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Accurate fault localization in transmission grids is essential for reducing downtime and maintaining 

power system stability. Conventional fault location techniques frequently struggle with the intricacy of 

contemporary transmission grids, which have intricated dependencies and variable fault characteristics. 

Problem Statement: Previous fault location techniques used limited indicators, like wave arrival times or 

impedance-based measurements, while ignoring amplitude variations and propagation speed. Numerous 

also use oversimplified network models that assume a uniform topology and ignore grid node 

dependencies. These constraints result in delays, localization errors, and ineffective grid restoration. The 

difficulty is to combine fault wave propagation and a realistic network structure to enhance accuracy and 

response time. Objective: The objective of this research is to enhance fault localization accuracy and 

response time in transmission grids by using fault traveling wave distribution and network dependency 

graphs. To accomplish this, the research creates GridWaveLoc, a fault location algorithm that 

incorporates wave propagation characteristics into the grid's dependency structure, resulting in quicker 

fault detection and increased grid reliability. Methodology: The GridWaveLoc algorithm executes real-

time data such as fault type, wave arrival time, amplitude, transmission line characteristics, and network 

load. Mean and mode imputation for missing values, label encoding for categorical variables, and Min-

Max normalization for continuous features all fall under data preprocessing. The algorithm uses fault 

wave propagation times and network dependency graphs to narrow down possible fault locations. The 

Euclidean distance technique is employed to detect the nearest grid node to the fault origin, guaranteeing 

accurate fault location prediction. Results: Experiments were performed on the Transmission Fault 

Localization Dataset, which contained 11 features and 2000 records, to evaluate three types of faults: 

short-circuit, open-circuit, and ground faults. GridWaveLoc obtains 98.5% accuracy, surpassing the 

Traveling Wave Method (92.3%), the Impedance-Based Method (89.5%), and Artificial Neural Networks 

(85.7%). GridWaveLoc also has the lowest mean absolute error (MAE) of 0.12 km and root mean square 

error (RMSE) of 0.15 km, substantially enhancing fault localization precision compared to other 

techniques. These results emphasize the potential for real-time fault detection in massive transmission 

networks. Conclusion: The GridWaveLoc employs a novel approach to fault location in transmission grids 

by integrating fault traveling wave evaluation and network dependency data. This technique improves the 

dependability and effectiveness of power grid functions by offering a solid solution for real-time fault 

localization. 

Povzetek: Članek predstavi nov algoritem GridWaveLoc, ki združuje potovalne valove in graf odvisnosti 

omrežja za natančno lokalizacijo napak v elektroprenosnih omrežjih v realnem času. 

 

1 Introduction 
The dependable function of transmission grids is a pillar of 

contemporary power systems, where guaranteeing 

uninterrupted electricity supply is critical. Faults in 

transmission grids, whether caused by weather, equipment 

failure, or human error, can cause power outages, 

economic losses, and compromised grid stability [1]. 

Efficient fault localization is a critical step towards 

reducing downtime and restoring regular operations [2]. 

Conventional fault location techniques have long served 

the industry, but the growing intricacy of grid networks, 

with interconnected nodes and differing transmission line 

characteristics, requires more sophisticated solutions. 

Integrating fault-traveling wave evaluation and network 

dependency graphs opens up a new avenue for tackling 

these difficulties. 

Several fault location methods have been proposed, 

containing impedance-based techniques [3], time-domain 

reflectometry [4], and AI-driven methods [5]. These 
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methods are mainly based on characteristics like line 

impedance, fault current magnitudes, and historical fault 

data. While these methods offer basic functionality, their 

efficacy is reduced in highly interconnected grids with 

intricate topologies. Furthermore, the adoption of wavelet 

transforms, and other signal processing methods has 

shown potential, but the scalability and real-time 

applicability of these techniques are still restricted. 

Despite their utility, conventional fault location techniques 

have major disadvantages. Impedance-based methods are 

prone to inaccuracies when load variations or faults 

happen in numerous places at the same time. Time-domain 

techniques, while accurate in smaller grids, struggle to 

meet the computational needs of today's networks. 

Additionally, numerous previous solutions fail to account 

for the complex dependencies within grid networks, like 

node connectivity and load distribution, which are 

essential for precise fault localization. The absence of a 

combined strategy that combines fault wave evaluation 

and network characteristics frequently results in delayed 

fault identification and ineffective grid restoration. 

To tackle the drawbacks of current techniques, this study 

introduces GridWaveLoc, an innovative algorithm that 

improves fault location accuracy and speed. The 

GridWaveLoc algorithm integrates fault-traveling wave 

distribution evaluation with network dependency graphs, 

resulting in an extensive framework for real-time fault 

localization. GridWaveLoc precisely identifies fault 

locations in intricate grid settings by utilizing wave 

propagation data and integrating the grid's structural 

dependencies. 

The GridWaveLoc algorithm uses a multi-step procedure 

to localize faults. Initially, raw fault data, such as wave 

arrival times, amplitudes, and network conditions, is 

preprocessed with mean and mode imputation for missing 

values, label encoding for categorical features, and Min-

Max normalization for continuous variables. Fault 

traveling waves are evaluated to determine propagation 

times, and the results are combined with a network 

dependency graph that depicts the grid's structure. 

GridWaveLoc uses the Euclidean distance technique to 

identify the grid node nearest to the fault origin, narrowing 

down the fault location with minimum error. 

This paper renders the subsequent contributions: 

• Introduces the GridWaveLoc algorithm, which 

incorporates fault traveling wave evaluation and network 

dependency graphs for accurate fault localization. 

• Creates a resilient preprocessing framework to 

manage real-time grid data effectively. 

• Shows the algorithm’s better performance by 

comprehensive simulations, emphasizing its scalability 

and accuracy. 

• Offers insights into the application of dependency 

graphs in improving fault location techniques. 

This study intends to answer the following important 

research questions: 

• Can the combination of network dependency 

graphs and fault traveling wave distribution enhance fault 

localization accuracy over conventional techniques? 

• How does GridWaveLoc manage missing data, 

and how does it compare to conventional preprocessing 

techniques? 

• What are the important benefits of GridWaveLoc 

in terms of True Positive Rate (TPR), specificity, and error 

reduction compared to previous methods? 

To tackle these research questions, this paper formulates 

the following hypotheses: 

• H1: The incorporation of network dependency 

graphs and fault traveling wave distribution enhances fault 

localization accuracy compared to conventional 

techniques. 

• H2: The adaptive preprocessing strategy in 

GridWaveLoc offers better handling of missing data, 

decreasing localization errors. 

• H3: GridWaveLoc attains higher TPR, 

specificity, and lower MAE/RMSE than modern fault 

localization techniques. 

This study aims to enhance fault location techniques by 

proposing a hybrid method that uses both traveling wave 

characteristics and network structure. The main objective 

is to attain precise, effective, and real-time fault 

localization in transmission grids. 

The novelty of GridWaveLoc lies in its dual-layered 

method, which incorporates wave analysis with network 

graph dependency modeling. Unlike previous techniques, 

it tackles the dynamic and interconnected nature of 

contemporary grids, guaranteeing high accuracy and 

dependability. 

GridWaveLoc can be used to handle transmission grids, 

monitor faults in real-time, and restore power systems. Its 

application includes both small-scale and massive grid 

infrastructures, rendering it versatile for various grid 

contexts. 

The rest of this paper is organized as follows: Section 2 

discusses related works on fault localization. Section 3 

discusses the methodology, which includes the 

GridWaveLoc algorithm and preprocessing methods. 

Section 4 includes experimental findings and a 

comparative evaluation. Section 5 discusses the result's 

implications and recommends areas for enhancement. 

Finally, Section 6 summarizes the paper and suggests 

directions for future research. 

 

2 Related work 
The detection and localization of faults in power systems 

have been extensively researched, as precise fault 

detection is critical for retaining system dependability, 

reducing downtime, and enhancing maintenance. Over 

time, different approaches based on the idea of Traveling 

Wave (TW) propagation have been created. Jiménez-

Aparicio et al. [6] investigated factors that influence TW 

propagation, including fault distance, type, and 

interactions with system components including regulators 

and capacitor banks. Utilizing the Stationary Wavelet 

Transform (SWT) and Parseval's Energy Theorem, the 

research emphasized how these factors influence TW 

energy propagation and proposed their inclusion in TW-

based security systems. 



GridWaveLoc: A Fault Location Algorithm Integrating Fault…                    Informatica 49 (2025) 167-178    169 
 

Similarly, Hung [7] compared conventional impedance-

based fault location techniques, such as simple reactance 

and Takagi models, on high-voltage transmission lines. 

The research used simulations on a 220kV transmission 

line to show the significance of taking into account 

different kinds of faults and resistances when enhancing 

location accuracy. Huo et al. [8] improved the TW 

technique for overhead-cable hybrid transmission lines by 

offering an energy-based fault location technique that 

quantifies TW energy versus fault distance. This method 

proved efficient in intricate line structures, as verified by 

the PSCAD/EMTDC simulation tool. 

Furthermore, Maritz et al. [9] introduced a graph-based 

strategy that uses metric dimensions, and vertex covers to 

maximize TW detector placement. Their offline and online 

algorithms, evaluated on the IEEE 30-bus system, 

provided a new approach to using graph theory for fault 

detection in intricate grids. Panahi et al. [10] examined 

contemporary fault location techniques, ranging from 

distance relays to artificial intelligence, highlighting their 

importance in tackling environmental and structural issues 

in transmission networks. The review provided an 

extensive comparison of techniques, emphasizing their 

advantages and disadvantages in different situations. 

Furthermore, Yu et al. [11] developed a fault localization 

method that employs the Northern Goshawk Optimization 

(NGO) algorithm to improve Variational Mode 

Decomposition (VMD) in fault signal processing. This 

method efficiently tackled inaccuracies in mode 

decomposition by improving key parameters and using 

Hilbert transforms to enhance TW detection. Gonzalez et 

al. [12] applied fault location techniques to renewable 

energy-integrated systems, employing graph theory to 

reduce errors under noisy conditions. Their methodology 

showed enhanced precision compared to traditional 

impedance-based methods. 

Other studies, like Prabakar et al. [13], concentrated on 

Fault detection and localization using traveling waves, 

whereas Wang et al. [14] developed electromagnetic 

transient convolution techniques to deal with frequency-

dependent parameters and lossy grounds. Finally, 

Dashtdar et al. [15] proposed Review of fault location 

methods in distribution grids. Table 1 shows the summary 

table. 

 

Table 1: Summary table 

 

Reference No Objective Methodology Result Limitations 

[6] Jiménez-

Aparicio et al. 

(2022) 

To detect important 

factors impacting 

Traveling Wave 

(TW) propagation 

in power 

distribution 

systems. 

Utilizes 

Karrenbauer 

transform, 

Stationary Wavelet 

Transform (SWT), 

and Parseval’s 

Energy theorem for 

signal processing 

and energy 

examination. 

Distance, fault type, 

and presence of 

regulators 

significantly impact 

TW propagation. 

Limited to a simplified 

distribution system with 

two safety zones. 

[7] Hung (2022) To compare fault 

location approaches 

in high voltage 

power transmission 

lines. 

Assesses 

impedance-based 

approaches (simple 

reactance, Takagi, 

modified Takagi, 

double-end) 

utilizing 

MATLAB/Simulink 

simulations. 

Shows efficiency of 

each method in 

fault distance 

estimation. 

Research is limited to 

one transmission line 

(Quy Nhon-Tuy Hoa) in 

Vietnam. 

[8] Huo et al. 

(2022) 

To introduce a fault 

location technique 

for hybrid 

transmission lines 

using traveling 

wave energy. 

Creates a mapping 

relationship 

between TW energy 

and fault location 

utilizing S-

transform and 

attenuation 

evaluation. 

Offers an accurate 

technique for fault 

location in 110 kV 

hybrid transmission 

lines. 

Accuracy relies on 

accurate attenuation 

characteristics modeling. 

[9] Maritz et al. 

(2021) 

To create a 

traveling wave-

based fault location 

Transforms power 

grid into a graph, 

utilizes metric 

dimension and 

Novel method 

allows effective 

fault location on 

complex grids. 

Needs transformation of 

power networks into 

graph-based models. 
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tactic utilizing 

graph theory. 

vertex covers for 

fault identification. 

[10] Panahi et al. 

(2021) 

To review 

contemporary fault 

location methods in 

power systems. 

Compares different 

techniques (distance 

relay, TW, AI, time 

reversal, 

impedance) with 

benefits and 

drawbacks. 

Offers a extensive 

review and 

suggestions for 

future study. 

Lacks experimental 

validation of proposed 

suggestions. 

[11] Yu et al. 

(2024) 

To enhance 

traveling wave fault 

localization 

utilizing NGO-

VMD algorithm. 

Improves VMD 

with NGO 

algorithm, applies 

Hilbert transform 

for accurate TW 

identification. 

Attains enhanced 

fault location 

accuracy and 

robustness. 

Performance relies on 

correct choice of VMD 

parameters. 

[12] Gonzalez et al. 

(2024) 

To introduce a 

graph-theory-based 

fault location 

technique for 

systems with 

renewable energy 

sources. 

Utilizes graph 

theory and 

Kirchhoff’s laws to 

estimate fault 

distance under 

changing 

conditions. 

Attains high 

accuracy with 

errors below 0.48% 

for various fault 

types. 

Requires validation on 

larger, more complex 

grids. 

[13] Prabakar et al. 

(2021) 

Fault detection and 

localization using 

traveling waves. 

High-speed data 

acquisition and 

signal processing. 

Improved accuracy 

over impedance-

based methods. 

Performance drops in 

high-noise conditions. 

[14] Wang et al. 

(2024) 

To introduce a fault 

location technique 

using 

electromagnetic 

transient 

convolution. 

Utilizes phase-mode 

transformation and 

aerial mode 

transients for loss 

minimization. 

Offers precise fault 

localization under 

various network 

conditions. 

Accuracy reduces with 

raising fault distance. 

[15] Stefanidou-

Voziki et al. (2022) 

Review of fault 

location methods in 

distribution grids. 

Comparative 

analysis of 

impedance, 

traveling wave, and 

ML-based 

approaches. 

Identified strengths 

and weaknesses of 

each method. 

No experimental 

validation; high sensor 

requirements. 

2.1 Research gap 
The increasing intricacy of contemporary power grids has 

revealed flaws in conventional fault location techniques, 

which frequently make oversimplified assumptions like 

uniform wave propagation speeds and static grid 

conditions. These methods fail to account for key factors 

like grid node dependencies, fault-induced wave 

dynamics, and various fault scenarios, leading to 

inaccurate fault identification and location. Furthermore, 

previous methods frequently overlook critical features 

such as wave amplitude, network load, and time to 

isolation, restricting their efficacy in capturing the 

complex nature of faults. The absence of resilient data 

preprocessing, comprising correct handling of missing 

values, normalization, and encoding, further aggravates 

these difficulties, resulting in inconsistent fault evaluation 

in practical applications. 

The GridWaveLoc Algorithm fills in these gaps by 

combining sophisticated fault wave analysis, feature-rich 

preprocessing, and adaptive fault location prediction. It 

uses methods like imputation, Min-Max normalization, 

and label encoding to guarantee data consistency, as well 

as wave dynamics and network dependency graphs to 

capture the effect of faults on interconnected grid nodes. 

By integrating normalized Euclidean distance 

computations, the algorithm accurately detects fault 

locations while accounting for dynamic grid conditions. 

These advancements render GridWaveLoc an effective 

and scalable solution, tackling the pressing requirement for 

precise and effective fault location in contemporary power 

systems. 

 

3 Methodology 
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The GridWaveLoc Algorithm was carefully designed to 

integrate sophisticated fault wave evaluation methods with 

a thorough comprehension of transmission grid 

dependencies to precisely locate faults. The methodology 

includes data preprocessing, fault wave evaluation, 

network dependency graph construction, and fault location 

prediction utilizing Euclidean distance. Algorithm 1 shows 

the proposed GridWaveLoc Algorithm. 

 

Algorithm 1: GridWaveLoc 

Input : Dataset with features: Fault Type, 

Wave Arrival Time, Wave Amplitude, 

Transmission Line Length, Voltage 

Level, Distance from Source, Grid Node 

Dependency, Wave Propagation Speed, 

Time to Isolation, and Network Load. 

Output : Predicted Fault Location 

Step 1 : Data preprocessing:   

• Impute missing values using 

mean for continuous features 

and mode for categorical 

features.   

• Encode categorical attributes 

(Fault Type, Grid Node 

Dependency) utilizing Label 

Encoding.   

• Normalize continuous attributes 

(Wave Arrival Time, Wave 

Amplitude, etc.) utilizing Min-

Max Normalization. 

Step 2 : Fault wave evaluation:   

• Estimate wave propagation time 

utilizing Wave Arrival Time 

and Wave Propagation Speed.   

• Categorize fault type utilizing 

Wave Amplitude thresholds. 

Step 3 : Network dependency incorporation:   

• Build a Network Dependency 

Graph utilizing Grid Node 

Dependency and Distance from 

Source. 

Step 4 : Fault localization with euclidean 

distance:   

• Calculate the Euclidean 

distance between fault features 

(normalized) and grid nodes. 

• Detect the grid node with the 

minimum distance to predict the 

fault location. 

Step 5 : Return Predicted Fault Location 

 

Below, each step is described in greater detail, integrating 

mathematical principles, logical explanations, and 

illustrative scenarios to guarantee clarity and depth. 

 

3.1 Data preprocessing 
Data preprocessing is an essential step in guaranteeing that 

the input data is clean, consistent, and prepared for precise 

fault detection. Because raw grid data frequently contains 

missing values, inconsistent formats, or outliers, this step 

tackles these problems systematically. Asked 

 

Handling missing values: 

Missing data is a common problem in transmission grid 

datasets, and it can occur because of sensor failures, 

communication lags, or data transmission errors. The 

algorithm employs imputation methods customized to the 

kind of data:  

Mean imputation is used for continuous variables, such as 

wave arrival time and transmission line length. To keep the 

dataset statistically balanced, missing values are replaced 

with the average of observed values: 

𝐼𝑚𝑝𝑢𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 =  
∑ 𝑋𝑖

𝑛
𝑖=1

𝑛
 (1) 

Where, X_i represents observed values and n represents 

the total number of observed values. For instance, if the 

recorded Wave Arrival Times are 0.02s,0.03s,0.04s, and 

one value is missing, the imputed value becomes 

(0.02+0.03+0.04)/3=0.03s. 

Mode imputation is employed for categorical variables 

such as fault type (for example, "short-circuit," "ground 

fault"). This replaces missing values with the most often 

occurring category, guaranteeing consistency while 

avoiding bias. 

 

Encoding categorical variables: 

Categorical variables, like Fault Type, must be converted 

to numerical form before being used in machine learning 

algorithms.  Label encoding assigns a unique numerical 

value to each category: 

Fault Type: Short-circuit→0,Open-circuit→1,Ground 

Fault→2 

(2) 

This step guarantees that algorithms interpret the data 

quantitatively while maintaining categorical relationships. 

 

Min-Max normalization: 

Continuous features, like Wave Arrival Time and Wave 

Amplitude, frequently have different scales, creating a bias 

in the fault location procedure. To avoid this, the algorithm 

uses Min-Max Normalization, scaling all numerical data to 

the range [0, 1]: 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑎𝑙𝑢𝑒

=
𝑉𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛 𝑉𝑎𝑙𝑢𝑒

𝑀𝑎𝑥 𝑉𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛 𝑉𝑎𝑙𝑢𝑒
 

(3) 

For instance, if the Wave Arrival Time ranges between 

0.01 and 0.1 seconds and the observed value is 0.03 

seconds: Normalized Value = (0.03−0.01) / (0.1−0.01) = 

0.222. This guarantees that no feature dominates the fault-

finding procedure because of its magnitude, allowing the 

algorithm to fairly consider all features. 
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Transmission line characteristics and network load are 

continuous variables that are treated accordingly during 

the data preprocessing step.  These features are normalized 

using Min-Max, ensuring that they are scaled within the 

range [0,1] to avoid bias in fault localization because of 

magnitude differences.  Label encoding is used to encode 

categorical variables like fault type. Each category is 

allocated a numerical value (for example, short-circuit → 

0, open-circuit → 1, ground fault → 2).  This method 

guarantees that both continuous and categorical attributes 

are correctly prepared for the fault detection algorithm. 

 

3.2 Fault wave analysis 
The GridWaveLoc Algorithm is based on traveling wave 

evaluation, which provides important information 

regarding fault characteristics and their likely location 

within the grid. 

 

Fault wave propagation analysis: 

When a fault happens, it causes a traveling wave that 

spreads throughout the transmission network. The 

algorithm calculates the fault's distance from the wave's 

origin by capturing the time it takes for the wave to travel 

between nodes. The propagation time is computed with: 

 

𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

=
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑆𝑜𝑢𝑟𝑐𝑒

𝑊𝑎𝑣𝑒 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑆𝑝𝑒𝑒𝑑
 

(4) 

For instance, if the Distance from the Source is 50 km and 

the Wave Propagation Speed is 3000 m/s, the propagation 

time is: Propagation Time = (50×1000) / 3000 = 16.67 

seconds.  

The factor 1000 is employed to transform kilometers to 

meters, guaranteeing that the units match the wave 

propagation speed in meters per second. This computation 

allows the algorithm to narrow down the fault's possible 

location by comparing propagation times across numerous 

nodes. 

Fault type classification: 

The Wave Amplitude is an important indicator for fault 

classification, with thresholds determined by an empirical 

evaluation of historical grid fault data and industry 

standards.  Extensive assessment of previous fault 

occurrences and waveform characteristics established 

distinct amplitude ranges for various fault types: 

• Short-circuit faults typically exhibit amplitudes 

exceeding 200 mV, using high current surge patterns 

observed in practical incidents. 

• Open-circuit faults generally fall within the 100–

200 mV range, as these faults exhibit moderate 

disturbances in voltage waveforms. 

• Ground faults often register amplitudes below 

100 mV, a result of lower energy dissipation into the 

ground compared to short-circuits. 

These thresholds were validated using simulated fault 

injection in grid models and cross-referenced with 

recorded field data to ensure their suitability for fault 

classification.  For example, if the observed amplitude is 

220 mV, the fault is classified as a short-circuit, and 

subsequent calculations are directed toward localizing the 

fault within the grid. 

3.3 Network dependency graph construction 
The Network Dependency Graph shows the 

interconnections and dependencies between grid nodes, 

providing as a structured representation for fault 

localization. 

Graph construction: 

Each grid node is depicted as a vertex, with edges 

representing the connections between them. The edges are 

weighted using: 

• Grid Node Dependency (Low, Medium, High): 

Reflecting the node's criticality in retaining grid stability. 

Nodes with more dependency (e.g., "High") obtain greater 

weight, guaranteeing faults near critical nodes are 

prioritized. 

• Distance from Source: Depicting the spatial 

relationship between nodes. 

Also, Network Load is incorporated into Grid Node 

Dependency, as nodes with higher load contribute more 

substantially to grid stability and are allocated higher 

dependency levels. This guarantees that the graph 

construction inherently accounts for differing node 

significance using load conditions. 

Dynamic graph adjustment: 

The graph dynamically adapts to practical grid conditions 

by integrating: 

• Network Load: Higher loads raise a node's 

criticality, reinforcing its dependency classification in the 

graph. 

• Fault Isolation Time: Nodes with prolonged 

isolation times undergo more comprehensive investigation 

to reduce disruptions. 

By directly linking Network Load to Grid Node 

Dependency, the transition from graph construction to 

dynamic adjustment becomes seamless, guaranteeing the 

algorithm efficiently prioritizes faults and retains grid 

stability. 

3.4 Fault location prediction using euclidean 

distance 
The final stage uses Euclidean Distance to determine the 

fault location by comparing the characteristics of the fault 

wave to those of grid nodes. 

Calculating euclidean distance: 
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The distance between the fault’s features and each grid 

node is calculated utilizing: 

𝐷 = √∑(𝑋𝑖 − 𝑌𝑖)2

𝑛

𝑖=1

 (5) 

Where, X_i denotes the fault feature values, Y_i denotes 

grid node features, and n is the number of attributes. For 

example, if the fault has normalized values X = 

(0.3,0.6,0.2) and a grid node has values Y = (0.2,0.5,0.1), 

the distance is: D= 

√(0.3 − 0.2)2 + (0.6 − 0.5)2 + 0.2 − 0.12 = 0.173. 

Identifying the fault location: 

The algorithm detects the node with the minimum 

Euclidean distance as the fault location: 

𝐹𝑎𝑢𝑙𝑡 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = arg min
𝑖

𝐷𝑖  (6) 

This guarantees that the most likely fault node is chosen 

with great accuracy. In an illustrative scenario, presume 

that a grid fault occurs with the following features:  The 

fault type is "short-circuit,” Wave Arrival Time: 0.02 

seconds; Wave Amplitude: 250 mV; Transmission Line 

Length: 60 kilometers; Grid Node Dependency: "High." 

During preprocessing, all features are normalized and the 

fault is classified as a "short-circuit."  The fault wave 

propagation time is estimated using the length of the 

transmission line and the velocity of the wave in the grid.  

To compute the time, it takes for a wave to travel 60 km at 

a presumed propagation speed of 3×10⁵ km/s, divide 60 

km by (3×10⁵ km/s) to get 0.0002 seconds.  Yet, because 

of network dependencies and signal attenuation, an 

empirical correction factor (calculated from historical grid 

fault data) is used, reducing the estimated propagation time 

to 20 seconds. This improved time is then integrated with 

the dependency graph to prioritize nodes within 60 

kilometers of the fault source, especially those with a 

"High" dependency.  Finally, Euclidean distance 

computations determine Node 12 as the fault location, with 

a minimum distance of 0.025. This organized method 

guarantees precise fault localization, shortens response 

times, and increases grid reliability. 

The Euclidean Distance computation in this section takes 

into account both fault wave characteristics and grid node 

features to precisely identify the fault location. The 

important fault wave features utilized are fault type, wave 

arrival time, and wave amplitude, whereas grid node 

features comprise node location, transmission line length, 

and grid node dependency level.  During preprocessing, 

these features are normalized to guarantee uniform scaling. 

When a fault occurs, its characteristics are compared to the 

properties of each grid node. The algorithm calculates the 

Euclidean Distance between the fault feature vector and 

each grid node feature vector, guaranteeing that the node 

with the shortest distance is selected as the most likely 

fault location. This method efficiently integrates fault 

propagation behavior and grid topology, improving fault 

localization accuracy. Figure 1 shows the flow diagram of 

GridWaveLoc Algorithm. 

 

Figure 1: GridWaveLoc algorithm 

The GridWaveLoc Algorithm offers many benefits, 

containing precise and scalable fault localization that uses 

traveling wave evaluation and network graph 

dependencies to guarantee high accuracy in detecting fault 

locations. Its resilient data handling capacities, which 

include methods like imputation for missing values and 

Min-Max normalization, improve dependability and 

robustness in practical grid environments. Furthermore, 

the algorithm's flexibility to dynamic grid conditions 

renders it extremely efficient for large and developing 

transmission networks, guaranteeing reliable operation 

even in intricate situations. 

The Transmission Fault Localization Dataset utilized in 

this research contains 2,000 records with 11 features that 

cover three fault types: short-circuit faults, open-circuit 

faults, and ground faults. The dataset is created 

synthetically utilizing power system simulation models, 

guaranteeing controlled variability in fault conditions 

while retaining practical relevance. To tackle noise in 

wave signals, it used adaptive wavelet denoising, which 

efficiently filters high-frequency noise while protecting 

fault signatures, thus enhancing localization accuracy.  

GridWaveLoc uses graph-based dependency analysis and 

optimized traveling wave processing to achieve a 

computational complexity of O(n log n), where n is the 

number of transmission nodes.  GridWaveLoc has a lower 

computational overhead than conventional techniques like 

the Traveling Wave Method (O(n²)) and Impedance-Based 

Methods (O(n³)), rendering it more scalable for real-time 

fault localization in massive power grids. 
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The wave amplitude classification thresholds were 

determined utilizing historical grid fault data evaluation 

and validated against previous fault event records. 

Network dependency levels ('High,' 'Medium,' and 'Low') 

were allocated using a structured decision tree to classify 

transmission line connectivity, load distribution, and fault 

impact probability. 

Mean and mode imputation were selected for their 

computational effectiveness and suitability for dealing 

with missing values in real-time fault detection situations, 

where fast processing is essential. While sophisticated 

techniques such as KNN or Iterative Imputer provide 

higher accuracy, they also increase computational 

intricacy, rendering them less suitable for real-time grid 

monitoring. Min-Max normalization guarantees feature 

scaling consistency across datasets, uniform data 

distribution, and the prevention of attribute dominance, all 

of which are required for stable fault localization under 

differing grid conditions. 

Figure 1 depicts the GridWaveLoc algorithm's flow 

diagram, which visually represents the sequence of steps 

from data preprocessing to fault localization.  This diagram 

improves comprehension by showing the structured 

progression of imputing missing values, encoding 

categorical features, normalizing continuous features, 

assessing fault waves, integrating network dependency, 

and using Euclidean distance for fault prediction.  The 

visual representation is consistent with Algorithm 1, 

providing clarity in comprehending the fault localization 

procedure. Missing value imputation tactics, wave 

amplitude thresholds for fault classification, and 

normalization methods were all subject to hyperparameter 

sensitivity analysis.  Mean and mode imputation were 

chosen for their stability in handling missing values, while 

fault categorization thresholds were improved using 

empirical wave signal distributions.  Min-Max 

normalization was selected for continuous features to 

ensure numerical stability and enhance Euclidean distance 

computations. 

4 Experimental results 

4.1 Experimental setup 
The experiments were carried out on a high-performance 

system with the specifications shown in Table 2. The Intel 

Core i7-1260P processor, with its 12-core architecture and 

64 GB of RAM, effectively handled computationally 

intensive tasks like machine learning model training and 

massive dataset processing. The 2.1 GHz clock speed and 

the 18 MB L3 cache offered the required speed and 

bandwidth for the experiments to run smoothly. 

The experiments were carried out on Windows 11 Home, 

which provides a stable and user-friendly platform for 

algorithm creation and evaluation. The Apache NetBeans 

IDE 15 served as the incorporated development setting, 

allowing for more efficient coding, debugging, and testing. 

The JDK version 1.8 ensured that the algorithms were 

compatible with their Java-based execution. This setup 

offered the optimum computational resources to attain 

precise and dependable findings in fault localization. The 

experiments employed k-fold cross-validation to 

guarantee rigorous testing, balancing bias and variance 

while validating the model's generalizability. The 

synthetic dataset was divided into two parts: 80% for 

training and 20% for testing, guaranteeing a fair 

assessment of the algorithms' effectiveness. 

4.2 Dataset description 
The Transmission Fault Localization Dataset, created 

particularly for this study, depicts the multifaceted nature 

of faults in a power grid. The dataset contains ten 

important features as inputs and one target feature, Fault 

Location, which identifies the particular grid node 

impacted by the fault. These input features are Fault Type, 

Wave Arrival Time, Wave Amplitude, Transmission Line 

Length, Voltage Level, Distance from Source, Grid Node 

Dependency, Wave Propagation Speed, Time to Isolation, 

and Network Load. The dataset was designed to contain 

three fault types (short-circuit, open-circuit, ground fault) 

and associated parameters, like Wave Arrival Time, Wave 

Amplitude, and Grid Node Dependency. 

Wave Arrival Time, for example, measures how long it 

takes a fault-induced traveling wave to reach a particular 

grid node, whereas Wave Amplitude reflects the wave's 

intensity, offering crucial data about fault severity. 

Distance from source, transmission line length, and 

voltage level are examples of features that offer spatial and 

electrical environments for fault evaluation. The Grid 

Node Dependency and Wave Propagation Speed features 

improve the dataset by including dependency factors and 

dynamic grid properties. 

This extensive dataset allows for the highly accurate 

detection and prediction of fault locations. The inclusion 

of three fault types and diverse grid conditions guarantees 

that the algorithms are resilient, scalable, and applicable to 

real-world situations, thus improving grid dependability 

and fault response times. 

4.3 Performance metrics 

The GridWaveLoc algorithm's effectiveness was 

evaluated using the performance metrics listed below: 

Accuracy: 

Accuracy is the percentage of accurately predicted fault 

locations to total predictions. It's computed utilizing the 

formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 (7) 

Where TP represents True Positive, TN represents True 

Negative, FP represents False Positive, and FN represents 

False Negative. 

This metric offers a general measure of the model's overall 

dependability in fault localization. 
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True positive rate (TPR): 

TPR, also known as sensitivity or recall, quantifies the 

percentage of actual faults that were accurately detected as 

faults. It is given by: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 (8) 

High TPR guarantees that the algorithm does not miss 

detecting actual faults. 

Specificity: 

Specificity measures the percentage of non-faulty grid 

nodes accurately classified as non-faulty. It is computed 

as: 

Specificity =
𝑇𝑁

𝑇𝑁 +  𝐹𝑃
 (9) 

High specificity reduces false positives, guaranteeing that 

unaffected grid nodes are not incorrectly flagged. 

Mean absolute error (MAE): 

MAE assesses the average magnitude of prediction errors, 

providing insights into the precision of the fault location 

predictions. The formula is: 

MAE =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

 (10) 

Where, y_i denotes the actual value (true fault location), 

and y ̂_i  denotes the predicted value (predicted fault 

location) for the i-th instance. 

Root mean square error (RMSE): 

RMSE computes the square root of the mean of squared 

errors, offering a measure of prediction accuracy that 

penalizes larger errors. The formula is: 

RMSE = √
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

 (11) 

These metrics provide a holistic assessment of the 

algorithm’s performance, concentrating on both prediction 

accuracy and error reduction. 

4.4 Comparison results 
The baseline methods, which include Euclidean Fault 

Distance and the Wave Propagation Fault Model, were 

chosen based on their prominence in the fault localization 

literature to ensure a fair comparison with established 

techniques.  Their inclusion is justified by their widespread 

use and effectiveness in detecting transmission grid faults, 

as demonstrated by previous research. The comparison 

concentrates on important performance metrics like 

accuracy, true positive rate (TPR), specificity, mean 

absolute error (MAE), and root mean square error (RMSE) 

to assess the efficacy and accuracy of the proposed 

algorithm. 

Table 2: Performance comparison of algorithms 

Algorithm Accura

cy (%) 

TP

R 

(%

) 

Specific

ity (%) 

MA

E 

(km

) 

RMS

E 

(km) 

GridWave

Loc 

98.5 96.

7 

99.1 0.12 0.15 

Traveling 

Wave 

Method 

92.3 90.

1 

93.5 0.25 0.30 

Impedance

-Based 

Method 

89.5 87.

8 

90.2 0.35 0.40 

Artificial 

Neural 

Network 

(ANN) 

85.7 83.

4 

88.9 0.40 0.45 

 

The GridWaveLoc algorithm surpasses conventional 

techniques like the Traveling Wave Technique, 

Impedance-Based Technique, and Artificial Neural 

Networks (ANN). Its superior 98.5% accuracy 

demonstrates its accurate fault identification capacities, 

while the 96.7% TPR guarantees that nearly all faults are 

correctly detected. The 99.1% specificity demonstrates its 

capacity to reduce false alarms, which is crucial for 

operational effectiveness in power grids. Additionally, the 

low MAE (0.12 km) and RMSE (0.15 km) indicate high 

precision in fault localization, showing the algorithm's 

resilience in dealing with intricate grid situations. 

5  Discussion 
This section compares the GridWaveLoc algorithm's 

performance to other fault localization techniques, 

focusing on key metrics like Accuracy, True Positive Rate 

(TPR), Specificity, Mean Absolute Error (MAE), and Root 

Mean Square Error (RMSE). Each metric offers critical 

information about the algorithm's ability to accurately 

identify, classify, and locate faults in transmission grids. 

The results emphasize the algorithm's benefits in 

leveraging dynamic grid conditions, improved feature 

selection, and sophisticated predictive modeling. 
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Figure 2: Accuracy comparison 

The GridWaveLoc algorithm has the maximum accuracy 

because it incorporates sophisticated wave propagation 

evaluation and fault-specific grid characteristics. Unlike 

conventional techniques, which depend solely on static 

parameters, GridWaveLoc dynamically adapts to grid 

conditions, guaranteeing consistent performance across 

differing fault scenarios. 

 

Figure 3: TPR comparison 

The algorithm's high TPR is due to its capacity to correctly 

classify three fault types utilizing improved feature 

selection methods. GridWaveLoc minimizes fault 

misclassification by integrating grid node dependency and 

wave amplitude evaluation. 

 

 

Figure 4: Specificity comparison 

GridWaveLoc attains high specificity by reducing false 

positives with accurate preprocessing and feature 

engineering. Its capacity to distinguish between defective 

and non-faulty grid nodes guarantees minimum disruption 

during grid fault management. 

 

Figure 5: MAE comparison 

The low MAE indicates GridWaveLoc's accuracy in 

predicting the exact fault location. This is accomplished by 

utilizing high-resolution grid data and sophisticated 

predictive modeling, making it especially successful for 

localized fault management. 

 

Figure 6: RMSE comparison 

The algorithm's low RMSE demonstrates consistent fault 

prediction efficiency. GridWaveLoc guarantees consistent 

findings even under changing grid load conditions by 

reducing large prediction errors. The GridWaveLoc 

algorithm surpasses existing techniques in every 

evaluation metric. Its high accuracy, TPR, and specificity 

demonstrate its efficacy in fault detection and localization, 

while its low MAE and RMSE emphasize its precision and 

dependability. 

GridWaveLoc's results show a significant enhancement in 

accuracy, true positive rate (TPR), and specificity when 

compared to other fault localization techniques such as the 

Traveling Wave Technique, Impedance-Based Method, 

and Artificial Neural Network.  Table 2 displays the 

comparative results, which show that GridWaveLoc 

achieves 98.5% accuracy, outperforming the Traveling 

Wave Method (92.3%), the Impedance-Based Method 

(89.5%), and the ANN Model (85.7%).  Similarly, 

GridWaveLoc's TPR (96.7%) and specificity (99.1%) 

surpass modern methods, demonstrating its better capacity 

to accurately detect faults while lowering false positives. 

GridWaveLoc's performance was assessed using 95% 

confidence intervals, resulting in an accuracy of 98.5% ± 

0.4%, a true positive rate (TPR) of 96.7% ± 0.5%, and a 

specificity of 99.1% ± 0.3%.  A one-way ANOVA test 

revealed substantial performance variations compared to 

conventional techniques (p-value < 0.001).  GridWaveLoc 

is not immune to failure scenarios. The technique can 

generate false positives, especially in high-noise settings 

where overlapping wave reflections can result in incorrect 

fault localization.  Furthermore, in dynamic grid 

topologies with frequent topology variations or fluctuating 

98,5

92,389,5

85,7
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70 80 90 100
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line impedances, the network dependency graph might 

need constant updates, resulting in potential localization 

delays or inaccuracies.  These difficulties emphasize the 

importance of adaptive graph updates and improved signal 

preprocessing in intricate grid settings. 

5.1 Comparison with related works 
The Traveling Wave Technique, while broadly utilized for 

short-circuit fault localization, is sensitive to wave 

reflections and noise, resulting in a lower TPR (90.1%) and 

specificity (93.5%) than GridWaveLoc. The Impedance-

Based Method, while efficient for some fault types, 

struggles with dynamic grid conditions and produces 

higher localization errors (MAE = 0.35 km, RMSE = 0.40 

km).  In contrast, the ANN-based method, despite its 

capacity to learn complex fault patterns, suffers from 

restricted generalization and overfitting problems, yielding 

the lowest accuracy (85.7%) of the techniques tested. 

5.2 Advantages of GridWaveLoc 
GridWaveLoc's better performance can be attributed to its 

advanced preprocessing methods, which comprise 

adaptive signal filtering to decrease noise and enhance 

fault waveform clarity.  Furthermore, the model 

advantages from improved fault characterization, which 

uses 11 important transmission features to differentiate 

between short-circuit, open-circuit, and ground faults with 

greater precision. GridWaveLoc, unlike conventional 

techniques, incorporates sophisticated feature extraction 

and hybrid localization tactics, lowering Mean Absolute 

Error (MAE) to 0.12 km and Root Mean Square Error 

(RMSE) to 0.15 km, both significantly lesser than 

competing techniques. 

5.3 Limitations and challenges 
Despite its high performance, GridWaveLoc may face 

difficulties in high-noise environments, where interference 

from grid fluctuations can degrade waveform clarity and 

localization accuracy.  Furthermore, in dynamic grid 

topologies, where line parameters change because of load 

changes, the model may need adaptive retraining to retain 

high precision. Furthermore, while GridWaveLoc attains 

high specificity, rare fault conditions may still present 

challenges, necessitating additional optimization in feature 

selection and adaptive filtering methods. 

Mean imputation was selected because it is 

computationally efficient and stable, especially for 

continuous features like wave arrival times. However, for 

highly skewed distributions, median imputation or k-NN 

imputation may be investigated as other methods in future 

research. The Euclidean distance metric was chosen for its 

simplicity and efficiency in feature space, while Min-Max 

normalization ensured uniform scaling. While grid node 

dependencies cause structural variations, empirical 

validation has shown that Euclidean distance adequately 

preserves fault proximity relationships. The dataset 

utilized for practical validation was derived from synthetic 

simulations, and future work will integrate real fault logs 

into hybrid validation frameworks to improve practical 

applicability. 

Overall, GridWaveLoc outperforms previous transmission 

fault localization techniques in terms of accuracy, fault 

identification (TPR), and specificity, all while retaining 

low localization errors. Its benefits stem from better 

preprocessing, feature extraction, and hybrid localization 

strategies, rendering it a strong candidate for practical 

transmission grid monitoring. However, tackling high-

noise conditions and dynamic topologies maintains a field 

for future development. 

6  Conclusion 
The GridWaveLoc algorithm performed admirably in fault 

detection and localization within power transmission 

grids, attaining high accuracy, true positive rate, and 

specificity while retaining low error rates (MAE and 

RMSE). By combining sophisticated wave propagation 

analysis, feature optimization, and dynamic grid 

adaptation, the algorithm tackles key fault management 

difficulties. However, some drawbacks were discovered, 

such as its reliance on high-quality grid data and 

computational resources, which may pose difficulties for 

deployment in resource-constrained settings. Future work 

may concentrate on improving the algorithm's scalability 

for large and intricate grids, integrating real-time fault 

tracking systems, and investigating its incorporation with 

emerging technologies such as blockchain for safe and 

transparent grid fault management. These improvements 

can strengthen its position as a transformative tool for 

dependable and effective power grid operations. 
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