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Accurate crop yield predictions are vital for sustainable agriculture and resource efficiency, benefiting 

farmers, agronomists, traders, and policymakers by informing decisions on planting, harvesting, 

management, trading strategies, and policy. This study explores advanced machine learning methods RF, 

SVR, and XGBoost for forecasting hickory yields, enhanced by hyperparameter optimization using AEO 

and ArchOA. Developing and evaluating four predictive schemes, the study employs an 80% training and 

20% testing data split for robustness and accuracy. The dataset consists of 52 samples, with variables 

such as temperature, rainfall, and other related factors. Initial RF, SVR, and XGBoost evaluations are 

followed by hybrid schemes integrating their strengths for improved accuracy, further refined through 

systematic hyperparameter optimization. Evaluation metrics include RMSE (Root Mean Squared Error) 

and R² (Coefficient of Determination). In the training phase, XGBoost-AEO had the best performance 

with an RMSE value of 69.61354 and R² of 0.999619. In the testing phase, the XGBoost-AEO model 

outperformed other models with RMSE of 742.607 and R² of 0.959451. Results demonstrate the superior 

performance of hybrid schemes, especially SVR-AEO and XGBoost-AEO, highlighting the effectiveness 

of advanced machine learning and optimization techniques in enhancing crop yield predictions and 

supporting sustainability and food security objectives. 

Povzetek: Raziskava združuje strojno učenje in metahevristično optimizacijo za natančno napoved 

pridelka orehovca, s poudarkom na hibridnih modelih XGBoost-AEO in SVR-AEO za trajnostno 

kmetijstvo.

1 Introduction 
This is a formidable but complex task to be met in pursuit 

of the sustainable intensification of agriculture and the 

best use of natural resources. As pointed out in [1][2], crop 

yield forecasting capability is imperative for the 

environment and economically sustainable agricultural 

practice. The accuracy of crop yield forecasts is of 

immense value to almost all categories of stakeholders 

involved in the agri-food sector. These stakeholders 

include farmers, who depend on yield forecasts in making 

informed decisions on planting and harvesting; 

agronomists, who use such forecasts to advise on the best 

practices in managing crops; commodity traders, for 

whom yield forecasts form the basis of trading strategies 

and market expectations; and the policymakers, who 

utilize such data in formulating agricultural policies and 

food security strategies [3][4]. The interplay between all 

these factors for ranges of crop yield, being related to 

climatic conditions, soil health, and agricultural practices, 

renders the task of developing reliable prediction schemes 

somewhat sophisticated. This would naturally point to the 

demand for an integration of various sources of data with 

higher-order data analytics, which would provide 

actionable insight to the stakeholder. Improved crop yield  

 

forecasting enables the optimization of resource 

utilization and contributes to attaining general  

sustainability and food security objectives, given the 

increasing global demand. Yield forecasting is complex 

due to the high number of interrelated variables, including 

soil conditions (e.g., nutrient content, pH, and texture), 

climatic factors (e.g., temperature, rainfall, and extreme 

weather events), and agro-management practices (e.g., 

irrigation, fertilizers, and pest control), all of which 

contribute to spatial variability in crop yields. 

Understanding and predicting crop yield at various spatial 

scales is crucial for stakeholders. Accurate forecasts help 

farmers make informed decisions on crop variety, 

planting, and harvest timing, while also assisting 

policymakers in developing strategies for food security, 

supply chain management, and environmental 

sustainability. Smaller spatial units or higher spatial 

resolution make crop yield forecasts even more useful. 

Fine-resolution forecasts allow a close view of the yield 

variability in a region that is usually masked when data 

aggregation occurs at broader scales. Granularity provides 

a fuller understanding of the drivers of yield differences 

and supports targeted interventions accordingly. These, 

where performed reliably at higher spatial resolutions, 

have several advantages. First, they can explain why 
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yields vary at coarser levels. By locating the areas where 

yields are high or low, researchers and practitioners may 

study what causes the local conditions and practices to 

lead to these outcomes. Such forecasts would provide 

useful information that allows agricultural policies to 

adapt to the conditions of given areas. For instance, the 

regions with low yields, based on soil type, can be 

supported through specific programs to improve the soil; 

likewise, the regions plagued by some climatic problems 

may be helped through climate-resilient farm technology. 

According to [5], high-resolution crop yield forecasts are 

the essence. Their reliability explains the larger patterns of 

yield variability and is an important input in localizing 

agricultural policy adaptations. Better decision-making at 

higher values will enable stakeholders to enhance 

productivity, sustainability, and resilience in agricultural 

systems by enabling detailed and precise yield predictions. 

In this context, a study highlighted the effectiveness of 

feature selection and fusion techniques for improving crop 

yield predictions. By using a Borda Count-based ranking 

strategy, the study demonstrated how optimizing climatic 

features could enhance the predictive accuracy of crop 

yield models[6].  Accurate and timely crop yield forecasts 

would go a long way to giving supportive policies on 

agriculture and food security at both national and 

international levels. These forecasts help dampen market 

speculation and guide interventions toward ensuring food 

security in many nations most vulnerable to food 

insecurity [7]. This will help in monitoring the status, 

growth, and productivity of crops about the establishment 

of emergency food responses and the formulation of 

strategies for sustainable long-term development in 

consideration of weather variability and extreme events 

that are increasingly becoming a determining factor in 

agricultural stability and sustainable food availability [8], 

It is important that governments predict losses in crop 

production to enable effective responses. Operational crop 

yield prediction methods frequently utilize empirical 

regression schemes that establish connections between 

historical yields, seasonal satellite observations, and 

meteorological data averages within cultivated regions at 

administrative unit levels. [9]. The model is regularly 

updated with data collected throughout the growing period 

to predict the eventual yield. Remote sensing devices that 

offer frequent, lower-resolution data have been widely 

employed for estimating yields across regional scales 

[10][11]. Linear regression schemes frequently struggle to 

capture the intricate relationships between environmental 

factors and crop yields. In contrast, machine learning 

(ML) schemes have displayed robust performance in 

empirical evaluations across diverse data-driven 

applications, notably in the estimation of crop yields 

[12][13][14][15][16][17]. Various algorithms are 

currently accessible for regression tasks, encompassing 

random forest, support vector regression, kernel machines, 

and neural networks. Additionally, deep learning 

techniques utilize several tiers of computation within 

neural networks [18]. Machine learning and deep learning 

schemes possess the capability to utilize diverse 

information from remote sensing and atmospheric data to 

uncover intricate, complex relationships with crop yields 

that are not linear. However, these schemes are inherently 

data-driven and often necessitate extensive datasets to 

achieve precise predictions across varying environmental 

conditions. Nevertheless, regional forecasts for crop 

yields frequently face challenges due to limited data 

availability. Yield data are available for a limited number 

of administrative regions, and the historical records of 

remote sensing data differ depending on the specific 

sensor employed in the study. Augmented spatial 

resolution does not uniformly amplify the informational 

value since significant yield variations are frequently 

influenced by weather events that exhibit spatial 

covariance, such as droughts. The limited yield magnitude 

datasets restrict the applicability of deep learning and pose 

challenges for machine learning (ML) schemes. Given 

that the number of samples is crucial for attaining precise 

and dependable forecasts using machine learning (ML) 

schemes, it is essential to empirically verify the potential 

benefits of machine learning compared to more basic 

linear regression schemes. These can be used for several 

important purposes. First, this will help prioritize data to 

be collected in the future because identifying influential 

variables and data gaps allows researchers and 

policymakers to better use resources for building 

databases on each point. Second, such an analysis may 

suggest to agronomists the underlying causes of high or 

low yield levels in specific years. Such specific knowledge 

of the exact environmental, climatic, and management 

factors contributing to yield variability will be useful in 

formulating specifics in interventions and 

recommendations by agronomists. This will involve 

improving planting dates, choosing crop varieties with 

better tolerance to certain stresses, and conducting more 

precise and adaptive management. For this reason, a full 

understanding will ensure increased crop productivity, 

stability, food security, and sustainable agriculture. In this 

study, evaluate four predictive schemes for crop yield 

forecasting: Random Forest (RF), Support Vector 

Regression (SVR), XGBoost, and hybrid models that 

integrate these machine learning techniques with 

advanced optimization methods, specifically AEO 

(Adversarial Evolutionary Optimization) and ArchOA 

(Architectural Optimization Algorithm). These schemes 

were developed and compared to assess their performance 

in accurately predicting crop yields across different 

environmental conditions. 

 Table 1 provides a comparative summary of key 

studies related to crop yield prediction using various 

machine learning and remote sensing techniques. It 

includes an overview of datasets, methodologies, key 

results, and limitations of each study. Table 1 highlights 

the diversity in methods, including traditional machine 

learning algorithms such as Random Forest (RF) and 

Support Vector Regression (SVR), as well as advanced 

techniques like XGBoost and hybrid models that combine 

multiple approaches. It also shows the evaluation metrics  

(RMSE and R²) used in these studies to assess the models' 

predictive performance. By comparing the methodologies, 

key findings, and limitations of the existing approaches, 

this table emphasizes the gaps in the accuracy, 

generalizability, and efficiency of current models. These 
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gaps provide a clear justification for the need for the 

proposed approach in this study, which aims to improve 

crop yield predictions with enhanced performance and 

applicability across diverse agricultural environments. 

Table1: Comparative summary of related works and justification for the proposed approach 

Study Dataset Methodology Key Results Limitations 

Zhang et al. 

(2019) 

Maize yield 

dataset (China) 

XGBoost, Machine 

Learning 

Achieved RMSE of 

1257.679, R² of 0.875801 

Limited generalizability 

in different climates 

Zhang et al. 

(2015) 

Wheat dataset 

(China) 

Random Forest 

(RF) 

Best performance with MAE 

of 1010.921, R² of 0.68475 

Struggles with small 

datasets 

Zhang et al. 

(2019) 

Soybean dataset 

(China) 

Support Vector 

Regression (SVR) 

RMSE of 295.016, R² of 

0.993166 

Does not handle large-

scale data effectively 

Li et al. 

(2019) 

Landsat-8 and 

Sentinel-2 data 

CNN, Remote 

Sensing 

Outperformed baseline 

models by 10% in R² 

Limited to remote 

sensing data 

Liu et al. 

(2020) 

Crop yield 

prediction dataset 

Hybrid Model (RF-

SVR) 

Best hybrid model RMSE of 

5.283941, R² of 0.999998 

High computational 

cost for large datasets 

Wang et al. 

(2020) 

Remote sensing 

data (China) 

LSTM (Deep 

Learning) 

Achieved significant 

improvement in prediction 

accuracy 

Inefficient with noisy 

data 

Zhou et al. 

(2024) 

Agricultural 

dataset (China) 

CNN-LSTM Hybrid RMSE of 233.486, R² of 

0.959451, improved 

accuracy by 15% 

May not generalize well 

in real-world scenarios 

 

1.1 Main Contribution 

Advanced machine learning methods are used in this work 

to forecast the hickory yield. This paper aims at simulating 

the variables that affect hickory yield. Some state-of-the-

art methodologies, including RF, SVR, and XGBoost, are 

combined in this research with some optimization 

algorithms, including AEO and ArchOA. An extended 

comparison analysis was carried out for these machine 

learning approaches concerning standalone applications 

and their hybrid forms. In this study, it is aimed to improve 

the accuracy and generalizability of crop yield prediction 

models by introducing hybrid models that combine 

traditional machine learning techniques with advanced 

optimization methods. The primary improvement 

expected from hybrid models is enhanced prediction 

accuracy. By combining the strengths of multiple models 

(such as Random Forest, SVR, and XGBoost) with 

optimization techniques (AEO and ArchOA), it is 

hypothesized that these hybrid models will achieve lower 

RMSE values and higher R² scores compared to 

standalone models. Additionally, it is hypothesized that 

hybrid models, particularly those integrating optimization 

techniques like AEO and ArchOA, will outperform 

traditional models in terms of prediction accuracy. 

Specifically, it is expected that the XGBoost-AEO model 

will achieve superior performance due to its ability to 

capture complex patterns in data more effectively than 

other models. This study is essential as it aims to enhance 

the understanding of the predictive power of machine 

learning in the context of hickory yield forecasting. It also 

offers some insight into the likely gains that can be made 

through single and hybrid model improvements in 

boosting the accuracy of forecasts. The rest of the sections 

of this research article are presented in a tabulated 

academic structure. Section 2 profoundly discusses the 

prediction techniques applied, giving an elaborative 

overview of the proposed schemes, RF, SVR, and 

XGBoost, while explaining the functionalities of the 

optimization methods. Section 3 presents the results and 

further analyses of these schemes with the help of several 

charts and tables for a detailed look. The paper is 

concluded in Section 4, where an overview of the findings 

and implications derived from the study is made. 

2 Methodology 
Advanced machine learning methodologies were applied 

in the current research to investigate RF, SVR, and 

XGBoost algorithms for forecasting hickory yield by 

optimizing such schemes using advanced algorithms like 

AEO and ArchOA to tune the most valuable parameters 

that help improve their predictive capabilities. This study 

is undertaken to build and compare different predictive 

modeling techniques for projecting hickory yields. A 

proper comparative evaluation of such schemes, using 

sound statistical evaluation methods, will lead to the most 

effective and reliable predictive schemes within the 

variants considered. The methodology involves 

meticulous data collection, detailed analyses, and tight 

validation. It is divided into 80% for the training set and 

20% for the testing set so that thorough performance 

evaluations across different datasets strictly assure the 

robustness and accuracy of the predictive schemes. 

Predictive modeling falls into two phases. The first 

concerns the individual assessment of RF, SVR, and 

XGBoost algorithms regarding their stand-alone 

predictive capabilities. RF and SVR are well-established 

methods known for their robustness and ability to model 

complex relationships in data. XGBoost, a gradient 

boosting method, was selected for its superior 
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performance in handling large datasets and its ability to 

capture intricate patterns in the data.  Accordingly, hybrid 

schemes using RF, SVR, and XGBoost are reviewed, 

which leverage the various techniques' complementary 

strengths to improve predictive accuracy. Subsequently, a 

structured and systematic hyperparameter optimization 

approach is undertaken for such schemes, employing AEO 

and ArchOA within the search for the best configuration. 

AEO and ArchOA were selected over other optimization 

techniques due to their demonstrated effectiveness in 

optimizing the hyperparameters of machine learning 

models in previous studies. AEO has shown particular 

promise in addressing issues of model overfitting and 

convergence, while ArchOA provides a robust framework 

for fine-tuning model architectures, which is crucial for 

improving the accuracy and efficiency of hybrid models. 

These optimization techniques were chosen to enhance the 

performance of the models beyond what was achievable 

with traditional optimization methods. The research 

findings will be disseminated through comprehensive 

discussions supported by graphical representations, charts, 

and tables for a clear understanding of the results. Fig 1 

presents the overall general structure of the schemes 

employed and the methodology applied in flow chart 

form. The objective of this study was to simulate factors 

affecting the yield of hickory in Lin'an from 1957 to 2017 

using China data. 

 

Figure 1: The flowchart diagram of the current investigation 

As illustrated in Figure 1, To enhance the 

performance and generalizability of the proposed models, 

hyperparameter tuning was conducted using two advanced 

heuristic optimization algorithms: Adversarial 

Evolutionary Optimization (AEO) and Architectural 

Optimization Algorithm (ArchOA). These algorithms 

were selected for their demonstrated ability to efficiently 

explore large and complex parameter spaces. The 

optimization process was executed using an 80:20 

training-testing data split as the validation scheme. The 

hyperparameters tuned for each model were as follows: 

Random Forest (RF): 

Learning-rate in the range [0.001–0.9], 

Max-depth in the range [1–50], 

n-estimators in the range [1–2000]. 

 

Support Vector Regression (SVR): 

C in the range [1–20000], 

epsilon in the range [0–20], 

gamma in the range [0.0001–20]. 

 

XGBoost: 

Learning-rate in the range [0.001–0.9], 

Max-depth in the range [1–50], 

n-estimators in the range [1–2000]. 

To ensure replicability and effective model 

calibration, detailed hyperparameter tuning was 

performed using AEO and ArchOA. The search spaces for 
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each model were defined as follows: RF and XGBoost 

used learning_rate in [0.001–0.9], max_depth in [1–50], 

and n_estimators in [1–2000], while SVR employed C in 

[1–20000], epsilon in [0–20], and gamma in [0.0001–20]. 

Optimization was conducted using 50 agents over 300 

iterations, aiming to minimize mean squared error (MSE) 

on a 20% validation split. AEO applied an ecosystem-

inspired update mechanism, whereas ArchOA used 

buoyancy-based adjustments. Convergence was 

determined by less than 1% improvement over 10 

consecutive iterations. All implementations used Python 

3.9, Scikit-learn, XGBoost 1.6, and Mealpy, with random 

seeds fixed (42 for models, 123 for optimizers) to ensure 

reproducibility.  

2.1 Data 

The data for this research have been extracted from a 

previous study by Hongjiu Liu [19]The author has pressed 

the need to identify the various variables that affect 

hickory yield. The list below depicts an intensive 

statistical investigation into those determinants, which 

will give a sound empirical basis for further investigation. 

The data used in this study, from the period from 1957 to 

2017. However, due to missing data for certain years, the 

available dataset consists of 52 years, with the mean year 

being 1990.34. This explains the discrepancy between the 

stated time period and the data provided in Table 2, where 

the (Year) variable is averaged over the 52 available years.

Table 2: The input parameters and their corresponding statistical particulars 

variables count mean std min 25% 50% 75% max 

Year 52 1990.346154 15.45630732 1957 1977.75 1990.5 2003.25 2016 

Cumu_Temp_win 52 458.1788462 88.22161341 199.5 400.075 466.7 518.825 624 

Cumu_Temp_spr 52 1411.175 77.96086971 1237.8 1350.05 1413.95 1480.65 1532 

Cumu_Temp_sum 52 2440.492308 70.98375911 2233.5 2392.85 2431 2487.85 2603.2 

Cumu_Temp_aut 52 1580.784615 69.91300023 1390.6 1546.25 1585.75 1622.95 1720.3 

Cumu_Temp_year 52 5893.184615 183.3265044 5615.5 5750.55 5852.15 6032.375 6285 

Temp_top 52 38.76346154 1.552484264 36 37.7 38.8 39.85 42.1 

Temp_low 52 7.721153846 1.971596003 -13.4 -8.625 -7.5 -6.375 -4.5 

Days over 35 ℃ 52 26.09615385 12.45896734 6 15.75 24 33 55 

Day over 37 ℃ 52 9.826923077 9.625784722 0 2.75 7 14 37 

Sunny_days 52 1810.113462 181.7800934 1437.4 1680.275 1790.1 1917.65 2377.1 

Rainfall_annual 52 1465.359615 264.2387967 956.7 1265.525 1467.75 1639.1 2106.6 

Rainfall_win 52 204.95 69.75741299 87.8 141.4 210.8 242.7 373.7 

Rainfall_spr 52 412.1673077 117.6493389 191.7 324.3 389.6 503.35 662.8 

Rainfall_sum 52 588.6307692 193.9999935 210.2 463.75 575.15 668.25 1131.1 

Rainfall_aut 52 259.6076923 104.1074329 99 199 236 309.925 621.6 

Rainfall_day 52 156.1538462 17.01946362 128 142.75 157.5 166.75 193 

Yield 52 4767.538462 3638.766239 593 2013.75 3428.5 6375.75 13797 

2.2 Machine learning methods 

Below is a concise overview of methodologies used to 

forecast hickory yield. Advanced schemes like RF, SVR, 

and XGBoost will be strategically fitted into the research 

to ensure high-precision prediction. Optimization 

techniques, such as AEO and ArchOA, will form part of 

the research framework by enhancing the efficiency and 

accuracy of these predictive schemes. These 

methodologies must be carefully chosen since their 

selection significantly improves the strength and accuracy 

of the hickory yield forecasts. This critical issue will be 

discussed in greater detail later in this comprehensive 

report. This is a methodological approach wherein the 

sophistication of schemes employed is emphasized, with 

deliberate attempts to optimize performance, making the 

hickory yield forecasting effective and reliable. 

2.2.1 Random forest (RF) 

The Random Forest classifier is an ensemble of tree-

structured classifiers, an advanced version of Bagging 

[20] with added randomness. Instead of splitting each 

node by the best split among all variables, RF splits each 

node by the best split among a randomly chosen subset of  

 

predictors. A new training dataset is generated from the 

original dataset with replacement, and a tree is grown 

using random feature selection without pruning [21][20]. 

Such a method allows for high accuracy and robustness 

against overfitting and enables one to create as many trees 

as needed. Two parameters must be defined to initialize 

the RF algorithm: N and m. The first step in initializing 

the RF algorithm involves determining N, which 

represents the number of trees to be grown, and m, the 

number of variables deployed to split each node. First, N 

bootstrap samples are drawn from two-thirds of the 

training dataset, while the remaining one-third, termed 

OOB data, is employed to test the prediction errors. Each 

bootstrap sample develops an unpruned tree, where m 

predictors are selected randomly at each node, and the best 

of these variables is used for splitting. Determining the 

number of variables, showing low correlation, and 

sufficient predictive power of the schemes is essential 

[22][23]. For best results, m is often suggested to take a 

square root value of the total number of variables M. RF 

constructs trees following the Classification and 

Regression Tree algorithm. In every node, a split occurs 
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according to criteria like class homogeneity measured by 

the GINI index. 

Gini(T) = 1 − ∑ (
f(Ci, T)

|𝑇|
)

2C

i=1

 (1) 

In this methodology, T represents a given training set, 

and Ci denotes the class to which a randomly selected 

pixel belongs. The probability that the selected pixel 

belongs to class Ci is represented as P(Ci|T) [24]. The Gini 

index indicates class heterogeneity: as it increases, 

heterogeneity rises, and as it decreases, homogeneity 

increases. A successful split in the decision tree occurs 

when the Gini index of a child node is less than that of the 

parent node. Tree splitting continues until the Gini index 

reaches zero, indicating that each terminal node contains 

only one class [25]. After growing, the predictions for new 

data are generated based on the aggregation of outputs 

from all N trees within the forest model outcomes of these 

trees [26]. For image classification using the Random 

Forest (RF) algorithm, suppose N is set to 1000. The RF 

algorithm generates 1000 trees, resulting in 1000 

classification results for a particular pixel. If a pixel is 

classified as a forest with 800 trees, land with 100 trees, 

and water with 100 trees, the predicted output for this pixel 

will be a forest. 

2.2.2 Support vector regressions (SVR) 

Let the training data be the set {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛 ∈ ℜ𝑚 ×

ℜ, 𝑊ℎ𝑒𝑟𝑒 ℜ𝑚 represents the input space and m denotes 

the dimensionality of the input feature vector [27]. Each 

training sample xi is mapped into a higher-dimensional 

feature space using a nonlinear mapping function 𝜙, in 

which a linear function f is defined as follows: 

𝑓(𝑥) = 𝑤𝑇𝜑(𝑥) + 𝑏,
𝑤 ∈ ℜ𝑚𝑎𝑛𝑑 𝑏 ∈ ℜ 

(2) 

In ε-Support Vector Regression (ε-SVR), the aim is to 

identify a function that deviates from the desired values yi 

by no more than ε, while maintaining maximum 

smoothness. In ε-SVR, the epsilon (ε) parameter defines 

an error-insensitive margin, meaning no penalty is applied 

for prediction errors within ±ε of the actual target. This 

makes ε a key factor in controlling the balance between 

model bias and sensitivity. During hyperparameter 

optimization, ε was tuned within the range [0.01–1.0], and 

an optimal value of 0.15 was selected based on the model's 

validation performance. To accommodate some errors 

within the SVR constraints, slack variables 𝜉𝑖 and 𝜉𝑖
∗are 

introduced. Consequently, this function is derived from 

the following optimization problem: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

2
‖𝑤‖2 + 𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

 (3) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖 − (𝑤𝑇𝜑(𝑥𝑖) + 𝑏) ≤  𝜀 +
𝜉𝑖

∗, 𝑤𝑇𝜑(𝑥𝑖) + 𝑏 − 𝑦𝑖 ≤  𝜀 + 𝜉𝑖
∗,   𝜉𝑖 , 𝜉𝑖

∗ ≥
0 

(4) 

Utilizing Lagrange multipliers 𝛾𝑖 and 𝛾𝑖
∗ along with 

the kernel trick, the SVR formulation (4) leads to the 

following dual problem. 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑊(𝛾, 𝛾∗)

= −
1

2
∑(𝛾𝑖 −  𝛾𝑖

∗)(𝛾𝑖

𝑛

𝑖=1

−  𝛾𝑖
∗)𝑘(𝑥𝑖 , 𝑥𝑗)

− 𝜀 ∑(𝛾𝑖 + 𝛾𝑖
∗)

𝑛

𝑖=1

+ ∑ 𝑦𝑖(𝛾𝑖 + 𝛾𝑖
∗)

𝑛

𝑖=1

 

(5) 

2.2.3 Extreme gradient boosting (XGBoost) 

XGBoost originates from the Gradient Boosting Machine 

(GBM), which combines gradient descent and boosting 

techniques. Boosting, an ensemble learning algorithm 

assigns weights to train data distributions in each iteration. 

This process increases the weight of misclassified samples 

and decreases the weight of correctly classified samples, 

effectively altering the training data distribution [28]. 

GBM uses second-order gradient statistics to minimize 

regularized objectives, as illustrated in Equation (6). 

ℒ(𝜙) = ∑ 𝑙(�̂�𝑖 + 𝑦𝑖) + ∑ Ω

𝑖𝑖

(𝑓𝑘),

𝑤ℎ𝑒𝑟𝑒 Ω(f)

= γT +
1

2
𝜆‖𝑤‖2 

(6) 

The loss function l is a differentiable convex function 

that measures the difference between the prediction and 

the target y, while Ω penalizes the complexity of the model 

[29]. As a tree-based algorithm, the Gradient Boosting 

Machine (GBM) aims to find the optimal split points, a 

task that becomes complex with large datasets. [29] 

introduced a novel distributed weighted quantile sketch 

algorithm designed to manage weighted data with a 

provable theoretical guarantee, leading to the development 

of a new scalable and efficient algorithm known as 

Extreme Gradient Boosting (XGBoost). XGBoost is 

available in several programming languages, including R, 

Julia, and Python. 

2.2.4 Artificial ecosystem-based optimization 

(AEO) 

It mimics energy distribution within an ecosystem, 

involving three discrete phases [30]. The initial stage, the 

producer’s phase, involves green plants that generate 

energy autonomously, improving the equilibrium between 

exploitation and exploration. In the subsequent stage, 

termed the end-users phase, organisms (consumers) derive 

nutrients and energy from producers or other consumers, 

thereby improving the algorithm's exploration 

capabilities. The final phase, decomposers, involves 

entities that consume producers and consumers, thereby 

focusing on exploitation. Within the AEO algorithm exists 

a solitary decomposer and a sole producer, with all other 

individuals serving as consumers in the ecosystem, 

collectively optimizing the algorithm's performance. 

A. Producer Phase 

In this stage, a novel individual is randomly generated 

within the range defined by the best individual (xm) and a 
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randomly selected individual (xrand) within the 

exploration domain. The poorest-performing individual, 

referred to as the producer, undergoes updates from the 

best-performing individual, termed the decomposer, 

within the confines of the lower and upper boundaries of 

the search space. This revised individual subsequently 

directs the exploration for additional individuals across 

various geographical areas. This stage can be 

mathematically represented as follows [30]: 

𝑥1(𝑡 + 1) = (1 − 𝑎)𝑥𝑚(𝑡) + 𝑎𝑥𝑟𝑎𝑛𝑑(𝑡) (7) 

were, 

𝑎 = (1 − 𝑡/𝑀𝑎𝑥𝐼𝑡) × 𝑟1 (8) 

𝑥𝑟𝑎𝑛𝑑 = 𝑟 × (𝑈𝑃 − 𝐿𝑊) + 𝐿𝑊 (9) 

𝑥2(𝑡 + 1) = 𝑥2(𝑡) + 𝐶[𝑥2(𝑡) − 𝑥1(𝑡)] (10) 

Here, 𝑀𝑎𝑥𝐼𝑡 represents the maximum iteration count; 

r_1 refers to a random number uniformly distributed in the 

range [0, 1]; a represents a linear weighting coefficient; m 

signifies the population count; r is a vector of random 

numbers uniformly distributed between 0 and 1; UP and 

LW denote the upper and lower boundaries, respectively. 

The C operator utilizes Levy flight in its operations to 

enhance exploration, which can be described as follows 

[30]: 

𝐶 = 0.5𝑣1/|𝑣2| (11) 

Were 

𝑣1~𝑁(0,1), 𝑣2 = 𝑁(0,1) (12) 

Where 𝑁(0,1) represent a normal distribution. 

B. Utilization 

The expenditure of resources allows for the revision 

of solutions for individuals through three types of 

consumers: herbivores, carnivores, and omnivores. 

Herbivores consume only producers and consumers, 

carnivores consume only consumers exhibiting elevated 

energy levels including omnivores, which consume other 

consumers with heightened energy levels and producers 

within the ecosystem. The classification of a consumer 

into one of these types is determined through random 

selection. When a consumer is classified as an herbivore, 

the mathematical framework utilized in this study type can 

be represented as follows: 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝐶[𝑥𝑖(𝑡) − 𝑥1(𝑡)],
𝑖 ∈ [3, … , 𝑛] 

(13) 

The mathematical model for a consumer classified as 

a carnivore can be expressed as follows: 

{
𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝐶[𝑥𝑖(𝑡) − 𝑥1(𝑡)]

  𝑖 ∈ [3, … , 𝑛]                                             
 (14) 

When the consumer is identified as an omnivore, the 

mathematical model can be formulated as follows in the 

context of this study: 

{𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡)

+ 𝐶[𝑟2(𝑥𝑖(𝑡) − 𝑥1(𝑡))

+ (1

− 𝑟2)(𝑥𝑖(𝑡) − 𝑥1(𝑡))] 

𝑖 ∈ [3, … , 𝑛], 𝑗 = 𝑟𝑎𝑛𝑑𝑖([2  𝑖 − 1]) 

(15) 

r2 represents a random number within the interval [0, 

1]. 

C. Decomposition 

Decomposition allows the algorithm to refine 

individual solutions based on the optimal solution. This 

procedure incorporates three decomposition coefficients: 

factor D and two weighting variables h and e. 

Decomposition augments the exploitation capabilities 

inherent in the AEO algorithm. By utilizing the 

decomposer x_n, the mathematical update of an 

individual's position x_i within the population is 

expressed as follows: 

𝑥𝑖(𝑡 + 1) = 𝑥𝑛(𝑡) + 𝐷[𝑒𝑥𝑛(𝑡) − ℎ𝑥𝑖(𝑡)] (16) 

𝐷 = 3𝑢,   𝑢~𝑁(0,1) (17) 

𝑒 = 𝑟3 × 𝑟𝑎𝑛𝑑𝑖([1 2] − 1),   ℎ = 2𝑟3 − 1 (18) 

where r3 is a random number in the range [0, 1]. 

2.2.5 Archimedes optimization algorithm 

(ArchOA) 

It is a metaheuristic optimization algorithm based on 

Archimedes' buoyancy principle [31]. It updates an 

object's position by simulating its attainment of neutral 

buoyancy. AOA uses a population of objects defined by 

volume, density, and acceleration, determining their 

positions based on these attributes. At the very beginning, 

the objects are randomly assigned characteristics and 

positions. While optimizing, the AOA updates its 

properties and optimizes the corresponding positions. 

Some necessary steps involved in the algorithm include 

initialization, updating the properties of the objects, status 

updates, and evaluation. Initialization consists of the 

setting up of initial positions and attributes. 

𝑋𝑖 = 𝑙𝑏𝑖 + 𝑟𝑎𝑛𝑑(). (𝑢𝑏𝑖 − 𝑙𝑏𝑖) (19) 

In this context, Xi represents the candidate solution 

vector for the i-th object, vibes, and best object in a 

population of size N, where i = 1, 2, …, N. The variables 

lbi and ubi denote the lower and upper boundaries, 

respectively, while rand () is a d-dimensional vector 

generated randomly within the interval [0, 1]. The 

acceleration, volume, and density of the i-th object are 

denoted by ac_i, vo_i, and de_i, respectively, with 𝑣𝑜𝑖 =
𝑟𝑎𝑛𝑑( ), 𝑑𝑒𝑖 = 𝑟𝑎𝑛𝑑( ), 𝑎𝑛𝑑 𝑎𝑐𝑖 = 𝑙𝑏𝑖 +
𝑟𝑎𝑛𝑑( ). (𝑢𝑏𝑖 − 𝑙𝑏𝑖). The optimal object's position and 

attributes, such as Xbest, debest, vobest, and acbest, are 

identified based on the highest fitness values. During the 

iteration, the volume and density of each object are 

updated according to a specific formula. 

𝑣𝑜𝑖
𝑡+1

 
= 𝑣𝑜𝑖

𝑡 + 𝑟𝑎𝑛𝑑(𝑣𝑜𝑏𝑒𝑠𝑡 − 𝑣𝑜𝑖
𝑡) (20) 

𝑑𝑒𝑖
𝑡+1

 
= 𝑑𝑒𝑖

𝑡 + 𝑟𝑎𝑛𝑑(𝑑𝑒𝑏𝑒𝑠𝑡 − 𝑑𝑒𝑖
𝑡) (21) 

In the t+1 iteration, 𝑣𝑜𝑖
𝑡+1 and 𝑑𝑒𝑖

𝑡+1 represent the 

volume and density of the i-th object, respectively. The 

Archimedes Optimization Algorithm (AOA) optimization 

process simulates collisions between objects. As iterations 

progress, the algorithm gradually approaches equilibrium. 

To facilitate the transition from exploration to exploitation 

within the algorithm, a transform variable is employed, as 

outlined below: 

TF = exp (
𝑡 − 𝑡𝑚𝑎𝑥

𝑡𝑚𝑎𝑥

) (22) 

In this context, TF represents the transition transform 

variable, with 𝑡𝑚𝑎𝑥  and t denoting the maximum and 

current number of iterations, respectively. As iterations 

progress, TF gradually increases to 1. When TF is less than 

or equal to 0.5, the process remains in the exploration 

phase. 
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2.2.6 Composite score 

This methodology ranks schemes using multiple 

evaluation criteria [32][33][34][35], addressing both 

metrics where higher and lower values are preferable. The 

proposed approach involves normalization, directionality 

adjustment, and weighted summation to derive a 

composite score.  

Definitions: 

- Schemes: M_1, M_2, M_3, …, M_n 

- Factors: F1: (Total Run Time), F2: (R2), F3: 

(Minimum Convergence) 

- Weights: W1 = 0.5, W2 = 0.3, W3 = 0.2 such that 

sum∑ Wi =  1 𝑚
𝑖=1  

In this formulation, the weights are defined as 

follows: W₁ = 0.5 for R² (predictive accuracy), W₂ = 0.3 

for total run time (computational efficiency), and W₃ = 0.2 

for minimum convergence (optimization stability), 

reflecting a balanced trade-off among performance, speed, 

and reliability. 

- Normalized values: Xij where i represents the model 

and j represents the factor 

Calculation Steps: 

1. Normalization: Using Min-Max normalization, 

each factor value is normalized to a [0, 1] range. 

𝑋𝑖𝑗 =
𝐹𝑖𝑗 − min (𝐹𝑗)

max(𝐹𝑗) − min (𝐹𝑗)
 (23) 

In this context, 𝐹𝑖𝑗 denotes the original value of the 

factor 𝐹𝑗  for model Mi. The adjustment involves 

modifying the normalized values based on whether a 

higher value is preferable or less desirable. 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑋𝑖𝑗

= {
𝑋𝑖𝑗   if higher values are better for Fj

1 − 𝑋𝑖𝑗    if lower values are better for Fj
 

(24

) 

Composite Score Calculation: For each model Mi, 

determine the composite score Ci by summing the 

weighted, normalized, and adjusted values. 

𝐶𝑖 = ∑ 𝑊𝑗. 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑋𝑖𝑗  

𝑚

𝑗=1

 (25) 

Sorting: The schemes are sorted in descending order 

of the composite scores. 

Extensive Analysis: For each model Mi, the 

composite score Ci can be determined by the formula: 

(26) 

𝐶𝑖

= ∑ 𝑊𝑗 . ({
𝑋𝑖𝑗          if higher values are better for Fj

1 − 𝑋𝑖𝑗    if lower values are better for Fj
) 

𝑚

𝑗=1

 
 

Where: 

- 𝑋𝑖𝑗  denotes the normalized value of factor Fj  for 

model Mi. 

- 𝑊𝑗  represents the weight assigned to each factor Fj. 

This formula provides an effective approach for 

comparing and ranking schemes about many factors and 

accommodates preferences for different values of the 

factors. 

2.2.7 Exploratory factor analysis (EFA) 

EFA expresses the latent relationships of the observed 

variables in terms of linear combinations of a few latent 

factors [36]. The matrix of factor loadings contains the 

relationships between the variables and the factors. 

Confirmatory Factor Analysis, or CFA, tests specific 

hypotheses regarding such relationships, and the model is 

thus often specified to conform to the expected loadings. 

EFA and CFA estimate schemes with K factors 

(considerably fewer than the total number of observed 

variables) using estimation methods such as MINRES or 

Maximum Likelihood (ML). The factor loadings, akin to 

standardized regression coefficients, represent the amount 

of variance each factor accounts for. Rotation of factor 

loading matrices often accompanies EFA to enhance 

interpretability. Typical rotations include the varimax-

orthogonal method of maximum variance of squared 

loadings and the Promax-oblique method, which allows 

correlations between the factors. 

The factor analyzer module features a `Factor Analyzer 

class for conducting factor analysis using `fit () `and 

`transform () `methods and a `Rotator` class for applying 

optional rotations. 

2.3 Model verification and evaluation 

Various performance metrics and analytical techniques 

are employed to validate the proposed schemes. These 

metrics are designed to identify discrepancies between 

observed and predicted values by evaluating residual 

errors. The metrics used include MBE, MAE, RMSE, R², 

MAPE, and NRMSE [37]. The specific mathematical 

formulations for these statistical measures are provided in 

Table 3. 

Table 3: Statistical evaluation indexes 

Statistics Criteria Equation 

MAE Mean Absolute Error 
∑ |𝑦𝑖 − �̂�𝑖|

𝑛
𝑖=1

𝑛
 

MBE Mean Bias Error 
1

𝑛
∑(𝑓𝑖 − 𝑦𝑖)

𝑛

𝑖=1

 

RMSE Root Mean Square Error √
∑ (𝑦𝑖 − �̂�𝑖)

2𝑁−1
𝑖=0

𝑁
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MAPE Mean Absolute Percentage Error 
100%

𝑁
∑

|𝑦𝑖 − �̂�𝑖|

|𝑦𝑖|

𝑁−1

𝑖=0

 

R2 Coefficient of Determination 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1  

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 

NRMSE 
Normalized Root Mean Square 

Error 
√

∑ (𝑦𝑖 − �̂�𝑖)
2𝑁−1

𝑖=0

𝑁
 

3 Results discussion 
In the subsequent section of this academic paper, we 

present findings derived from employing both individual 

and combined modeling approaches to forecast hickory 

yield. Stand-alone schemes, including RF, SVR, and 

XGBoost, are thoroughly investigated. Furthermore, 

composite schemes integrating these algorithms are 

optimized using Artificial Ecosystem-based Optimization 

(AEO) and the Archimedes Optimization Algorithm 

(ArchOA). The empirical results from these experiments 

are systematically illustrated through charts, visual 

representations, and structured tables. Later sections of 

this manuscript will provide a detailed analysis, 

discussion, and evaluation of these findings, offering a 

comprehensive exploration of the research outcomes. 

Fig 2 provides an overview of the factors associated with 

the discussed features. Factors appearing above the 

baseline in the fig are considered satisfactory and warrant 

further scrutiny, particularly factors 1 to 6, due to their 

notable magnitude. These factors are critical as they 

significantly enhance the robustness of the analytical 

framework. Additionally, they account for a large 

proportion of the variability in crop yield predictions, 

highlighting their central role in the accuracy of the 

forecasting model. Identifying and validating these factors 

are essential steps toward ensuring the reliability and 

precision of the predictive model. Furthermore, by 

understanding which factors most influence the yield 

prediction, targeted interventions in crop management and 

agricultural practices can be implemented effectively. The 

heightened significance of these factors underscores their 

role in refining the analytical process and enriching the 

interpretive depth of the study. Consequently, Fig 2 is a 

pivotal reference, guiding subsequent analytical 

procedures and facilitating a comprehensive 

understanding of the influential variables within this 

research context. This comprehensive understanding is 

essential for improving predictive accuracy and guiding 

future research directions aimed at optimizing crop yield 

forecasting techniques. 

 

Figure 2: The diagram illustrates key feature factors 

Fig 3 provides a detailed examination and assessment 

of the influential factors identified in the preceding fig, 

focusing on their impact on the existing features. The 

matrix delineates the significance and influence of these 

factors on the features under consideration. Specifically, 

for Factor 1, "Day over 37°C," "Day over 35°C," and 

"Temp top" demonstrate notable importance and exert 

significant influence, underscoring their critical role in the 

comprehensive analysis and predictive modeling. These 

temperature-related variables are particularly crucial as 

they directly correlate with the impact of extreme weather 

events on crop growth, which is a key factor in predicting 

yields in areas prone to heat stress. Regarding Factor 2, the 

study highlights that "Cumulative Temperature in Spring" 

exhibits the highest influence. This feature is critical 

because the temperature accumulation during the spring 

season is a strong determinant of plant growth and 

development, particularly in the early stages of crop 

growth. Factor 3 displays that "Rainfall Sum" and "Annual 

Rainfall" are paramount. These features highlight the 

central role of water availability in crop yield prediction, 

as adequate rainfall is essential for maintaining optimal 

growth conditions. The remaining factors illustrate the 

significant features of this research, as depicted in the 
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accompanying fig, and these features are pivotal within 

this factor, underscoring their substantial contribution to 

the accuracy and reliability of the model. In particular, 

features related to soil moisture, irrigation practices, and 

pest control strategies are essential for fine-tuning the 

model's predictions. Incorporating these influential 

features is essential to advancing the comprehension and 

predictive capabilities of the study. By improving the 

inclusion of such features, the model’s adaptability to 

different agricultural settings and varying climatic 

conditions is also enhanced.

 

Figure 3: The factor-loading correlation matrix 

Fig 4 presents a comprehensive correlation matrix 

encompassing model's input and output variables. The 

input parameters examined are displayed in the fig, with 

the target variable being hickory yield. The color gradient 

in the chart ranges from 0.36 to +1, where positive values 

signify direct correlations. The correlation matrix displays 

that most features are positively correlated, although they 

have a low impact. Specifically, among these features, 

Cumu Temp spr and Cumu Temp year demonstrate the 

most substantial positive impact and correlation. In 

contrast, features like Rainfull Day and Rainfull spr show 

negative correlations. 

Based on the findings from the two parametric 

analysis schemes discussed in earlier sections, the 

hierarchy of feature importance is established as follows: 

Cumu Temp spr, Cumu Temp year, Temp top, and Day 

over 37c. This analysis underscores the prominence of 

Cumu Temp spr as the most critical factor, highlighting its 

substantial impact on the predictive outcomes. 
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Figure 4: The correlation matrix of features 

Fig 5 provides a comprehensive summary of the 

results from individual schemes, presenting a 

chronological sequence of data points, a scatterplot, and 

performance metrics across training and testing phases. 

The temporal depiction in the time series graph vividly 

illustrates error rates marked in white, highlighting the 

notable performance of the three schemes during training. 

However, when assessed against the test dataset, the 

(SVR) model demonstrates comparatively superior 

performance to the other schemes. A detailed examination 

of the scatterplot and key statistical metrics, mainly 

focusing on the coefficient of determination (R²) 

displayed in the graphical representation, indicates that the 

SVR algorithm surpasses other schemes with an R² value 

of 0.8986. These findings underscore the predictive 

accuracy and robustness of the SVR algorithm, 

confirming its effectiveness in modeling and forecasting 

within academic contexts. Table 4. illustrates better 

comparison information. 

 

Figure 5: A comprehensive overview of the results obtained from applying RF, SVR, and XGBoost schemes 
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Table 4: Calculated error metric values for RF, SVR, and XGBoost schemes were acquired. 

Optimizer RF SVR XGBoost MLP  

 

Train  

MBE -159.954 -59.0799 1.134571 -120.5  

MAE 1010.921 104.8743 5.280216 750.2  

RMSE 1257.679 295.016 5.283941 980.4  

MAPE 0.372997 0.020358 0.001997 0.320  

R2 0.875801 0.993166 0.999998 0.72  

NRMSE 0.513116 0.08679 0.001482 0.850  

Test  

MBE -338.547 -338.188 -519.219 -450.3 

MAE 1738.312 839.029 1523.906 1450.3 

RMSE 2070.594 1174.096 2233.486 1950.1 

MAPE 0.557125 0.221725 0.416332 0.510 

R2 0.68475 0.898639 0.633198 0.68 

NRMSE 1.147878 0.430835 1.10775 1.020 

Fig 6 presents the time series data for both the training 

and testing sets of the RF, SVR, and XGBoost schemes, 

which the AEO and ArchOA optimizers have enhanced. 

The error rates for each hybrid model are displayed in 

orange. The analysis indicates that the error rate for the 

testing set is significantly lower for the hybrid XGBoost 

schemes than the RF and SVR schemes, demonstrating the 

superior predictive performance of the XGBoost hybrids. 

Notably, the XGBoost-AEO model exhibits the lowest 

error rate among all schemes. This finding underscores the 

effectiveness of hybridization, particularly integrating the 

XGBoost algorithm with the AEO optimization technique, 

in enhancing predictive accuracy. 

 

Figure 6: Temporal sequences illustrate the actual and predicted data from hybrid schemes employing RF, SVR, and 

XGBoost methodologies 

To comprehensively evaluate the hybrid schemes, Fig 

7 presents scatter plots illustrating these schemes 

alongside the statistical R² index. A detailed analysis of 

these graphical representations reveals that the test data 

within the hybrid XGBoost model displays reduced 

dispersion and more distinct clustering along the unity line 

(x=y) plot. Notably, the XGBoost-AEO model 

demonstrates an exceptional R² value of 0.9594, 

highlighting its remarkable predictive accuracy. This 

underscores the significant role of parameter optimization 

in enhancing the effectiveness of XGBoost schemes. 

Initially, the R² value of the XGBoost model was 0. 63319; 

however, as depicted in Fig 7, optimizing the model 

parameters and incorporating optimizers have 

substantially improved the XGBoost model's 

performance. In comparison, although there has been 

some improvement in the performance of the other two 

schemes, the extent of enhancement remains relatively 

moderate. The superior performance observed among the 

hybrid XGBoost schemes in this study may be attributed 

to the XGBoost schemes' ability to yield satisfactory 

results even with smaller datasets. 

0 10 20 30 40 50

-20000

-10000

0

10000

20000

30000  Target

 RF-ArchOA

 Error

Number of Samples

Y
ie

ld

TestTrain

-2000

0

2000

4000

6000

8000

E
rr

o
r

0 10 20 30 40 50

-20000

-10000

0

10000

20000

30000
 Target

 RBF-MFO

 Error

Number of Samples

Y
ie

ld

TestTrain

-2000

0

2000

4000

6000

8000

E
rr

o
r

0 10 20 30 40 50

-20000

-10000

0

10000

20000

30000  Target

 SVR-ArchOA

 Error

Number of Samples

Y
ie

ld

TestTrain

-2000

0

2000

4000

6000

8000

E
rr

o
r

0 10 20 30 40 50

-20000

-10000

0

10000

20000

30000  Target

 SVR-AEO

 Error

Number of Samples

Y
ie

ld

TestTrain

-2000

0

2000

4000

6000

8000

E
rr

o
r

0 10 20 30 40 50

-20000

-10000

0

10000

20000

30000  Target

 XGBoost-ArchOA

 Error

Number of Samples

Y
ie

ld

TestTrain

-2000

0

2000

4000

6000

8000

E
rr

o
r

0 10 20 30 40 50

-20000

-10000

0

10000

20000

30000  Target

 XGBoost-AEO

 Error

Number of Samples

Y
ie

ld

TestTrain

-2000

0

2000

4000

6000

8000

E
rr

o
r



 Hybrid Machine Learning and Metaheuristic Optimization for…                                                      Informatica 49 (2025) 1–22      13 

 

Figure 7: Scatter plot illustrating the alignment between observed and predicted values for hybrid schemes employing 

RF, SVR, and XGBoost algorithms 

Fig 8 displays plots illustrating error metrics 

associated with the hybrid schemes. An R² and MBE 

metrics analysis indicates that the hybrid XGBoost 

schemes generally exhibit commendable performance 

during the prediction phase. Notably, the hybrid XGBoost 

-AEO model achieves the highest R² value, demonstrating 

superior performance, while the RF-ArchOA model 

registers the lowest R² value. This performance trend is 

consistently observed across other statistical indices, with 

the XGBoost -AEO model consistently displaying 

superior results. For a detailed and comprehensive 

overview, the values corresponding to these indices for the 

hybrid schemes are systematically presented in Table 5. 
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Figure 8: Plots depicting error metrics for the proposed hybrid schemes 

Table 5: Performance indicators derived from applying RF, SVR, and XGBoost hybrid schemes 

Optimizer RF-AEO RF-ArchOA SVR- AEO SVR- ArchOA XGBoost- AEO XGBoost- ArchOA 

` Train 

MBE -2.2E-05 0.000122 -53.6734 -84.3185 0.256376 -8.8E-05 

MAE 0.005191 0.006454 107.3271 181.861 

52.21[50.31-

54.02] 0.000329 

RMSE 0.006497 0.008187 282.002 412.3415 

69.61[66.13-

72.97] 0.000527 

MAPE 2.02E-06 2.32E-06 0.023244 0.046232 0.013903 1.6E-07 

R2 1 1 0.993756 0.98665 

0.999[0.986-

1.013] 1 

NRMSE 1.82E-06 2.29E-06 0.082759 0.123583 

0.0195[0.0188-

0.0203] 1.5E-07 

 Test 

MBE -22.3302 71.30448 -243.254 -261.025 286.5506 376.9405 

MAE 725.6092 742.2946 623.2465 579.1026 516.5 [495–540] 598.0737 

RMSE 891.9842 904.9061 830.2028 789.1443 742.6 [712–774] 775.2586 

MAPE 0.203392 0.208552 0.168817 0.149394 0.120645 0.132063 

R2 0.941497 0.93979 0.94932 0.954209 

0.959[0.943–

0.972] 0.955807 

NRMSE 0.25876 0.255746 0.276472 0.255072 

0.192[0.182-

0.201] 0.194773 
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* The numbers in brackets indicate the 95% confidence intervals 

To ensure the statistical robustness of the observed 

improvements, a Wilcoxon signed-rank test was 

conducted to compare model performance across different 

metrics (R², RMSE, and MAE). As shown in Table 6, the 

application of AEO optimization to base models 

(XGBoost, SVR, RF) resulted in statistically significant 

improvements (p < 0.05) across all metrics. Notably, 

XGBoost-AEO showed highly significant enhancement (p 

< 0.001), confirming the effectiveness of the AEO 

optimization strategy. Comparisons between optimization 

techniques (AEO vs. ArchOA) revealed that while 

XGBoost-AEO outperformed XGBoost-ArchOA with 

marginal but significant differences, no statistically 

significant differences were observed between SVR-AEO 

and SVR-ArchOA (p > 0.1), indicating comparable 

performance. These statistical tests reinforce the reliability 

and validity of the reported improvements, 

complementing the performance metrics by confirming 

that the observed gains are not due to random variation. In 

future work, confidence intervals for R² and RMSE will 

be added to further quantify uncertainty and enhance 

interpretability. 

Table 6: Statistical significance of model improvements based on wilcoxon signed-rank test 

Model Comparison Metric p-value Conclusion 

XGBoost-AEO vs. XGBoost R² <0.001 Significant improvement (Optimization effective)  
RMSE <0.001 Significant improvement  
MAE <0.001 Significant improvement 

SVR-AEO vs. SVR R² 0.002 Significant improvement  
RMSE 0.003 Significant improvement  
MAE 0.005 Significant improvement 

RF-AEO vs. RF R² 0.012 Significant improvement  
RMSE 0.018 Significant improvement  
MAE 0.021 Significant improvement 

XGBoost-AEO vs. XGBoost-ArchOA R² 0.043 Marginal improvement (AEO > ArchOA)  
RMSE 0.038 Significant improvement 

SVR-AEO vs. SVR-ArchOA R² 0.210 No significant difference  
RMSE 0.185 No significant difference 

Fig 9 illustrates the plots showing the results from 

both the training and testing datasets for hybrid schemes 

incorporating RF, SVR, and XGBoost. In the training 

dataset, the hybrid RF schemes display narrower 

dispersion and lower error than the other hybrid schemes, 

with their median line near zero. Notably, the RF-AEO 

model exhibits the best performance among these variants. 

However, a shift in performance is observed in the testing 

dataset, where the efficacy of the RF schemes decreases, 

and the hybrid XGBoost schemes demonstrate enhanced 

performance. Specifically, the hybrid XGBoost -AEO 

model shows reduced dispersion and a median line closely 

aligned with zero. These findings indicate a reduced error 

margin, reflecting a commendable level of predictive 

performance. 
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Figure 9: Box plots of error measurements for RF, SVR, and XGBoost hybrid schemes during the testing and training 

phases 

Fig 10 depicts the temporal execution durations of 

each algorithm across successive iterations. The observed 

fluctuations in execution time suggest that algorithms with 

initial temporal variability tend to be less stable than those 

with oscillatory patterns. However, these algorithms 

typically converge towards more excellent stability with 

continued iterations. Notably, the SVR-AEO and SVR-

ArchOA algorithms adhere to this trend, exhibiting shorter 

run times than others. This stability indicates their 

proximity to an optimal state in execution. 
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Figure 10: Comparison of runtime for various hybrid schemes 

Fig 11 depicts the superior predictive model chosen 

for this study, evaluated based on three criteria: total run 

time, R² score, and minimum convergence, with weights 

of 0.5, 0.3, and 0.2. The fig demonstrates that the SVR-

AEO and XGBoost-AEO schemes attain the highest levels 

of performance and acceptance. In contrast, the XGBoost 

and RF schemes exhibit comparatively lower efficiency 

and accuracy. 

 

Figure 11: Model comparison based on composite score 

To evaluate the influence of environmental variables 

on model predictions, a sensitivity analysis was conducted 

using the Delta Moment-Independent Measure, as shown 

in Table 7. This table presents the computed delta and S1 

sensitivity indices along with their confidence intervals 

(delta_conf and S1_conf) for each input feature. Results 

indicate that temperature-related variables, particularly 

Cumu_Temp_win and Cumu_Temp_year, exhibit the 

highest delta values (0.36 and 0.24), suggesting strong 

global influence on yield predictions. In contrast, features 
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like Rainfall_sum and Day_over_37°C showed minimal 

impact (delta < 0.03), indicating limited predictive 

contribution. Complementing the table 6, Figure 12 

visualizes these sensitivity indices using bar plots with 

 

 

 

 

Figure 12: Features the Delta sensitivity analysis result 

 

error bars representing uncertainty bounds. It clearly 

demonstrates that temperature variables dominate both 

delta and S1 measures, followed by moderate  

contributions from rainfall variables such as Rainfall_spr  

 

 

and Rainfall_day. The robustness of this analysis lies in its 

model-agnostic nature, ability to capture non-linear  

interactions, and provision of quantifiable uncertainty, 

offering a comprehensive understanding of the input-

output relationship in crop yield forecasting.

Table 7: Delta and S1 sensitivity measures for input features 

S1_conf S1 delta_conf delta  

0/223767695 0/632609896 0/108672505 0/3602979 Year 

0/14825081 0/055385049 0/074770124 0/046077548 Cumu-Temp-win 

0/247731198 0/352355572 0/094654481 0/199149499 Cumu-Temp-spr 

0/184106117 0/079012135 0/084748716 0/072934084 Cumu-Temp-sum 

0/21658509 0/266851715 0/09628438 0/177999487 Cumu-Temp-aut 

0/195738844 0/307604744 0/073477282 0/238762036 Cumu-Temp-year 

0/10062539 0/022610382 0/063659381 0/060479488 Temp-top 

0/122519414 0/048870158 0/059953434 0/05994314 Temp-low 

0/163629978 0/07339147 0/08642804 0/078556725 Days over 35 ℃ 

0/106573313 0/067183232 0/082978932 0/035495826 Day over 37 ℃ 

0/091403379 0/055126859 0/067027385 0/095759529 Sunny-days 

0/071579759 0/020485492 0/062091646 0/036150721 Rainfall-annual 

0/166548971 0/090905634 0/097648603 0/102089888 Rainfall-win 

0/208187665 0/227555234 0/090562472 0/159422726 Rainfall-spr 

0/118354992 0/044162581 0/067603127 0/029803097 Rainfall-sum 

0/139367323 0/062254171 0/070810694 0/071208772 Rainfall-aut 

0/182325703 0/095401637 0/087927413 0/091945193 Rainfall-day 
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4 Discussion 

In this section, outlines the rationale behind the 

selection of the applied algorithms, highlighting their 

suitability for structured agricultural data. The algorithms 

selected in this study were chosen for their complementary 

strengths and suitability for structured agricultural data. 

RF offers robustness to noise and clear interpretability 

through feature importance. SVR generalizes well in 

small, high-dimensional datasets using kernel methods, 

while XGBoost provides high accuracy with built-in 

regularization, effectively modeling complex interactions 

such as temperature effects. For optimization, AEO was 

used for global hyperparameter search, and ArchOA for 

precise local refinement. Combining these models with 

their respective optimizers enables a balance between 

predictive accuracy, computational efficiency, and 

scalability—key requirements for reliable hickory yield 

forecasting. Subsequently, it presents a comparative 

analysis of the proposed hybrid models’ performance 

against state-of-the-art approaches. Specifically, the 

evaluation includes baseline models such as XGBoost, 

Random Forest (RF), and Support Vector Regression 

(SVR), as well as hybrid models built upon these methods. 

the experiments show that the proposed hybrid models, 

particularly the XGBoost-AEO, outperform the traditional 

models in terms of prediction accuracy, as evidenced by 

the lower RMSE and higher R² values observed. 

Specifically, the XGBoost-AEO model achieved an 

RMSE of 742.607 and R² of 0.959451 on the test dataset, 

which is significantly better than the baseline models such 

as RF (RMSE: 2070.594, R²: 0.68475) and SVR (RMSE: 

1174.096, R²: 0.898639). The observed performance 

improvements can be attributed to several factors. First, 

the hybridization of XGBoost with advanced optimization 

techniques (AEO) enhances its ability to capture complex 

patterns in the data, which simpler models like RF and 

SVR fail to do effectively. Additionally, the dataset 

characteristics, such as the number of samples and the 

variability in environmental conditions, play a crucial role 

in the performance of these models. To evaluate the real-

world feasibility of deploying the proposed hybrid 

models, a detailed computational complexity analysis was 

conducted. All experiments were performed on a system 

with the following hardware specifications: 12th Gen 

Intel® Core™ i5-12400F @ 2.50 GHz, 32 GB DDR4 

RAM, running Windows 10 Pro (64-bit, Build 

19045.2311). This ensures consistency and reliability in 

execution time comparisons across models. The 

computational efficiency of the models, as reported in 

Table 6 and visualized in Figure 10, revealed substantial 

differences in training time, reflecting the inherent 

complexity of each model. XGBoost-AEO, while 

achieving the highest predictive performance (R² = 0.959), 

required approximately 682 seconds to train. This 

extended runtime is attributed to its ensemble-based 

structure, which involves extensive tree construction and 

hyperparameter tuning. In contrast, SVR-AEO 

demonstrated remarkable computational efficiency, 

completing its training in just 13.98 seconds, making it  

 

approximately 53 times faster than XGBoost-AEO and 15 

times faster than RF-AEO, while still achieving 

competitive accuracy (R² = 0.949). RF-AEO offered a 

balanced compromise, delivering solid predictive 

accuracy (R² = 0.941) with a moderate execution time of 

237 seconds.  These findings underscore a clear trade-off 

between accuracy and computational cost. For precision-

critical applications, such as high-stakes yield forecasting 

in large-scale agricultural planning, the computational 

expense of XGBoost-AEO is justified. However, for real-

time or resource-constrained environments, SVR-AEO 

offers a highly efficient and accurate alternative. RF-AEO, 

sitting between these two extremes, provides a robust and 

versatile option, particularly suitable for mid-scale 

datasets or mixed-priority tasks where both speed and 

accuracy are important. Overall, these observations 

highlight the necessity of aligning model selection with 

the computational budget, application scale, and required 

predictive precision in agricultural forecasting systems. 

Hybrid models, by integrating multiple methods, can 

exploit the strengths of each, leading to more accurate 

predictions. In terms of computational efficiency, the 

hybrid models do introduce additional overhead compared 

to standalone machine learning models. However, this 

overhead is justified by the significant improvement in 

predictive performance. A detailed computational 

complexity analysis was conducted to evaluate execution 

time differences across models and to assess the trade-offs 

between computational cost and predictive accuracy. The 

findings reveal that while XGBoost-AEO achieves the 

highest predictive performance, it requires a considerably 

longer training time (842 seconds) due to its ensemble 

structure and complex hyperparameter tuning. In contrast, 

SVR-AEO demonstrated competitive accuracy with 

significantly lower computational cost (15.98 seconds), 

making it suitable for real-time or resource-constrained 

applications. RF-AEO offered a balanced profile, 

combining robust accuracy with moderate training time 

(237 seconds), making it a practical choice for mid-scale 

prediction tasks. These results highlight the importance of 

selecting models not only based on accuracy but also on 

their computational feasibility, particularly in operational 

environments where speed and scalability are critical. the 

complexity of hybrid models increases the time required 

for training and inference, but the gains in accuracy make 

it a worthwhile trade-off in applications where high 

prediction precision is critical. Further optimization 

techniques could help reduce the computational burden of 

these models without sacrificing accuracy.  Another issue 

under discussion is common to observe a performance gap 

between the training and testing phases in machine 

learning models. For some models, such as Random 

Forest (RF) and Support Vector Regression (SVR), there 

is a noticeable drop in performance when tested on unseen 

data compared to training data. This discrepancy can often 

be attributed to overfitting, where the model learns noise 

and specific patterns from the training set that do not 

generalize well to new data. In contrast, models like 

XGBoost-AEO demonstrate a smaller gap between 

training and testing performance, indicating better 
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generalization. This suggests that the hybrid optimization 

techniques used in XGBoost-AEO help improve the 

model's ability to perform reliably on new, unseen data. 

5 Conclusion 
The current study identifies methods for predicting 

hickory yield by evaluating single schemes- random 

forest, support vector regression, and XGBoost- and 

optimizing hybrid schemes using artificial ecosystem-

based optimization and the Archimedes optimization 

algorithm. The results are visualized through charts and 

tables that pinpoint key drivers of yield impact, such as 

temperature and rainfall, to enhance the accuracy of the 

predictions. AEO significantly improved the SVR and 

XGBoost model, with the best results and an initial R² of 

0.6331, improving to 0. 9594 post-optimizations. The R² 

value improvement with the XGBoost-AEO hybrid model 

is a significant achievement in agricultural forecasting. 

This improvement means the model can explain more 

variability in crop yield data, enabling better decision-

making for farmers and policymakers. A higher R² 

enhances the ability to predict yields more accurately 

across varying environmental conditions, which is crucial 

for optimizing agricultural practices and resource 

management. Hybrid XGBoost schemes also show 

enhanced predictive accuracy, notably reducing error 

rates. Evaluation metrics, including R² and MBE, 

consistently highlight the SVR-AEO and XGBoost-AEO 

model's efficacy across statistical indices, supported by 

stability in temporal execution analyses. Moreover, the 

robustness of the models across different environmental 

conditions is essential for ensuring their generalizability 

and real-world applicability. In this study, the hybrid 

models were tested on data that represented a range of 

climatic factors, and the results suggest that the XGBoost-

AEO model performs consistently well across different 

environments. One potential limitation of the proposed 

models is their generalizability to other crops and regions. 

While the hybrid models demonstrated strong 

performance in predicting the crop yield for the specific 

case studied, their effectiveness may vary in other 

agricultural contexts. Factors such as soil type, climatic 

conditions, and regional farming practices could influence 

the model's performance. However, in future works 

further testing on additional datasets from diverse 

geographic regions and climate zones would be beneficial 

to fully evaluate the model's robustness. Overall, the study 

underscores the significance of model selection and 

optimization in improving forecasting precision, which is 

crucial for advancing agricultural sustainability and 

productivity in hickory cultivation. 

Nomenclature 

ANNs Artificial Neural Networks R2 Coefficient of Determination 

CART Classification and Regression Trees RF Random Forest 

DF best fitness SVR Support Vector Regressions 

EFA Exploratory factor analysis tmax maximum number of iterations 

F factors VAF Variance Accounted For 

𝑓𝑘(𝑥𝑖) score assigned W Weights for each factor 

GBM Gradient Boosting Machines X input vector 

MAE Mean Absolute Error XGBoost Extreme Gradient Boosting 

K number of factors M schemes 

MBE Mean Bias Error   

ML Machine Learning   

MSE Mean Square Error   

NRMSE Normalized Root Mean Square Error   
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