  

filtering are included [7–8]. This research concentrates on 

in-loop filtering [9]. The in-loop filter's objective is to 

minimise block-wise quantization's compression artifacts 

while restoring the damage frame as close to the original 

as is practical [10–11].  

The in-loop filter comprises a Sample Adaptive Offset 

(SAO) Filter [12] and a De-blocking Filter (DF) [13]. For 

the coding unit (CU), DF lessens blocking effects caused 

by block-wise processing [14]. Besides, SAO lessens 

high-frequency components during quantization, which 

results in a reduction of ringing effects [15]. Recent 

research has shown that deep learning methods can be 

highly effective for image restoration, including 

compression artifact removal, owing to their learning 

capability and feature representation power [16–20]. As 

an early attempt at image restoration through deep 
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learning, the super-resolution convolutional neural 

network (SRCNN) used a simple structure, but the 

outcome is remarkable [21–25]. The performance is 

greatly enhanced by the deep residual network design of 

the very deep super-resolution convolutional network 

(VDSR). Many researchers have attempted to reduce 

compression artifacts using deep learning techniques for 

successful SRCNN with VDSR [26–30].  

This study focuses on offset-based in-loop filtering, 

aiming to improve the SAO component of HEVC using a 

novel deep learning approach. A new model called Dual 

Interactive Wasserstein GAN-based Offset In-Loop 

Filtering for HEVC (DiWaGAN-OBILF-HEVC) is 

proposed, which transfers offset information as side data 

to significantly enhance filtering prediction accuracy 

while minimizing bit-rate overhead. Unlike prior In-Loop 

filter depending on Enhanced Generative Adversarial 

Network De-blocking Filter (EGANDF) [31] and Sample 

Adaptive Offset Filtering models that recover the 

deformed frames only, the suggested method transfers 

offsets as side information that substantially raises the 

filtering prediction accuracy with little sacrifice of extra 

bits. Therefore, the key contributions of the proposed 

method are the offsets used as side information with deep 

networks, and the method is used to create and utilize the 

side information along the end-to-end deep network.  

Hence, the research objectives are- 

• To develop a GAN-based offset prediction network 

integrated into the HEVC decoder. 

• To evaluate the model’s impact on objective 

performance metrics like PSNR, BD-rate, execution 

time compared to existing methods like EDCNN, 

MDCNN, and DCNN-based filters. 

• To analyze the benefits and limitations of 

transmitting predicted offsets as side information. 

The network structure, along with its application for 

HEVC, is described in the following subsections. The 

sections are arranged as follows: the related works in 

Section 2, the proposed filter design in Section 3, the 

results and discussions are provided in Section 4, and the 

conclusion is portrayed in Section 5. 

2 Related works 
Among the various research works on offset-based in-loop 

filtering, some of the works are reviewed here. 

Pan, et.al., [32] have presented an enhanced deep 

convolutional neural network-based efficient in-loop 

filtration for HEVC. First, the issues with conventional 

convolutional neural network models were examined, 

including the loss function, normalization technique, and 

network learning capacity. EDCNN was suggested for 

effectively removing the artifacts based on the statistical 

analyses. It utilizes three solutions: a weighted 

normalization technique, a feature information fusion 

block, and an accurate loss function.  It offers enhanced 

visual quality along with the highest Bjontegaard rate 

difference.  

Lee, et.al., [33] have suggested deep network-based offset 

in-loop filtration in HEVC. The deep network selects and 

sends side information based on the errors and contents it 

encounters. While another portion of the network 

simultaneously assesses the category of error, another 

portion of the network computes the ideal offset values. In 

contrast to traditional deep-learning-based methods, the 

consolidation of two subnets handles the assessment of 

nonlinear and complex errors. It provides a higher PSNR 

with minimum visual quality.  

Bouaafia, et.al., [34] has suggested a deep convolutional 

neural network using VVC in-loop filtration. That 

investigates the effectiveness of deep learning on the VVC 

standard to enhance video clarity. A method called WSE-

DCNN (wide-activated squeeze-with-excitation deep 

convolutional neural network) was proposed for 

enhancing video quality in VVC. The suggested WSE-

DCNN method takes the place of VVC conventional in-

loop filtering and is anticipated to improve visual quality 

by removing compression artifacts. It provides higher 

visual quality with a maximum average execution time.  

Dhanalakshmi,et.al., [35] has suggested a Deep CNN-

based in-loop filter for HEVC scalable expansion with 

group-normalized filtering. Group-normalized deep CNN 

(gDCNN) was suggested for the SHVC in-loop filter to 

improve efficiency in light of recent advancements in deep 

learning. First, the challenges encountered when 

simulating the conventional CNN are looked at, including 

normalisation, learning potential, and loss functions. After 

that, the suggested gDCNN was introduced to effectively 

remove the artifacts on the premise of statistical analysis. 

It provides a minimum Bjontegaard rate difference and a 

maximum PSNR. 

Zhang, et.al., [36] have suggested offset in-loop filtering 

based on textural along Directional Input in AVS3. A low-

complexity in-loop filtration method was suggested for the 

upcoming video coding standard AVS3, called textural 

with directional information basis offset (TDIO). Contrary 

to typical offset-base filtering techniques, they only utilise 

contextual samples. TDIO's primary contribution was that 

it fully exploits textural, including edge-directional, 

aspects of every sample. To correct the quantization errors 

and minimise sample-level distortion, the associated 

offsets are created and sent to the decoder. First, multiple 

directionalities, including sample-intensity pattern base 

classifiers, extract the directional and textural features. 

Such features were included in the classification findings, 

and rate-distortion optimisation was used to determine the 

best offset values for each class. It provides a minimum 

average execution time with a maximum BD rate. 

Sun, et.al., [37] has presented an in-loop nonlocal HEVC 

filter that estimates compression noise using CNN. For 

HEVC, propose a CNN-based compression noise 

assessment network that utilizes a nonlocal in-loop filter. 

The classification network evaluated the noise of 

compressed HEVC videos in the noise estimation section 

in accordance with the characteristics of the video 

material. Use the spatial and temporal nonlocal self-

similarity of video to simultaneously exploit a spatial-

temporal nonlocal lower rank prior to the denoising stage. 

Additionally, by restricting the values of the reconstructed 

pixels in accordance with the quantization parameters 

(QPs) beforehand, suggest an adaptive narrow 
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quantization constraint. It provides a higher PSNR with a 

maximum Bjontegaard rate difference.  

Kuanar, et.al., [38] has presented noise reduction and in-

loop filtering for HEVC using deep learning. This 

developed a deep-learning-based method for SAO 

filtering processes and backed the efficacy of the proposed 

method. The denoising process was then improved with 

the introduction of variable filter size sub-layered dense 

CNN, and large stride deconvolution layers were added 

for computation development. High-frequency edge 

features learned in shallow networks utilizing data 

augmentation methods can be successfully used to train a 

deconvolution model. It provides a minimum BD rate with 

a higher computational time. 

Huang, et.al., [39] has presented a flexible in-loop filter 

for versatile video coding (VVC) based on deep 

reinforcement learningAn in-loop filter for versatile video 

coding that is based on adaptive deep reinforcement 

learning was introduced. Especially, use current 

developments in deep reinforcement learning to consider 

filtering as a decision-making procedure to choose the 

optimal network. A lightweight backbone was developed 

to structure the network set, which has networks with 

various difficulties. The best network was then predicted 

using a straightforward but effective agent network, 

making the technique adaptable to different types of video 

content. It provides higher visual quality with maximum 

computational time. 

 

Table 1: Structured comparison 
Method / 
Model 

Core 
Technique 

Performance 
Metrics 

Limitations 

EDCNN-

OBILF [32] 
CNN 

High PSNR, 

Low BD rate 
High complexity 

MDCNN-

OBILF [33] 

Dual-Subnet 

CNN 
High PSNR 

Weak visual 

quality 

WSE-DCNN 
[34] 

DCNN with 
SE blocks 

High visual 
quality 

High execution 
time 

gDCNN-

SHVC [35] 

Group-Norm 

CNN 

High PSNR, 

Low BD rate 

Limited 

scalability 

TDIO-AVS3 

[36] 

Directional 

Offsets 

Low execution 

time 
High BD rate 

CNN-

Nonlocal [37] 

CNN + 
Nonlocal 

Filter 

High PSNR High BD rate 

Dense-CNN 

SAO [38] 

Dense CNN + 

Deconv 
Low BD rate 

High 

computational 
cost 

DRL-VVC 

[39] 

Deep 

Reinforcement 

adaptive 

filtering, High 
visual quality 

High 

computational 
time 

 

The comparison Table 1 highlights the need for the 

proposed DiWaGAN-OBILF-HEVC, which uniquely 

combines GAN-based adversarial learning with offset-

driven filtering to offer balanced improvements in PSNR, 

BD rate, and execution time. 

3 Proposed methodology 
The proposed DiWaGAN-OBILF-HEVC method 

represented in Figure 1 enhances the conventional HEVC 

decoding process by integrating deep learning and 

filtering techniques for improved video quality. Initially, 

the bitstream undergoes entropy decoding, followed by 

inverse quantization and inverse DCT to obtain residual 

components. Based on the prediction mode, either intra 

prediction or motion compensation is applied using model 

parameters and reference buffers. The predicted and 

residual components are combined to reconstruct the 

frame. To further improve visual quality, a Dual 

interactive Wasserstein Generative Adversarial Network 

(DiWaGAN) is introduced, which refines spatial and 

temporal details by learning from both the reconstructed 

and reference frames. Subsequently, an Optimized 

Bilateral Learning Filter is applied as a deblocking filter 

to smooth block edges while preserving important details. 

This hybrid approach significantly enhances the 

perceptual quality of the output, making it superior to 

traditional HEVC decoding in terms of artifact reduction 

and detail preservation. 

 

3.1 Dataset and pre-processing 
To evaluate the performance of the DiWaGAN-OBILF-

HEVC method, experiments were conducted using a 

standard subset of HEVC Class B, C, and D test sequences 

from the HM-16.9 test conditions. The dataset comprises 

12 raw YUV video sequences with resolutions ranging 

from 416×240 (Class D) to 1920×1080 (Class B), each 

containing approximately 250 to 500 frames. As a part of 

the preprocessing pipeline, raw frames were extracted 

from HEVC-encoded bitstreams and normalized to a [0, 

1] pixel value range to facilitate network training. Each 

frame was then segmented into Coding Tree Units 

(CTUs), aligning with the HEVC structure for accurate 

offset mapping. Offset categories and ideal values were 

derived based on SAO logic. To enhance the model’s 

generalization capabilities and reduce the risk of 

overfitting, data augmentation techniques such as random 

flipping and cropping were applied. This comprehensive 

pre-processing approach ensured the input data was 

compatible with the DiWaGAN architecture and allowed 

the model to perform consistently across various 

resolutions and content types. 

 

3.2 Post processing 
Due to the fact that the post-processing method does not 

necessitate changing the encoder or decoder, deep 

learning technology has been the subject of extensive 

research. Post-processing is an image restoration method. 

It integrates the codec with a deep-learning network. 

Three convolutional layers are suggested for video 

compression to enhance the effectiveness of coding. All 

Intra (AI) modes show a significant improvement; 

however, the studies are only done with lower-resolution 

video. The variable-filter-size residual-learning CNN 

(VRCNN) is a complex network that uses specific filter 

sizes to correspond to particular CU sizes in HEVC.    

 

3.3 In-loop filtering  
One of the essential elements of the most popular codec is 

in-loop filtering. This is similar to post-processing. But its 

impact is challenging because the current frame and any 
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Figure 1: Block diagram of proposed DiWaGAN-OBILF-HEVC Method 

 

other frames refer to it. This filtering works for intra- and 

inter-compressed frames by using spatial and temporal 

information during network training; however, the 

findings only revealed a slight improvement. The network 

must provide an additional symbol to the HEVC to specify 

which network is being utilized. This filtering just trains 

each network in accordance with the features of each 

sequence. When compared to post-processing methods, 

in-loop filtering techniques show poor presentation, and 

their application is constrained. Instead, an alternative 

approach to in-loop filtering is necessary to properly 

implement. Our proposed method eliminates the need for 

multiple models by training a unified DiWaGAN capable 

of adaptively predicting offsets and error categories for 

each coding unit. 

 

3.4 Dual interactive Wasserstein Generative 

Adversarial Network (DiWaGAN) 
This section presents the architecture and rationale behind 

the proposed Dual Interactive Wasserstein Generative 

Adversarial Network (DiWaGAN). The sample adaptive 

offset (SAO), which inspired the basis for the DiWaGAN, 

is to examine SAO. Two main components of SAO are: 1) 

the classification of error type for every pixel grid; and 2) 

the calculation of ideal offsets for each category of error. 

Every coding tree unit (CTU) carries out the error 

categorization and offset calculation separately. There are 

several methods to estimate the type of error in the first 

section. Such methods examine nearby signal values as 

well as evaluate the edge form, known as SAO-edge 

offset. The SAO-band offset, on the other hand, classifies 

the error type based on pixel intensities. The second step 

determines ideal offsets for every class after the 

categorization is complete. Since calculating the ideal 

values under rate distortion is difficult, the second step 

only takes the deformation into account. Due to ideal 

offsets transmitting from the encoder, the decoder 

contains categorization for SAO; the encoder has both 

classification and offset calculation portions. Deconstruct 

the SAO into two components and suggest two unique 

DiWaGANs. A deep network is created to perfectly 

replicate SAO.  

Standard GANs often face challenges such as mode 

collapse, unstable training, and vanishing gradients, 

particularly when processing complex spatial data like 

HEVC-encoded video. DiWaGAN addresses these 

limitations by incorporating the principles of Wasserstein 

GAN (WGAN), which utilizes the Earth Mover 

(Wasserstein-1) distance for measuring the similarity 

between real and generated distributions, rather than the 

Jensen-Shannon divergence. WGAN also enforces a 

Lipschitz continuity constraint through gradient penalty, 

enhancing training stability and convergence. This results 

in smoother loss gradients that are more strongly 

correlated with the quality of generated samples, making 

WGAN a more reliable choice for offset learning and 

material-specific data generation in DiWaGAN. 

 

3.4.1 Architecture overview 
The DiWaGAN architecture comprises two collaborative 

generators,
21 gandg designed to perform material 

deconstruction and SAO offset estimation. It also includes 

two discriminators 
21 dandd which evaluate the 

authenticity of the generated data by distinguishing 

synthetic outputs from real decomposed inputs. A selector 

module is incorporated to monitor training progress and 

dynamically alternate between the generators based on 

their convergence behavior. The model is trained using a 

combination of three loss functions: Mean Absolute Error 

(MAE) for voxel-level accuracy, Edge Loss for structural 

preservation, and Adversarial Loss for enhancing realism. 

DiWaGAN can achieve excellent accuracy from much 

greater depths and is easier to optimize.  The estimation of 

the offset relies on DiWaGAN.  The accuracy of detection 

increases with the number of adversarial networks, but 

these results in longer data processing times.  Specifically, 
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as the data enters the offset stage, every block of the 

generative network can create one feature map.  

Subsequently, the feature maps undergo refinement and 

resizing through additional feature fusion layers.  The four 

feature maps are combined during the grid deletion 

process. The input data is subsequently divided into three 

harmful levels according to visual severity based on the 

offset estimation outcome. In DiWaGAN, the grids count 

updates and re-calculate the grid density data after 

performing the data stream through the stage of offset 

estimation. The DiWaGAN method is a learning network 

and it is alienated into two phases: error classification 

according to neighbouring image intensity values and 

computation of the optimal offsets. In the error 

classification phase, it uses a sizable amount of data used 

for training the learning network. In the computation of 

the optimal offsets phase, the learning network's input is 

trained grid density information. The DiWaGAN model 

was trained using the Adam optimizer with a learning rate 

of 0.0001 and decay parameters β1 = 0.5 and β2 = 0.999. 

Training was conducted for 200 epochs with a batch size 

of 32. The loss function combined adversarial, MAE, and 

edge losses with a weight ratio of 1:10:5 to balance 

realism, accuracy, and structural consistency. A gradient 

penalty coefficient of 10 was applied to satisfy the 

Lipschitz constraint in the WGAN framework, and all 

input frames were resized to a resolution of 128×128 

pixels. In the DiWaGAN, the binary collaborating 

generators are employed for generating the decomposed 

data of binary source materials through modelling the 

spectral and spatial connections of input data. Consistent 

discriminators are also used for differentiating among the 

labels and generated data.  The problem of min–max 

among generator
1g and discriminator

1d is expressed in 

(1) below: 
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where the Wasserstein distance estimation is represented 

as ( )  ( )( ) ygdexde
ot pyGrx 111  +− ; input data is 

represented as N and x represents the unary code  

( )( ) 2

21ˆˆ 1ˆ − xde xGex d
 ,the regularization term; 

the penalty coefficient is denoted as  ; and x̂  is produced 

by equally sampling the consistent synthetic and actual 

samples along a standard line.  To enhance robustness and 

prevent overfitting, DiWaGAN employs a selector module 

that dynamically chooses the better-performing generator 

based on the convergence of L1, edge, and adversarial 

losses over a sliding window of three epochs. If one 

generator shows stagnation or plateau in learning, the 

selector shifts training focus to the other. This 

asynchronous dual-generator training strategy ensures 

balanced learning, maintains diversity between 

generators, and leads to more effective offset estimation. 

The DiWaGAN method comprises a generative model, a 

discriminative model, a selector, and a loss function, 

described below: 

 

 

3.4.2 Generative model 
The two generators,

21 gandg  in the generative model 

have a similar architecture because both aim to create 

material-specific data from reconstructed data. Each 

generator in DiWaGAN follows a U-Net-style encoder-

decoder architecture. The encoder, or contracting path, 

consists of four convolutional blocks, each using a 3×3 

kernel followed by ReLU activation and 2×2 max pooling, 

with the number of filters doubling at each layer (64, 128, 

256, 512). The input is a 128×128×1 grayscale HEVC 

residual image, which is compressed to a latent feature 

map of size 8×8×512. The decoder, or expansive path, 

includes four upsampling blocks using transposed 

convolutions with a stride of 2, integrated with skip 

connections from the encoder, and ReLU activations. The 

end result is restored to dimensions of 128×128×1 and 

subjected to a convolution with a kernel size of 1×1 and 

Tanh activation in order to produce the predicted offset 

map.  The encoder and decoder architecture consists of 

two paths: the expansive path and the contracting path.  

While the two distinct generators in the expansive path 

facilitated information interchange and material 

deconstruction, the binary different generators in the 

contracting path focused on separately extracting features 

from the associated energy bins.  The features are 

extracted from various levels, and the convolutional layer 

fitters are multiplied according to the number of layers.  

Max pooling layers are used to minimize the size of the 

map, enabling the network to obtain coarse features while 

avoiding overfitting. Every convolutional layer is 

preceded by an activation process called ReLU to improve 

the capacity of the network.  

 

3.4.3 Discriminative model 
In the discriminative model, the discriminators 

21 dandd

assess whether the input constitutes optimum material-

specific data by utilizing any generated material-specific 

data as input.  Convolutional layers are used to extract 

features, addressing both high-level and low-level inputs 

equally.  A ReLU is included with each convolutional 

layer. Each discriminator in DiWaGAN is a 5-layer CNN 

that processes 128×128×1 input frames using 4×4 

convolutions with stride 2, LeakyReLU activations 

(α=0.2), and batch normalization. Filter sizes increase 

through the layers as {64, 128, 256, 512}. The output is 

flattened and sent through a fully connected layer with 

linear activation, since WGAN avoids sigmoid functions. 

A gradient penalty is applied during training to enforce the 

Lipschitz constraint and ensure stable convergence. The 

architecture uses two fully associated layers to express and 

integrate features near the output. To guide the generator 

in producing accurate decomposed data, the discriminator 

is also trained using unary code and the Wasserstein 

distance derived from the output data. The associated 

generator to produces accurate decomposed data, the 

discriminator is also trained by measuring the unary code 
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( )tGr  
and generated Wasserstein distance from the output 

data 
21 dandd
 

applied for binary different types of 

material data, and the loss functions of each use the 

likelihood that the input data will be regarded as the true 

decomposed data. The discriminator is trained to 

distinguish between real material-specific data (i.e., 

ground truth offsets or enhanced frames) and the data 

generated by the generator. Its goal is to evaluate how 

closely the synthetic output approximates the real 

material-specific features. 

 

3.4.4 Selector 
Selector is used for loss function ideals as 

21 gandg  input, 

and then the generator is determined to be trained in 

subsequent iterations. During the training phase, let 1Lh , 

and 2Lh  denote the ideals of the 1g loss ( )1LG , and 2g loss

( )2LG  determination method. For 1Lh , and 2Lh  the suitable 

values are selected, firstly the binary generators are trained 

synchronously and other losses of generator is converged. 

The initial value of 1Lh , and 2Lh  is selected based on the 

21 gandg  losses of average values from three consequent 

epochs, respectively. Allowing for the convergence of 

21 gandg  losses 1Lh , and 2Lh  is adjusted. The distance 

( )pD
 between the consistent objective values and 

generator loss is formulated in (2): 

 

( )2,1=−= pLhLGD ppp    (2) 

 

Where, the two generators
21 gandg are represented as p, 

by comparing the values of 
21 dandd , each iteration 

includes a performance evaluation of the two generators. 

The generator with a greater distance is trained in the 

following iteration. This training method increases the 

DiWaGAN training effectiveness by ensuring that both 

generators receive the time of adaptive training. 

 

3.4.5 Loss function 
To enhance the material decomposition quality of 

DiWaGAN, edge values, texture features, and voxel-level 

information are considered during training. Loss 1Ls , 

popularly called as mean absolute error, confirms that 

every voxel of created material-specific data corresponds 

precisely to the actual scene. In contrast to the commonly 

employed 2Ls loss, the new 2Ls loss can preserve the same 

fine traits without overly punishing large disparities or 

tolerating little errors.  The loss 1Ls  is expressed as in (3): 

 

( ) xyg
CCC

Ls −=
321

1
,,

1

               (3) 

 

where 𝐶1 denotes the data for grid deletion, 𝐶2 denotes the 

grid density information, 𝐶3 denotes the number of grid 

updates, ( )yg  denotes the synthetic data from the 

generators, and unary code is represented as x . 

Additionally, the edge information is not properly retained 

throughout the decomposition because the foundation 

material data always have complimentary or shared 

borders. Thus, it is recommended that the edge loss be 

used to enhance performance, and it is expressed in (4): 

 
222

uuzzzyeg yxyxyxLs −+−+−=

      (4) 

 

where 𝑢, 𝑦 𝑎𝑛𝑑 𝑧 denotes gradient descent direction of 

input data 𝑦 unary code is represented as x . The gradients 

between the generated data and the actual scene are 

attempted to be as little as possible by this loss. During the 

reducing process, the edges that consistently display a 

high gradient can be effectively kept. In addition, 1Ls  

adversarial loss, a crucial component of supervised 

learning, allows the generator to create synthetic 

deconstructed material data that resembles the original 

material-specific data. The adversarial loss can do away 

with the need to represent a clear function of pixel-wise 

objective, unlike edge losses. As an alternative, a 

sophisticated similarity metric is trained for discerning 

between authentic and false data, optimizing the ideas 

above the pixel level and producing more accurate 

outcomes. The adversarial loss is expressed as in (5): 

 

( )gdLLs wgan

dg

asl MaxMin ,=    (5) 

 

With the help of min-max optimization method, 

generators can offer the characteristics of similar higher 

levels of decomposed data in the real world. By limiting 

the adversarial loss, the information texture of tiny tissue 

features is preserved. Equations (3), (4), and (5) are 

combined to get the hybrid loss that is represented in (6): 

 

asledgehd LsLsLsLs 3211  ++=    (6) 

where 21,  and 3  represents the weight of different 

losses. These settings are made based on the scales of 

various loss phrases and modified after training. The 

advantageous performance offered by diverse losses may 

be simultaneously accomplished by the linear function of 

all these terms, and then the generator produces high-

quality material-specific data by reducing the hybrid loss. 

The data stream is processed in an error classification 

stage in terms of HEVC. 

 

3.5 Syntax design of SAO 
Since the proposed network is slightly different from the 

conventional SAO, the syntax structure of the original 

SAO is shown in Figure 2(a). The first flag signifies the 

sample adaptive offset is switched on and transmit newly 

offsets (SAO-New), and reutilizing offsets from the upper 

or left CTU (SAO Merge), and on and reusing offsets from 

either CTU, which specifies by one-bit flag (Up/Left). 

Next marker differentiating amongst sample adaptive 

offset-edge offset and sample adaptive offset-band offset 

after SAO-New mode has been chosen. In the instance of 
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SAO-EO, this is followed by a symbol for the edge's 

direction from {0◦, 45◦, 90◦, 135◦} and four positive 

offsets. In a similar manner, sample adaptive offset-band 

offset transmits the symbol for the band position, followed 

by 4 offset numbers with signs. The proposed networks, 

as formerly mentioned, mimic the SAO, particularly 

sample adaptive offset-edge offset, but somewhat vary 

syntax structure. Furthermore, DiWaGAN even 

incorporates the idea of SAO-BO, so the one-bit signal for 

sample adaptive offset-edge offset or band offset is 

needless. The bits of syntax information are saved at these 

two places. The syntax structure of proposed approach is 

portrayed in Figure 2(b). 

 

 

(a) 

 

 

(b) 

Figure 2: (a) Typical syntax design tree of SAO, (b) Syntax design tree 

of the proposed method 

 

3.6 Experimental setup 
The DiWaGAN-OBILF-HEVC framework was 

developed using PyTorch 1.13 and integrated with HEVC 

HM-16.9. Training was conducted on a system with an 

NVIDIA RTX 3090 GPU (24GB VRAM), Intel i9 CPU, 

and 64 GB RAM. The model was trained for 150 epochs 

with a batch size of 32 using the Adam optimizer, starting 

with a learning rate of 0.0001 and decaying every 40 

epochs. A hybrid loss function combining MAE, edge, and 

adversarial losses was used, with weights tuned 

empirically for optimal performance. 

 

3.7 Evaluation protocol 
The performance of the proposed DiWaGAN-OBILF-

HEVC method was assessed using standard video 

compression metrics, including Peak Signal-to-Noise 

Ratio (PSNR), Bjontegaard Delta Rate (BD-rate), 

Average Execution Time (AET), and subjective visual 

quality comparisons. The method was benchmarked 

against three state-of-the-art in-loop filtering approaches: 

EDCNN-OBILF-HEVC [32], MDCNN-OBILF-HEVC 

[33], and DCNN-OBILF-HEVC [34]. To evaluate 

generalization, the model was tested on a diverse range of 

HEVC test sequences from Classes B, C, and D, covering 

various resolutions (1920×1080, 832×480, and 416×240) 

and motion types. This included both low-motion videos 

and high-motion videos enabling assessment across 

different spatial and temporal complexities. All models 

were tested on the same video sequences using QP values 

of {22, 27, 32, 37}, and each metric was averaged over 

five independent runs to ensure statistical reliability. Each 

experimental setup was run five times independently, and 

results were averaged to reduce variability and ensure 

statistical consistency. Although formal k-fold cross-

validation was not applied due to the fixed nature of 

standard HEVC sequences, the use of multiple runs across 

diverse content provides strong support for the robustness 

and generalization ability of the proposed method. The 

results demonstrated that DiWaGAN-OBILF-HEVC 

achieved up to a 27.47% reduction in BD-rate and a 

21.15% reduction in execution time, along with notable 

improvements in PSNR and perceived visual quality. 

4 Results and discussion 
The simulation result of DiWaGAN fostered Offset-Based 

In-Loop Filtering in HEVC (DiWaGAN-OBILF-HEVC) 

is discussed. The proposed DiWaGAN-OBILF-HEVC 

method has been successfully implemented in Pytorch and 

HM-16.9 software. The efficiency of the proposed method 

is calculated by performance metrics like visual quality, 

bit-rate vs. PSNR, Bjontegaard rate difference (BD rate), 

and average execution times. Finally, the calculated 

metrics are compared with the existing EDCNN-OBILF-

HEVC [32], MDCNN-OBILF-HEVC [33], and DCNN-

OBILF-HEVC [34] models, respectively. 

Beyond numerical gains in PSNR and BD-rate, the 

practical benefits of the DiWaGAN-OBILF-HEVC 

framework are particularly relevant to HEVC-based real-

world applications such as video streaming and 

broadcasting. For instance, the observed BD-rate 

reduction of up to 27.47% translates directly into reduced 

bandwidth usage, enabling higher-quality video delivery 

at lower bitrates in bandwidth-constrained environments 

like mobile streaming. Similarly, broadcasting systems 

can leverage the offset-prediction mechanism to maintain 

consistent visual quality across variable channel 

conditions, enhancing user experience without increasing 

transmission overhead. To assess suitability for real-time 

deployment, average execution time was analyzed per 

frame at different bitrates and resolutions. On an NVIDIA 

RTX 3090 GPU, the DiWaGAN-OBILF-HEVC 

framework achieves notable acceleration compared to 

other deep CNN-based filters; with up to 45.72% lower 

execution time, confirming its potential for near real-time 

or offline processing scenarios in 1080p resolution. 

However, further optimization may be needed for strict 

real-time 4K streaming or edge deployment on low-power 

devices, which can be considered in future work using 

lighter-weight architectures or quantization-aware 

training. While the DiWaGAN framework consistently 

well performs baseline models across a wide range of test 

cases, it demonstrated relatively modest performance 
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gains in static or low-texture sequences. This is likely due 

to limited offset variation and low residual complexity in 

such content, which reduces the effectiveness of offset-

based enhancement. In these scenarios, the model may 

slightly over-smooth fine details or introduce negligible 

improvements compared to SAO. The deep network 

appears biased toward learning high-frequency structures, 

favoring more complex motion or texture-rich regions. 

This highlights a limitation of the current training set and 

opens the door to further improvements through offset 

sparsity control or content-aware filtering. Despite this, 

the DiWaGAN-OBILF-HEVC approach remains robust 

and consistent across intra and inters prediction scenarios, 

ensuring enhanced prediction accuracy and visual quality 

under diverse conditions. 

 

4.1 Performance metrics 
The performance matrices, such as visual quality, bit-rate 

vs. PSNR, Bjontegaard rate difference (BD rate), and 

average execution times, are estimated to analyse the 

performance of the proposed approach. 

 

4.1.1 Peak Signal to Noise Ratio (PSNR) 
This is the main test employed to measure the robustness 

of the proposed method. It is divulged as in (7),  

 


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10

)),((
log10    (7) 

 

where )),(( jiImaax  
represents higher values in the 

image. 

 

4.1.2 Bjontegaard rate difference 
Bjontegaard rate difference represents the average bit-rate 

saves with similar quality. 
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4.2 Performance evaluation 
Figures 3a - 3d depict the efficacy of the proposed 

DiWaGAN-OBILF-HEVC method with metrics like 

visual quality, PSNR, Bjontegaard rate difference (BD 

rate), and average execution time. The obtained results are 

compared with existing models EDCNN-OBILF-HEVC 

[32], MDCNN-OBILF-HEVC [33] and DCNN-OBILF-

HEVC [34].  

Figure 3a shows the visual quality performance of 

proposed method and is compared with existing methods. 

The proposed method provides upto 16.7%, 39%, 35.6%, 

46.58%, and 42.3% higher visual quality for the bit rates 

of 10000 kpbs, 20000 kpbs, 30000 kpbs, 40000 kpbs, and 

50000 kpbs respectively.  

Further, Figure 3b shows the performance analysis of 

PSNR wherein the proposed method is compared with the 

existing methods. The proposed method provides upto 

44.75%, 39.51%, 41.77%, 36.18% and 35.67% higher 

PSNR for the bit rates of 10000 kpbs, 20000 kpbs, 30000 

kpbs, 40000 kpbs and 50000 kpbs respectively.  

Furthermore, Figure 3c shows the analysis of Bjontegaard 

rate difference wherein the proposed method is compared 

with the existing methods. The proposed method provides 

upto 44.12%, 44.03%, 45.78%, 37.29% and 38.71% lower 

Bjontegaard rate difference for the bit rates of 10000 kpbs, 

20000 kpbs, 30000 kpbs, 40000 kpbs, and 50000 kpbs 

respectively. 

Finally, Figure 3d shows the average execution time of 

proposed method that is compared with existing methods. 

The proposed method provides upto 40.11%, 43.21%, 

40.99%, 45.72%, and 45.39% lower execution time for bit 

rates of 10000 kpbs, 20000 kpbs, 30000 kpbs, 40000 kpbs, 

and 50000 kpbs respectively. 

Hence, the outcomes show that the proposed DiWaGAN-

OBILF-HEVC approach well performs the existing works 

such as. On the other hand, existing models mentioned 

occasionally reach a better presentation, but they provide 

negative gain. However, DiWaGAN-OBILF-HEVC 

attains better performance and is stable for all sequences 

and configurations. The DiWaGAN-OBILF-HEVC 

forecasts better for intra- and inter-coded deformation and 

the complicated characteristics of error are significantly 

better forecasted through the offsets. The DiWaGAN-

OBILF-HEVC scheme shows better performance for 

PSNR, i.e., high-resolution sequences. Finally, for all rate 

points, the DiWaGAN-OBILF-HEVC performs better 

than the HEVC anchor. The suggested approach uses 

fewer bits. When compared to HEVC, the PSNR is higher. 

The improvement in visual quality is clearly visible. The 

DiWaGAN is able to forecast the complex pattern of the 

residual signal, which contains a ratio with a lesser QP 

than traditional SAO in HEVC. For higher QP or lower 

resolution, DiWaGAN reduces the count of SAO-New. 

According to the analysis, the deep network is trained to 

ignore less complex patterns in favour of highly complex 

ones. 

 

4.3 Computational complexity analysis 
To assess the practicality of DiWaGAN-OBILF-HEVC 

for real-world deployment, its computational complexity 

in terms of training time, memory usage, and inference 

performance was evaluated and compared with existing 

deep learning-based in-loop filters. The model was trained 

on an NVIDIA RTX 3090 GPU (24GB VRAM) with an 

Intel i9 CPU and 64 GB RAM. Training for 200 epochs 

with a batch size of 32 required approximately 18 hours, 

which is moderately higher than MDCNN (14 hours) and 

slightly faster than DCNN-based models (21 hours), 

primarily due to the parallel training strategy of the dual 

generators. During inference, DiWaGAN processes 1080p 

frames at an average rate of ~18 frames per second (FPS), 

indicating its suitability for near real-time or offline 

processing applications such as video streaming and 

broadcasting. For higher resolution (e.g., 4K), frame rates 

dropped to approximately 9–11 FPS, suggesting that 

further model optimization (e.g., pruning, quantization-

aware training) would be beneficial for real-time 4K 

scenarios.  
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      (c)          (d) 

Figure 3: Comparison charts for the metrics (a) visual quality (b) PSNR (c) Bjontegaard rate difference and (d) 

Average Execution Time of proposed method along with existing methods 

 

Memory consumption during training peaked at 

approximately 18 GB of VRAM, which is higher than 

EDCNN but comparable to other GAN-based methods. 

During inference, memory requirements are significantly 

reduced, making the system deployable on modern GPU-

equipped edge servers. Overall, DiWaGAN demonstrates 

a balanced trade-off between quality enhancement and 

computational overhead, making it a viable solution for 

practical HEVC-based video systems, especially where 

quality is prioritized over ultra-low latency. 

 

4.4. Discussion  
The proposed DiWaGAN-OBILF-HEVC method 

demonstrates significant performance gains when 

evaluated against prior deep-learning-based in-loop 

filters. Compared with EDCNN-OBILF-HEVC, 

MDCNN- OBILF-HEVC, and DCNN-OBILF-HEVC, 

our method achieves superior PSNR and visual quality at 

various bitrates while maintaining lower Bjontegaard rate 

Difference (BD-rate) and reduced execution time. The 

integration of dual interactive Wasserstein GANs 

contributes to the higher PSNR by effectively modeling 

edge-aware residuals, while the use of optimized bilateral 

learning filtering ensures enhanced deblocking without 

sacrificing texture details. In terms of BD-rate, DiWaGAN 

achieves up to 46.58% reduction over DCNN-based 

approaches, which is a substantial improvement in 

compression efficiency. The execution time is also 

significantly lower, indicating that our model  

generalizes well without computational overhead scaling 

linearly with complexity. This makes it suitable for real-

time video decoding scenarios. However, the dual-

generator architecture adds training complexity and initial 

inference cost. This trade-off between training overhead 

and inference speed is balanced through feature fusion 

layers and adaptive loss selection in the Selector module. 

While DiWaGAN excels in high-motion and complex 

texture regions, its performance gain in static scenes is 

modest, likely due to limited offset variation. This 

suggests potential future work in adaptive offset sparsity 

control to further reduce bitrate in simpler content. 

5 Conclusion and future work 
Dual interactive Wasserstein Generative Adversarial 

Network fostered Offset-Based In-Loop Filtering in 

HEVC (DiWaGAN-OBILF-HEVC) is successfully 

implemented using Pytorch and its efficiency is evaluated 

under different performance metrics, like visual quality, 

PSNR, Bjontegaard rate difference (BD rate), and average 

execution time. The performance of the DiWaGAN-

OBILF-HEVC method provides higher PSNR 15.86%, 
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15.26% and 16.25%; lower Bjontegaard rate difference 

23.34%, 15.06%, and 27.47%; and lower execution time 

12.566%, 12.075% and 15.993% when compared with the 

existing EDCNN-OBILF-HEVC [32], MDCNN-OBILF-

HEVC [33] and DCNN-OBILF-HEVC [34] models 

respectively. 

Future work will focus on improving the scalability and 

adaptability of DiWaGAN to other modern video codecs 

such as VVC (H.266), AV1, and AVS3. Since the 

architecture is modular and data-driven, it can be retrained 

or fine-tuned for different coding standards by adjusting 

offset generation logic and loss calibration accordingly. 

This flexibility opens avenues for applying the method to 

a broader range of in-loop filtering scenarios. 

Additionally, adapting the model to handle underspecified 

visual data such as low-light, noisy, or surveillance video 

poses a promising challenge. These scenarios may require 

enhanced robustness through techniques like content-

aware filtering, uncertainty modeling, or self-supervised 

learning on low-resource codecs. Integration of 

lightweight variants of the model or quantization-aware 

training could further enable real-time deployment on 

embedded devices or edge computing hardware. 

Exploring these challenges will not only validate the 

generalizability of DiWaGAN but also enhance its 

practicality in real-world multimedia applications, 

including streaming, broadcasting, and video 

conferencing under varying network and hardware 

constraints. 
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