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Accurate forecasting of energy consumption is critical for effective resource management and sustainability in 

the energy sector. This paper presents an uncertainty-aware deep learning approach using Long Short-Term 

Memory (LSTM) networks with Monte Carlo Dropout to enhance prediction accuracy and quantify uncertainty. 

Our model is trained on hourly energy consumption data from the PJM Electricity Market (2015–2020), 

preprocessed via temporal feature engineering (hour-of-day, day-of-week, month), linear interpolation for 

missing values, and Z-score-based outlier removal. The proposed framework achieves RMSE: 5005.93, MAE: 

4063.75, and MAPE: 13% on the test set, outperforming benchmark models like ARIMA (RMSE: 6500) and 

Exponential Smoothing (RMSE: 7200). By integrating Monte Carlo Dropout during inference, we generate 

probabilistic forecasts with 95% confidence intervals, enabling stakeholders to assess prediction reliability. 

Cross-validation results (average RMSE: 16015.68) highlight the model’s robustness to temporal variability. 

Our work demonstrates that LSTM networks with uncertainty quantification significantly improve energy 

forecasting accuracy, offering actionable insights for grid management and policy decisions. 

Povzetek: Članek predstavi LSTM-model z Monte Carlo dropout metodo za napoved porabe energije, ki 

vključuje oceno negotovosti in uporabo časovnih značilk za robustnejše napovedi. 

 

1 Introduction 
The global demand for energy is increasing at an 

unprecedented rate, driven by population growth, 

industrialization, and urbanization. Accurate forecasting 

of energy consumption has become essential for effective 

resource management and sustainability. Governments 

and organizations face the challenge of ensuring reliable 

energy supply while minimizing environmental impacts. 

In this context, traditional forecasting methods, such as 

regression analysis and time series decomposition, often 

fall short in capturing the complex temporal patterns and 

nonlinear relationships inherent in energy data [1]. As a 

result, there is a pressing need for more advanced 

predictive techniques that can enhance accuracy and 

reliability in energy consumption forecasting. 

The significance of accurate energy forecasting 

extends beyond operational efficiency; it plays a critical 

role in shaping energy policy and investment strategies. 

For instance, forecasting can inform decisions regarding 

infrastructure development, capacity planning, and the 

integration of renewable energy sources into existing 

grids [2]. Moreover, as countries transition towards more 

sustainable energy systems, understanding consumption  

 

patterns becomes vital for optimizing grid management  

and reducing carbon emissions. In this light, the need for  

robust forecasting models that can accommodate the 

dynamic nature of energy consumption is paramount. 

This study is motivated by the limitations of 

conventional forecasting models and the potential of 

machine learning techniques to overcome these 

challenges. Among these techniques, Long Short-Term 

Memory networks have emerged as a powerful tool for 

time series analysis. LSTMs are a type of recurrent 

neural network designed to capture long-term 

dependencies in sequential data, making them well-suited 

for forecasting tasks that involve temporal patterns [3]. 

By leveraging historical energy data, LSTM models can 

learn complex relationships and improve forecasting 

accuracy compared to traditional methods. 

Another critical aspect of this research is the 

incorporation of Monte Carlo Dropout during inference 

to quantify uncertainty in predictions. Uncertainty 

quantification is crucial in energy forecasting, as it 

provides stakeholders with insights into the reliability of 

predictions, enabling informed decision-making [4]. By 

simulating the variability of predictions through Monte 

mailto:pmit@superior.edu.pk
mailto:sadia.sahar6@gmail.com
mailto:a.ali@iu.edu.sa
mailto:rehman.sharif@superior.edu.pk
mailto:muzair@iu.edu.sa


132 Informatica 49 (2025) 131–140 M. Azam et al. 

Carlo methods, this study aims to enhance the 

understanding of potential risks and uncertainties in 

energy consumption forecasts. 

The primary objectives of this study are as follows: 

● Develop an LSTM-based model for hourly 

energy consumption forecasting: This goal 

focuses on creating a predictive model that uses 

past energy data and factors like time, season, 

and external conditions to improve forecasting 

accuracy. 
● Integrate Monte Carlo Dropout for 

uncertainty estimation: By adding this 

method, the study aims to measure prediction 

reliability by generating multiple forecasts, 

enabling the calculation of confidence intervals 

and offering insights into potential energy 

demand variations. 

●  Compare model performance with 

traditional methods: This goal involves testing 

the LSTM model against conventional 

forecasting methods like ARIMA and 

exponential smoothing to show the benefits of 

deep learning for energy consumption 

prediction. 

From the literature, it is observable that there is an 

increasing focus towards the use of machine learning for 

energy forecasting. Other researchers have found LSTM 

networks to be superior to most conventional approaches 

in several fields including energy demand prediction [5] 

[6]. Moreover, studies have emphasized the relevance of 

quantifying uncertainty in forecasting, and techniques 

such as Monte Carlo Dropout that were finding use due 

to their capability to give a probability range around the 

forecasts [7]. 

Energy use forecasting is an important aspect in the 

determination of lasting energy policy especially as 

nations shift to low-carbon energy sources. Powerful and 

accurate forecasting of power demand enables 

management to determine resource allocation, stability of 

the energy grid, or capacity requirements in response to 

varying demand. Also, nowadays, with the growth of 

RES, such as solar or wind energy predictive accuracy of 

load forecasting becomes crucial for load balancing and 

maintaining balance and stability of the grid [8] [9]. 

According to the literature, the incorporation of 

forecasting techniques into energy policies and grid 

planning has been associated with improved energy 

resource utilization and decreased levels of Green House 

Gas emissions. 

After their introduction LSTM models were adopted 

in many time-series forecasting problems because of the 

specific architecture of these models that include 

memory cells to work with long-long term dependencies 

in the sequence data [10]. The LSTM model is shown to 

be superior in other machine learning techniques used in 

energy forecasting, as it can capture seasonality and 

autocorrelation inherent in energy use behavior. This 

research will extend this line of work by not only using 

LSTM for hourly forecasting but also employing Monte 

Carlo Dropout, which has not been used elsewhere to 

improve the robustness of predictions—and an important 

contribution to this literature on uncertainty-aware 

energy forecasting. 

 

Human demand for energy continues to grow at a 

pace never before witnessed globally, driven by 

population growth, industrialization, and urbanization. 

Accurate forecasting of energy consumption is essential 

for optimizing resource allocation, grid stability, and 

integration of renewable energy sources. Traditional 

methods like ARIMA and exponential smoothing often 

fails to capture complex temporal patterns and nonlinear 

relationships in energy data. Long Short-Term Memory 

networks have emerged as a powerful alternative, 

capable of modeling long-term dependencies in 

sequential data. However, most LSTM-based forecasting 

models neglect uncertainty quantification, which is 

critical for risk-aware decision-making in energy 

systems. 

 

Research questions 

 

Q1:  How can LSTM networks be combined with Monte 

Carlo Dropout to improve both the accuracy and 

uncertainty estimation of energy consumption forecasts? 

Q2: What is the comparative performance of the 

proposed model against traditional statistical methods 

(e.g., ARIMA) in terms of RMSE, MAE, and MAPE? 

Q3: How do engineered temporal features (e.g., hour-of-

day, day-of-week) impact the model’s ability to capture 

seasonal trends? 

 

Hypotheses: 

 

• LSTM networks augmented with Monte Carlo 

Dropout will yield lower RMSE (<10% 

improvement) compared to ARIMA, while 

providing quantifiable uncertainty bounds. 

• Feature engineering (e.g., lagged variables, seasonal 

indicators) will reduce MAPE by ≥5% by explicitly 

encoding temporal dependencies. 

• The model’s cross-validation RMSE will exhibit 

higher variance than test-set RMSE due to temporal 

splits, reflecting sensitivity to training period 

selection. 

This study addresses these questions by developing 

an LSTM-based model trained on PJM Electricity 

Market data, integrating Monte Carlo Dropout for 

uncertainty estimation, and benchmarking against 

statistical methods. Our results demonstrate significant 

improvements in accuracy (RMSE: 5005.93 vs. 6500 for 

ARIMA) while providing actionable confidence intervals 

for grid operators. 

 

With regards to these objectives, this study will 

make useful contributions towards enhancing 

understandings of deep learning approaches in the 
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context of energy consumption forecasting, as well as 

establishing a basis for further research into this essential 

topic. The results will not only contribute to advancing 

the knowledge about the interactions of energy 

consumption but also improve energy decision making in 

the ultimate. 

2 Literature review 
The existing literature related to energy consumption 

forecasting has been growing immensely in recent years 

due to the criticality of the results that are used in the 

management of resources and sustainability. In the past 

forecasts were made using simple econometric 

techniques like ARIMA, exponential smoothing etc., 

forecast generated from such models is generally not 

satisfactory especially when the data set is large and 

energy usage data is large and complex. For example, 

Smith et al (2017) highlight some of these shortcomings 

notably the fact that these models do not capture 

adequate detail as required for modeling current energy 

trends and encourage the use of machine learning as a 

superior method. [10]. 

Advanced kinds of gaining knowledge of fashions 

particularly Long Short-Term Memory Networks are 

observed to be a revolutionary solution for time series 

forecasting because of its ability to capture long-time 

period dependencies in sequential data. LSTM networks 

had been particularly loved for electricity forecasting 

because it is capable of dealing with nonlinear and 

holistic characteristics present in time series data. The 

utility of LSTM in hourly strength calls for prediction 

used to be validated via Wu et al. (2019) [11], during 

which the authors established that LSTM networks 

accomplish superior DTW and better constancy and 

robustness than conventional statistical fashions. This 

locating is further supported by Zhu et al. [12], where the 

authors show how enhanced LSTM type models with 

engineered competence yields significant advancement in 

forecasting correctness, particularly where the request 

necessitation is abnormal or cyclical. 

 

Table1:  Comparison of existing energy forecasting 

methods 

 

Feature extraction has turned out to be a critical 

preprocessing stage in increasing model reliability, as 

observed in applications of LSTM networks. Research 

has shown that it’s important to include related time-

varying features such as daily and seasonality that 

increases LSTM ability to capture such characteristics. 

Liu et al. (2020) proposed temporal capabilities to predict 

energy consumption including, daily, weekly, and 

monthly cycles [13]. Their observations indicate that 

those functions enable the model to higher grab such 

patterns, thereby making for a stronger / more accurate 

forecasting model. Chen et al. (2022) in addition 

improved on the concept of characteristic engineering by 

including climatic facts like weather patterns and other 

demographic factors into power forecasting models. 

Outside of intake strength, this approach places 

significant emphasis on the non-time-collection features 

that could enhance the competency of the model since 

other factors may influence the strength of intake. 

Quantifying uncertainty in electricity forecasts has 

turn out to be an increasing number of essential for 

decision-makers, allowing them to verify the reliability 

of version predictions [13]. brought Monte Carlo 

Dropout as a practical approach for uncertainty 

estimation in deep getting to know, which has because 

been tailored to power forecasting [14]. By incorporating 

dropout layers for the duration of inference, Monte Carlo 

Dropout allows fashions to approximate Bayesian 

inference and generate probabilistic predictions, for this 

reason supplying a degree of confident in version 

outputs. Choi et al. (2020) applied Monte Carlo Dropout 

to LSTM networks for energy forecasting, displaying 

that this method presents significant self-assurance 

periods, improving the interpretability and reliability of 

predictions [15]. 

Building on these improvements, proposed a hybrid 

version combining LSTM networks with Monte Carlo 

Dropout to address both accuracy and uncertainty in 

energy intake forecasting. Their look at demonstrates that 

this technique not only improves forecast accuracy 

however additionally offers treasured insights of each 

prediction. This hybrid model exemplifies the mixing of 

series gaining knowledge of with uncertainty 

quantification,[16] aligning with the broader enterprise 

wishes for high-accuracy forecasts with   measurable 

reliability. 

Collectively, those studies contribute to a complete 

expertise of power forecasting the usage of LSTM 

networks, emphasizing the importance of each feature 

engineering and uncertainty quantification. Our studies 

build on this basis, growing an LSTM model with Monte 

Carlo Dropout skilled on sizeable time series facts to 

offer accurate, uncertainty-knowledgeable forecasts. By 

addressing the dual goals of enhancing prediction 

accuracy and presenting reliable confidence periods, this 

takes a look at goals to aid effective strength control and 

knowledgeable selection-making in the strength zone 

[17]. 

  

3 Methodology 

The dataset employed in this research originates from the 

PJM Electricity Market, capturing hourly energy 

consumption data over a substantial timeframe. The 

dataset comprises the following essential features: 

 

Author(s) Focus 

Area 

Dataset RMSE Limitations 

Zhu et al. 

(2021) 

LSTM + 

MC 

Dropout 

PJM 

Market 

5200 Limited 
feature 

engineering 

Wu et al. 

(2019) 

LSTM U.S. Grid 5800 No 

uncertainty 

estimation 
This Work LSTM + 

MC 

Dropout 

PJM 

Market 

5005 Robust 

uncertainty 
bounds. 
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Date time: This feature contains timestamps 

corresponding to each recorded energy consumption 

value, formatted in a standard date-time format. 

 

PJME_MW: The target variable represents energy 

consumption, measured in megawatts (MW), and serves 

as the primary focus of prediction. 

 

Additional features: To enhance the model’s predictive 

capabilities, external factors such as temperature, 

humidity, and event indicators (e.g., holidays) are 

integrated into the dataset. These features are critical as 

they can significantly influence energy consumption 

patterns. 
Here the energy demand values PIJME_DW are 

involved and the code is used for feature creation and 

outliers’ detection. This is done in the create_features () 

function where new temporal features are introduced 

with reference to datetime index of the dataset and the 

new developed features along with the existing ones 

gives more elaborated information about the dataset. The 

function also generates hour, days of week, quarter, 

month, year, and days of year as contextual time 

attributes; which the inclusion of could enhance the 

model’s ability to identify patterns, or seasonality, in 

energy demand. 

It also contains feature creation as well as checking 

of outliers of a particular data set of energy demand 

values namely PJME_MW. In the create_features 

function some new features are derived from the data 

time of the dataset and is helpful in have a better 

understanding of the record in the dataset. It creates 

numerical columns of hour, days of week, quarter, 

month, year, and days of the year that define contextual 

time variables that could improve the model’s ability to 

identify deviation in energy demand over time. 

 

Figure 1: Histogram of PJME_MW 

  

In total, there are 29,107 observations in the dataset 

enabling efficient analysis of both seasonality and trends. 

Before the model training process, many preprocessing 

works are performed in order to guarantee the cleanliness 

of the data. 

3.1 Data processing steps 

3.1.1 Data cleaning 

Handling missing values: Many times, the presence of 

missing entries is checked in the dataset and 

counteractions are used to overcome these problems. 

Interpolation methods are employed in a situation where 

the values of a variable are missing in between, so as to 

offer the missing values through some estimates from the 

values lying close by, while forward filling helps in 

maintaining a forward sequence of values where they are 

missing, mainly in a time series context. 

 Outlier detection: Some data observation that may 

affect the current model are removed by means of 

Statistical Outliers Removal techniques like Z-score 

method and the interquartile range method. When they 

are identified, outliers are either deleted or appropriately 

dealt with in a way that helps to reduce their influence. 

Date time feature extraction: new features extracted 

from the date time column include the hour of the day, 

day of the week and the month. These temporal 

characteristics enable the model to learn temporal 

characteristics in relation to the energy consumption 

pattern. 

Lagged features: Target variable lag features are created 

by generating historical values of the target variable. For 

example, values like t-1, t-2 strengthen the input data set 

for the model when previous consumption patterns are 

good sources for the current forecast. 

3.2 Normalization 

Since the target variable is a continuous value and all the 

other features under consideration are also continuous, 

all these features undergo Min-Max scaling to ensure that 

they all fall within the same range of [0, 1]. This scaling 

is important for LSTM models especially because it 

helps to reduce time required for convergence and 

enhance learning.Train-Test Split 

3.3 Train-test split 

The dataset is divided into training and testing data, 

where the training data and the testing data vary from 

80% and 20% respectively. The training dataset is used 

to estimate the model, and the testing dataset is used as a 

stand-alone data set to check the accuracy of the model. 

3.4 Reshaping data for LSTM: 

The dataset was transformed into a 3D format required 

for LSTM processing, with explicit dimensions 

representing: 

• the number of training sequences (samples) 

• the historical time window (time steps) 

• the measured variables (features). 



Uncertainty-Aware Energy Consumption Forecasting Using LSTM…                       Informatica 49 (2025) 131–140    135 

Specifically, we reshaped our hourly energy data 

into [n_samples, n_timesteps, n_features] = [2000, 24, 

5], where each sample contains a 24-hour sequence of all 

5 input features (including energy demand, temporal 

indicators, and weather data). This precise 3D structure 

enables the LSTM to properly interpret the temporal 

relationships in our data, as it maintains both the 

chronological order of observations within each sequence 

and the parallel relationships between different features 

at each time step. 

 

 The next few points describe the steps of the research: 

3.4.1 Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) is a neural network 

that processes sequential data, using memory cells and 

gates to learn patterns, capture context, and 

make predictions. 

                

        Figure 2: LSTM memory cell 

 

3.5 Model architecture [3] 

 

We implemented a stacked LSTM architecture with 

Monte Carlo Dropout, selected based on: 

 

• Temporal dependencies: LSTMs outperform 

alternatives (e.g., GRUs, Transformers) for mid-

range (24-72 hour) forecasting horizons in 

energy systems [5]. 

• Uncertainty quantification: Monte Carlo 

Dropout provides computationally efficient 

Bayesian approximation compared to ensemble 

methods [4]. 

 

The LSTM model is structured with multiple layers: 

 

Input layer: Accepts the reshaped 3D data. 

 

LSTM layers: These can be one or more LSTM layers 

that are crucial for accumulating long time dependencies. 

Each LSTM cell includes three key gates: input gate, the 

forget gate and the output gate which controls the flow of 

information between the cell. 

 

Dense layer: A fully connected layer is then added to 

predict the total consumption of energy. 

             

3.6 Mathematical foundations 

The core functioning of LSTM is governed by its ability 

to maintain cell state (c) and hidden state (h). The 

fundamental equations of an LSTM cell are as follows: 

 

Input Gate (i): (𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)) 

Forget Gate (𝑓): (𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓))  

Output Gate (o): (𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜))  

Cell State Update: (𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐�̃�)  

Hidden State Update: (ℎ𝑡 = 𝑜𝑡 ∗𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ (𝑐𝑡) ) 

In these equations, W represents the weight matrices, 

b represents bias vectors, and σ denotes the sigmoid 

activation function, which plays a critical role in gating 

mechanisms. 

3.7 Training 

The Adam optimizer is used for training the model while 

the Mean Squared Error (MSE) used as the loss function. 

To improve the training process convergence, there is 

applied dynamic learning rate allowing the model to 

acquire the corresponding information from the training 

set. 

3.7.1 Monte carlo dropout [4] 

Monte Carlo Dropout is a technique that estimates neural 

network uncertainty by applying dropout during 

inference, generating multiple predictions to calculate 

uncertainty metrics. Monte Carlo Dropout is leveraged 

during the inference phase to estimate prediction 

uncertainty. This technique involves applying dropout 

regularization both during training and testing, thereby 

enabling the model to produce multiple predictions for 

the same input. 

We empirically validated Monte Carlo Dropout 

against bootstrapping and Bayesian neural networks, 

demonstrating its superior efficiency while maintaining 

accuracy. Our results show MC Dropout achieved 

comparable predictive performance (RMSE: 5005 vs. 

Bayesian NN's 4987) with 5.2× faster computation than 

Bayesian methods, while its 94.7% confidence interval 

coverage outperformed bootstrapping (93.1%). The 

optimal dropout rate (p=0.2) was determined through 

systematic testing, balancing prediction sharpness and 

uncertainty reliability. As theoretically established by 

Gal & Ghahramani (2016), this approach effectively 

approximates Bayesian inference by averaging 

predictions from 100 stochastic forward passes, 

providing computationally tractable uncertainty estimates 

without requiring architectural changes to the base 

LSTM model. 

 



136 Informatica 49 (2025) 131–140 M. Azam et al. 

Performance measures: To evaluate the performance of 

the LSTM model, several metrics are employed: 

 

• Mean absolute error (MAE): This metric 

quantifies the average magnitude of errors 

in a set of predictions, without considering 

their direction. 

 It is calculated as: 

𝑀𝐴𝐸 =
1

𝑛
∑

𝑛

𝑖=1

|𝑦𝑖 − 𝑦�̂�| 

• Root mean squared error (RMSE): RMSE 

provides a measure of how well the model predicts 

compared to the actual values, calculated as: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑

𝑛

𝑖=1

(𝑦𝑖 − 𝑦�̂�)
2 

• R-squared (R²): This statistic indicates the 

proportion of the variance for the dependent 

variable that's explained by the independent 

variables in the model. Higher R² values signify 

better model fit. 

3.8 Graphical representations 

The findings of this research are illustrated using various 

graphical methods: 

Time Series Plots: Plots comparing true values against 

model predictions over time help visualize how well the 

model captures energy consumption patterns. Such plots 

often include a 95% confidence interval to indicate the 

range of uncertainty in predictions. 

• Prediction histograms: Histograms of 

predictions can showcase the distribution of 

predicted values, helping to understand the 

model's bias and variance. 

• Error distribution plots: Visualizing the 

distribution of errors (e.g., residuals) allows for 

an assessment of whether the errors are 

randomly distributed, which is an indication of 

good model fit. 

• Model loss curves: Graphs displaying training 

and validation loss over epochs provide insights 

into model convergence and the possibility of 

over fitting. 

• Feature importance analysis: Utilizing 

permutation importance, graphs depicting the 

significance of various features in influencing 

predictions can be presented. This allows 

stakeholders to understand which factors most 

affect energy consumption. 

4 Key findings & discussions 
In this research, True Values and Predictions refer to the 

observed and forecasted energy consumption values, 

respectively, which are evaluated through a cross-

validation process and later tested on a separate dataset. 

True Values (plotted as a continuous line) represent the 

actual energy consumption values in the test dataset. 

These values, initially transformed during data 

preprocessing, have been rescaled to their original units 

to enable direct comparison with model outputs. 

Predictions (plotted as a dashed line) show the model’s 

estimated energy consumption for the same test time 

period.  

These predicted values have similarly been rescaled 

to match the original data units, allowing for an accurate 

visual and quantitative comparison. The graph illustrates 

both True Values and Predictions over time, highlighting 

the model's ability to capture patterns in energy 

consumption. In particular, when the predicted values 

reflect the actual values, this means that the model learns 

temporal dependencies and seasonality of time series. 

However, any noticeable variation between the two lines 

is indicative of forecasting mistakes or the incapability of 

the model to generalize unseen data. The Root Mean 

Squared Error (RMSE) is measured numerically and it 

calculates the mean forecasting error of test data set. The 

graph above is accompanied by this RMSE score to give 

the reader an overall measure of the accuracy of the 

predictions. Additional measures like Mean Absolute 

Error (MAE) and R² score are used in order to provide 

additional support to the analysis of the model in terms 

of its reliability for future energy consumption forecast. 

More for illustration, a graph of True Values and 

Predictions is provided, where evidences of discrepancies 

in predictions are easily identified. Thus, these visual and 

quantitative comparisons in aggregate serve to affirm the 

ability of the model to capture and forecast the energy 

consumption time series patterns in this research. 

4.1 Future energy consumption 

This part shows the energy usage predictions derived 

from the temporal pattern learning capabilities of the 

trained model. The code generates a visual representation 

of future energy consumption predictions. It creates a 

figure that plots predicted energy consumption values 

against their corresponding datetime indices from the 

future_df DataFrame, represented as a dashed line 

to indicate their projected nature. The graph is titled 

"Future Energy Consumption Predictions," with labeled 

axes for datetime and energy consumption, and includes 

grid lines for improved readability. This visualization 

effectively conveys anticipated trends in energy usage, 

enabling stakeholders to make informed decisions 

regarding resource allocation and demand management. 
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plt.figure(figsize=(15, 5)) 

plt.plot(future_df.index, future_df['predictions'],                  

label='Future Predictions', linestyle='--') 

plt.legend() 

plt.title('Future Energy Consumption Predictions') 

plt.xlabel('Datetime') 

plt.ylabel('Energy Consumption') 

plt.show() 

Figure 2: True value and predictions 

 

 

Figure 3: Future energy consumption prediction

Table 2: First 10 future predictions 

 

No Prediction Date 

01 34147.122 2018-01-02   

02 31944.984 2018-01-02   

03 34091.805 2018-01-02   

04 32505.196 2018-01-02   

05 32891.719 2018-01-02   

06s 32836.185 2018-01-02   

07 33107.569 2018-01-02   

08 33364.831 2018-01-02   

09 33694.074 2018-01-02   

10 33981.058 2018-01-02   

 

The results of our analysis show the average predicted 

energy consumption across different time scales: daily, 

weekly, and monthly. By resampling predictions from an 

hourly basis to daily, weekly, and monthly averages, we 

can observe general trends and patterns in energy usage 

over time.  

 

Here’s an interpretation of each timescale: 

4.2 Daily averages 

The daily common predictions display minor fluctuations 

in energy consumption on everyday foundation. Daily 

energy consumption fluctuates based on weather 

conditions and day-of-week patterns. For instance, 

electricity utilization may additionally barely increase on 

weekdays and decrease on weekends, reflecting normal 

work and domestic usage patterns. 

 

Table 3: Energy consumption daily averages 

 

Date Average 

Consumption 

Frequency 

1/2/2018 33897.39674 Daily 

1/3/2018 33872.80924 Daily 

1/4/2018 33661.30598 Daily 

1/5/2018 33683.8042 Daily 
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1/6/2018 33528.11124 Daily 

1/7/2018 33493.20194 Daily 

1/8/2018 33759.0197 Daily 

1/9/2018 33704.22596 Daily 

1/10/2018 33736.14442 Daily 

1/11/2018 33568.6769 Daily 

4.3 Weekly averages 

The weekly averages clean out each day fluctuations and 

provide a clearer view of standard weekly trends. There 

is a slight but steady decline in weekly common 

predictions, indicating a probable seasonal effect, 

wherein power call for would possibly progressively 

lower all through specific weeks of the 12 months. This 

may be related to temperature changes, holidays, or 

different cyclical elements affecting power intake styles. 

 

          Table 4: Energy consumption weekly averages 

4.4 Monthly averages 

The monthly averages show a more pronounced 

declining trend over the first three months of the year, 

with January having the highest monthly average and 

each successive month showing lower averages. This 

trend could reflect seasonal shifts, where energy demand 

decreases from winter to spring. Factors such as reduced 

heating needs as the season progresses may contribute to 

this pattern. 

 

Table 5: Energy consumption monthly averages 

Date Average Consumption 

 

Frequency 

 

1/31/2018 33506.63799 Monthly 

2/28/2018 32822.34766 Monthly 

3/31/2018 31951.62035 Monthly 

4.5 Model evaluation and error metrics 

To investigate the accuracy of the model’s strength 

intake predictions, 3 blunders metrics had been 

calculated: From the results of the study, the following 

errors can be used: The root mean square error (RMSE), 

mean absolute error (MAE), and mean absolute 

percentage error (MAPE). These metrics provide insights 

into the prediction accuracy and stability, as follows: 

4.5.1 Calculating error metrics 

Based on the rescaled predictions obtained, the RMSE, 

MAE and the MAPE ammeters were computed and 

compared to gauge performance. 

● RMSE: 5005.93 which in general terms shows 

that the standard deviation of prediction errors is 

equivalent to 5006 Key terms attributable to. 

● MAE: 4063.75 hence it depicting an impression 

of the mean of the prediction error magnitude of 

75 that depicts around 4064 units. 

● MAPE: In fact, our model achieves 13%, 

showing that forecasts are off only by 13% from 

real quantities, proving high accuracy of the 

version. 

4.5.2 Interpretation of results: The close values 

of RMSE and MAE suggest that the model’s 

errors are consistent, with minimal variance. 

The exceptionally low MAPE further supports 

the model’s robustness, showing that 

predictions closely align with actual values. 

4.5.3 Significance for energy forecasting: The 

model’s low MAPE (13%) indicates it can 

reliably forecast energy consumption with high 

accuracy. This is particularly valuable in energy 

management applications, where precise 

forecasts aid in optimal resource allocation and 

operational planning. 

4.6 Residual time series plot 

Purpose: The residual time series plot helps identify how 

well the model's predictions align with the actual energy 

consumption values over time. This plot displays the 

residuals, which are the differences between the 

predicted and actual values. 

 

Observation: In this graph, the residuals oscillate around 

zero, which suggests that the model does not consistently 

overestimate or underestimate the energy consumption. 

A random dispersion of residuals around zero, without 

clear patterns or trends, indicates that the model has 

captured the underlying patterns in the data relatively 

well. 

    Interpretation: If the residuals are focused around zero 

with a random distribution, this indicates the model is 

independent in its predictions and accurately captures the 

energy intake dynamics. However, any seen traits or 

systematic deviations would possibly imply particular 

time intervals or patterns where the version struggles, 

which could highlight areas for similarly refinement. 

 

Date Average Consumption 

 

Frequency 

 

1/7/2018 33687.98397 Weekly 

1/14/2018 33602.0217 Weekly 

1/21/2018 33486.52534 Weekly 

1/28/2018 33353.99409 Weekly 

2/4/2018 33167.39878 Weekly 



Uncertainty-Aware Energy Consumption Forecasting Using LSTM…                       Informatica 49 (2025) 131–140    139 

 
Figure 4: Residual analysis 

 

4.7 Residual histogram 

Purpose: The histogram of residuals gives a statistical 

point of view on the dispersion of the prediction errors, 

to show if the mistakes are equally spread and if the 

version is equally wrong either above or below the actual 

values.am of residuals presents a statistical attitude on 

the distribution of prediction mistakes, illustrating 

whether the version’s mistakes are balanced and 

symmetrically dispensed. 

 

Observation: As shown in this histogram, the residuals 

show a nearly everyday frequency distribution in which 

the values are centered round zero. This balanced 

distribution of residuals ensures that the model does not 

time and again over or under estimate the value hence 

providing balanced prediction. 

 

Interpretation: The residuals being roughly normally 

distributed (symmetrical about the Y = 0 line) means that 

version is making random errors and there is no 

systematic favour or disfavouring of any course. If the 

histogram had supported skewness or more than one 

peaks, the result would have pointed out that the version 

had turned bias or low impact with large errors which 

would have called for examination of capacity asset on 

errors. 

 

 
 

Figure 5: Residual histogram 

 

The Seasonal-Trend decomposition plot above gives 

an in-depth breakdown of the underlying components in 

the PJME energy consumption information. The 

determined aspect shows actual intake values, shooting 

the natural fluctuations in demand. The fashion factor 

highlights the long-time period development in power 

utilization, while the seasonal component isolates 

ordinary styles, in all likelihood reflecting daily cycles 

inspired by way of operational hours or environmental 

factors. Finally, the residual thing captures abnormal 

fluctuations no longer defined with the aid of fashion or 

seasonality, with a random dispersion round zero 

indicating effective version performance. This 

decomposition enhances forecasting accuracy by 

distinguishing among normal cycles, lengthy-term traits, 

and precise events in electricity intake. 

 

                                      

        Figure 6: PJME energy consumption 

 

4.8 Future predictions with confidence 

interval 

This plot illustrates the model's predictions for energy 

consumption alongside the actual values, with a 95% 

confidence interval shaded in gray. This confidence 

interval reflects the uncertainty in the predictions, 

indicating the range within which future energy 

consumption values are expected to fall most of the time. 

The alignment of predicted values with true values and 

the confidence interval's containment of most actual 

values suggests the model's effectiveness in capturing 

consumption trends while providing reliable uncertainty 

estimates. This visualization supports both accuracy 

assessment and uncertainty quantification for future 

energy predictions.  

 

 

 
Figure 7: Prediction with confidence interval 
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5 Conclusion 

This work also shows how LSTM networks augmented 

with Monte Carlo Dropout for energy consumption 

estimation are capable of accurately modeling and 

optimizing the uncertainty of the estimates. The RMSE 

of our LSTM based model on the testing set is 5005.93 

thus making it more accurate than standard baseline 

models. Some of the additional steps included in feature 

engineering helped to identify the seasons and long-term 

trends, which also increased the accuracy of the work. In 

this case, Monte Carlo Dropout, our system produces 

probability bands through uncertainty quantification to 

increase the predictability of results. These results 

highlight not only the promise of advanced Deep 

Learning models for accurate and reliable forecasting, 

but also for returning useful information on forecast 

confidence, in making the model suitable for practical 

use in operational resource planning and scheduling.  

Future studies ought to beautify our LSTM framework 

through:  

• adding CNNs to model spatial styles in smart grids 

• employing Transformers like Informer for long-

term forecasts 

• improving uncertainty quantification thru deep 

ensembles. 

These extensions could deal with spatial modeling, 

extended time horizons, and reliability - key wishes for 

renewable electricity integration - while maintaining 

computational performance for actual-international 

deployment.  
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