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Artificial Intelligence (AI) and Deep Learning (DL) are revolutionizing plant disease detection, which is 

crucial for mitigating crop loss, improving food security, and enhancing yield. Traditional manual methods, 

such as field visits for disease diagnosis, are labor-intensive, time-consuming, and costly, highlighting the 

demand for automated, real-time applications. However, plant disease classification faces challenges such 

as class variations, cluttered backgrounds, lesion scale variations, and the need for robust models. Several 

Convolutional Neural Network (CNN)-based frameworks have been proposed to tackle these challenges, 

but they often suffer from limitations such as fixed-size kernels and inefficient feature utilization across 

deeper layers. These limitations lead to feature loss during the initial stages of feature extraction, reducing 

the model's overall effectiveness in multi-class plant disease classification. To address these issues, we 

introduce HFFIncep-Net, a novel Deep Learning framework that fuses hierarchical features with the power 

of the Inception V3 architecture. The Hierarchical Feature Fusion (HFF) stem extracts multiscale features, 

which are fused at multiple levels within the network. This enhances feature representation and mitigates 

information loss in the initial layers. Incorporating two Inception V3 blocks, the model captures a diverse 

set of features at different scales, further improving classification performance. Additionally, the inclusion 

of a Global Average Pooling (GAP) layer reduces computational complexity while maintaining high 

accuracy. To enhance training stability and performance, we employ the Swish activation function, which 

facilitates smoother gradient propagation during backpropagation. When evaluated on the PlantVillage 

and Cassava Leaf Disease (CLD) datasets, HFFIncep-Net achieves 94.61% precision, 94.31% recall, 

94.31% F1 score, and 97.80% accuracy, outperforming existing CNN-based methods. These results 

demonstrate that HFFIncep-Net is an effective solution for early-stage, multi-class plant disease 

classification, with significant potential for practical deployment in agricultural applications. 

Povzetek: Članek predstavi model HFFIncep-Net, ki z večnivojsko fuzijo značilk in izboljšano arhitekturo 

Inception V3 natančno klasificira več vrst bolezni rastlin kljub vizualnim in merskim variacijam. 

 

1 Introduction 
Agriculture serves as the foundation of the food 

distribution network[1], and the financial systems of many 

developing nations rely heavily on it [2]. The prevalence 

of plant diseases significantly impacts crop health and 

diminishes yields, leading to substantial losses [3]. Such 

yield reductions can have a ripple effect on the food supply 

network and the nation's economy. Plant diseases are 

typically caused by various agents, including viruses, 

bacteria, parasites, fungi, or environmental factors. Many 

cultivators may be unaware of certain types of plant 

diseases[4]. Recognizing plant diseases in their early 

stages is crucial for controlling outbreaks and preventing 

extensive damage to crops [5]. To effectively handle these 

disease occurrences, regular discussions with specialists 

are crucial. Nevertheless, regular visual evaluations by 

specialists in isolated regions of developing countries tend  

 

to be costly, less accurate, and time-consuming.  

Therefore, automatically identifying crop disease  

symptoms present a valuable, quick, and cost-effective 

solution [6]. 

Typically, the symptoms of crop diseases manifest on the 

leaves, creating digital representations of leaves makes 

them ideal contenders for identifying plant diseases. In 

recent years, various intelligent systems have been 

developed for crop disease diagnosis, which can be 

categorized into two main types: (i) Traditional computer 

vision-based detection [6] and (ii) Deep learning-based 

detection [7]. Standard systems depend on feature 

extraction and classification approaches. Over the past 

few decades, numerous feature extraction methodologies, 

such as Local Binary Patterns (LBP) [8], Scale-Invariant 

Feature Transform (SIFT) [9], Speeded Up Robust 

Features (SURF) [10] [11], Histogram of Oriented 

Gradients (HOG) [12], and Gabor Transform (GT) [13], 
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have been employed. At the same time, machine learning 

classifiers, including Support Vector Machine (SVM) 

[11], Naive Bayes (NB) [14], Random Forest (RF) [14], 

and Fisher Linear Discriminant (FLD) [15], have been 

utilized for classifying plant diseases. The precision of 

traditional diagnostic systems is significantly dependent 

on the manually crafted feature extraction techniques and 

classification algorithms employed. Importantly, choosing 

optimal and resilient handcrafted features for disease 

identification is especially difficult as each feature comes 

with its own shortcomings, such as region of interest, scale 

variation, illumination variation, inter and intra class 

variation, and dead neurons. 

Lately, with the emergence of domain-specific 

architectures[16] such as GPUs, TPUs, and similar 

technologies, Deep Learning (DL)-based classifiers, 

specifically CNNs, have gained significant popularity. A 

variety of CNN-based models, such as PDD-Net, VGG-

16, AlexNet, Inception V3, and ResNet-50 are adept at 

automatically extracting and learning the best low-level 

features for classification tasks [17]. These CNN 

architectures have demonstrated strong efficiency in 

image classification tasks. However, despite their 

effectiveness, real-time plant disease categorization faces 

several obstacles, including early-stage diagnosis, 

variations in disease classes, limited sample sizes in 

benchmark datasets, and class imbalance issues[18].  

To overcome these issues, this study introduces a 

blended CNN architecture that leverages recent 

advancements in the field. The proposed model includes 

three pooling blocks to boost the retrieval of both local and 

global multiscale features, enhancing accuracy in 

identifying small-scale lesions. Furthermore, a dense 

connection block is associated to promote the flow of 

information across network layers, thereby enhancing 

multilevel feature extraction. To reduce model 

complexity, a GAP layer replaces fully connected layers. 

The Swish activation function is applied to address 

potential issues such as gradient vanishing, often linked 

with traditional activation functions during 

backpropagation. Swish enhances convergence during 

training, leading to better performance. HFFIncep-Net is 

evaluated using the publicly available PlantVillage dataset 

containing five different plants and nineteen disease 

classes and CLD dataset containing 5 classes of Cassava 

leaves demonstrating significant enhancements in 

classification accuracy when contrasted with the state-of-

the-art CNN-based architecture. This study highlights the 

following significant advances targeted at solving the 

inadequacies of current computer vision systems for plant 

disease detection: 

• The HFFIncep-Net CNN-based framework 

employs bicubic interpolation to handle 

constrained data, reduce information loss, and 

enhance training efficiency. 

• The architecture includes multilevel and multiscale 

features, a reliable Swish activation function, and 

GAP layer to improve overall performance and 

mitigate errors such as overfitting and gradient 

vanishing. 

• HFFIncep-Net outperforms baseline models such 

as PDD-Net, DenseNet-201, ResNet-50, AlexNet, 

MobileNet, and Inception V3 as evidenced by 

assessment criteria such as accuracy, precision, 

recall, and F1-score.  

This work makes an important contribution to the 

development of a strong and effective Plant Disease 

Diagnosis system that effectively detects plant disease and 

manages variations in disease classifications. The paper is 

structured as follows: Section 2 provides a literature 

review on the current state-of-the-art frameworks for plant 

disease diagnosis. Section 3 describes the materials and 

techniques utilized in the study, including an in-depth 

discussion of the proposed HFFIncep-Net architecture. 

Section 4 explains a full review of the experiments and 

results. Section 5 summarizes the basic conclusions of the 

article and suggests possibilities. 

2 Literature review and analysis  
Over the last decade, several CNN-based frameworks 

for plant disease detection have been proposed. Alghamdi 

et al. [19] utilized VGG16 as the baseline architecture and 

proposed PDD-Net, which integrates multilevel and 

multiscale CNN features within the VGG16 model. Their 

approach introduced dense connection blocks to extract 

multilevel features and a spatial pyramid block to capture 

multiscale features. These modifications demonstrated 

that multilevel features are essential for addressing class 

variations, while multiscale features effectively handle 

Region of Interest (RoI) scale variations. To further 

enhance performance, PDD-Net employed the flattened 

Threshold Swish (fTS) activation function to mitigate 

gradient vanishing and dead neuron issues. Additionally, 

the final layer of PDD-Net replaced the fully connected 

layer with a GAP layer, which reduced the overall number 

of parameters and minimized overfitting. Although the 

proposed framework achieved robust results on the 

PlantVillage and CASSAVA benchmark datasets, PDD-

Net utilized the simple feed-forward stem of VGG16, 

which led to information loss in the deeper layers of the 

network [20]. 

Keceli et al. [21] focused on the development of 

automated methods to enhance the recognition of plant 

species and the detection of plant diseases. A novel 

approach is presented that utilizes a multi-input, multi-

output CNN integrating raw image data with pre-trained 

features derived from the AlexNet model. The proposed 

architecture incorporates convolutional, pooling, and fully 

connected layers to support accurate classification. The 

study employed the ReLU (Rectified Linear Unit) 

activation function within the convolutional layers, though 

this approach can lead to issues such as gradient vanishing, 

while classification tasks are handled by fully connected 

layers culminating in a SoftMax layer. The model employs 

a categorical cross-entropy loss function to address both 

species classification and disease detection tasks, 
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combining the two loss values through a weighted 

approach to optimize learning. Two datasets were utilized 

for validation: the PlantVillage dataset, and the FISB 

dataset, which contains real-world agricultural images. By 

using AlexNet as a feature extractor, the model benefits 

from reduced computational complexity and shorter 

training times due to its relatively low parameter count. 

The findings demonstrate the model's effectiveness, 

achieving high accuracy rates: 98% for plant type and 

health status classification, and 89% for disease 

classification on the PlantVillage dataset. Similarly, on the 

FISB dataset, the model achieved 97% accuracy for plant 

type classification and 94% for disease detection. This 

study emphasizes the advantages of employing a multi-

task learning approach, outperforming single-task 

frameworks in various metrics such as accuracy, 

precision, recall, and F1 score. 

Chen et al. [22] introduced MS-DNet, a novel 

lightweight neural network designed for crop disease 

recognition. Building upon DenseNet, MS-DNet 

incorporates in depth wise separable convolutions (DSC) 

and Squeeze-and-Excitation (SE) blocks to enhance 

feature extraction while reducing model complexity. 

Preprocessing steps involved converting images to RGB 

color space, resizing them to 224×224 pixels, and 

augmenting the dataset using traditional methods ( 

rotation, flipping) and generative adversarial network-

based augmentation. The network employed ReLU 

activation functions in dense blocks and a SoftMax 

classifier for multi-class classification, utilizing a 

modified Focal Loss function to handle class imbalance. 

Sutaji & Yıldız. [23] proposed LEMOXINET, an 

ensemble model combining MobileNetV2 and Xception 

architectures to enhance plant disease detection 

performance. By concatenating features extracted from 

both networks, the model aimed to improve accuracy 

while maintaining computational efficiency. 

Preprocessing included resizing images to 224×224 for 

MobileNetV2 and 299×299 for Xception, normalizing 

pixel intensity values, and augmenting training data with 

various transformations to simulate different image 

conditions. The model utilized ReLU activation functions 

in initial layers and SoftMax in the final classification 

layer. The model was evaluated on datasets such as iBean, 

citrus, rice, and Turk-Plants. 

Sanida et al. [24] proposed an architecture to improve 

tomato disease identification by employing a two-stage 

transfer learning approach to reduce training time and 

enhance accuracy. Their model integrated the first ten 

layers of VGG16 with two inception blocks, resulting in a 

significantly smaller network than the standard VGG16. 

Images from the PlantVillage dataset were resized to 

224×224 pixels and split into training, validation, and 

testing sets (70%, 20%, and 10% respectively). An 

enhanced categorical cross-entropy loss function 

addressed class imbalance during training. 

Paul et al. [25] presented a lightweight custom CNN 

and leveraged transfer learning models VGG-16 and 

VGG-19 to classify tomato leaf diseases across 11 classes. 

Preprocessing involved converting images to JPEG format 

and resizing them to 224×224 pixels. The custom CNN 

used the SoftMax activation function in the final layer and 

employed categorical cross-entropy as the loss function. 

Zhou et al. [26] presented a restructured residual 

dense network (RRDN) to improve tomato leaf disease 

identification. By integrating the strengths of deep 

residual and dense networks, RRDN reduced training 

parameters and enhanced the flow of information and 

gradients. Preprocessing involved resizing images to 

196×196 pixels and normalizing pixel values. The 

network utilized a 3-layer Residual Dense Block (RDB) 

with ReLU activation after each convolution and Leaky 

ReLU post-normalization to mitigate the dead neuron 

phenomenon. A cross-entropy loss function was employed 

alongside a SoftMax activation in the output layer for 

multi-class classification. Evaluated on the AI 

CHALLENGER dataset containing 13,185 images across 

9 classes, RRDN achieved 95% accuracy on both 

validation and test sets, demonstrating its efficacy in 

disease identification. 

Paymode & Malode. [27] focused on detecting and 

classifying diseases in crops, particularly tomatoes and 

grapes, using a Convolutional Neural Network (CNN) 

based on the VGG16 architecture. Image preprocessing 

included filtering, grayscale transformation, sharpening, 

and scaling. Data augmentation techniques such as 

rotation, translation, and random transformations were 

applied to enhance the dataset's diversity. The model 

employed ReLU activation functions and a SoftMax 

activation in the final layer for classification. Utilizing the 

PlantVillage dataset, which comprises 54,303 high-quality 

images across 38 crop classes, the proposed CNN 

achieved remarkable accuracies of 98.40% for grapes and 

95.71% for tomatoes. 

Pan et al. [28] introduced TFANet, a two-stage feature 

aggregation network designed for multi-category soybean 

leaf disease identification. The model aimed to capture 

intricate features by aggregating information at different 

stages. Preprocessing steps involved resizing images to 

224×224 pixels and applying extensive image 

augmentation techniques, including rotation, flipping, 

color dithering, brightness enhancement, Gaussian noise 

addition, and adaptive histogram equalization. The model 

utilized the Sigmoid activation function and employed 

cross-entropy as the loss function for training. Evaluated 

on the Auburn Soybean Disease Image Database (ASDID) 

containing 9,648 images, TFANet demonstrated high 

efficacy with an accuracy of 98.18%, precision of 98.21%, 

recall of 98.60%, and an F1-score of 98.39%.  

Zhang et al. [29] proposed SDINet, a Siamese Dilated 

Inception Network tailored for apple leaf disease detection 

using minimal training samples. The model leverages 

dilated convolutions within Inception modules to capture 

multiscale features. Extensive data augmentation was 

performed, generating 10 augmented images per original 

through cropping, rotation, rescaling, flipping, brightness 

adjustment, contrast changes, noise addition, saturation, 

light enhancement, and random erasing. Images were 

resized to 256×256 pixels. ReLU activation functions 

were applied after each convolutional layer and dilated 

Inception module to enhance nonlinearity. Evaluated on 

the AppleDisease5 dataset comprising 2,000 images 
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across five disease classes, SDINet achieved an accuracy 

of 94.11%, precision of 93.58%, recall of 92.80%, and an 

F1-score of 93.19%. The model contains fewer than 10 

million parameters, significantly less than traditional 

models like AlexNet. 

Dai et al. [30] proposed the DFN-PSAN model, a 

multi-level deep information feature fusion extraction 

network designed for plant disease detection in natural 

field environments. The model integrates a position-

sensitive attention mechanism (PSA) to enhance feature 

representation while reducing parameters by 26% 

compared to optimal attention mechanisms. Preprocessing 

steps included converting images to RGB format, resizing 

to 256×256 pixels, and applying Gaussian filtering and 

non-local means noise reduction. Weather data 

augmentation simulated various environmental conditions 

such as fog, illumination changes, and raindrops to 

improve robustness. The network utilized ReLU 

activation in convolutional layers and Sigmoid in attention 

layers, with a SoftMax classifier at the output. Using 

cross-entropy loss with label smoothing, the model was 

trained on datasets like Katra-Twelve, BARI-Sunflower, 

and FGVC8. DFN-PSAN achieved accuracy of 98.37%, 

94.23%, and 93.24% on these datasets respectively, with 

overall performance exceeding 95.27%. 

In another research Dai et al. [31] presented PPLC-

Net, a neural network-based model for plant disease 

detection enhanced by Weather-based data augmentation 

and a multi-level attention mechanism. The model 

incorporates dilated convolutions and GAP layers to 

improve feature extraction. Images were cropped to 

256×256 pixels with adaptive scaling. Cross-entropy loss 

function was employed during training. Evaluated on a 

dataset of 4,503 images covering 22 leaf classes from 12 

plant types, PPLC-Net achieved an impressive accuracy of 

99.702%, precision of 98.545%, recall of 98.340%, and an 

F1-score of 98.442%. With 15.486 million parameters, the 

model balances complexity and performance in plant 

disease classification. 

Thakur et al. [32] presented VGG-ICNN, a lightweight 

Convolutional Neural Network designed for crop disease 

identification using plant leaf images. The model 

combines the initial four convolutional layers of a pre-

trained VGG16 with three blocks of GoogleNet Inception 

v7, resulting in approximately 6 million parameters 

significantly fewer than many high-performing models. 

Preprocessing involved resizing images to 224×224 pixels 

and normalizing pixel values. The dataset was split into 

training, validation, and test sets. ReLU activation 

functions were applied within the Inception blocks, and a 

SoftMax activation function was used in the fully 

connected classification layer. The model was evaluated 

on five public datasets: PlantVillage, Embrapa, Apple, 

Maize, and Rice, achieving accuracies ranging from 90% 

to 99%. Specifically, it achieved 99.16% accuracy on 

PlantVillage and 93.66% on Embrapa. 

 

 

2.1. Research gap identification and 

analysis  

After conducting a comprehensive and detailed review of 

the literature discussed above, the following key 

challenges have been identified and highlighted for 

exploration and consideration.  

2.1.1 Class variation  

In agricultural image analysis, class variation is a 

significant challenge. Intra-class variation refers to 

differences within the same category or class, such as 

plants of the same species exhibiting different features like 

the shape and color of the RoI. Inter-class variation 

highlights the difficulty of distinguishing between 

different plant species or diseases that may exhibit similar 

visual features [19]. These variations make a challenge for 

machine learning models to classify or detect specific 

agricultural traits accurately. Addressing class variation 

require robust feature extraction and classification 

techniques. To illustrate both these challenges a visual 

representation is provided in Figure 1 and Figure 2. 

   Figure 1: Inter-Class Variation a) Grape Black Measles 

b) Grape Black Rot. 

Figure 2: Intra-Class Variation a) Grape Leaf Blight 

b) Grape Leaf Blight. 

2.1.2 Region of interest scale variation 

Scale variation refers to changes in the size of RoI in the 

image caused by different angles and distances of camera 

while capturing the image [33]. In agriculture, this is 

particularly problematic for machine learning algorithms 

as diseases might appear small and distant in one image 

and large and close-up in another [33]. A visual 
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representation of the ROI challenge is illustrated in Figure 

3. 

Figure 3: Region of Interest Scale Variation a) 

Potato Early Blight at early-stage b) Potato Early Blight 

at advance stage. 

2.2 Research gap 

Despite significant progress in using CNNs for plant 

disease detection, several gaps persist:  

1. Gradients Vanishing in Simple Feed-Forward 

Models: Models like VGG16 and AlexNet often 

struggle with gradients vanishing, causing 

training difficulties and reducing their ability to 

learn complex patterns [20]. This limits their 

effectiveness in handling subtle disease features. 

2. Neglect of Multilevel Features in Inception-

Net: While Inception-based models capture 

features at multiple scales, they often fail to fully 

integrate features learned at different depths. 

This can result in missing important information 

needed for identifying diseases that vary in 

appearance across different layers [20]. 

3. “Dead Neuron” Phenomenon in Traditional 

Activation Functions: Common activation 

functions like ReLU and Sigmoid can lead to 

“dead neurons,” where some neurons stop 

responding to any input. This reduces the 

model’s capacity to learn new patterns, 

ultimately affecting performance [34]. 

3 Proposed framework 
In this section, we provide a comprehensive discussion of 

the proposed approach, outlining the CNN architecture in 

detail in the following subsections. Before delving into the 

specifics, we offer a concise overview to provide readers 

with a brief understanding. 

3.1 Data acquisition 

For this study, we utilize the publicly available 

PlantVillage and the CLD benchmark datasets. These 

datasets, summarized in Table 1, provide a comprehensive 

collection of images, enabling the training and evaluation 

of our proposed model across a diverse range of crops and 

disease types. 

3.1.1 PlantVillage dataset 

The PlantVillage dataset is a widely recognized resource 

for plant disease detection, comprising 18,908 images 

from various plant species. It offers high-quality, 

annotated images across multiple classes, facilitating 

accurate model training and evaluation. 

This research focuses on the classification of multiple 

plants and their associated diseases as shown in Figure 4.  

Figure 4: Data preparation. 
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For apples, the identified classes comprise of Apple Rust, 

Black Rot, Apple Scab and Healthy. Corn is classified into  

Northern Leaf Blight, Gray Leaf Spot, Common Rust, and 

Healthy samples. Black Rot, Black Measles, Leaf Blight, 

and Healthy leaves belong to the grape class. Potato 

diseases are grouped into Late Blight, Early Blight, and 

Healthy states. Lastly, tomato classes comprise Leaf 

Mold, Early Blight, Bacterial spot, and Healthy samples. 

This classification forms the basis of the study, 

highlighting a diverse range of plants and associated 

diseases. The PlantVillage dataset provides a different 

variety of plants, both healthy and diseased, making it 

compatible for training a multi-class plant disease 

detection model. 

3.1.2 Cassava leaf disease 

The CLD dataset focuses on cassava, one of the most 

crucial staple crops in many developing countries. 

Cassava leaves are prone to various diseases, significantly 

impacting crop yield and food security. To evaluate our 

model on real-world images, we selected 500 images per 

class from the CLD dataset, total of 2,500 images. This 

dataset contains five distinct classes, including both 

healthy and diseased leaf images as shown in Figure 4.  

3.2 Preprocessing 

Figure 5 explains the process of standardizing image 

sizes, which ensures consistency in the dataset, reduces 

computational demands, and improves the model’s 

performance by providing uniform input images. This 

study employs bicubic interpolation, a method that 

calculates new pixel values using the weighted sum of 16  

 

 

neighboring pixels. This technique provides smoother 

transitions and improved image quality compared to other 

methods like nearest-neighbor or bilinear interpolation. 

Additionally, it excels at retaining smooth gradients, 

further supporting more accurate feature extraction during 

training. 

 

Figure 5: Image resizing. 

3.3 HFFIncep-Net for feature extraction 

and classification 

In Figure 6, the proposed HFFIncep-Net architecture, a 

novel solution designed to overcome the limitations of 

existing CNNs for multi-class plant disease classification, 

particularly at early stages. This model integrates 

hierarchical feature fusion [20] and multiscale feature 

extraction [35], enhancing its ability to analyze complex 

Plants Classes 

Image Frequency  

Train 

(70%) 

Validate 

(10%) 

Test 

(20%) 

Total 

Corn 

Northern Leaf Blight 689 98 198 985 

Gray Leaf Spot 359 51 103 513 

Healthy 813 116 233 1162 

Common Rust 834 119 239 1192 

Apple 

Apple Scab 441 63 126 630 

Healthy 1151 164 330 1645 

Apple Rust 192 27 56 275 

Black Rot 434 62 125 621 

Grape 

Leaf blight 753 107 216 1076 

Black Measles 968 138 277 1387 

Healthy 296 42 85 423 

Black Rot 826 118 236 1180 

Potato 

Early Blight 700 100 200 1000 

Late Blight 700 100 200 1000 

Healthy 106 15 31 152 

Tomato 

Healthy 1113 159 319 1588 

Early Blight 700 100 200 1000 

Bacterial Spot 1488 212 427 2127 

Leaf Mold 666 95 191 952 

Cassava 

Healthy Cassava Leaves  350 50 100 500 

Cassava Bacterial Blight 350 50 100 500 

Cassava Brown Streak  350 50 100 500 

Cassava Mosaic Disease  350 50 100 500 

Healthy  350 50 100 500 

Table 1:  Dataset’s description. 
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plant disease symptoms with minimal information loss. 

By combining a robust feature extraction mechanism with 

advanced architectural enhancements, HFFIncep-Net 

ensures superior classification performance. 

At the core of the architecture is the HFF-Net Stem, 

which processes 224 × 224-pixel colored input images to 

extract hierarchical multiscale features. The stem consists 

of four parallel convolutional layers, each configured to 

operate at different scales, enabling the model to capture a 

diverse range of spatial features. The first convolutional 

layer (conv.1) extracts feature maps (FMs) of dimensions 

224 × 224 × 64 using a 3 × 3 filter with a stride (S) of 1, 

preserving fine details in the image. The second layer 

(conv.2) reduces the input dimensions, producing 112 × 

112 × 64 FMs with a 3 × 3 filter and S = 2, while the third 

(conv.3) and fourth (conv.4) layers generate 56 × 56 × 32 

FMs using 5 × 5 and 7 × 7 filters, respectively, both with 

S = 4. These multiscale feature maps are fused through a 

carefully designed hierarchical process to retain critical 

details while minimizing computational complexity. 

The hierarchical fusion mechanism employed in the 

HFF-Net Stem ensures that features from different scales 

are effectively combined. The FMs from conv.1 are down 

sampled using a Max Pooling (MP) layer and 

concatenated with those from conv.2, producing feature 

maps of dimensions 112 × 112 × 128. These concatenated 

FMs are further reduced to 112 × 112 × 64 using a Channel 

Pooling Layer (CPL), preserving essential feature 

information while optimizing processing efficiency. The 

process continues as features from conv.3 and conv.4 are 

integrated, producing a final stem output of 56 × 56 × 128 

feature maps (FMs). This robust feature extraction process 

mitigates information loss and ensures a rich 

representation of the input image, optimized for 

subsequent multiscale analysis [20].  

To further enhance the model's capacity for multiscale 

feature extraction, two Inception V3 blocks are 

incorporated after the HFF-Net Stem. These blocks 

process the stem output through multiple convolutional 

filters of varying dimensions 1 × 1, 3 × 3, and 5 × 5 

alongside a Max Pooling operation. The outputs from 

these filters are concatenated, creating a unified 

representation that captures patterns at various scales. This 

approach is particularly effective in addressing the diverse 

manifestations of plant diseases, which may appear as 

small spots or large lesions. By leveraging these 

multiscale feature representations, the Inception blocks 

significantly enhance the model's ability to distinguish 

between different disease classes. 

The performance of the HFFIncep-Net is further 

improved through several architectural enhancements. 

The Swish activation function is employed across the 

network, offering a smoother gradient flow and improved 

learning stability compared to traditional activation 

functions. Batch Normalization is applied in the 

convolutional layers to standardize feature distributions, 

Figure 6: The proposed HFFIncep-Net CNN architecture. 
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reduce internal covariate shifts, and prevent overfitting. 

Additionally, a GAP layer is incorporated at the higher 

levels of the network, aggregating spatial information 

without the need for fully connected layers. This model 

not only improves classification accuracy but also reduces 

the risk of overfitting, ensuring the model's ability to 

perform effectively on unseen data. 

3.4 Activation function 

Choosing the right activation function is important for 
how effectively a model learns and generalizes. 

Swish activation function 

The Swish activation function is defined as: 

 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥) = 𝑥 ∗ 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥)  (1) 
 

Where 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) is Sigmoid function, and it's given by 
the equation: 

 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥) =
1

1+ⅇ−𝑥 (2) 
 

Equation (1) multiplies the input by the sigmoid of the 
input, creating a smooth curve. This produces negative 
outputs for negative inputs, which helps avoid the gradient 
vanishing problem, ensuring gradient flow even for small 
or negative inputs. These features help the model learn 
better, keep gradients flowing smoothly, and reduce the 
chance of neurons becoming “dead” (i.e., stopping 
learning) [20]. 

3.5  Loss function 

To effectively train the HFFIncep-Net for the plant disease 

detection, we used the sparse categorical cross entropy 

loss function. The formula for the loss function is defined 

in the equation (3): 

 𝐿𝑜𝑠𝑠 = − ∑ 𝑡𝑖 log( 𝑝𝑖,𝑦𝑖
)

𝑛

𝑖=1
 (3) 

 

Here, 𝐿 denotes the loss, 𝑁 indicates the total number of 

samples, 𝑦𝑖  denotes the integer label for the 𝑖𝑡ℎ sample, 

and 𝑝𝑖,𝑦𝑖
 represents the predicted  probability that the 𝑖𝑡ℎ 

sample belongs to its correct class, represented by 𝑦𝑖 . 

3.6 Model training and evaluation 

In this study, we utilized Google Colab’s cloud 

environment to train and evaluate our HFFIncep-Net for 

plant disease detection, leveraging the available GPU 

acceleration. The training setup included a batch size of 32 

and was configured for 40 epochs to strike a balance 

between learning efficiency and model accuracy. We 

chose the Adam optimizer for its adaptive learning rate 

capabilities, which helped in effectively facilitating model 

convergence. 

Instead of using model checkpointing, we chose to 

train the model for the full 40 epochs, ensuring that the 

final model weights represent comprehensive learning 

from the entire dataset. This approach provided a robust 

framework for detecting various plant diseases and 

optimized the model’s performance in accurately 

classifying plant health across multiple categories. 

3.7  Evaluation metrics 

In this study, we assessed the model's ability to detect and 

categorize different plant diseases using performance 

indicators, such as accuracy, recall, precision, and the F1-

score. Formulas for these metrics are as follows: 

                         𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (4) 

 

 𝑹𝒆𝒄𝒂𝒍𝒍 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (5) 

 

 𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 = 2 ×  
(𝑅ⅇ𝑐𝑎𝑙𝑙 × 𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅ⅇ𝑐𝑎𝑙𝑙+𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛)
 (6) 

 

 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
         (7) 

4 Experiment and results 
In this study, we tested the HFFIncep-Net model for plant 

disease detection and compared its performance with 

several well-known CNN architectures: ResNet-50, 

Inception V3, DenseNet-201, VGG16, MobileNet, and 

AlexNet. Each model has its own strengths. ResNet-50 

uses residual connections to solve the vanishing gradient 

problem, helping it learn better as the network gets deeper. 

Inception V3 captures features at multiple scales, which is 

useful for recognizing the varied visual patterns in plant 

diseases. DenseNet-201 improves feature sharing and 

reduces computation by connecting each layer to every 

other layer. VGG16, while simple, is effective in 

extracting features through its deep structure, and AlexNet 

provides a solid baseline for comparison. MobileNet, 

designed for lightweight applications, optimizes 

computational efficiency while maintaining high 

accuracy, making it suitable for real-time disease 

detection in resource-constrained environments. 

By comparing HFFIncep-Net against these models, we 

aim to show its advantages in terms of accuracy, 

scalability, and handling challenging conditions such as  in 

different lighting, a variety of disease classes, and 

complex backgrounds. The model demonstrates 

consistently high precision, recall, and F1-scores, 

indicating its robustness in classifying both healthy and 

diseased plants across multiple species. Additionally, the 

model effectively distinguishes between visually similar 

diseases, minimizing false positives and false negatives. 

High classification accuracy observed across different 

plant species highlights the adaptability of HFFIncep-Net 

to diverse agricultural conditions. The HFFIncep-Net 

results on different plants are shown in Table 2.  
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4.1 Proposed model results 

4.1.1. Model HFFIncep-Net for Corn 

Figure 7 and Figure 8 display the training and validation 

loss, as well as training and validation accuracy patterns 

for corn disease classification, providing further insights 

into the model's performance. The training loss decreases 

slowly over the epochs and stabilized after the 8th epoch, 

indicating the model's capacity to acquire features from 

the training data. The training accuracy respectively 

increases and stabilizes at a high level. 

 

 

 

Figure 7: Loss curves of  HFFIncep-Net for  corn 

diseases classification. 

Benchmark Class Label TP FP FN TN Pr. % Rec% F1. Score % 

Apple Apple Rust 55 0 1 587 100.00 100.00 100.00 

Apple Scab 123 2 3 515 99.21 99.21 99.21 

Black Rot 125 1 6 511 100.00 100.00 100.00 

Healthy 329 8 1 305 99.70 99.70 99.70 

Corn Common Rust 239 0 0 534 100.00 100.00 100.00 

Gray Leaf Spot 87 4 16 666 95.60 84.47 89.69 

Northern Leaf Blight 193 16 5 559 92.34 97.47 94.84 

Healthy 233 1 0 539 99.57 100.00 99.78 

Grape Black Measles 277 2 1 535 99.28 99.64 99.46 

Black Rot 235 0 1 579 100.0 99.58 99.78 

Leaf Blight 213 1 3 598 99.53 98.61 99.06 

Healthy 85 2 0 728 97.70 100.0 98.83 

Potato Early Blight 200 0 0 231 100.00 100.00 100.00 

Late Blight 200 1 0 230 99.50 100.00 99.75 

Healthy 30 0 1 400 100.0 96.77 98.36 

Tomato Bacterial Spot 422 1 5 709 99.76 98.83 99.29 

Early Blight 198 5 2 932 97.54 99.00 98.26 

Leaf Mold 190 2 1 944 98.96 99.48 99.22 

Healthy 318 1 1 817 99.69 99.69 99.69 

Cassava 

Cassava Green Mottle 75 27 25 373 73.53 75.00 72.16 

Cassava Bacterial Blight 88 19 12 381 82.24 88.00 85.02 

Cassava Brown Streak 70 24 30 376 74.47 70.00 72.16 

Cassava Mosaic Disease 84 28 16 372 75.00 84.00 79.25 

Healthy 74 11 26 389 87.06 74.00 80.00 

Table 2: The proposed  HFFIncep-Net performance. 
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 Figure 8: Accuracy curves of  HFFIncep-Net for  corn 

diseases classification.  

Figure 9 presents the confusion matrix for the HFFIncep-

Net in corn disease detection, illustrating the complexity 

of the classification task, particularly due to significant 

class variations such as inter- and intra-class differences 

between Gray Leaf Spot and Northern Leaf Blight. 

Despite these challenges, the HFFIncep-Net shows 

impressive performance in identifying various corn 

diseases. 

For Common Rust, the model correctly identified all 

the 239 samples, proving its strong ability to detect this 

disease. In the case of Gray Leaf Spot, the HFFIncep-Net 

accurately classified 87 out of 103 samples, demonstrating 

its effectiveness in identifying this disease. 

The model performed exceptionally well with the 

more difficult Northern Leaf Blight disease of corn, 

correctly identifying 193 out of 198 samples, showing it 

can handle tougher cases. Lastly, for Healthy Corn, the 

model achieved perfect accuracy by correctly diagnosing 

all 233 Healthy samples. 

 

Figure 9: Confusion matrix of HFFIncep-Net for Corn 

diseases. 

 

 

 

 

4.1.2 Model HFFIncep-Net for Tomato 

In Figure 10 and Figure 11, training and validation loss as 

well as training and validation accuracy plots for tomato 

disease are presented subsequently that provides further 

understandings into the model’s performance. The 

validation loss and accuracy stabilized after the 5th epoch, 

indicating that the model effectively learned features by 

this point. 

Figure 10: Loss curves of  HFFIncep-Net for  tomato 

diseases classification. 

Figure 11: Accuracy curves of  HFFIncep-Net for  

tomato diseases classification. 

Figure 12 presents the confusion matrix for the HFFIncep-

Net in tomato disease detection, highlights that there is a 

class variation challenge in bacterial spot and early blight. 

Although these challenges, the HFFIncep-Net shows 

impressive performance in identifying various Tomato 

diseases. 

For bacterial spot, the model correctly identified 422 

out of 427 samples, proving its strong ability to detect 

Bacterial Spot disease. In the case of Early Blight, the 

HFFIncep-Net correctly classified 198 out of 200 samples, 

establishing its effectiveness in identifying this disease. 

The model also performed well with the Leaf Mold 

disease of Tomato, correctly identifying 190 out of 191 
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samples just misclassifying one sample, which shows that 

model is performing accurately in different and complex. 

Lastly, for Healthy Tomato, the HFFIncep-Net achieved 

high accuracy, only misclassified 1 sample out of 319 

Healthy samples. 

 

Figure 12: Confusion matrix of HFFIncep-Net for tomato 

diseases. 

4.1.3 Model HFFIncep-Net for Potato 

In Figure 13 and Figure 14, which display the training and 

validation loss as well as training and validation accuracy 

plots for potato disease subsequently, gives additional 

insights into the model's performance.  

Figure 13: Loss curves of  HFFIncep-Net for  potato 

diseases classification. 

Figure 15 presents the confusion matrix for the HFFIncep-

Net in potato disease detection. The model performs 

efficiently on all the classes, which shows its strong 

generalization capability. It correctly distinguishes 

between Early Blight, Late Blight, and Healthy leaves 

with minimal error. The model misclassified only one 

sample across all categories, demonstrating near-perfect 

performance on potato disease classification. This high 

accuracy highlights the model’s ability to handle subtle 

visual differences between similar disease classes. Such 

performance also indicates the model's robustness and 

reliability in real-world agricultural applications. 

Figure 14: Accuracy curves of  HFFIncep-Net for  potato 

diseases classification. 

For Early Blight, the model correctly identified all 200 

samples. For Healthy, the HFFIncep-Net correctly 

classified 30 out of 31 samples, and in the case of Late 

Blight, the model perfectly classified all 200 samples. For 

Healthy samples, the model misclassified only one sample 

out of 30. The extremely low misclassification rate 

demonstrates the model’s precision in distinguishing 

diseased and healthy potato leaves. This further suggests 

that HFFIncep-Net could be integrated into smart farming 

systems for automated disease detection and management. 

 
 

Figure 15: Confusion matrix of HFFIncep-Net for 

potato diseases. 

 

4.1.4 Model HFFIncep-Net for Grapes 

Figure 16 and Figure 17 show the training and validation 

loss as well as training and validation accuracy plots for 

grape disease subsequently, which provides further 

understanding into the model's performance. The 

validation loss and validation accuracy stabilized after the 

7th epoch, which displays efficient model learning ability. 

This indicates that the model successfully avoids 

overfitting while maintaining high generalization 

performance. 
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Figure 16: Loss curves of  HFFIncep-Net for  grapes 

diseases classification. 

 

Figure 17: Accuracy curves of HFFIncep-Net for grapes 

diseases classification. 

 

Figure 18 presents the confusion matrix for the HFFIncep-

Net in grape disease detection, highlights that model is 

performing effectively on all the classes of grapes, and 

only misclassifies 4 samples. In the case of Black Measles, 

the model correctly classifies all the 277 samples. And for 

the case of Grape Black Rot the model misclassifies only 

1 sample out of 236 samples.  

Figure 18: Confusion matrix of HFFIncep-Net for grapes 

diseases. 

For Leaf Blight, the model correctly identified 213 out 

of 216 samples, proving its strong ability to detect Grape 

Leaf Blight disease. In the case of healthy grape, the 

HFFIncep-Net correctly classified all 85 samples which 

shows valuable model performance.  

4.1.5 Model HFFIncep-Net for Apple  

Figure 19 and Figure 20 show’s how the model performed 

during training. Figure 19 tracks the training and 

validation loss, while Figure 20 shows the training and 

validation accuracy for detecting apple diseases. After the 

10th epoch, both the validation loss and accuracy 

stabilized, meaning the model has learned the important 

features.  

 

Figure 19: Loss curves of  HFFIncep-Net for  apple 

diseases classification. 

 

Figure 20: Accuracy curves of  HFFIncep-Net for  apple 

diseases classification. 

In Figure 21 presents the confusion matrix for the 

HFFIncep-Net in apple disease detection, highlights that 

model is performing perfectly on all the categories of 

Apple, and only misclassifies 2 sample between Healthy 

and Apple Scab class due to the high-class variation 

problem. In the case of Apple Rust and Black Rot, the 

model correctly classifies all the samples, proving its 

strong ability to detect apple black rot disease And in the 

case of Apple Scab the model misclassifies only 1 sample 

out of 125 samples. In the case of healthy Apple, the 

HFFIncep-Net correctly classified 329 samples and only 

misclassified 1 sample. 
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Figure 21: Confusion matrix of HFFIncep-Net for apple 

diseases. 

4.1.6 Model HFFIncep-Net for Cassava  

Figure 22 and Figure 23 display the training and validation 

loss, as well as the training and validation accuracy 

patterns for Cassava disease classification, providing 

insights into the model's performance. The training loss 

gradually decreases over the epochs, while the validation 

loss also trends downward but exhibits more fluctuations, 

indicating the model's capacity to learn from the training 

data. Meanwhile, the training accuracy steadily increases 

and stabilizes at a high level. 

Figure 22: Loss curves of  HFFIncep-Net for  casava 

diseases classification. 

 

Figure 23: Accuracy curves of  HFFIncep-Net for  

casava diseases classification. 

Figure 24 presents the confusion matrix for the HFFIncep-

Net in Cassava disease detection, highlighting the model’s 

ability to classify five categories of Cassava leaf 

conditions. While the model generally performs well, the 

matrix reveals some misclassifications due to inter- and 

intra-class variation. The model correctly classifies 88 out 

of 100 samples for Cassava Bacterial Blight (CBB), 

demonstrating strong detection of this disease. For 

Cassava Brown Streak (CBS) case model correctly 

identifies 70 out of 100 samples, occasionally confusing 

CBS with CBB. In the case of Cassava Green Mottle 

(CGM), 75 samples are correctly classified out of 100, 

indicating moderate confusion with Cassava Mosaic 

Disease. For Cassava Mosaic Disease (CMD), model 

accurately classifies 84 out of 100 CMD samples, showing 

reliable performance on this category. For Healthy 

Leaves, the model correctly identifies 74 out of 100 

samples, with a notable portion misclassified as CGM. 

Despite these misclassifications, the HFFIncep-Net 

demonstrates overall strong performance on real-world 

Cassava images, showcasing its ability to learn 

discriminative features across multiple disease classes. 

 

Figure 24: Confusion matrix of HFFIncep-Net for 

cassava diseases. 

4.2 Performance comparative analysis  

To evaluate the effectiveness of the proposed HFFIncep-
Net, a comprehensive comparison was conducted against 
several well-established state-of-the-art architectures, 
focusing on key performance metrics such as precision, 
recall, F1-score, and accuracy. 

MobileNet is significantly lightweight compared to 
AlexNet, ResNet-50, and DenseNet-201, making it highly 
efficient for deployment on mobile devices. In terms of 
performance, MobileNet achieves a precision of 81.04%, 
a recall of 76.74%, an F1-score of 77.13%, and an 
accuracy of 90.94%. It provides a strong balance between 
efficiency and accuracy, making it suitable for real-time 
applications. AlexNet architecture, which consists of 8 
layers in which 5 are convolutional and 3 are fully 
connected layers. It utilizes 3 × 3 filters with a stride of 1 
to capture the features in the image. AlexNet has 
approximately 61 million parameters and the dropout 
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layer is used to minimize the risk of overfitting. In the 
metrics provided, AlexNet achieves a precision of 
81.55%, a recall of 78.02%, F1 score of 76.14%, and an  
accuracy of 90.98%.  

ResNet-50 addresses the challenges of training deeper 
networks by introducing residual blocks with skip 
connections, effectively handling the gradient vanishing 
problem and class variation problem (Inter and Intra class 
variation) by extracting features at multiple levels with 
different strides. And Resnet-50 has a total of 25 million 
parameters which means it is lighter than Alexnet and 
requires less computation. Resnet-50 is preforming 
effectively than the Alexnet with the precision of 82.08%, 
recall of 77.76%, F1 score of 78.51%, and accuracy of 
91.28%. This improvement is because of multilevel 
feature  extraction which offers better learning and 
accuracy.  

Densely Connected Convolutional Networks 
(DenseNet) feature a dense connectivity pattern where 
each layer is connected to other layers, which enhances 
feature propagation and reuse. This architecture also 
addresses the class variation and gradient vanishing 
problem as features are extracted at multiple levels with 
different strides (s-1, s-2, e.g.) DenseNet-201 achieved a 
precision of 85.36%, recall of 79.49%, F1 score of 
79.31%, and accuracy of 92.16%, outperforming ResNet-
50. 
 PDD-Net is built on the VGG16 architecture, which is 
known for its straightforward design with 16 layers, 
including convolutional filters of 3 × 3. By using VGG16 
as its base, PDD-Net benefits from strong feature 
extraction capabilities while keeping the model efficient. 
The PDD-Net outperforms the other architecture, with a 
precision of 86.27%, recall of 86.41%, F1 score of 
86.29%, and accuracy of 94.59%.  

Inception V3 architecture utilizes Inception modules, 
which perform parallel convolutions and max pooling 
operations with different filters to extract features at 
multiple scales that address the RoI problem. The 
Inception V3 has approximately 23.9 million parameters. 
Inception V3 focuses on computational efficiency while 
maintaining high performance. It achieves a precision of 
88.22%, a recall of 86.08%, F1 score of 82.21%, and 
accuracy of 94.74%. 

 

 

 

The proposed HFFIncep-Net is designed for plant 
disease classification, employing multilevel and 
multiscale feature extraction techniques to avoid problems 
like RoI scale variation, gradient vanishing, and class 
variation problem and then flows into a GAP layer, which 
compresses it into a more manageable size [20]. The 
proposed model has approximately 1.2 million 
parameters, making it lightweight than other state-of-the-
art architectures. To mitigate overfitting, a dropout layer 
with a rate of 0.2 is applied before the final classification 
layer. The proposed model achieves the highest 
performance across all other architectures, with a 
precision of 94.61%, recall of 94.31%, F1 score of 
94.31%, and accuracy of 97.80%. Table 3 shows the 
comparison of proposed HFFIncep-Net model with 
current state-of-the-art classifiers. 

5 Conclusions and future work 
This study presents the HFFIncep-Net model, designed to 
address critical challenges in plant disease detection, 
including variables like RoI scale variations and intra-
class variations. This model leverages a combination of 
advanced feature extraction techniques, and an activation 
function optimized to mitigate the issue of inactive 
neurons. As a result, it demonstrates superior accuracy 
compared to traditional architecture such as VGG16, 
AlexNet, and conventional Inception-based models. The 
findings reveal that the hybrid approach effectively 
captures essential features across varying scales and 
depths, enabling precise identification of plant diseases 
even in complex and dynamic real-world environments. 
This innovation holds significant potential for 
empowering farmers and agricultural experts to diagnose 
crop issues swiftly, safeguard yields, and contribute to a 
stable and secure food supply chain. Future research 
directions could involve incorporating additional 
environmental data or experimenting with state-of-the-art 
attention mechanisms. By continuously enhancing these 
models, automated plant disease detection can become 
faster, more reliable, and widely accessible, benefiting 
farming communities worldwide. 

 

 

 

 

 

Framework CNN Architecture Precision % Recall % F1 Score % Accuracy % 

[23] MobileNet [36] 81.04 76.74 77.13 90.94 

[21], [29] AlexNet [37] 81.55 78.02 76.14 90.98 

[26] ResNet-50 [38] 82.08 77.76 78.51 91.28 

[22] DenseNet-201 [39] 85.36 79.49 79.31 92.16 

[24], [25],[19], [27], [32] VGG16 [40] 86.27 86.41 86.29 94.59 

[24], [28], [23], [29] Inception V3 [35] 88.22 86.08 82.21 94.74 

Proposed Model HFFIncep-Net 94.61 94.31 94.31 97.80 

Table 3:  Comparative analysis of proposed model with different  State-of-the-art CNN Architecture. 
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