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Aiming at the deficiencies of traditional speech signal enhancement models in dealing with long-term
dependencies and noise filtering, an application speech signal enhancement model based on progressive
learning and dense connection strategies is proposed. This method takes the long short-term memory
network structure as the core and realizes the gradual enhancement of noisy speech through layer-by-
layer learning and processing. The experimental results showed that this model exhibited excellent
enhancement performance in different signal-to-noise ratio environments. In a -5dB signal-to-noise ratio
environment, the short-term objective clarity of the research method reached 0.930, which was 4.1%
higher than that of delayed neural networks. Moreover, under the 10dB condition, the short-term objective
clarity score further increased to 0.957. The distortion signal ratio of the source signal has increased
from 2.31 at -5dB to 14.81 at 10dB, indicating the model's ability in noise suppression and signal
reconstruction. The assessment score of speech quality perception increased from 1.86 at -5dB to 3.13 at
10dB, and the word error rate decreased to 27.31%, which was 2.47% lower than that of the classical
long short-term memory network. The research results show that the proposed model has strong
robustness and a good speech enhancement effect when dealing with speech signals with a low signal-to-
noise ratio, providing a new solution for the field of applied language processing.

Povzetek: Predlagan je pristop za zmanjSanje hrupa v govoru, ki zdruZuje postopno ucenje z gosto
povezanimi rekurentnimi mrezami dolgorocnega spomina; model po plasteh Cisti signal, ohranja dolge
odvisnosti in krepi razumljivost za jezikovne sisteme.

1 Introduction

The popularity of mobile devices and smart homes
has made the quality of speech enhancement signals more
important for user experience. At the same time, people's
dependence on applied language is becoming increasingly
severe. However, there are many types of noise in real life,
and different types of noise inevitably affect the clarity of
speech signals, including noise from automobiles and
industries [1]. This noise affects the clarity of speech
signals and poses a challenge to the long-term dependence
of speech recognition systems. The long-term dependence
problem makes it difficult for the model to effectively
extract useful information when dealing with speech
signals disturbed by noise, thereby reducing the accuracy
and user experience of the final speech interaction. High-
quality speech signals are crucial for ensuring the accuracy
of speech recognition and the effectiveness of user
interaction. Therefore, efficient speech enhancement
technology is one of the key technologies for the
development of applied languages [2-3]. Ochieng P
reviewed the Deep Neural Network (DNN) techniques
currently used for speech enhancement and separation and

conducted a comprehensive analysis model training. DNN
had feasibility in speech signal enhancement [4]. Richter J
et al. proposed a diffusion process based on stochastic
differential equations and reversed the process from a
mixture of noisy speech and Gaussian noise. Then, they
made adjustments to the network architecture to improve
speech enhancement performance. Finally, the experiment
verified that the method has a good speech enhancement
effect [5]. Zhang Q et al. used time frame attention and
frequency channel attention to explicitly generate two-
dimensional attention maps with significant T-F speech
distributions based on positional information. The
effectiveness of this model as a front-end for downstream
speech recognition tasks has been demonstrated, and it
significantly improved the system's robustness to noise
conditions [6]. Bie X et al. designed an unsupervised
speech enhancement algorithm. This algorithm combined
the prior training of DVAE speech based on non-negative
matrix factorization with a noise model, and derived a
Variational Expectation Maximization (VEM) algorithm
for speech enhancement, achieving good results [7]. The
specific summary of the above research is shown in Table
1.


mailto:liunian1616@163.com

328  Informatica 49 (2025) 327-340

N. Liu

Table 1: Literature summary table

References Research method

Research advantages

Research disadvantages

DNN technology is used for
speech enhancement and
separation

Reference [4]

Diffusion process method
based on stochastic differential
equations

Reference [5]

The combination of attention
to the time frame and the
frequency channel

Reference [6]

Unsupervised speech
enhancement algorithm,
combining non-negative

matrix factorization and VEM
algorithm

Reference [7]

Focus on a comprehensive
review and applicability
assessment of deep learning

Improving the performance of
voice enhancement by
enhancing the network

architecture is innovative
The generation of two-
dimensional attention maps
using position information
improves the robustness under
noisy conditions

It is applicable to various noisy
environments and has a good
enhancement effect

It is mainly a retrospective
study, lacking specific
experimental verification and
performance evaluation
Complex mathematical models
may lead to difficulties in the
implementation and
understanding of the models

technologies

The need for a complex
attention mechanism may
make the training process of
the model complicated

The accuracy of unsupervised

learning is limited by the type

of noise and may not be able to
handle all noise situations

Although there has been some progress in speech
signal enhancement research in recent years, there are still
many shortcomings, especially in terms of robustness and
long-term  dependence when dealing with noisy
environments. Some of the current research focuses on the
use of DNNs or specific mathematical models for speech
signal enhancement. However, when confronted with
extremely high noise environments, such as low Signal-
To-Noise Ratios (SNR) or complex noise types, the
robustness of these models appears insufficient, resulting
in unstable performance in dynamic scenes. Although
attention mechanisms can enhance the effectiveness of
speech signals in certain situations, their ability to capture
long-term dependencies still has limitations when
processing long-term sequence data. This poses
difficulties for speech processing tasks that require long-
term contextual information. In addition, although the
developed unsupervised learning methods have shown
some effectiveness, the training process may not guarantee
the reliability of the enhancement effect due to the lack of
labeled data. Especially when encountering new types of
noise, the generalization ability of the model will also be
limited. Although various studies have demonstrated
different enhancement effects, the performance of the
system is relatively lacking, making the quality of the
results unclear and making it difficult to comprehensively
evaluate the actual effectiveness of existing methods. In
response to the aforementioned research gaps, this study
proposes an applied speech signal enhancement model
based on Long Short-Term Memory and Progressive
Learning and Dense Connection strategy (LSTM-PLDC).
The study assumes that this new model can effectively
improve the quality of speech signals in complex noise
environments, thereby enhancing the clarity and
comprehensibility of speech signals. The main purpose of

the research is to verify the enhanced performance of the
LSTM-PLDC model under different SNR conditions and
evaluate its robustness when dealing with extreme noise
environments. This method can effectively enhance useful
speech features in the data and suppress background noise
by layer by layer strengthening of the speech signal.
Furthermore, by adopting the LSTM structure in
combination with the dense connection strategy, the
context information for a long time can be better retained.
This will enhance the model's processing ability for long-
term dependencies, thereby further improving the speech
enhancement effect. Another important contribution of the
research is the improvement of the model’s robustness.
Compared with the existing methods, the LSTM-PLDC
model shows stronger anti-noise interference ability in
various SNR environments, which can effectively improve
the speech quality and avoid signal distortion caused by
excessive noise reduction.

2 Methods and materials

2.1 Construction of a speech enhancement
signal enhancement model based on
LSTM

Applied language processing is an important
direction in natural language processing, which focuses on
applying linguistic theories and techniques to practical
problems and application scenarios. Speech enhancement
processing covers a wide range, including speech
recognition, speech synthesis, machine translation, speech
enhancement, and other directions. Among them, speech
signal enhancement is a core component of applied
language processing, with the main task of improving the
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quality of speech signals and ensuring the accuracy and
effectiveness of subsequent processing [8]. The primary
task of speech signal enhancement is to remove
background noise, echo, and other interfering factors,
ensuring the purity and clarity of speech signals, which is
fundamental and critical for all speech-based applications.
Currently, the commonly used speech signal enhancement
model is based on LSTM, which has advantages such as

long-term dependency processing, noise removal
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enhancement, and temporal data processing [9-10]. In
LSTM, the core part mainly includes input, output, and
hidden layers. Unlike traditional Recurrent Neural
Networks (RNNs), the hidden layer structure of LSTM is
more complex, adding a memory unit called “cell state”.
This unit performs traditional neural computation and also
manages and maintains long-term information through cell
state management, as shown in Figure 1.
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Figure 1: Hidden layer structure of LSTM

In Figurel, h is the calculation module of the
model, and C is the internal state of the model. LSTM
has the advantage of processing long time series data.
Because of the existence of h and C , these modules
work together at every moment of model operation to
process and save key variables such as current input values,
previous output values, previous cell states, current output,
and current cell states. This mechanism ensures that
information can be stored and transmitted in the model for
a long time, effectively solving the problem of long-term
dependencies. In the LSTM hidden layer, there are also
input gates (1), forget gates ( T ), and output gates (0).
The mathematical expression of the LSTM’s f is shown
in formula (1) [11].

g(x)=oWx+b (1)

In formula (1), W is the weight vector, b is the
bias term, and O is the sigmoid function. In the
architecture of LSTM, the output gate mainly extracts and
selects key information from the cell state as the current
output value, ensuring that only useful information for the
current task is transmitted while shielding irrelevant or
noisy information. During the speech enhancement
process, the output gate can dynamically adjust the
intensity and importance of the output information. The
core mechanism of LSTM covers the forward propagation
of information, the backpropagation of errors, and the
process of optimizing network parameters through
gradient descent. The forward propagation of information
is similar to that of traditional neural networks, using the
interaction between neurons for calculation and passing
the results. The input gate calculation of the LSTM hidden
layer is represented as shown in formula (2).

i =oW x[h;,x]+b @

In formula (2), ht_1 is the output value of the upper
layer. Formula (2) can dynamically adjust the model's
response to input information in speech enhancement,
selectively introducing useful speech features and
suppressing unnecessary noise. The input unit state at this
moment can be obtained through formula (2), and its
expression is shown in formula (3).

¢, =tanhW, x[h ,,x]+b. (3

In formula (3), C, is the element state of the
previous layer model, and tanh is the hyperbolic
tangent function. Formula (3) ensures that the model can
effectively store and manage speech feature information in
long time series, enhancing its ability to handle long-term
dependencies. The state of the current layer model can be
represented by formula (4).

G =0 CG,+GC 'it “

Formula (4) selectively outputs key information to
ensure that only the information useful for the current task
is conveyed. The output gate expression of the LSTM
model is shown in formula (5).

o =oW, x[h_;, x]+b, 5

In formula (5), O, represents the model's output
gate. Based on the above model construction, the specific
structure of LSTM is shown in Figure 2.
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Figure 2: Unit Structure of LSTM

In Figure 2, the input gate (j ) plays a crucial role in
selectively introducing the current input information into
the cell state. It can effectively filter out unnecessary noise
information and only retain signals that are useful for
speech enhancement. The main function of the forget gate
( ) in the model is to determine which information in the
cell state needs to be forgotten or retained. For processing
speech signals with long time series data, it can prevent old
information from interfering with the current processing
and ensure that the model focuses on important current
information. The model can represent the mathematical
formula of the final result of LSTM based on the output
gate and the current unit state, as shown in formula (6).

W ot Xt W 0%,

In formula (8), E is the loss function. Therefore,
after obtaining the overall error, the network will perform
the backpropagation step of the error. During this process,
errors will be dispersed to various neural units based on
existing weights and thresholds, and then the gradient
descent strategy will be used to adjust the weights and
perform forward propagation to generate outputs.

2.2 Construction of progressive language
enhancement model based on LSTM

The LSTM-based speech signal enhancement model
constructed above has significant advantages in dealing
with long-term dependencies and noise filtering, but the
model still has some shortcomings. For example, the
computational complexity of the model is high, resource
consumption is high, and gradients are prone to vanishing
and exploding [13-15]. To address the limitations of the
above model, this study introduces a progressive strategy
into LSTM, with the main objective of enhancing speech
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h =0, -tanhc, (6

In formula (6), ht is the final result of the model.
Formula (6) can ensure the purity and clarity of the output
signal by generating an enhanced speech signal. In the
training process of LSTM, error backpropagation, and
gradient descent are key steps to correct and optimize
network weights. Error backpropagation can calculate the
gradient of each parameter in the model. For LSTM, this
process unfolds over time, calculating gradients at each
past time step to ensure that the model can learn and adjust
parameters to minimize errors. In speech enhancement
models, this means that the model can gradually learn how
to effectively filter noise and enhance speech signals.
Gradient descent adjusts the parameters of the model based
on the gradient information obtained from error
backpropagation. By continuously iterating and updating
parameters, the gradient descent algorithm gradually
approaches the optimal solution, minimizing the error
function of the model. The principle of error transmission
can be found in formula (7) [12].

t-1
§'<T - HéJ jWoh + 5-fr,thh + é‘iThWih + 5; chh. @)
j=k

In formula (7), 5; is the propagation error. The
calculation of its gradient descent is determined based on
the sum of the gradients of the “input gate”, “forget gate”
and “output gate” in the model at this moment. The weight
gradient formulas of each gate are shown in formula (8).
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signals layer by layer. Figure 3 shows the basic idea of
progressive speech enhancement.

In Figure 3, the kernel of progressive speech
enhancement starts with simple tasks and gradually learns
and solves more complex problems. This method is
particularly suitable for the task of converting noisy speech
signals into clear speech. The specific implementation
method is to decompose the entire problem into multiple
small steps by increasing the SNR. Each small step focuses
on improving the SNR of the input speech. Specifically,
under low SNR conditions, the model first focuses on
removing background noise, improving the basic structure
of speech signals, and gradually enhancing the
comprehensibility of signals at various stages. With the
gradual improvement of SNR, the model can identify and
enhance speech features more accurately in the subsequent
processing stage, thereby achieving higher-quality speech
signal output. This study introduces a progressive strategy
into the speech enhancement model, and its structure is
shown in Figure 4.
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Figure 3 Basic Strategy Diagram of Progressive Speech Enhancement
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Figure 4: Speech enhancement structure based on progressive strategy

In Figure 4, the model achieves step-by-step
optimization and enhancement of noisy speech signals
through a multi-level and gradual enhancement method.
The input layer receives noisy speech signals and performs
preliminary preprocessing. The hidden layer extracts and
processes speech features layer by layer, and enhances
feature representation ability through nonlinear activation
functions. The intermediate target layer learns an
intermediate target with a higher SNR than the output of
the last layer, gradually increasing the SNR. The target
layer uses a linear activation function to generate the final
enhanced speech signal. This study uses a weighted multi-
objective learning objective function to train the network,
as shown in formula (9) [16-17].
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In formula (9), e is the objective function. K

represents the number of hidden layers. ¢ denotes the

estimated value of the target. _« is the learning objective.

U is the number of samples for network structure

updates. B is the error weight coefficient. o is a

noisy speech feature. ok-1 A PLy is the target layer
% AO)

- (

network function. APt is a paranoid vector.
k

In the above model structure, if the amount of intermediate
target layers gradually increases, the performance of the
model may be negatively affected. Meanwhile, the quality
of effective information output by the model will decrease

as the number of learning objectives increases. Therefore,
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this study further adopts the DC approach to improve the
model and obtained the LSTM-PLDC. Figure 5 shows the
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LSTM-PLDC model structure.
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Figure 5: Speech enhancement structure based on LSTM-PLDC

In Figure 5, the design of the target layer aims to
gradually optimize the SNR by combining the features
output by the input layer and each intermediate layer. At
each learning stage, the target layer extracts key
information from the output of the previous layer and
learns to generate intermediate targets with higher SNR.
This mechanism enables the model to gradually improve
the quality of speech signals in stages, making each target
layer a performance measure and a key link in achieving
effective  information transmission and  gradual
enhancement, ultimately improving the clarity and
comprehensibility of the overall speech signal. When
learning intermediate targets, the model concatenates the
original input and the estimated results of each target
together, and then inputs them into a sub network. This
method enables the sub network to simultaneously obtain
the features of the initial noisy speech and the estimated
features of speech with different SNRs. Due to the
involvement of multiple learning objectives in DC's
progressive learning, this study adopts a weighted
Minimum Mean Square Error (MMSE) criterion as the
objective function. The training and updating of the model
are shown in formula (10).

K
PLD PLD
€ = z ﬁkek
k=1

gPLD _li” PLD(
< TU e Hy

RO, RE LR

u? tu’t

2
PLD k
Ak ) - Xu 2

(10)

Formula (10) uses weighted MMSE criterion for
multi-objective optimization to ensure that the model can
effectively enhance speech signals under different SNR
conditions. When the model processes different SNRs,
speech distortion may occur due to excessive noise
reduction. Other intermediate targets close to the target
layer have lower SNR and can better preserve speech. This
study uses formula (11) to solve the above phenomenon.

K | oK (11)
X+ %! K =2
2 = 2
n gK 4 gK-1 | gK-2
U + u + U K>3
3 >

By using formula (11), the model can learn speech
features with different SNRs through multiple learning
objectives, thereby better balancing denoising and speech
feature preservation. The implementation process based on
the LSTM-PLDC model proposed mainly includes the
input layer receiving noisy speech signals and performing
preliminary preprocessing operations for subsequent
feature extraction. The hidden layer extracts and processes
speech features layer by layer, and enhances feature
representation ability through nonlinear activation
functions. Each intermediate target layer learns an
intermediate target with a higher SNR than the output of
the previous layer, gradually increasing the SNR. By
training and updating the model, the loss of each
intermediate objective is calculated, and the total objective
function is weighted and summed based on the weight
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coefficients. According to the overall objective function, to
backpropagate and update the model parameters to
gradually optimize the model and achieve the best speech
enhancement effect.

3 Results

3.1 Training analysis based on progressive
language enhancement model

To verify the model’s performance, the study adopts
the TIMIT corpus for model training and testing. The
TIMIT speech dataset has diverse speech samples and
high-quality annotations, making it an ideal choice for
evaluating speech enhancement effects. During the data
preprocessing process, the audio file is first loaded and
converted into a unified sampling rate. Then, the audio
signal is subjected to frame segmentation and feature
extraction, and the MEL frequency cepstral coefficient is
adopted as the input feature. When simulating noise
conditions in a real environment, various background
noises are mixed with the target speech based on different
SNRs. The processed data are divided into the training set,
the wvalidation set, and the test set to ensure the
generalization ability of the model. Model training
involves designing an architecture based on LSTM,
combining dense connections and progressive learning
mechanisms, using weighted MMES criterion as the loss
function, and updating weights using Adam optimizer.
During the training process, the early stop strategy is
applied to prevent overfitting and ensure the performance
optimization of the model on the validation set. 1660
sentences are randomly selected from the TIMIT corpus as
the target speech, and the target speech is divided into
training speech and validation speech in an 8:2 ratio. Then,
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the target speech is mixed with various types of noise
based on different SNRs, including -5dB, 0dB, 5dB, and
10dB. The selection of mixed noise comes from five types
of noise in noise -92 dB, including noisy noise, factory
noise, spectral noise, vehicle noise, and horn noise. This
study uses Perceived Evaluation of Speech Quality
(PESQ), Short-Time Objective Intelligibility (STOI),
Source-to-Distortion Ratio (SDR), and Word Error Rate
(WER) as evaluation metrics for the model.

To ensure the optimal performance of the LSTM-
PLDC model, a series of strategies are adopted in the
selection and tuning process of hyperparameters. Firstly,
the initial setting of the learning rate is 0.001, and the
learning rate attenuation method is adopted during the
training process. Specifically, every 10 training cycles
(Epochs), the learning rate is reduced to 90% of the
original to promote the model’s convergence. The Dropout
rate is set to 0.5. This is to effectively prevent the
overfitting phenomenon of the model and ensure the
generalization ability of the network by randomly
discarding some neurons. The number of layers of the
model is set to 6 LSTM units to balance the model depth
and computational complexity, while maintaining a good
capture ability for long-term dependencies. The batch size
is selected as 64 to enable the effective utilization of
diverse data in each iteration while ensuring the stability
of the training process. The dense connection part adopts
the “DenseNet” structure, which specifically connects the
output features of each layer with the features of the
previous layer, effectively enhancing information flow and
feature reuse. The initialization method used is He
initialization, which can effectively avoid the problems of
gradient vanishing and explosion. In LSTM-PLDC,
different learning objectives have a certain impact, as
displayed in Figure 6.
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Figure 6: The impact of the number of target learning layers on the model
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Figs. 6 (a) - (d) show the impact of the learning target
layer on the model under SNR environments of -5dB, 0dB,
5dB, and 10dB. In Figure 6 (a), under the condition of -
5dB, when the Learning target layer is 2, the differences
among LSTM, Long Short-Term Memory-Progressive
Learning (LSTM-PL), and LSTM-PLDC are relatively
small. The STOI values of the three models are all around
0.715. When the learning objective layer gradually
increases to 4, the STOI value of LSTM-PLDC reaches
0.740, the STOI value of LSTM-PL reaches 0.722, and the
STOI value of LSTM is 0.693. In Figure 6 (b), under the
condition of 0dB, the three algorithms achieve the best
STOI value when the learning target layer is 5. Among
them, the STOI value of LSTM-PLDC is 0.853, LSTM-PL
is 0.846, and LSTM is 0.828. In Figure 6 (c), under the
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condition of 5db, the optimal STOI value for LSTM-PLDC
is 0.918, LSTM-PL reaches 0.915, and LSTM is 0.903. In
Figure 6 (d), the optimal STOI values under 10db
conditions are 0.956 for LSTM-PLDC, 0.949 for LSTM-
PL, and 0.948 for LSTM. This indicates that increasing the
number of learning target layers can improve the short-
term objective clarity of the model, and LSTM-PLDC
exhibits the best clarity improvement effect under various
SNR conditions. This also indicates that the LSTM-PLDC
model has stronger robustness and higher speech quality
when dealing with noisy speech. Similarly, the hidden
layer structure of a model can also affect its performance.
This study analyzes the number of different hidden layers
and nodes, as shown in Figure 7.

— 3L-512C —— 3L-1024C
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Figure 7: Performance impact of model structure

In Figure 7, the quantity of hidden layers is divided
into 3, 6, and 9 layers, with 513 and 1024 nodes
respectively. Under the same number of nodes and the
same number of hidden layers, the higher the number of
hidden layers and nodes, the lower the WER value of the
model. Among them, when the number of hidden layers is
9 and the number of nodes is 1024, the WER of the model
is about 24.82%. Compared to the model structure with 3

hidden layers and 513 nodes, its WER decreased by 3.09%.

Figure 7 shows that increasing the number of hidden layers

and nodes has a positive impact on model performance,
and the combination of the two has a more significant
effect. When designing a speech model, increasing the
number of hidden layers and nodes appropriately can
significantly improve the performance, reduce WER, and
thus improve the accuracy of speech recognition. To
further analyze the model’s performance, this study trained
different models on speech and obtained comparative
results of the performance of different models, as shown in
Table 2.

Table 2: Performance of models with different structures under training speech

Model structure Model size (M) WER (%) Running time (s)
3L-512C 19.1 28.02 372
6L-512C 28.5 26.97 985
9L-512C 37.2 25.85 936

3L-1024C 46.3 25.88 948
6L-1024C 73.3 25.34 1769
9L-1024C 112.1 24.87 2051
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In Table 2, the “L” in the model structure represents
the number of hidden layers. “C” represents the number of
nodes. When the hidden layers increase from 3 to 9, with
512 nodes, WER decreases from 28.02% to 25.85%, and
runtime increases from 372 s to 936 s. Under 1,024 nodes,
WER decreases from 25.88% to 24.87%, and runtime
increases from 948 s to 2,051 s. When the nodes increase
from 512 to 1024: under 3 hidden layers, the model size
increases from 19.1 M to 46.3 M, and under 9 hidden
layers, it increases from 37.2 M to 112.1 M. This indicates
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that increasing the number of hidden layers helps to reduce
WER and improve model performance, but also increases
computation time and resource requirements. To evaluate
the impact of each model component on performance, an
ablation study is conducted to compare three different
models: standard LSTM, LSTM-PL, and LSTM-PLDC.
The study evaluates the model through performance
indicators (STOI, SDR and PESQ) under multiple SNR
conditions, and the results are shown in Table 3.

Table 3: Ablation experiments of the model

Evaluation index LSTM LSTM-PL LSTM-PLDC
-5dB STOI 0.678 0.811 0.930
0dB STOI 0.812 0.846 0.957
5dB STOI 0.885 0.915 0.979
10dB STOI 0.914 0.949 0.986
-5dB SDR 231 3.24 4.12
0dB SDR 5.14 6.88 8.67
5dB SDR 7.89 9.22 11.45
10dB SDR 10.67 13.24 14.81
-5dB PESQ 1.77 1.80 1.86
0dB PESQ 241 2.55 2.85
5dB PESQ 2.85 2.92 3.10
10dB PESQ 3.01 3.06 3.13

Table 3 presents the results of the ablation study,
which highlights the performance enhancements achieved
by integrating progressive learning and dense connection
strategies into the model. From the standard LSTM model
to LSTM-PL and ultimately to LSTM-PLDC, the
evaluation metrics (STOI, SDR, and PESQ) show a clear
improvement trend under all SNR conditions. For instance,
in the -5dB SNR condition, STOI scores improves from
0.678 with the standard LSTM to 0.930 with the LSTM-
PLDC model, indicating a significant enhancement in
speech intelligibility. Similar trends are observed in SDR
and PESQ scores, with LSTM-PLDC achieving a
maximum SDR of 4.12 and a PESQ score of 1.86 under
the same -5dB condition. These results underscore the
importance of the added components in refining the
model's ability to enhance speech quality and intelligibility

in noisy environments, ultimately showing that each
enhancement contributes substantially to overall
performance.

3.2 Performance testing based on
progressive language enhancement
model

The research model obtains a good model structure in
training speech, and now the performance of the model is
analyzed by verifying the speech. This study uses Time-
Delay Neural Network (TDNN) for comparative analysis
[18]. Figure 8 shows the average STOI of each model on
five types of noise in the test set.
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Figure 8: STOI results of each model in noise
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LSTM-PLDC has a 4.1% improvement compared to
TDNN in the lowest SNR environment. Therefore, LSTM-
PLDC has more effective noise suppression and speech
enhancement effects in the model. Figure 9 shows the SDR

Figs. 8 (a) -8 (d) show the average STOI values in
SNR environments of -5dB, 0dB, 5dB, and 10dB.
Regarding the results of the average STOI from -5dB to
10dB: LSTM increases from 0.678 to 0.930, LSTM-PL
increases from 0.811 to 0.851, TDNN increases from 0.889  of the model.

t0 0.919, and LSTM-PLDC increases from -0.930 to 0.957.

LSTM
LSTM-PL
EH TDNN
LSTM-PLDC

SDR

-5dB 5dB

SNR

Figure 9: SDR results of four models in noise

than TDNN, 1.57 higher at 10 dB, and has the highest SDR
value at all noise levels. Overall, LSTM-PLDC still
exhibits good performance in low SNR environments,
indicating that the model has strong resistance to noise
interference. Moreover, LSTM-PLDC can more accurately

under low noise to 13.24 under high noise, indicating that reconstruct speech signals and reduce noise components.
TDNN may have specific advantages in extracting and Figure 10 shows the PESQ of each model on different

preserving speech signals. LSTM-PLDC is 0.28 higher types of noise in the test set.

Figure 9 shows the average SDR values in SNR
environments of -5 dB, 0 dB, 5 dB, and 10 dB. The
performance of LSTM gradually improves throughout the
entire noise level range, from 2.31 at -5 dB to 10.67 at 10
dB. TDNN further increases the SDR value from 3.24
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Figure 10: PESQ results of each model in noise

In Figure 10, the PESQ score increases from 1.77 to
3.01 in LSTM, from 1.70 to 3.06 in LSTM-PL, from 1.76
to 3.10 in TDNN, and from -1.86 to 3.13 in LSTM-PLDC
in a noisy environment ranging from -5dB to 10dB. The
performance of the LSTM-PLDC is superior to other

100
90
80
70
60
50
40
30
20
10

WER (%)

models under -5dB noise conditions, indicating that the
model effectively improves signal quality and reduces
distortion. In the validation set, the WERs of each model
are shown in Figure 11.
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Figure 11: WERs of various models in the validation set

In Figure 11, the WER of LSTM is 36.45%, and that
of the LSTM-PL is 30.33%. Compared to LSTM, LSTM-
PL shows a significant decrease in WER, indicating that
the progressive improvement method can effectively
enhance speech enhancement performance. The WER of
TDNN is 29.78%, while that of LSTM-PLDC is 27.31%.
The WER of LSTM-PLDC further decreased by 3.02%
compared to LSTM-PL, indicating that the progressive
model using DC has better speech enhancement effect.
Compared with TDNN model, LSTM-PLDC still has
some advantages, which indicates that the improved model
is feasible and progressiveness. To evaluate the robustness
of the LSTM-PLDC model under real-world noise

conditions, the study compares it with multiple baseline
models to verify the model’s validity. The noise datasets
selected are CHiME and Aurora. Among them, the CHiME
dataset is a noise dataset used for speech recognition,
containing speech samples in different environments, such
as homes, coffee shops, etc. The Aurora dataset is
specifically designed to test the performance of speech
recognition systems under various noise conditions,
including different types of white noise and other
environmental noises. The baseline models for comparison
include Statistical Model-based Enhanced Noise Filtering
(ENF), Wiener Filter (WF), DNN, Convolutional Neural
Network (CNN), TDNN, and standard LSTM. The
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experimental indicators adopted are STOI, SDR, PESQ,
and MMSE. The performance comparison results of the

N. Liu

model under real-world noise conditions are shown in
Table 4.

Table 4: Performance verification of the model under real-world noise conditions

LSTM- LSTM-

Model LSTM PL PLDC DNN CNN TDNN WF ENF
-5dB STOI 0.670 0.810 0.930 0.700 0.720 0.710 0.650 0.680
0dB STOI 0.790 0.826 0.950 0.783 0.795 0.810 0.760 0.775
5dB STOI 0.870 0.895 0.980 0.890 0.860 0.900 0.830 0.855
10dB STOI 0.900 0.940 0.990 0.910 0.880 0.920 0.850 0.880
-5dB SDR 2.100 3.100 4.120 2.550 2.800 2.650 1.900 2.200
0dB SDR 4.500 5.790 8.100 5.120 5.400 5.900 4.000 4.400
5dB SDR 6.810 8.100 11.300 7.670 8.000 8.200 6.200 7.300
10dB SDR 9.500 12.000 14.000 10.500 11.000 11.800 8.800 9.900

-5dB

PESQ 1.700 1.800 1.870 1.750 1.760 1.790 1.600 1.730
0dB PESQ 2.200 2.400 2.900 2.300 2.340 2.360 2.100 2.250
5dB PESQ 2.600 2.850 3.100 2.750 2.800 2.880 2.500 2.700

éggg 2.850 3.010 3.120 3.000 3.050 3.020 2.700 2.950

-5dB

MMSE 0.045 0.042 0.038 0.043 0.041 0.044 0.049 0.046

0dB

MMSE 0.035 0.032 0.027 0.037 0.033 0.036 0.040 0.038

5dB

MMSE 0.028 0.025 0.020 0.026 0.028 0.024 0.030 0.029

10dB

MMSE 0.020 0.018 0.015 0.022 0.019 0.021 0.027 0.024

Table 4 presents the performance verification results
of the LSTM-PLDC model under real-world noise
conditions, with multiple baseline models for comparison.
Under all the tested SNR conditions, the LSTM-PLDC
model performs well in the STOI, SDR, and PESQ
indicators. Especially under the condition of -5dB, its
STOI reaches 0.930, and the result is higher than that of
other models. Meanwhile, the SDR and PESQ scores of
LSTM-PLDC are 4.120 and 1.870 under the condition of -
5dB, both demonstrating superior noise reduction and
speech quality performance. Compared with the traditional

model, LSTM-PLDC reduces the MMSE value compared
with other baseline models under all SNRs, indicating its
higher accuracy in signal reconstruction. These results
indicate that LSTM-PLDC has stronger robustness and
effectiveness in adapting to real-world environmental
noise, fully verifying its successful application in speech
enhancement tasks. To enhance the statistical validation of
the results, the study conducts a statistical significance test
and clarifies the trade-off between model complexity and
performance. The specific results are shown in Table 5.

Table 5: Trade-offs between model complexity and performance

Model structure LSTM LSTM-PL LSTM- DNN TDNN
PLDC

-5dB STOI 0.67 0.81 0.93 0.7 0.71

p value / 0.003 <0.001 0.005 0.004

95% confidence interval (lower limit) / 0.794 0.916 0.679 0.689
95% confidence interval (upper limit) / 0.826 0.944 0.721 0.731

Number of hidden layers 2 4 6 3 5
Computational complexity (number of 1500 3000 5500 2900 4800
parameters)
Performance improvement (%) / 20.9 14.8 4.5 55
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Table 5 shows the trade-off results of different model
structures in terms of performance and complexity. Under
the condition of a -5dB SNR, the STOI of the LSTM-PL
model reaches 0.81, which is significantly increased by
20.9% compared with the standard LSTM, and its p-value
is 0.003, indicating that this improvement is statistically
significant. The LSTM-PLDC further increases the STOI
to 0.93, and at the same time shows a p-value of <0.001.
Moreover, the lower and upper limits of the confidence
interval are 0.916 and 0.944, demonstrating the robustness
of the model under noisy conditions. It is worth noting that
the hidden layer number of LSTM-PLDC is 6 layers and
the number of parameters reaches 5,500, showing a
relatively high computational complexity. The number of
parameters for DNN and TDNN models is 2200 and 4800,
and the performance improvement is relatively limited.
This result highlights the need for a balance between
model complexity and performance. Although adding a
hidden layer enhances the speech enhancement effect, it
also brings higher demands for computing resources.

4 Discussion

The LSTM-PLDC model performed well in the
speech signal enhancement task, especially with certain
improvements in robustness and speech quality. The
comparison with the relevant literature summary table
clearly showed the advantages and disadvantages of the
model. Firstly, in terms of STOI, the LSTM-PLDC model
achieved 0.930 SNR at -5 dB, which was significantly
higher than the result reported in Reference [6]. However,
the STOI performance of the unsupervised learning
method in Reference [7] under the same conditions was
more limited. The main difference lies in the combination
of progressive learning strategy and dense connection
architecture in the LSTM-PLDC model, which effectively
enhances the ability to extract useful features from speech
signals and filters out background noise well. This design
enables the model to maintain the clarity of speech in a
high-noise background and has stronger adaptability in
dynamic scenes, showing higher robustness compared to
traditional methods. Furthermore, SDR is an important
indicator for evaluating the effect of speech enhancement.
In the experiments of the research, the SDR of the LSTM-
PLDC model increased from 2.31 at -5 dB to 14.81 at 10
dB, which was superior to the relevant results in Reference
[5]. This indicates that LSTM-PLDC performs
outstandingly in the ability to effectively suppress noise
and reconstruct clear signals. However, due to the
characteristics of unsupervised learning, the method in
Reference [7] may not be able to fully capture the signal
uncertainty under certain noise conditions, resulting in the
restoration effect not reaching the best. This result
highlights the competitive advantage of LSTM-PLDC in
complex noise environments. Priyanka S S et al. achieved
speech enhancement through DNNs and CNNs. These
models typically have a fixed feedforward structure and
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can also be trained to classify speech with different SNRs.
LSTM-PLDC has the characteristics of progressive
learning and dense connections, making it more suitable
for sequential data and dynamically changing background
noise [19]. Garg A optimized the structure of the LSTM
model by using the attention mechanism and conducted
speech recognition analysis on the optimized model,
achieving certain results in the results [20]. However,
compared with the LSTM-PLDC model, there is still a
certain gap in its speech enhancement performance.

Although the LSTM-PLDC model performs well in
multiple parameters, it also has some limitations at the
same time. Firstly, due to its high model complexity, large
computational resources, and high time overhead, its
practical application is limited to a certain extent,
especially under resource constraints. Although a higher
number of hidden layers and nodes can reduce the power,
it also brings a certain computational burden. Furthermore,
although the model performs well in most noisy
environments, it still faces challenges at extreme noise
levels, such as extremely low SNRs or very complex noise
backgrounds. This is because when the background noise
intensity is too high, the model may encounter information
loss, leading to difficulties in extracting and restoring
speech features, thereby affecting the final enhancement
effect.

5 Conclusion

In response to the limitations of traditional LSTM
models in processing long time series speech signals, this
study constructed a progressive language signal
enhancement model based on LSTM and obtained the
LSTM-PLDC model by introducing DC. Through
comparative experiments, the proposed LSTM-PLDC had
significant  advantages in  speech  enhancement
performance compared to LSTM, LSTM-PL, and TDNN.
Experiments have shown that LSTM-PLDC had
significant robustness in processing noisy speech in low
SNR environments and could more accurately reconstruct
speech signals, reducing the impact of noise interference.
Although the LSTM-PLDC model has demonstrated
superior speech enhancement performance in various
noise environments, there are still some limitations. Firstly,
the complexity of the model leads to a high demand for
computing resources and training time, which may limit its
application in a resource-constrained environment.
Furthermore, although it performs well in most common
noise environments, the robustness and generalization
ability of the model still need to be further verified under
extreme noise conditions or in the absence of noise types.
Future research can focus on optimizing the model
architecture to reduce computational complexity.
Meanwhile, transfer learning and unsupervised learning
techniques can be utilized to enhance the model's
adaptability to new noisy environments. Furthermore,
exploring the combination of context information and
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higher-level audio feature extraction techniques may
further enhance the speech enhancement effect and
promote progress in this field.

References

[1] Tesch K, Gerkmann T. Insights into deep non-linear
filters for improved multi-channel speech
enhancement. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 2022, 31(1): 563-
575. https://doi.org/10.1109/TASLP.2022.3221046

[2] Fang Y, Wang Y. Cross modal sentiment analysis of
image text fusion based on Bi LSTM and B-CNN.
Informatica, 2024, 48(21): 95-111.
https://doi.org/10.31449/inf.v48i21.6767

[3] Yan X, Yao L, Zhou D. Optimizing Tourism Service
Quality in 5G Multimedia Environments Using Deep
Learning: A Model-Based Empirical Study.
Informatica, 2024, 48(22): 147-161.
https://doi.org/10.31449/inf.v48i22.6806

[4] Ochieng P. Deep neural network techniques for
monaural speech enhancement and separation: state
of the art analysis. Artificial Intelligence Review,
2023, 56(Suppl 3): 3651-3703.
https://doi.org/10.48550/arXiv.2212.00369

[5] Richter J, Welker S, Lemercier J M, Lay B, Gerkmann
T. Speech enhancement and dereverberation with
diffusion-based generative models. IEEE/ACM
Transactions on Audio, Speech, and Language
Processing, 2023, 31(2): 2351-2364.
https://doi.org/10.1109/TASLP.2023.3285241

[6] Zhang Q, Qian X, Ni Z, Nicolson A, Ambikairajah E,
Li H. A time-frequency attention module for neural
speech enhancement. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 2022,
31(1): 462-475.
https://doi.org/10.1109/TASLP.2022.3225649

[7] Bie X, Leglaive S, Alameda-Pineda X, Girin L.
Unsupervised speech enhancement using dynamical
variational autoencoders. IEEE/ACM Transactions
on Audio, Speech, and Language Processing, 2022,
30(3): 2993-3007.
https://doi.org/10.48550/arXiv.2106.12271

[8] Wang J, Saleem N, Gunawan T S. Towards efficient
recurrent architectures: A deep LSTM neural network
applied to speech enhancement and recognition.
Cognitive Computation, 2024, 16(3): 1221-1236.
https://doi.org/10.1007/s12559-024-10288-y

[9] Huang P, Wu Y. Teacher-student training approach
using an adaptive gain mask for Istm-based speech
enhancement in the airborne noise environment.
Chinese Journal of Electronics, 2023, 32(4): 882-895.
https://doi.org/10.23919/cje.2022.00.307

[10] Pandey A, Wang D L. Self-attending RNN for speech
enhancement to improve cross-corpus generalization.
IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 2022, 30(1): 1374-1385.

N. Liu

https://doi.org/10.48550/arXiv.2105.12831

[11] Zhu Q S, Zhang J, Zhang Z Q, et al. A joint speech
enhancement and self-supervised representation
learning framework for noise-robust speech
recognition. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 2023, 31(1):
1927-1939.
https://doi.org/10.1109/TASLP.2023.3275033

[12] Gupta A, Purwar A. Speech refinement using Bi-
LSTM and improved spectral clustering in speaker
diarization. Multimedia Tools and Applications, 2024,
83(18): 54433-54448.
https://doi.org/10.1007/s11042-023-17017-x

[13] Chan D Y, Wang J F, Chin H T. A new speaker-
diarization technology with denoising spectral-LSTM
for online automatic multi-dialogue recording.
Multimedia Tools and Applications, 2024, 83(15):
45407-45422.  https://doi.org/10.1007/s11042-023-
17283-9

[14] Pashaian M, Seyedin S, Ahadi S M. A novel jointly
optimized cooperative DAE-DNN approach based on
a new multi-target step-wise learning for speech
enhancement. IEEE Access, 2023, 11(1): 21669-
21685.
https://doi.org/10.1109/ACCESS.2023.3250820

[15] Abdelhamid A A, El-Kenawy E S M, Alotaibi B,

Amer G, Abdelkader M, lbrahim A, Eid M. Robust

speech emotion recognition using CNN+ LSTM

based on stochastic fractal search optimization

algorithm. IEEE Access, 2022, 10: 49265-49284.

https://doi.org/10.1109/ACCESS.2022.3172954

Parvathala V, Andhavarapu S, Pamisetty G, et al.

Neural comb filtering using sliding window attention

network for speech enhancement. Circuits, Systems,

and Signal Processing, 2023, 42(1): 322-343.

https://doi.org/10.1007/s00034-022-02123-2

[17] Wang H, Zhang X, Wang D L. Fusing bone-
conduction and air-conduction sensors for complex-

[16]

domain  speech  enhancement. IEEE/ACM
Transactions on Audio, Speech, and Language
Processing, 2022, 30(2): 3134-3143.

https://doi.org/10.1109/TASLP.2022.3209943

[18] Tiwari M, Verma D K. Gender recognition in text-
independent speaker identification using MFCC,
spectrogram, Bi-LSTM, and rat swarm evolutionary
algorithm optimization. International Journal of
Speech  Technology, 2025, 28(1): 245-260.
https://doi.org/10.1007/s10772-025-10176-2

[19] Priyanka S S, Kumar T K. Multi-channel speech

enhancement using early and late fusion
convolutional neural networks. Signal, Image and
Video  Processing, 2023, 17(4): 973-979.

https://doi.org/10.1007/s11760-022-02301-4

[20] Garg A. Speech enhancement using long short term
memory with trained speech features and adaptive
wiener filter. Multimedia Tools and Applications,
2023, 82(3): 3647-3675.
https://doi.org/10.1007/s11042-022-13302-3



