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Aiming at the deficiencies of traditional speech signal enhancement models in dealing with long-term 

dependencies and noise filtering, an application speech signal enhancement model based on progressive 

learning and dense connection strategies is proposed. This method takes the long short-term memory 

network structure as the core and realizes the gradual enhancement of noisy speech through layer-by-

layer learning and processing. The experimental results showed that this model exhibited excellent 

enhancement performance in different signal-to-noise ratio environments. In a -5dB signal-to-noise ratio 

environment, the short-term objective clarity of the research method reached 0.930, which was 4.1% 

higher than that of delayed neural networks. Moreover, under the 10dB condition, the short-term objective 

clarity score further increased to 0.957. The distortion signal ratio of the source signal has increased 

from 2.31 at -5dB to 14.81 at 10dB, indicating the model's ability in noise suppression and signal 

reconstruction. The assessment score of speech quality perception increased from 1.86 at -5dB to 3.13 at 

10dB, and the word error rate decreased to 27.31%, which was 2.47% lower than that of the classical 

long short-term memory network. The research results show that the proposed model has strong 

robustness and a good speech enhancement effect when dealing with speech signals with a low signal-to-

noise ratio, providing a new solution for the field of applied language processing. 

Povzetek: Predlagan je pristop za zmanjšanje hrupa v govoru,  ki združuje postopno učenje z gosto 

povezanimi rekurentnimi mrežami dolgoročnega spomina; model po plasteh čisti signal, ohranja dolge 

odvisnosti in krepi razumljivost za jezikovne sisteme. 

 

1 Introduction 

The popularity of mobile devices and smart homes 

has made the quality of speech enhancement signals more 

important for user experience. At the same time, people's 

dependence on applied language is becoming increasingly 

severe. However, there are many types of noise in real life, 

and different types of noise inevitably affect the clarity of 

speech signals, including noise from automobiles and 

industries [1]. This noise affects the clarity of speech 

signals and poses a challenge to the long-term dependence 

of speech recognition systems. The long-term dependence 

problem makes it difficult for the model to effectively 

extract useful information when dealing with speech 

signals disturbed by noise, thereby reducing the accuracy 

and user experience of the final speech interaction. High-

quality speech signals are crucial for ensuring the accuracy 

of speech recognition and the effectiveness of user 

interaction. Therefore, efficient speech enhancement 

technology is one of the key technologies for the  

development of applied languages [2-3]. Ochieng P 

reviewed the Deep Neural Network (DNN) techniques 

currently used for speech enhancement and separation and 

conducted a comprehensive analysis model training. DNN 

had feasibility in speech signal enhancement [4]. Richter J 

et al. proposed a diffusion process based on stochastic 

differential equations and reversed the process from a 

mixture of noisy speech and Gaussian noise. Then, they 

made adjustments to the network architecture to improve 

speech enhancement performance. Finally, the experiment 

verified that the method has a good speech enhancement 

effect [5]. Zhang Q et al. used time frame attention and 

frequency channel attention to explicitly generate two-

dimensional attention maps with significant T-F speech 

distributions based on positional information. The 

effectiveness of this model as a front-end for downstream 

speech recognition tasks has been demonstrated, and it 

significantly improved the system's robustness to noise 

conditions [6]. Bie X et al. designed an unsupervised 

speech enhancement algorithm. This algorithm combined 

the prior training of DVAE speech based on non-negative 

matrix factorization with a noise model, and derived a 

Variational Expectation Maximization (VEM) algorithm 

for speech enhancement, achieving good results [7]. The 

specific summary of the above research is shown in Table 

1. 
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Table 1: Literature summary table 

References Research method Research advantages Research disadvantages 

Reference [4] 

DNN technology is used for 

speech enhancement and 

separation 

Focus on a comprehensive 

review and applicability 

assessment of deep learning 

technologies 

It is mainly a retrospective 

study, lacking specific 

experimental verification and 

performance evaluation 

Reference [5] 

Diffusion process method 

based on stochastic differential 

equations 

Improving the performance of 

voice enhancement by 

enhancing the network 

architecture is innovative 

Complex mathematical models 

may lead to difficulties in the 

implementation and 

understanding of the models 

Reference [6] 

The combination of attention 

to the time frame and the 

frequency channel 

The generation of two-

dimensional attention maps 

using position information 

improves the robustness under 

noisy conditions 

The need for a complex 

attention mechanism may 

make the training process of 

the model complicated 

Reference [7] 

Unsupervised speech 

enhancement algorithm, 

combining non-negative 

matrix factorization and VEM 

algorithm 

It is applicable to various noisy 

environments and has a good 

enhancement effect 

The accuracy of unsupervised 

learning is limited by the type 

of noise and may not be able to 

handle all noise situations 

Although there has been some progress in speech 

signal enhancement research in recent years, there are still 

many shortcomings, especially in terms of robustness and 

long-term dependence when dealing with noisy 

environments. Some of the current research focuses on the 

use of DNNs or specific mathematical models for speech 

signal enhancement. However, when confronted with 

extremely high noise environments, such as low Signal-

To-Noise Ratios (SNR) or complex noise types, the 

robustness of these models appears insufficient, resulting 

in unstable performance in dynamic scenes. Although 

attention mechanisms can enhance the effectiveness of 

speech signals in certain situations, their ability to capture 

long-term dependencies still has limitations when 

processing long-term sequence data. This poses 

difficulties for speech processing tasks that require long-

term contextual information. In addition, although the 

developed unsupervised learning methods have shown 

some effectiveness, the training process may not guarantee 

the reliability of the enhancement effect due to the lack of 

labeled data. Especially when encountering new types of 

noise, the generalization ability of the model will also be 

limited. Although various studies have demonstrated 

different enhancement effects, the performance of the 

system is relatively lacking, making the quality of the 

results unclear and making it difficult to comprehensively 

evaluate the actual effectiveness of existing methods. In 

response to the aforementioned research gaps, this study 

proposes an applied speech signal enhancement model 

based on Long Short-Term Memory and Progressive 

Learning and Dense Connection strategy (LSTM-PLDC). 

The study assumes that this new model can effectively 

improve the quality of speech signals in complex noise 

environments, thereby enhancing the clarity and 

comprehensibility of speech signals. The main purpose of 

the research is to verify the enhanced performance of the 

LSTM-PLDC model under different SNR conditions and 

evaluate its robustness when dealing with extreme noise 

environments. This method can effectively enhance useful 

speech features in the data and suppress background noise 

by layer by layer strengthening of the speech signal. 

Furthermore, by adopting the LSTM structure in 

combination with the dense connection strategy, the 

context information for a long time can be better retained. 

This will enhance the model's processing ability for long-

term dependencies, thereby further improving the speech 

enhancement effect. Another important contribution of the 

research is the improvement of the model’s robustness. 

Compared with the existing methods, the LSTM-PLDC 

model shows stronger anti-noise interference ability in 

various SNR environments, which can effectively improve 

the speech quality and avoid signal distortion caused by 

excessive noise reduction. 

2 Methods and materials 

2.1 Construction of a speech enhancement 

signal enhancement model based on 

LSTM 

Applied language processing is an important 

direction in natural language processing, which focuses on 

applying linguistic theories and techniques to practical 

problems and application scenarios. Speech enhancement 

processing covers a wide range, including speech 

recognition, speech synthesis, machine translation, speech 

enhancement, and other directions. Among them, speech 

signal enhancement is a core component of applied 

language processing, with the main task of improving the 
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quality of speech signals and ensuring the accuracy and 

effectiveness of subsequent processing [8]. The primary 

task of speech signal enhancement is to remove 

background noise, echo, and other interfering factors, 

ensuring the purity and clarity of speech signals, which is 

fundamental and critical for all speech-based applications. 

Currently, the commonly used speech signal enhancement 

model is based on LSTM, which has advantages such as 

long-term dependency processing, noise removal 

enhancement, and temporal data processing [9-10]. In 

LSTM, the core part mainly includes input, output, and 

hidden layers. Unlike traditional Recurrent Neural 

Networks (RNNs), the hidden layer structure of LSTM is 

more complex, adding a memory unit called “cell state”. 

This unit performs traditional neural computation and also 

manages and maintains long-term information through cell 

state management, as shown in Figure 1. 

C C C

h h h

Ct-1 Ct Ct+1

ht-1 ht ht+1

xt-1 xt xt+1

 

Figure 1: Hidden layer structure of LSTM 

 

In Figure1, h   is the calculation module of the 

model, and C  is the internal state of the model. LSTM 

has the advantage of processing long time series data. 

Because of the existence of h   and C  , these modules 

work together at every moment of model operation to 

process and save key variables such as current input values, 

previous output values, previous cell states, current output, 

and current cell states. This mechanism ensures that 

information can be stored and transmitted in the model for 

a long time, effectively solving the problem of long-term 

dependencies. In the LSTM hidden layer, there are also 

input gates ( I ), forget gates ( f ), and output gates ( o ). 

The mathematical expression of the LSTM’s f  is shown 

in formula (1) [11]. 

( )g x Wx b= +    (1) 

In formula (1), W  is the weight vector, b  is the 

bias term, and    is the sigmoid function. In the 

architecture of LSTM, the output gate mainly extracts and 

selects key information from the cell state as the current 

output value, ensuring that only useful information for the 

current task is transmitted while shielding irrelevant or 

noisy information. During the speech enhancement 

process, the output gate can dynamically adjust the 

intensity and importance of the output information. The 

core mechanism of LSTM covers the forward propagation 

of information, the backpropagation of errors, and the 

process of optimizing network parameters through 

gradient descent. The forward propagation of information 

is similar to that of traditional neural networks, using the 

interaction between neurons for calculation and passing 

the results. The input gate calculation of the LSTM hidden 

layer is represented as shown in formula (2). 

 

1[ , ]t i t t ii W h x b −=  +    (2) 

In formula (2), 1th −  is the output value of the upper 

layer. Formula (2) can dynamically adjust the model's 

response to input information in speech enhancement, 

selectively introducing useful speech features and 

suppressing unnecessary noise. The input unit state at this 

moment can be obtained through formula (2), and its 

expression is shown in formula (3). 

1tanh [ , ]t c t t cc W h x b−=  +    (3) 

In formula (3), tc   is the element state of the 

previous layer model, and tanh   is the hyperbolic 

tangent function. Formula (3) ensures that the model can 

effectively store and manage speech feature information in 

long time series, enhancing its ability to handle long-term 

dependencies. The state of the current layer model can be 

represented by formula (4). 

1t t t t tc g c c i−=  +     (4) 

Formula (4) selectively outputs key information to 

ensure that only the information useful for the current task 

is conveyed. The output gate expression of the LSTM 

model is shown in formula (5). 

1 0[ , ]t o t to W h x b −=  +    (5) 

In formula (5), to   represents the model's output 

gate. Based on the above model construction, the specific 

structure of LSTM is shown in Figure 2. 
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Figure 2: Unit Structure of LSTM 

 

In Figure 2, the input gate ( i ) plays a crucial role in 

selectively introducing the current input information into 

the cell state. It can effectively filter out unnecessary noise 

information and only retain signals that are useful for 

speech enhancement. The main function of the forget gate 

( f ) in the model is to determine which information in the 

cell state needs to be forgotten or retained. For processing 

speech signals with long time series data, it can prevent old 

information from interfering with the current processing 

and ensure that the model focuses on important current 

information. The model can represent the mathematical 

formula of the final result of LSTM based on the output 

gate and the current unit state, as shown in formula (6). 

tanht t th o c=     (6) 

In formula (6), th  is the final result of the model. 

Formula (6) can ensure the purity and clarity of the output 

signal by generating an enhanced speech signal. In the 

training process of LSTM, error backpropagation, and 

gradient descent are key steps to correct and optimize 

network weights. Error backpropagation can calculate the 

gradient of each parameter in the model. For LSTM, this 

process unfolds over time, calculating gradients at each 

past time step to ensure that the model can learn and adjust 

parameters to minimize errors. In speech enhancement 

models, this means that the model can gradually learn how 

to effectively filter noise and enhance speech signals. 

Gradient descent adjusts the parameters of the model based 

on the gradient information obtained from error 

backpropagation. By continuously iterating and updating 

parameters, the gradient descent algorithm gradually 

approaches the optimal solution, minimizing the error 

function of the model. The principle of error transmission 

can be found in formula (7) [12]. 

1

, , , ,

t
T T T T T

k o j oh f h fh i h ih c j ch

j k

W W W W    
−



=

= + + + (7) 

In formula (7), 
T

k   is the propagation error. The 

calculation of its gradient descent is determined based on 

the sum of the gradients of the “input gate”, “forget gate” 

and “output gate” in the model at this moment. The weight 

gradient formulas of each gate are shown in formula (8). 

, , , ,

T T T T

o t t i t t f t t c t t

ox ix fx cx

E E E E
x x x x

W W W W
   

   
= = = =

   

   (8) 

In formula (8), E   is the loss function. Therefore, 

after obtaining the overall error, the network will perform 

the backpropagation step of the error. During this process, 

errors will be dispersed to various neural units based on 

existing weights and thresholds, and then the gradient 

descent strategy will be used to adjust the weights and 

perform forward propagation to generate outputs. 

2.2 Construction of progressive language 

enhancement model based on LSTM 

The LSTM-based speech signal enhancement model 

constructed above has significant advantages in dealing 

with long-term dependencies and noise filtering, but the 

model still has some shortcomings. For example, the 

computational complexity of the model is high, resource 

consumption is high, and gradients are prone to vanishing 

and exploding [13-15]. To address the limitations of the 

above model, this study introduces a progressive strategy 

into LSTM, with the main objective of enhancing speech 

signals layer by layer. Figure 3 shows the basic idea of 

progressive speech enhancement.  

In Figure 3, the kernel of progressive speech 

enhancement starts with simple tasks and gradually learns 

and solves more complex problems. This method is 

particularly suitable for the task of converting noisy speech 

signals into clear speech. The specific implementation 

method is to decompose the entire problem into multiple 

small steps by increasing the SNR. Each small step focuses 

on improving the SNR of the input speech. Specifically, 

under low SNR conditions, the model first focuses on 

removing background noise, improving the basic structure 

of speech signals, and gradually enhancing the 

comprehensibility of signals at various stages. With the 

gradual improvement of SNR, the model can identify and 

enhance speech features more accurately in the subsequent 

processing stage, thereby achieving higher-quality speech 

signal output. This study introduces a progressive strategy 

into the speech enhancement model, and its structure is 

shown in Figure 4. 
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Figure 3 Basic Strategy Diagram of Progressive Speech Enhancement 
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Figure 4: Speech enhancement structure based on progressive strategy 

 

In Figure 4, the model achieves step-by-step 

optimization and enhancement of noisy speech signals 

through a multi-level and gradual enhancement method. 

The input layer receives noisy speech signals and performs 

preliminary preprocessing. The hidden layer extracts and 

processes speech features layer by layer, and enhances 

feature representation ability through nonlinear activation 

functions. The intermediate target layer learns an 

intermediate target with a higher SNR than the output of 

the last layer, gradually increasing the SNR. The target 

layer uses a linear activation function to generate the final 

enhanced speech signal. This study uses a weighted multi-

objective learning objective function to train the network, 

as shown in formula (9) [16-17]. 

1

2
1

2
1

1
ˆ( , )

K
PL PL

k k

k

U
PL PL k PL k

k k u k u

u

e e

e x x
U





=

−

=


=



 =  −






   (9) 

In formula (9), e   is the objective function. K  

represents the number of hidden layers. x̂   denotes the 

estimated value of the target. k

ux
 is the learning objective. 

U   is the number of samples for network structure 

updates.    is the error weight coefficient. 0

ux
  is a 

noisy speech feature. 1ˆ( , )PL k PL

k u kx − 
 is the target layer 

network function. PL

k
 is a paranoid vector.  

In the above model structure, if the amount of intermediate 

target layers gradually increases, the performance of the 

model may be negatively affected. Meanwhile, the quality 

of effective information output by the model will decrease 

as the number of learning objectives increases. Therefore, 
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this study further adopts the DC approach to improve the 

model and obtained the LSTM-PLDC. Figure 5 shows the 

LSTM-PLDC model structure. 
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Figure 5: Speech enhancement structure based on LSTM-PLDC 

 

In Figure 5, the design of the target layer aims to 

gradually optimize the SNR by combining the features 

output by the input layer and each intermediate layer. At 

each learning stage, the target layer extracts key 

information from the output of the previous layer and 

learns to generate intermediate targets with higher SNR. 

This mechanism enables the model to gradually improve 

the quality of speech signals in stages, making each target 

layer a performance measure and a key link in achieving 

effective information transmission and gradual 

enhancement, ultimately improving the clarity and 

comprehensibility of the overall speech signal. When 

learning intermediate targets, the model concatenates the 

original input and the estimated results of each target 

together, and then inputs them into a sub network. This 

method enables the sub network to simultaneously obtain 

the features of the initial noisy speech and the estimated 

features of speech with different SNRs. Due to the 

involvement of multiple learning objectives in DC's 

progressive learning, this study adopts a weighted 

Minimum Mean Square Error (MMSE) criterion as the 

objective function. The training and updating of the model 

are shown in formula (10). 
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(10) 

Formula (10) uses weighted MMSE criterion for 

multi-objective optimization to ensure that the model can 

effectively enhance speech signals under different SNR 

conditions. When the model processes different SNRs, 

speech distortion may occur due to excessive noise 

reduction. Other intermediate targets close to the target 

layer have lower SNR and can better preserve speech. This 

study uses formula (11) to solve the above phenomenon. 
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 +
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= 
+ + 
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   (11) 

By using formula (11), the model can learn speech 

features with different SNRs through multiple learning 

objectives, thereby better balancing denoising and speech 

feature preservation. The implementation process based on 

the LSTM-PLDC model proposed mainly includes the 

input layer receiving noisy speech signals and performing 

preliminary preprocessing operations for subsequent 

feature extraction. The hidden layer extracts and processes 

speech features layer by layer, and enhances feature 

representation ability through nonlinear activation 

functions. Each intermediate target layer learns an 

intermediate target with a higher SNR than the output of 

the previous layer, gradually increasing the SNR. By 

training and updating the model, the loss of each 

intermediate objective is calculated, and the total objective 

function is weighted and summed based on the weight 
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coefficients. According to the overall objective function, to 

backpropagate and update the model parameters to 

gradually optimize the model and achieve the best speech 

enhancement effect. 

3 Results 

3.1 Training analysis based on progressive 

language enhancement model 

To verify the model’s performance, the study adopts 

the TIMIT corpus for model training and testing. The 

TIMIT speech dataset has diverse speech samples and 

high-quality annotations, making it an ideal choice for 

evaluating speech enhancement effects. During the data 

preprocessing process, the audio file is first loaded and 

converted into a unified sampling rate. Then, the audio 

signal is subjected to frame segmentation and feature 

extraction, and the MEL frequency cepstral coefficient is 

adopted as the input feature. When simulating noise 

conditions in a real environment, various background 

noises are mixed with the target speech based on different 

SNRs. The processed data are divided into the training set, 

the validation set, and the test set to ensure the 

generalization ability of the model. Model training 

involves designing an architecture based on LSTM, 

combining dense connections and progressive learning 

mechanisms, using weighted MMES criterion as the loss 

function, and updating weights using Adam optimizer. 

During the training process, the early stop strategy is 

applied to prevent overfitting and ensure the performance 

optimization of the model on the validation set. 1660 

sentences are randomly selected from the TIMIT corpus as 

the target speech, and the target speech is divided into 

training speech and validation speech in an 8:2 ratio. Then, 

the target speech is mixed with various types of noise 

based on different SNRs, including -5dB, 0dB, 5dB, and 

10dB. The selection of mixed noise comes from five types 

of noise in noise -92 dB, including noisy noise, factory 

noise, spectral noise, vehicle noise, and horn noise. This 

study uses Perceived Evaluation of Speech Quality 

(PESQ), Short-Time Objective Intelligibility (STOI), 

Source-to-Distortion Ratio (SDR), and Word Error Rate 

(WER) as evaluation metrics for the model. 

To ensure the optimal performance of the LSTM-

PLDC model, a series of strategies are adopted in the 

selection and tuning process of hyperparameters. Firstly, 

the initial setting of the learning rate is 0.001, and the 

learning rate attenuation method is adopted during the 

training process. Specifically, every 10 training cycles 

(Epochs), the learning rate is reduced to 90% of the 

original to promote the model’s convergence. The Dropout 

rate is set to 0.5. This is to effectively prevent the 

overfitting phenomenon of the model and ensure the 

generalization ability of the network by randomly 

discarding some neurons. The number of layers of the 

model is set to 6 LSTM units to balance the model depth 

and computational complexity, while maintaining a good 

capture ability for long-term dependencies. The batch size 

is selected as 64 to enable the effective utilization of 

diverse data in each iteration while ensuring the stability 

of the training process. The dense connection part adopts 

the “DenseNet” structure, which specifically connects the 

output features of each layer with the features of the 

previous layer, effectively enhancing information flow and 

feature reuse. The initialization method used is He 

initialization, which can effectively avoid the problems of 

gradient vanishing and explosion. In LSTM-PLDC, 

different learning objectives have a certain impact, as 

displayed in Figure 6. 
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Figure 6: The impact of the number of target learning layers on the model 
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Figs. 6 (a) - (d) show the impact of the learning target 

layer on the model under SNR environments of -5dB, 0dB, 

5dB, and 10dB. In Figure 6 (a), under the condition of -

5dB, when the Learning target layer is 2, the differences 

among LSTM, Long Short-Term Memory-Progressive 

Learning (LSTM-PL), and LSTM-PLDC are relatively 

small. The STOI values of the three models are all around 

0.715. When the learning objective layer gradually 

increases to 4, the STOI value of LSTM-PLDC reaches 

0.740, the STOI value of LSTM-PL reaches 0.722, and the 

STOI value of LSTM is 0.693. In Figure 6 (b), under the 

condition of 0dB, the three algorithms achieve the best 

STOI value when the learning target layer is 5. Among 

them, the STOI value of LSTM-PLDC is 0.853, LSTM-PL 

is 0.846, and LSTM is 0.828. In Figure 6 (c), under the 

condition of 5db, the optimal STOI value for LSTM-PLDC 

is 0.918, LSTM-PL reaches 0.915, and LSTM is 0.903. In 

Figure 6 (d), the optimal STOI values under 10db 

conditions are 0.956 for LSTM-PLDC, 0.949 for LSTM-

PL, and 0.948 for LSTM. This indicates that increasing the 

number of learning target layers can improve the short-

term objective clarity of the model, and LSTM-PLDC 

exhibits the best clarity improvement effect under various 

SNR conditions. This also indicates that the LSTM-PLDC 

model has stronger robustness and higher speech quality 

when dealing with noisy speech. Similarly, the hidden 

layer structure of a model can also affect its performance. 

This study analyzes the number of different hidden layers 

and nodes, as shown in Figure 7. 
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Figure 7: Performance impact of model structure 

 

In Figure 7, the quantity of hidden layers is divided 

into 3, 6, and 9 layers, with 513 and 1024 nodes 

respectively. Under the same number of nodes and the 

same number of hidden layers, the higher the number of 

hidden layers and nodes, the lower the WER value of the 

model. Among them, when the number of hidden layers is 

9 and the number of nodes is 1024, the WER of the model 

is about 24.82%. Compared to the model structure with 3 

hidden layers and 513 nodes, its WER decreased by 3.09%. 

Figure 7 shows that increasing the number of hidden layers 

and nodes has a positive impact on model performance, 

and the combination of the two has a more significant 

effect. When designing a speech model, increasing the 

number of hidden layers and nodes appropriately can 

significantly improve the performance, reduce WER, and 

thus improve the accuracy of speech recognition. To 

further analyze the model’s performance, this study trained 

different models on speech and obtained comparative 

results of the performance of different models, as shown in 

Table 2. 

Table 2: Performance of models with different structures under training speech 

Model structure Model size (M) WER (%) Running time (s) 

3L-512C 19.1 28.02 372 

6L-512C 28.5 26.97 985 

9L-512C 37.2 25.85 936 

3L-1024C 46.3 25.88 948 

6L-1024C 73.3 25.34 1769 

9L-1024C 112.1 24.87 2051 
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In Table 2, the “L” in the model structure represents 

the number of hidden layers. “C” represents the number of 

nodes. When the hidden layers increase from 3 to 9, with 

512 nodes, WER decreases from 28.02% to 25.85%, and 

runtime increases from 372 s to 936 s. Under 1,024 nodes, 

WER decreases from 25.88% to 24.87%, and runtime 

increases from 948 s to 2,051 s. When the nodes increase 

from 512 to 1024: under 3 hidden layers, the model size 

increases from 19.1 M to 46.3 M, and under 9 hidden 

layers, it increases from 37.2 M to 112.1 M. This indicates 

that increasing the number of hidden layers helps to reduce 

WER and improve model performance, but also increases 

computation time and resource requirements. To evaluate 

the impact of each model component on performance, an 

ablation study is conducted to compare three different 

models: standard LSTM, LSTM-PL, and LSTM-PLDC. 

The study evaluates the model through performance 

indicators (STOI, SDR and PESQ) under multiple SNR 

conditions, and the results are shown in Table 3. 

Table 3: Ablation experiments of the model 

Evaluation index LSTM LSTM-PL LSTM-PLDC 

-5dB STOI 0.678 0.811 0.930 

0dB STOI 0.812 0.846 0.957 

5dB STOI 0.885 0.915 0.979 

10dB STOI 0.914 0.949 0.986 

-5dB SDR 2.31 3.24 4.12 

0dB SDR 5.14 6.88 8.67 

5dB SDR 7.89 9.22 11.45 

10dB SDR 10.67 13.24 14.81 

-5dB PESQ 1.77 1.80 1.86 

0dB PESQ 2.41 2.55 2.85 

5dB PESQ 2.85 2.92 3.10 

10dB PESQ 3.01 3.06 3.13 

Table 3 presents the results of the ablation study, 

which highlights the performance enhancements achieved 

by integrating progressive learning and dense connection 

strategies into the model. From the standard LSTM model 

to LSTM-PL and ultimately to LSTM-PLDC, the 

evaluation metrics (STOI, SDR, and PESQ) show a clear 

improvement trend under all SNR conditions. For instance, 

in the -5dB SNR condition, STOI scores improves from 

0.678 with the standard LSTM to 0.930 with the LSTM-

PLDC model, indicating a significant enhancement in 

speech intelligibility. Similar trends are observed in SDR 

and PESQ scores, with LSTM-PLDC achieving a 

maximum SDR of 4.12 and a PESQ score of 1.86 under 

the same -5dB condition. These results underscore the 

importance of the added components in refining the 

model's ability to enhance speech quality and intelligibility 

in noisy environments, ultimately showing that each 

enhancement contributes substantially to overall 

performance. 

3.2 Performance testing based on 

progressive language enhancement 

model 

The research model obtains a good model structure in 

training speech, and now the performance of the model is 

analyzed by verifying the speech. This study uses Time-

Delay Neural Network (TDNN) for comparative analysis 

[18]. Figure 8 shows the average STOI of each model on 

five types of noise in the test set. 
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Figure 8: STOI results of each model in noise 

 

Figs. 8 (a) -8 (d) show the average STOI values in 

SNR environments of -5dB, 0dB, 5dB, and 10dB. 

Regarding the results of the average STOI from -5dB to 

10dB: LSTM increases from 0.678 to 0.930, LSTM-PL 

increases from 0.811 to 0.851, TDNN increases from 0.889 

to 0.919, and LSTM-PLDC increases from -0.930 to 0.957. 

LSTM-PLDC has a 4.1% improvement compared to 

TDNN in the lowest SNR environment. Therefore, LSTM-

PLDC has more effective noise suppression and speech 

enhancement effects in the model. Figure 9 shows the SDR 

of the model. 
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Figure 9: SDR results of four models in noise 

 

Figure 9 shows the average SDR values in SNR 

environments of -5 dB, 0 dB, 5 dB, and 10 dB. The 

performance of LSTM gradually improves throughout the 

entire noise level range, from 2.31 at -5 dB to 10.67 at 10 

dB. TDNN further increases the SDR value from 3.24 

under low noise to 13.24 under high noise, indicating that 

TDNN may have specific advantages in extracting and 

preserving speech signals. LSTM-PLDC is 0.28 higher 

than TDNN, 1.57 higher at 10 dB, and has the highest SDR 

value at all noise levels. Overall, LSTM-PLDC still 

exhibits good performance in low SNR environments, 

indicating that the model has strong resistance to noise 

interference. Moreover, LSTM-PLDC can more accurately 

reconstruct speech signals and reduce noise components. 

Figure 10 shows the PESQ of each model on different 

types of noise in the test set. 
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Figure 10: PESQ results of each model in noise 

 

In Figure 10, the PESQ score increases from 1.77 to 

3.01 in LSTM, from 1.70 to 3.06 in LSTM-PL, from 1.76 

to 3.10 in TDNN, and from -1.86 to 3.13 in LSTM-PLDC 

in a noisy environment ranging from -5dB to 10dB. The 

performance of the LSTM-PLDC is superior to other 

models under -5dB noise conditions, indicating that the 

model effectively improves signal quality and reduces 

distortion. In the validation set, the WERs of each model 

are shown in Figure 11. 
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Figure 11: WERs of various models in the validation set 

 

In Figure 11, the WER of LSTM is 36.45%, and that 

of the LSTM-PL is 30.33%. Compared to LSTM, LSTM-

PL shows a significant decrease in WER, indicating that 

the progressive improvement method can effectively 

enhance speech enhancement performance. The WER of 

TDNN is 29.78%, while that of LSTM-PLDC is 27.31%. 

The WER of LSTM-PLDC further decreased by 3.02% 

compared to LSTM-PL, indicating that the progressive 

model using DC has better speech enhancement effect. 

Compared with TDNN model, LSTM-PLDC still has 

some advantages, which indicates that the improved model 

is feasible and progressiveness. To evaluate the robustness 

of the LSTM-PLDC model under real-world noise 

conditions, the study compares it with multiple baseline 

models to verify the model’s validity. The noise datasets 

selected are CHiME and Aurora. Among them, the CHiME 

dataset is a noise dataset used for speech recognition, 

containing speech samples in different environments, such 

as homes, coffee shops, etc. The Aurora dataset is 

specifically designed to test the performance of speech 

recognition systems under various noise conditions, 

including different types of white noise and other 

environmental noises. The baseline models for comparison 

include Statistical Model-based Enhanced Noise Filtering 

(ENF), Wiener Filter (WF), DNN, Convolutional Neural 

Network (CNN), TDNN, and standard LSTM. The 



338   Informatica 49 (2025) 327–340                                                                    N. Liu 

experimental indicators adopted are STOI, SDR, PESQ, 

and MMSE. The performance comparison results of the 

model under real-world noise conditions are shown in 

Table 4. 

 

Table 4: Performance verification of the model under real-world noise conditions 

Model LSTM 
LSTM-

PL 

LSTM-

PLDC 
DNN CNN TDNN WF ENF 

-5dB STOI 0.670 0.810 0.930 0.700 0.720 0.710 0.650 0.680 

0dB STOI 0.790 0.826 0.950 0.783 0.795 0.810 0.760 0.775 

5dB STOI 0.870 0.895 0.980 0.890 0.860 0.900 0.830 0.855 

10dB STOI 0.900 0.940 0.990 0.910 0.880 0.920 0.850 0.880 

-5dB SDR 2.100 3.100 4.120 2.550 2.800 2.650 1.900 2.200 

0dB SDR 4.500 5.790 8.100 5.120 5.400 5.900 4.000 4.400 

5dB SDR 6.810 8.100 11.300 7.670 8.000 8.200 6.200 7.300 

10dB SDR 9.500 12.000 14.000 10.500 11.000 11.800 8.800 9.900 

-5dB 

PESQ 
1.700 1.800 1.870 1.750 1.760 1.790 1.600 1.730 

0dB PESQ 2.200 2.400 2.900 2.300 2.340 2.360 2.100 2.250 

5dB PESQ 2.600 2.850 3.100 2.750 2.800 2.880 2.500 2.700 

10dB 

PESQ 
2.850 3.010 3.120 3.000 3.050 3.020 2.700 2.950 

-5dB 

MMSE 
0.045 0.042 0.038 0.043 0.041 0.044 0.049 0.046 

0dB 

MMSE 
0.035 0.032 0.027 0.037 0.033 0.036 0.040 0.038 

5dB 

MMSE 
0.028 0.025 0.020 0.026 0.028 0.024 0.030 0.029 

10dB 

MMSE 
0.020 0.018 0.015 0.022 0.019 0.021 0.027 0.024 

Table 4 presents the performance verification results 

of the LSTM-PLDC model under real-world noise 

conditions, with multiple baseline models for comparison. 

Under all the tested SNR conditions, the LSTM-PLDC 

model performs well in the STOI, SDR, and PESQ 

indicators. Especially under the condition of -5dB, its 

STOI reaches 0.930, and the result is higher than that of 

other models. Meanwhile, the SDR and PESQ scores of 

LSTM-PLDC are 4.120 and 1.870 under the condition of -

5dB, both demonstrating superior noise reduction and 

speech quality performance. Compared with the traditional 

model, LSTM-PLDC reduces the MMSE value compared 

with other baseline models under all SNRs, indicating its 

higher accuracy in signal reconstruction. These results 

indicate that LSTM-PLDC has stronger robustness and 

effectiveness in adapting to real-world environmental 

noise, fully verifying its successful application in speech 

enhancement tasks. To enhance the statistical validation of 

the results, the study conducts a statistical significance test 

and clarifies the trade-off between model complexity and 

performance. The specific results are shown in Table 5. 

 

Table 5: Trade-offs between model complexity and performance 

Model structure LSTM LSTM-PL 
LSTM-

PLDC 
DNN TDNN 

-5dB STOI 0.67 0.81 0.93 0.7 0.71 

p value / 0.003 <0.001 0.005 0.004 

95% confidence interval (lower limit) / 0.794 0.916 0.679 0.689 

95% confidence interval (upper limit) / 0.826 0.944 0.721 0.731 

Number of hidden layers 2 4 6 3 5 

Computational complexity (number of 

parameters) 
1500 3000 5500 2200 4800 

Performance improvement (%) / 20.9 14.8 4.5 5.5 

  



Speech Signal Enhancement Using Progressive Learning and… Informatica 49 (2025) 327–340 339 

Table 5 shows the trade-off results of different model 

structures in terms of performance and complexity. Under 

the condition of a -5dB SNR, the STOI of the LSTM-PL 

model reaches 0.81, which is significantly increased by 

20.9% compared with the standard LSTM, and its p-value 

is 0.003, indicating that this improvement is statistically 

significant. The LSTM-PLDC further increases the STOI 

to 0.93, and at the same time shows a p-value of <0.001. 

Moreover, the lower and upper limits of the confidence 

interval are 0.916 and 0.944, demonstrating the robustness 

of the model under noisy conditions. It is worth noting that 

the hidden layer number of LSTM-PLDC is 6 layers and 

the number of parameters reaches 5,500, showing a 

relatively high computational complexity. The number of 

parameters for DNN and TDNN models is 2200 and 4800, 

and the performance improvement is relatively limited. 

This result highlights the need for a balance between 

model complexity and performance. Although adding a 

hidden layer enhances the speech enhancement effect, it 

also brings higher demands for computing resources. 

4 Discussion 

The LSTM-PLDC model performed well in the 

speech signal enhancement task, especially with certain 

improvements in robustness and speech quality. The 

comparison with the relevant literature summary table 

clearly showed the advantages and disadvantages of the 

model. Firstly, in terms of STOI, the LSTM-PLDC model 

achieved 0.930 SNR at -5 dB, which was significantly 

higher than the result reported in Reference [6]. However, 

the STOI performance of the unsupervised learning 

method in Reference [7] under the same conditions was 

more limited. The main difference lies in the combination 

of progressive learning strategy and dense connection 

architecture in the LSTM-PLDC model, which effectively 

enhances the ability to extract useful features from speech 

signals and filters out background noise well. This design 

enables the model to maintain the clarity of speech in a 

high-noise background and has stronger adaptability in 

dynamic scenes, showing higher robustness compared to 

traditional methods. Furthermore, SDR is an important 

indicator for evaluating the effect of speech enhancement. 

In the experiments of the research, the SDR of the LSTM-

PLDC model increased from 2.31 at -5 dB to 14.81 at 10 

dB, which was superior to the relevant results in Reference 

[5]. This indicates that LSTM-PLDC performs 

outstandingly in the ability to effectively suppress noise 

and reconstruct clear signals. However, due to the 

characteristics of unsupervised learning, the method in 

Reference [7] may not be able to fully capture the signal 

uncertainty under certain noise conditions, resulting in the 

restoration effect not reaching the best. This result 

highlights the competitive advantage of LSTM-PLDC in 

complex noise environments. Priyanka S S et al. achieved 

speech enhancement through DNNs and CNNs. These 

models typically have a fixed feedforward structure and 

can also be trained to classify speech with different SNRs. 

LSTM-PLDC has the characteristics of progressive 

learning and dense connections, making it more suitable 

for sequential data and dynamically changing background 

noise [19]. Garg A optimized the structure of the LSTM 

model by using the attention mechanism and conducted 

speech recognition analysis on the optimized model, 

achieving certain results in the results [20]. However, 

compared with the LSTM-PLDC model, there is still a 

certain gap in its speech enhancement performance. 

Although the LSTM-PLDC model performs well in 

multiple parameters, it also has some limitations at the 

same time. Firstly, due to its high model complexity, large 

computational resources, and high time overhead, its 

practical application is limited to a certain extent, 

especially under resource constraints. Although a higher 

number of hidden layers and nodes can reduce the power, 

it also brings a certain computational burden. Furthermore, 

although the model performs well in most noisy 

environments, it still faces challenges at extreme noise 

levels, such as extremely low SNRs or very complex noise 

backgrounds. This is because when the background noise 

intensity is too high, the model may encounter information 

loss, leading to difficulties in extracting and restoring 

speech features, thereby affecting the final enhancement 

effect. 

5 Conclusion 

In response to the limitations of traditional LSTM 

models in processing long time series speech signals, this 

study constructed a progressive language signal 

enhancement model based on LSTM and obtained the 

LSTM-PLDC model by introducing DC. Through 

comparative experiments, the proposed LSTM-PLDC had 

significant advantages in speech enhancement 

performance compared to LSTM, LSTM-PL, and TDNN. 

Experiments have shown that LSTM-PLDC had 

significant robustness in processing noisy speech in low 

SNR environments and could more accurately reconstruct 

speech signals, reducing the impact of noise interference. 

Although the LSTM-PLDC model has demonstrated 

superior speech enhancement performance in various 

noise environments, there are still some limitations. Firstly, 

the complexity of the model leads to a high demand for 

computing resources and training time, which may limit its 

application in a resource-constrained environment. 

Furthermore, although it performs well in most common 

noise environments, the robustness and generalization 

ability of the model still need to be further verified under 

extreme noise conditions or in the absence of noise types. 

Future research can focus on optimizing the model 

architecture to reduce computational complexity. 

Meanwhile, transfer learning and unsupervised learning 

techniques can be utilized to enhance the model's 

adaptability to new noisy environments. Furthermore, 

exploring the combination of context information and 
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higher-level audio feature extraction techniques may 

further enhance the speech enhancement effect and 

promote progress in this field. 
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