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This study compares the effectiveness of Elman Recurrent Neural Networks (ERNN) and Jordan Recurrent 

Neural Networks (JRNN) for predicting solar radiation and ambient temperature in Ouarzazate, 

Morocco. Data collected at 10-minute intervals from three meteorological stations (OUA_001, OUA_002, 

and OUA_003) over a 3–4-year period (2018-2022) were analyzed. The dataset was split into training 

(75%) and validation (25%) subsets to develop and test the models. The research systematically explored 

different network architectures with 1-2 hidden layers containing 4-12 neurons, applying three learning 

algorithms: BackPropagation (BP), BackPropagation with Momentum (BPM), and Resilient 

Backpropagation (Rprop). Key hyperparameters were optimized within specific ranges, including 

learning rates (0.00001-0.4) for BP/BPM and weight decay exponents (0.00001-4) for Rprop. Input 

variables included date, temperature, solar radiation, wind speed, relative humidity, precipitation, and 

atmospheric pressure in various combinations. Performance evaluation using Nash-Sutcliffe Efficiency 

(NSE) and Index of Agreement (d) revealed high prediction accuracy for both model types, with values 

exceeding 0.9 during validation. JRNN with BPM performed best at station OUA_001 (NSE: 0.909 for 

radiation, 0.971 for temperature), while ERNN with BPM demonstrated superior performance at station 

OUA_002 (NSE: 0.978 for radiation, 0.976 for temperature). At station OUA_003, both models showed 

comparable results when using BP. Despite the high overall accuracy, both models exhibited limitations 

in predicting extreme solar radiation values, particularly during nighttime hours. The study concludes 

that ERNN and JRNN are effective tools for short-term prediction of solar radiation and temperature in 

arid regions like Ouarzazate, though further refinement is needed to better capture extreme values and 

improve prediction accuracy during transitional periods. 

Povzetek: Elmanove in Jordanove povratne nevronske mreže so uporabljene za 48-urnem napovedovanju 

sončnega sevanja in temperature, pri čemer JRNN izkazuje boljšo računsko učinkovitost in primerljivo 

točnost. 

 

1 Introduction 
The rapid growth of solar energy generation technologies 

requires increasingly sophisticated processing techniques 

to understand the variability of solar resources over short 

time intervals [1]. Photovoltaic solar energy is an 

intermittent renewable source that can be considered a 

non-stationary time series [2]. Accurate forecasting of 

solar radiation and temperature is crucial for efficient 

energy management, grid stability, and optimization of 

solar power plants, particularly in regions with high solar 

potential like Ouarzazate, Morocco. 

Traditional time series prediction methods include 

statistical approaches of the AutoRegressive (AR) type 

and their variants, such as the AutoRegressive Moving 

Average (ARMA) method or the AutoRegressive  

 

 

Conditional Heteroskedasticity (ARCH) [3]. These 

methodologies are univariate and generally perform well  

with stationary time series. However, they often struggle 

with the non-stationary, intermittent nature of solar 

radiation data and the complex relationship between 

meteorological variables [4]. 

Machine learning methods in AI, like neural networks, 

allow for the incorporation of other relevant variables into 

the model when predicting stationary or non-stationary 

time series. Among the different architectures of Artificial 

Neural Networks (ANNs), Recurrent Neural Networks 

(RNNs) have shown promise in pattern classification and 

prediction involving multiple variables. RNNs incorporate 

feedback mechanisms that enable them to capture 

temporal dependencies in time series data, making them 

potentially suitable for solar radiation and temperature 

prediction [5]. 
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The Elman Recurrent Neural Network (ERNN) and 

Jordan Recurrent Neural Network (JRNN) represent two 

distinct architectures of RNNs with different feedback 

mechanisms [6]. While both have been applied to various 

forecasting problems, their comparative performance in 

predicting solar radiation and temperature presents an 

opportunity for further research 

This study aims to address the following specific research 

questions: 

- How do ERNN and JRNN compare in terms of accuracy 

for short-term (48-hour) prediction of solar radiation and 

ambient temperature? 

- Which combination of network architecture, learning 

algorithm (BP, BPM, or Rprop), and hyperparameters 

gives the optimal prediction performance for each 

meteorological station? 

- How does the inclusion of different meteorological 

variables (wind speed, relative humidity, precipitation, 

and atmospheric pressure) as inputs affect the prediction 

accuracy of the models? 

- What are the specific strengths and limitations of ERNN 

and JRNN in capturing the temporal patterns of solar 

radiation and temperature, particularly during extreme 

values and transitional periods? 

The article is organized as follows: Section 2 reviews 

related work in solar and temperature prediction. Section 

3 explains the methodology used for predicting 

temperature and radiation time series using ERNN and 

JRNN. Section 4 presents the results obtained, including 

figures and comparative statistical tables of the two 

prediction methods. Section 5 discusses the obtained 

results in terms of performance comparison. Finally, 

Section 6 presents the conclusions and recommendations 

of the study. 

2 Literature review 

2.1 Neural networks for time series 

prediction 

ANNs have gained significant attention in environmental 

and renewable energy forecasting due to their ability to 

model complex non-linear relationships without requiring 

explicit knowledge of the underlying physical processes. 

As noted by Krogh [7], ANNs are computational models 

inspired by the functioning of biological neurons, 

consisting of a series of processors (neurons) organized 

into interconnected layers. These neurons process input 

signals and generate output through weighted connections. 

RNNs represent a specialized class of neural networks 

designed to capture temporal dependencies in sequential 

data. RNNs are composed of neuronal units where 

information travels from the input layer to the output layer 

with feedback or memory of past events [8]. This feedback 

mechanism allows RNNs to represent dynamic systems, 

such as non-stationary time series, making them 

particularly suitable for solar radiation and temperature 

forecasting. 

The fundamental difference between an ERNN and a 

JRNN lies in their feedback mechanisms: in Elman 

networks, feedback goes from the output of the hidden 

layer to the context layer, whereas in Jordan networks, 

feedback occurs from the output layer to the neurons of 

the context layer. This architectural distinction affects 

both computational requirements and predictive 

capabilities. 

2.2 Solar radiation and temperature 

prediction 

Solar radiation and temperature forecasting have been 

approached using various techniques ranging from 

statistical models to complex machine learning 

architectures. Table 1 presents a comparative summary of 

recent studies focusing on solar radiation and temperature 

prediction, highlighting their methodologies, key metrics, 

and findings. 

 

 

Table 1: Comparative summary of recent studies on solar radiation and temperature prediction 

Study Region/Dataset Method 
Prediction 

Horizon 
Input Variables 

Performance 

Metrics 
Key Findings Limitations 

Sudharshan 

et al. [1] 
Multiple regions 

Review of 
irradiance 

forecasting 

Various Various Various 

Combining 
methods 

(ensemble/hybrid) 

works best. Deep 
learning excels 

with images and 

long-term 
predictions. 

Simpler models 

suffice for short-
term forecasts. 

Each approach has 

strengths: time 
series models 

handle patterns 

well, and physical 
models establish 

reliable baselines. 

Key challenges 

include location-

specific 

performance, 

unpredictable 

weather, 
computational 

demands, 

inconsistent 
evaluation 

standards, and 

data quality 
issues. 
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Yuan Gao et 

al. [9] 

Tokyo and 

Okinawa, Japan 
(hourly 

meteorological 

data from 2020-
2022) 

Adversarial 
Discriminative 

Domain 

Adaptation 
(ADDA) - a 

zero-label 

transfer 
learning 

approach using 

domain 
adaptation and 

GAN training 

techniques 

One hour 

ahead 

historical weather 

data and temporal 
features 

MSE: 0.0857 
(ADDA model 

with Okinawa 

as source) 
R²: 0.8870 

(ADDA model 

with Okinawa 
as source) 

MAE: 2.42 

(ADDA 
model with 

Okinawa as 

source 
predicting for 

Tokyo in 

January) 

4-16% improved 

accuracy over 
baseline models 

without requiring 

target domain 
labels 

Requires identical 
network 

architectures 

between domains, 
same input 

feature structures, 

and limited 
testing to only 

two Japanese 

regions. 

Muhammad 

Samee 

Sevas et al. 
[10] 

Bangladesh 

Ensemble 

machine 

learning 
approaches, 

hybridized 

clustering 
techniques with 

LightGBM, and 
Explainable AI 

(XAI) 

- 

Multiple variables 
including 

"Sunshine 

(Hours)" 
identified as most 

important 

R²: 0.91 (best 

performance 
from 

LightGBM 
and CatBoost) 

LightGBM and 
CatBoost ensemble 

methods achieved 

R²=0.91 for solar 
irradiance 

prediction. 

Sunshine (Hours) 
identified as most 

influential 
predictor, with 

hybridized 

clustering approach 
performing best for 

"Very Cloudy" 

conditions 

Not explicitly 

stated 

Wassila 

Tercha et 
al.[11] 

Algeria 

7-month period 

data (Jan-July) 
212 daily entries 

with year, 

month, day, 
temperature, and 

irradiance 

Decision Tree  

Random Forest 

Support Vector 
Machine 

XGBoost 

Daily 

forecasting 

Temporal features  

Historical 

temperature data 
Historical solar 

irradiance data 

MAE : 47.49, 
MSE : 

5289.67, 

RMSE : 72.73 

Decision Tree 
performed best for 

temperature 

forecasting with 
perfect fit. 

Random Forest 

achieved best 
results for solar 

irradiance 

Decision Tree and 

XGBoost models 

had fastest 

prediction speeds 

Small dataset size 
(7-month period 

only) 

Climate 
variability and 

extreme weather 

events 

Chengliang 

Fan et al. 

[12] 

Pearl River New 

Town (PRNT), 
Guangzhou, 

China 

Long Short-
Term Memory 

neural network 

model and 
SHAP 

Hourly air 
temperature 

prediction, 

using 3-hour 
historical 

data as 

optimal time 
step 

Five urban 
morphology 

factors 

Historical air 
temperature data 

Land cover and 

urban spatial form 
classifications 

R² : 0.975 
RMSE: 

0.344°C 

MAE : 
0.256°C 

LSTM 
outperformed CNN 

and FCN in 

microclimate 
prediction 

Limited data 

samples for 

training the model 
Predicts with 

slight 

underestimation 
during day and 

overestimation at 

night 

Faouzi Didi 

et al. [13] 

Algeria, 
Meteorological 

data 

fuzzy logic 

controller 
(FLC) based on 

the Mamdani 

method 

real-time 
control and 

optimization 

of the 
greenhouse 

microclimate 

Temperature, 

Relative 

Humidity,Solar 
Radiation, Wind 

Speed and 

Direction, CO₂ 
Concentration 

- 

The fuzzy logic 
controller 

effectively 

managed the 
greenhouse 

microclimate  

Complexity and 

Regional 

performance and 
limitations 

Alaa Sahl 

Gaafar et al. 
[14] 

Antarctic 

Automatic 
Weather Stations 

(1980–2021) 

data and Kaggle 
standard dataset 

Fuzzy AHP, 

Fuzzy logic 
control 

nowcasting 
focus, 6-

hourly 

intervals 

Wind 

directionhumidity, 

air temperature, 
pressure, wind 

speed 

MSE : 0.1563 

RMSE : 

0.3953 
MAPE : 

00.2104 

FAHP-optimized 

FLC reduced error 

rates significantly 
vs. unoptimized 

FLC and Model 

performed better on 
standardized 

datasets 

Performance 

variability across 

datasets and 

Computational 
constraints due to 

hardware 

limitations 

The literature review indicates that most studies predict 

solar radiation or temperature separately rather than 

jointly with unified models. Comparative analyses of 

different RNN architectures (particularly ERNN and 

JRNN) are limited for meteorological prediction in arid 

regions, with no investigation into how various learning 

algorithms and input combinations affect prediction 

accuracy. This study addresses these limitations by 

comparing ERNN and JRNN models for joint prediction 

of solar radiation and temperature in Ouarzazate, 
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Morocco, evaluating different architectures, learning 

algorithms, and input variables to enhance understanding 

of the applications of the two RNN variants for prediction. 

3 Materials and methods 
The methodology of this work is divided into five 

sections:  the Working Mechanism of a Neural Network 

model, Data and materials, identification of outliers in the 

analysis data, application of ERNN and JRNN in 

prediction, and selection criteria for the prediction 

method. 

3.1 How Neural Networks models work? 

A neural network is composed of interconnected layers of 

neurons. Mathematically, these components can be 

described as follows [15]: 

• Inputs: represented as a vector 𝑥 = 𝑥1, 

𝑥2, 𝑥3, … . . 𝑥𝑖 , … . 𝑥𝑛) where 𝑥𝑖 are the features of 

the input data; 

• Weights: each input is multiplied by a weight 

𝑤𝑖𝑗 , where i denotes the input and j denotes the 

neuron in the layer. Weights are stored in 

matrices for efficient computation; 

• Bias: a scalar 𝑏𝑗 added to the weighted sum to 

adjust the output, allowing flexibility in the 

model; 

• Output of a Neuron: for a single neuron (equation 

1) ; 

 

𝑧𝑗 = ∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗                         (1) 

• This is often represented in vector by equation 2; 

 

𝑧 = 𝑤𝑥 + 𝑏                          (2) 

 

• Activation Function: a non-linear function 

𝑓(𝑧𝑗)applied to the output 𝑧𝑗, producing the 

neuron’s final output (equation 3).  

 

𝑦𝑗 = 𝑓(𝑧𝑗)                        (3) 

 

Figure 1 illustrates the general structure of an artificial 

neuron [16].   

 
Figure 1: Structure of an artificial neuron 

3.2 Data and materials 

The data used come from three meteorological stations 

located in the city of Ouarzazate, Morocco. The details of 

the stations' locations are shown in Table 2. 

Table 2: Geographical location of the meteorological 

stations (WGS84) 

Station 
Latitude 

(°N) 

Longitude 

(°W) 

Altitude 

(m) 

OUA_001 30.9335 -6.9094 1,160 

OUA_002 30.9250 -6.9130 1,150 

OUA_003 30.9420 -6.9000 1,170 

The key variables were normalized, and outliers removed to 

enhance data quality.  

In Table 3, the period of data analysis for the meteorological 

stations is shown.  

Table 3: Data analysis period of the meteorological 

stations 

Station Analysis Period 

OUA_001 01-01-2020 to 31-12-2022 

OUA_002 01-06-2019 to 31-12-2021 

OUA_003 01-01-2018 to 31-12-2021 

 

From the analysis period used, the dataset was split into 

training (75%) and validation (25%) set. 

The specifications of the meteorological stations in Table 

1 are detailed in Table 4. 

Table 4: Meteorological stations specifications 

Description Model 
Unit of 

Measure 

Barometer BMP280 hPa 

Anemometer WindSonic m/s 

Wind Vane WindSonic degrees 

Thermometer PT100 °C 

Pyranometer CMP11 kW/m² 

Hygrometer HMP60 %RH 

Pluviometer 

Tipping 

Bucket Rain 

Gauge (0.2mm 

resolution) 

mm 

Data Logger 
Campbell 

CR1000 
-- 

Solar Charge 

Controller 
MPPT 30A -- 

Battery 
Deep Cycle 

AGM 
-- 

 

The data recording frequency is every ten minutes, 

resulting in 144 samples obtained in a full day of 

measurement. The behavior of a time series of solar 
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radiation and ambient temperature for meteorological 

station OUA_001 over one month of data is shown in 

Figure 2 and Figure 3. 

 

 
Figure 2: Time series of solar radiation for station 

OUA_001, period 01/03/2021 – 31/03/2021 

 
Figure 3: Time series of temperature for station 

OUA_001, period 01/03/2021 – 31/03/2021 

For the analysis of data from the meteorological stations 

and for the prediction of solar radiation and temperature, 

Python (Version 3.8) was used. Additionally, the 

simulation of the ERNN and JRNN networks utilized the 

TensorFlow and Keras libraries [17]. 

3.3 Identifying outliers 

Data from the meteorological stations undergo processing 

in which the quality of the measurements recorded by the 

sensors is evaluated.  

Outliers were identified by applying a range-based 

filtering method, removing data points that fell outside the 

predefined measurement limits for each sensor type (as 

detailed in Table 5). This boundary-based approach 

effectively eliminated measurements beyond the expected 

physical ranges, ensuring data quality by excluding values 

potentially resulting from sensor errors or anomalous 

readings. 

 

Table 5: Measurement ranges for each sensor of the 

meteorological station 

Sensor Unit Measurement Range 

Anemometer m/s 0 to 60 

Pyranometer kW/m² 0 to 1,500 

Thermometer °C -10 to 50 

Hygrometer %RH 0 to 100 

Pluviometer mm/h 0 to 300 

Barometer hPa 800 to 1,050 

 

Additionally, values that were not recorded due to 

sensor failure, power loss, or maintenance at the station 

were also considered. 

3.4 Application of ERNN and JRNN in 

prediction 

A RNN is characterized by having a context layer where 

part of the information is fed back as a new input; this 

allows the network to have greater learning capacity by 

recognizing and generating patterns [18]. The difference 

between an ERNN and a JRNN is that the feedback in the 

Elman network goes from the output of the hidden layer 

to the context layer, whereas in the Jordan network, the 

feedback occurs from the output layer to the neurons of 

the context layer. The basic architectures of an ERNN and 

a JRNN are shown in Figure 4 and Figure 5, respectively. 

 

Figure 4: Basic architecture of an Elman RNN 

 

Figure 5: Basic architecture of a Jordan RNN 

 

ERNNs have in their context cell the same number of 

neurons as the hidden layer, whereas JRNNs have in the 

context layer the same number of neurons as the output 

layer. 

Due to the architecture of the Elman-type RNN, the 

computational time required for training is greater than 

that of a Jordan-type RNN. This is because the recurrence 
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in the ERNN is taken from the outputs of the neurons in 

the hidden layers and not from the output layers as in a 

JRNN, where the number of neurons in the hidden layers 

was always greater than the two neurons in the output 

layer. 

The number of inputs of the RNN varied between three 

and seven neurons; among which date (F), temperature 

(T), and solar radiation (I) were fixed variables in the 

analysis. Additionally, variables such as wind speed (V), 

relative humidity (H), precipitation (R), and atmospheric 

pressure (P) were tested in the prediction model for 

ambient temperature and solar radiation. The prediction of 

the data was made for two future days, that is, for the next 

288 ten-minute intervals. This time frame provides a near-

term horizon that is relevant for operational planning in 

solar energy systems, as it captures daily and potential 

seasonal variations without becoming overly complex or 

computationally intensive 

 Station OUA_003 presented anomalous readings in the 

relative humidity time series, so in this case, the variable 

H was not used. 

The meteorological variables used for the analysis were 

scaled to values between 0 and 1, as shown in equation (4), 

due to the learning processes of the network. When the 

output values of the neural network are obtained, the data 

undergo the inverse normalization process. 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − 𝜇

σ
 (4) 

Where, 

• 𝑥 : Original value; 

• 𝜇 : Mean of the data; 

• 𝜎 : Standard deviation of the data. 

For the ERNN models, experiments were conducted with 

either one or two hidden layers. In the one-hidden-layer 

configuration, variations with 4, 6, 8, 10, and 12 neurons 

were tested. For the two-hidden-layer configuration, 

various combinations were examined where each layer 

contained between 4 and 12 neurons. For the JRNN 

models, only a single hidden layer structure was used in 

all experiments, with the number of neurons varying 

between 4 and 12. 

Additionally, three different learning algorithms were 

used: BP, BPM, and Rprop. The selection of these 

algorithms was based on their demonstrated effectiveness 

with modest-sized meteorological datasets and recurrent 

architectures [19]. While newer optimizers like Adam or 

RMSprop offer faster convergence, traditional BP-based 

methods perform competitively for time-series prediction 

when the network isn't excessively deep. Rprop was 

specifically included for its robustness to different input 

scales without extensive hyperparameter tuning, an 

important property for meteorological data with varying 

units. 

The BP algorithm propagates the error signal backward, 

allowing the calculation of changes in weight values in 

previous layers based on minimizing the cost function, in 

this case through gradient descent of the error function. In 

BPM, a momentum term is introduced to reduce 

oscillations in the gradient descent. The difference 

between Rprop and backpropagation algorithms is that in 

Rprop, the derivative of the error function is used to 

determine the direction in which the weights should be 

corrected, not the magnitude of their change [20]. 

Each learning function has specific hyperparameters that 

were used within the intervals presented in Table 6.  

Table 6: Hyperparameters used in the learning functions 

Hyperparameters 
Learning 

Function 

Values 

Tested 

Learning Rate (LR) BP, BPM 
[0.00001; 

0.4] 

Maximum Tolerated 

Error 
BP, BPM 0 

Momentum Term BPM 0.1 

Flat Spot Elimination BPM 0.3 

Initial Update Value of 

Weights 
Rprop 0.1 

Limit of Update 

Variation 
Rprop 30 

Weight Decay 

Exponent 
Rprop 

[0.00001; 

4] 

 

In BP and BPM, the learning rate values were varied, 

while in Rprop, the values of the weight decay exponent 

were varied; the other hyperparameters remained constant. 

In Table 7, the initialization parameters of the network are 

shown.  

Table 7: Initialization parameters for the ERNN and 

JRNN networks 

Parameter Value 

Initial weights of 

feedforward connections 
[-0.5, 0.5] 

Initial weights of 

connections to recurrent 

cells 

0 

Initial weights of 

connections from 

recurrent cells 

0.5 

Initial activation of 

context units 
0.5 

 

The feedforward connections were initialized with 

weights randomly distributed in the range [-0.5, 0.5], a 

approach that helps prevent initial saturations and 

provides a symmetric starting point for the neural network. 

While not employing specialized initialization techniques 

like Xavier or He methods, this uniform random 

initialization strategy ensures small, varied initial weights 

that can help break symmetry and facilitate initial learning 

across the network's neurons. 

From the tests performed, twelve RNNs were selected, six 

of the Elman type and six of the Jordan type. The training 

parameters used for each network are shown in Table 8. 

The labels of the twelve RNNs, located in the first column, 
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are written as follows: F. 

Learning_NetworkType_Station; 

 

 

Table 8: Training parameters of the ERNN and JRNN 
Learning_Network_S

tation 

Neurons 

in Layers 

Iteratio

ns 

Input

s 

BP_E1_001 (5, 4) 800 

F, I, 

T, V, 

R, P 

Rprop_E1_001 -6 450 

F, I, 

T, V, 

P 

BP_J1_001 -12 500 

F, I, 

T, V, 

P 

BPM_J1_001 -6 450 

F, I, 

T, V, 

R, P 

BPM_E1_002 -12 500 
F, I, 

T, P 

Rprop_E2_002 -12 250 

F, I, 

T, V, 

P 

BPM_J2_002 -11 500 
F, I, 

T, P 

Rprop_J1_002 -8 150 F, I, T 

BP_E2_003 -11 500 
F, I, 

T, P 

BPM_E2_003 -12 400 

F, I, 

T, V, 

R, P 

BP_J2_003 -6 500 F, I, T 

Rprop_J2_003 -8 300 F, I, T 

 

The prediction, training, and validation process for an 

ERNN or JRNN is shown in Figure 6, Figure 7, and Figure 

8, respectively. 

 

Figure 6: Flowchart of the application of RNN in 

prediction 

 
Figure 7: Flowchart of the training of the RNN 

Figure 8: Diagram of the validation stage of the RNN 

Once the parameters and hyperparameters of the RNN 

were defined, the network was trained for the desired 

number of iterations until obtaining the final weights for 

the model. During each iteration of the network, signals 

are propagated from the input layer to the hidden layers 

and then to the output layer. Afterwards, a synchronous 

update of the context units is performed. At the end of each 

iteration, the Sum of Squared Errors is calculated, which 

can be considered as the first performance indicator of the 

network before its validation stage. 

With the synaptic weights established in the trained 

network model, the outputs of radiation and temperature 

are obtained using 20% of the data from each station for 

the validation stage. The output data, or predicted data, are 

compared with the theoretical outputs using the 

performance indicators described in the following 

subsection. 

3.5 Criteria for selecting the prediction 

method using ANN 

To evaluate the performance of the solar radiation and 

temperature prediction in this study for Ouarzazate, two 

indicators shown in equations (5) and (6) were used: the 

NSE [21] and the d index [22], comparing the measured 

values with the predicted values obtained by the model. 

𝑁𝑆𝐸 = 1 −
∑ (𝑦𝑖 − 𝑥𝑖)²𝑁

𝑖=1

∑ (𝑥𝑖 − �̅�𝑖)²𝑁
𝑖=1

 

 

(5) 

 

𝑑 = 1 −
∑ (𝑦𝑖 − 𝑥𝑖)²𝑁

𝑖=1

∑ (|𝑦𝑖 − �̅�| + |𝑥𝑖 − �̅�|)²𝑁
𝑖=1

 (6) 
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Where 𝑥𝑖 is the value measured by the sensor, 𝑦𝑖  is the 

value predicted by the model, 𝑁 is the number of data 

points, and �̅� is the arithmetic mean of the measured 

values 𝑥. 

These two indicators were chosen because they provide a 

comprehensive evaluation of model performance, 

especially in environmental and hydrological studies. The 

NSE assesses the predictive power of the model by 

comparing the magnitude of the residual variance (the 

noise) to the variance of the observed data (the 

information). An NSE value closer to 1 indicates a more 

accurate model. The d index is a standardized measure that 

reflects the degree to which the observed data are 

accurately estimated by the model. It varies between 0 (no 

agreement) and 1 (perfect agreement), providing a 

sensitive and reliable assessment of predictive accuracy. 

These indicators account for both systematic and random 

errors, making them suitable for evaluating the ANN 

models' ability to predict solar radiation and temperature 

in Ouarzazate. 

4 Results analysis 
Each of ERNN and JRNN models shown in Table 7 

underwent a validation stage and a prediction stage. In 

both stages, the models were evaluated using NSE and the 

d index, comparing the measured values with the predicted 

values obtained by the model. 

In Table 9, the NSE and d index values of the models 

evaluated during the validation stage are presented. 

Table 9: Performance indicators during the validation 

stage for ERNN and JRNN 

Validation stage 

Learning_Labe

l_Station 

NSE 

Radia

tion 

d 

Radia

tion 

NSE 

Temper

ature 

d 

Temper

ature 

BP_E1_OUA_0

01 

0.970 0.980 0.980 0.985 

Rprop_E1_OU

A_001 

0.972 0.982 0.982 0.987 

BP_J1_OUA_0

01 

0.963 0.973 0.978 0.983 

BPM_J1_OUA_

001 

0.969 0.979 0.979 0.984 

BPM_E1_OUA

_002 

0.968 0.978 0.977 0.982 

Rprop_E2_OU

A_002 

0.978 0.988 0.983 0.988 

BPM_J2_OUA_

002 

0.970 0.980 0.981 0.986 

Rprop_J1_OUA

_002 

0.962 0.972 0.976 0.981 

BP_E2_OUA_0

03 

0.959 0.969 0.975 0.980 

BPM_E2_OUA

_003 

0.948 0.958 0.970 0.975 

BP_J2_OUA_0

03 

0.950 0.960 0.971 0.976 

Rprop_J2_OUA

_003 

0.922 0.932 0.960 0.965 

 

The NSE values for radiation and temperature exceed 

0.91, and the d index values are above 0.95, indicating 

strong model performance during the validation stage. The 

highest NSE and d index values for both solar radiation 

and ambient temperature were achieved by the model 

BPM_J1_OUA_001. 

In Table 10, the NSE and d index values during the 

prediction stage for two subsequent days are presented. 

Table 10: Performance indicators during the prediction 

stage for ERNN and JRNN 

Prediction stage 

Learning_La

bel_Station 

NSE 

Radi

ation 

d 

Radi

ation 

NSE 

Tempe

rature 

d 

Tempe

rature 

BP_E1_OUA_

001 

0.905 0.915 0.974 0.979 

Rprop_E1_O

UA_001 

0.902 0.912 0.976 0.981 

BP_J1_OUA_

001 

0.897 0.907 0.961 0.971 

BPM_J1_OU

A_001 

0.909 0.919 0.971 0.976 

BPM_E1_OU

A_002 

0.978 0.988 0.976 0.981 

Rprop_E2_O

UA_002 

0.970 0.980 0.973 0.978 

BPM_J2_OU

A_002 

0.958 0.968 0.970 0.975 

Rprop_J1_OU

A_002 

0.934 0.944 0.917 0.927 

BP_E2_OUA_

003 

0.935 0.945 0.930 0.940 

BPM_E2_OU

A_003 

0.929 0.939 0.929 0.939 

BP_J2_OUA_

003 

0.914 0.924 0.949 0.959 

Rprop_J2_OU

A_003 

0.885 0.895 0.830 0.840 

The highest NSE and d index values for stations 

OUA_001, OUA_002, and OUA_003 are achieved by 

models BPM_J1_OUA_001, BPM_E1_OUA_002, and 

BP_E2_OUA_003, respectively, as shown in Table 9. The 

selected architecture for prediction in the three 

meteorological stations depends on the behavior of the 

analyzed time series. 

Overall, the highest NSE and d index values during the 

prediction stage for both solar radiation and ambient 

temperature were obtained by the model 

BPM_E1_OUA_002. 

Figure 9 shows the prediction graph of solar radiation. 
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Figure 9: Solar radiation prediction (JRNN) for Station 

OUA_001 

In the behavior of the solar radiation predictions, the 

values do not reach 0 as the minimum radiation value, 

which is adjusted based on the behavior of the time series 

(radiation = 0 during nighttime hours). A limitation is 

observed in the methods to capture the minimum and 

maximum of the observed values. Despite high NSE and 

d index values, the JRNN model shows some difficulty in 

accurately predicting the extreme values of solar radiation. 

Figure 10 shows the ambient temperature prediction 

graph, both for station OUA_001. 

Figure 10: Prediction of ambient temperature (JRNN) for 

Station OUA_001 

The behavior of ambient temperature predictions aligns 

closely with the measurements taken by the sensor. The 

model effectively captures the temperature trends, with 

high NSE and d index values indicating strong predictive 

performance. 

In Figure 11, the solar radiation prediction graph is 

presented. 

In the behavior of the solar radiation predictions, a 

similar pattern to Station OUA_001 is observed; the 

values do not reach the minimum of 0 in radiation nor the 

maximum observed values. This suggests that while the 

ERNN model captures the overall trend, there are 

limitations in predicting the extremes of the solar radiation 

data. 

Figure 12 presented the ambient temperature prediction 

graph, both for Station OUA_002 using model 

BPM_E1_OUA_002. 

 

 

Figure 11: Prediction of solar radiation (ERNN) for 

Station OUA_002 

 
Figure 12: Prediction of ambient temperature (ERNN) for 

Station OUA_002 

The behavior of ambient temperature predictions aligns 

with the measurements taken by the sensor; however, 

limitations are observed in reaching the maximum and 

minimum temperature values. The high NSE and d index 

values indicate good model performance, but the 

discrepancies at the extremes suggest areas for model 

improvement. 

In table 11, the computational analysis is presented. It 

reveals consistent efficiency advantages for JRNN 

architectures, requiring 26-43% less training time than 

equivalent ERNN configurations while using 19-27% less 

memory.  

 

Table 11: Computational efficiency comparison 

Model 
Learning 

Algorithm 

Avg 

Training 

Time 

(min) 

Avg 

Iterations to 

Convergence 

Peak 

Memory 

(GB) 

ERNN BP 92 ± 7 580 3.8 ± 0.2 

ERNN BPM 78 ± 6 520 3.6 ± 0.3 

ERNN Rprop 51 ± 4 310 3.4 ± 0.2 

JRNN BP 68 ± 5 540 2.9 ± 0.2 

JRNN BPM 58 ± 4 490 2.7 ± 0.3 

JRNN Rprop 37 ± 3 280 2.5 ± 0.2 
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The experiment was conducted on hardware: Intel 

Core i7-8750H CPU, 32GB RAM. 

5 Discussion 
The performance variations between ERNN and 

JRNN models can be attributed to their distinct 

architectural designs and feedback mechanisms. ERNN 

models demonstrated superior performance at station 

OUA_002 (NSE: 0.978 for radiation, 0.976 for 

temperature) primarily due to their context layer receiving 

feedback directly from hidden layers, which enables them 

to better capture the complex non-linear relationships in 

meteorological data with high variability. This 

architectural advantage allows ERNNs to maintain a more 

comprehensive "memory" of hidden state representations 

across time steps, which is particularly beneficial for 

parameters with gradual temporal transitions like 

temperature.  

Conversely, JRNNs exhibited better performance at 

station OUA_001 (NSE: 0.909 for radiation, 0.971 for 

temperature) when implemented with the BPM algorithm. 

This superiority can be explained by the JRNN's feedback 

mechanism originating from the output layer, making it 

more responsive to recent prediction errors and thus more 

suitable for datasets with distinct daily periodicity. 

Furthermore, the computational efficiency of JRNNs, 

requiring fewer neurons in the context layer than ERNNs, 

allowed for more extensive hyperparameter optimization 

during training, potentially contributing to their improved 

performance.  

6 Conclusions and recommendations 
The Elman and Jordan RNN models showed convergence 

with a number of iterations between 300 and 600. The 

computational time employed in training each model is 

directly related to the size of the dataset and the number of 

iterations during network training; as these variables 

increase, the computational time also increases. It was 

observed that if the iterations exceed 600, the results of the 

evaluation metrics vary by approximately ±2%. 

The results in the validation stage for the three 

meteorological stations in Ouarzazate showed NSE values 

greater than 0.92 for both temperature and solar radiation 

using ERNN and JRNN models. This demonstrates that 

the training of the networks fits well with the behavior of 

the time series data. 

For the prediction stage: 

• At Station OUA_001, the best result was 

obtained with a JRNN using BPM learning; 

• At Station OUA_002, the best result was 

achieved with an ERNN using BPM learning; 

• At Station OUA_003, two similar results were 

obtained, one with a JRNN and the other with an 

ERNN, both using the BP learning algorithm. 

In the solar radiation prediction graphs, positive radiation 

values are observed during nighttime hours. These values 

are not high but affect the expected behavior of the 

prediction. Therefore, it is important to perform a prior 

adjustment or correction before demonstrating the results. 

This is proposed when implementing the methods in a 

solar resource monitoring situation to ensure the accuracy 

and reliability of the predictions. 

The highest NSE and index of agreement values under the 

training parameters of the ERNN and JRNN in the 

validation stage resulted in the best performance in the 

prediction stage. This allows us to affirm that the 

parameterization with the best results in the validation 

stage should be selected for the predictive model. 

Selecting the optimal hyperparameters during validation is 

crucial for improving model performance during 

prediction. 

The findings of this study contribute directly to solar 

energy planning in Ouarzazate and similar regions by 

providing a 48-hour prediction of solar resources. Grid 

operators can select RNN architectures based on local 

conditions (JRNN or ERNN) to anticipate resource 

variability, storage management, and grid stability during 

Morocco's renewable energy transition. 
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