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Computed tomography (CT) has become an important tool in cancer screening and diagnosis, where 

accurate image analysis can assist early detection and treatment planning. While deep learning methods 

have shown progress in CT image analysis, effectively capturing both local features and global context 

remains challenging. This paper presents MAGT, a Multi-scale Attention Graph Transformer (MAGT) 

framework that combines graph-based geometric modeling with transformer architectures for CT image 

analysis. The MAGT framework includes two main components: a Multi-Head Feature Aggregator 

(MHFA) that integrates features from different scales while preserving their characteristics, and a Local 

Context Enhancement Block (LCEB) that strengthens the capture of spatial information. This design 

enables MAGT to process CT images by considering both lesion characteristics and their surrounding 

anatomical context, similar to clinical examination procedures. The framework uses graph structures to 

represent spatial relationships in CT images while incorporating transformer mechanisms into model 

feature dependencies. Experiments conducted on four public datasets (LIDC-IDRI, LUNGx, LUNA16, 

and DeepLesion) demonstrate the effectiveness of MAGT; for example, on the LIDC-IDRI dataset, MAGT 

achieved an accuracy of 91.5% and an F1-score of 91.3%, outperforming a strong baseline (Swin-T) by 

2.1% in both metrics. Ablation studies verify the contributions of different components within the 

framework. The results indicate that MAGT offers a practical approach for CT image analysis, potentially 

supporting cancer detection and diagnosis in clinical applications. 

Povzetek: Predstavljen je MAGT, večnivojski graf-transformer z lokalnim kontekstnim ojačanjem za CT 

analizo. Model združuje grafne strukture in transformerje, kar izboljša zaznavanje lezij, robustnost in 

diagnostično natančnost v medicinskem slikanju. 

 

1 Introduction 

Malignant neoplasms constitute a paramount 

challenge to global public health in the 21st century. The 

scale of this health crisis is evidenced by epidemiological 

data from GLOBOCAN, which documented 19.3 million 

new cancer diagnoses and approximately 10 million 

fatalities worldwide in 2020 [1]. These statistics highlight 

the imperative for comprehensive cancer control measures, 

particularly focusing on early identification and 

therapeutic intervention strategies [2]. 

Computed tomography (CT) has emerged as a crucial 

imaging modality in cancer screening protocols. As a non-

invasive diagnostic tool, CT enables detailed visualization 

of internal structures and potential malignancies, 

facilitating early detection and disease staging [3]. The 

implementation of CT screening programs has 

demonstrated significant clinical value, particularly in 

high-risk populations [4]. This imaging technique 

provides comprehensive anatomical information, 

allowing for systematic evaluation of suspicious lesions 

and monitoring of disease progression [5]. 

Recent advances in deep learning have significantly 

enhanced artificial intelligence-assisted analysis of CT 

images, demonstrating performance comparable to 

clinical experts. Deep learning techniques, particularly 

convolutional neural networks (CNNs), have achieved 

remarkable success in detecting and classifying 

abnormalities in CT scans [6-10]. For instance, Cao et al. 

[6] developed a deep learning system for automated lung 

nodule detection, while Sakshiwala et al. [7] proposed a 

multi-scale CNN architecture for thoracic disease 

classification. However, challenges remain in capturing 

comprehensive spatial information from CT images, 

leading researchers to explore various solutions including 

attention mechanisms [8], multi-scale feature fusion [9], 

and advanced network architectures [10]. 

Modern variants of Vision Transformers have 

demonstrated significant impact in CT image analysis, 

particularly due to their capability to capture long-range 

dependencies and learn effective feature representations 

[11]. While Transformer-based approaches have achieved 

promising results, they face two primary limitations in CT 

image processing. First, the patch embedding operation in 



108 Informatica 49 (2025) 107-122 Y. Qiu 

feature extraction may compromise fine-grained boundary 

information, which is crucial for accurate diagnosis. 

Second, these models' heavy reliance on self-attention 

mechanisms for pixel relationship modeling often 

overlooks important 2D local spatial features. To address 

these challenges, researchers have developed various 

innovations, including multi-scale architectures [12-15] 

and hybrid models [16], aiming to overcome these 

inherent limitations in current Vision Transformers. 

CT image analysis presents significant challenges 

due to its complex feature representation and 

heterogeneous tissue distribution across different 

anatomical structures. In clinical practice, experienced 

radiologists integrate multi-scale and contextual 

knowledge when examining CT scans, systematically 

evaluating both local lesion characteristics and their 

surrounding anatomical context. This often involves an 

initial overview to identify suspicious regions (global 

context), followed by a more focused examination of these 

regions at different levels of detail (multi-scale analysis), 

while also considering the relationship between a potential 

lesion and adjacent tissues or organs (spatial context). 

Furthermore, clinical evidence suggests that the spatial 

correlation between different tissue types and their 

surrounding environment is crucial for accurate disease 

analysis [17]. Previous studies have demonstrated that 

phenotypic information closely associated with cancer 

diagnosis often exhibits correlations between adjacent 

regions in CT images [18]. To address this, several 

approaches have utilized structural relationships by 

incorporating handcrafted radiological features to 

integrate contextual information [19-20]. 

To address these challenges, and inspired by this 

clinical examination workflow, we propose a novel Multi-

scale Attention Graph Transformer (MAGT) framework 

for CT image analysis. This framework utilizes graph 

structures to model relationships between different image 

regions based on their learned feature representations. The 

core idea is that patches with similar learned features are 

likely to be contextually related (e.g., belonging to similar 

tissue types or forming parts of a larger structure), and 

connecting them in a graph allows the model to reason 

about these relationships. Specifically, MAGT's multi-

scale patch embedding and graph construction (MGC) aim 

to capture information at different resolutions by 

identifying and connecting image patches with similar 

learned characteristics, analogous to a radiologist 

adjusting their focus. The Multi-Head Feature Aggregator 

(MHFA) then integrates these multi-scale views. The 

graph representation itself, processed by the Efficient 

Graph-Transformer, models the inter-dependence between 

these feature-defined image regions. This allows the 

system to infer broader contextual patterns from the data, 

which is crucial for an analysis that, like a clinical 

examination, considers how different parts of an image 

relate to one another. Finally, the Local Context 

Enhancement Block (LCEB) refines local details, similar 

to a detailed inspection of a lesion. This overall process is 

designed to mirror the systematic, context-aware 

examination approach used by clinical radiologists during 

CT scan analysis. 

 

 

 

2 Related work 

2.1 Deep learning in medical CT analysis 

Deep learning techniques have revolutionized the 

field of medical CT image analysis, demonstrating 

remarkable capabilities across various diagnostic tasks. 

These computational approaches have significantly 

enhanced the efficiency and accuracy of CT-based clinical 

diagnosis. The applications of deep learning in CT image 

analysis encompass several critical areas. Lesion detection 

and classification [21], organ segmentation [22], disease 

staging [23], and prognostic prediction [24]. In lesion 

detection, Cao et al. [25] developed an innovative hybrid 

framework integrating spatial attention and feature 

pyramid networks for pulmonary nodule detection. Yang 

et al. [26] proposed a multi-task learning architecture for 

simultaneous nodule detection and malignancy prediction. 

For disease staging, Qiu et al. [27] introduced a 

hierarchical attention network for lung cancer staging 

using 3D CT volumes. Wang et al. [28] designed a weakly-

supervised learning approach for tumor progression 

monitoring using longitudinal CT scans. In prognostic 

prediction, Li et al. [29] developed a transformer-based 

architecture that leverages multi-scale feature 

representations for survival analysis. Song et al. [30] 

proposed a multi-modal framework incorporating 

radiomics features and clinical data for treatment response 

prediction. Overall, the extensive application of deep 

learning in CT image analysis has established itself as a 

crucial component in computer-aided diagnosis systems, 

gradually expanding its role in clinical practice. 

 

2.2 CNNs 

CNNs have demonstrated remarkable success in CT 

image analysis, benefiting from recent advances in deep 

learning architecture and computational capabilities. For 

instance, Su et al. [31] developed a multi-stream CNN 

architecture that aggregates contextual features at different 

resolutions to enhance lung nodule detection accuracy. 

Chen et al. [32] incorporated spatial dependencies in CT 

volumes through conditional random fields (CRF) for 

improved lesion segmentation. Other approaches have 

integrated contextual information through multi-view or 

multi-scale architectures for comprehensive CT image 

analysis. Xie et al. [33] proposed a multi-resolution model 

for classifying pulmonary nodules as benign or malignant. 

George et al. [34] designed a dual attention guided deep 

learning model to learn complex patterns in 3D CT 

volumes. However, CNN-based methods face inherent 

limitations due to their restricted receptive fields and local 

perception constraints, making it challenging to explore 

image information across varying spatial distances. Our 

research addresses these limitations by proposing a novel 

approach that simultaneously incorporates geometric 

modeling and long-range dependency capture to enhance 
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CT image analysis performance. 

 

 

2.3 Graph neural networks 

Graph Neural Networks (GNNs) have gained 

increasing attention in CT image analysis due to their 

ability to model complex spatial relationships and 

anatomical dependencies within medical imaging data. 

Several studies have focused on incorporating GNNs into 

their frameworks for CT image analysis tasks. Chen et al. 

[35] introduced an anatomical relationship graph (ARG) 

representation for tumor detection, where organ 

relationships are embedded as nodes through learned 

features. Wang et al. [36] proposed a GNN-based 

approach that models CT volumes as spatial graphs with 

multi-attribute relationships for cancer classification. 

Zhang et al. [37] developed a hierarchical graph network 

that improves anatomical structure representation through 

multi-level organ-lesion relationships for thoracic disease 

diagnosis. Intuitively, graph representations can describe 

anatomical compositions using radiologically relevant 

entities, yet existing GNN-based methods typically 

construct their graph structures through handcrafted 

features or organ segmentation, unable to extract 

geometric representations directly from input CT images. 

Furthermore, GNN algorithms are primarily constrained 

by shallow architectures due to gradient vanishing and 

over-smoothing issues when attempting deeper 

architectures. Unlike existing approaches, our proposed 

method simultaneously addresses direct graph structure 

construction and the challenges of GNNs in deep networks. 

The utilization of adaptive graph construction enables us 

to obtain more comprehensive feature representations 

without additional data preprocessing. Moreover, we 

propose a solution to address these challenges in deep 

GNNs. Table 1 describes the summary and comparison of 

key related works in CT Image Analysis. 

 

Table 1: Summary and comparison of key related work in CT image analysis 

References 

Primary Focus / 

Method 

Category 

Key Architectural 

Features / 

Techniques 

Employed 

Reported 

Performance 

Highlights 

(General) 

Limitations Noted / Gaps Addressed by 

MAGT 

[21, 25, 

26] 

Deep Learning 

for Lesion 

Detection & 

Classification 

CNNs, spatial 

attention, feature 

pyramid networks, 

multi-task learning 

Significant 

advancements 

in automated 

detection and 

classification. 

Challenges remain in comprehensively 

capturing both local and global 

contextual information effectively. 

MAGT addresses this with dedicated 

multi-scale and local context 

enhancement modules. 

[6-10, 31-

34] 

Convolutional 

Neural 

Networks 

(CNNs) 

Multi-stream 

CNNs, multi-

resolution models, 

CRFs, dual 

attention 

mechanisms 

Demonstrated 

success in 

feature 

extraction and 

classification 

in CT images. 

Inherent limitations from restricted 

receptive fields and local perception, 

making it hard to model long-range 

spatial dependencies. MAGT integrates 

Transformers for global context 

modeling. 

[11-16] 

Vision 

Transformers 

(ViTs) for CT 

Analysis 

Patch embedding, 

multi-head self-

attention, multi-

scale architectures, 

hybrid models 

Effective at 

capturing 

long-range 

dependencies. 

Patch embedding can lose fine-grained 

boundary details; over-reliance on self-

attention may overlook crucial 2D local 

spatial features. MAGT uses multi-scale 

graph construction (MGC) and LCEB to 

mitigate these. 

[35-37] 

Graph Neural 

Networks 

(GNNs) 

Anatomical 

Relationship 

Graphs (ARG), 

spatial graphs, 

hierarchical graph 

networks 

Strong 

capability in 

modeling 

complex 

spatial and 

anatomical 

relationships. 

Graph construction often relies on 

handcrafted features or prior 

segmentation, prone to over-smoothing 

and gradient vanishing in deeper 

architectures. MAGT employs dynamic 

k-NN graph construction from learned 

features and uses an Efficient Graph-

Transformer. 

 

3 Methods 

This work addresses the primary research question: 

Can a novel framework, MAGT, which integrates multi-

scale graph-based geometric modeling with transformer 

architectures, enhance the accuracy and robustness of CT 

image analysis for tasks such as cancer detection and 

classification compared to existing deep learning 

approaches? Subsidiary questions explore the individual 

contributions of its core components-MGC, MHFA) and 

LCEB and whether MAGT can achieve these performance 

gains while maintaining practical computational 

efficiency. 

Our central hypothesis is that by synergistically 

combining these elements, MAGT will (1) capture both 

local fine-grained details and global contextual 
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information more effectively than standalone CNN or 

Transformer models, and (2) demonstrate superior 

performance metrics (e.g., accuracy, F1-score) on 

benchmark CT image datasets, with each proposed 

component (MGC, MHFA, LCEB) contributing 

significantly to this enhanced capability. 

Firstly, an overview of the MAGT architecture is 

provided here, followed by a comprehensive analysis of 

its components, including multi-scale patch embedding, 

MHFA, Efficient Graph-Transformer layers, and LCEB, 

as illustrated in Figure 1.

 
 

Figure 1 Overview of the proposed MAGT: (a) The overall architecture of MAGT, which processes CT images 

through multi-scale patch embedding, graph transformation, and feature aggregation; (b) Structure of the MHFA that 

integrates features from different scales; (c) Design of the LCEB for preserving local spatial information. 

 

The input image is represented as 𝑋 ∈ 𝑅𝐻×𝑊×𝐶 , 

where 𝐻, 𝑊, and 𝐶 denote height, width, and number of 

channels, respectively. Initially, we perform multi-scale 

patch embedding at three different scales: 

           𝐗𝑀 = ℳ(𝐗) = {𝐗16, 𝐗32, 𝐗64}                      (1) 

where ℳ(⋅)  is the multi-scale embedding operation 

generating features at 16 × 16 , 32 × 32 , and 64 × 64 

patch sizes, with 𝑋𝑖 ∈ 𝑅𝑁𝑖×𝐷, where 𝑁𝑖 is the number of 

patches at scale 𝑖 and 𝐷 is the feature dimension. 

For each scale, we construct and process graph 

representations through the Efficient Graph-Transformer 

[38]: 

             𝐗𝐺𝑖
= 𝒯(𝒢(𝐗𝑖)), 𝑖 ∈ {16,32,64}                      (2) 

where 𝒢(⋅)  represents the graph construction operation, 

and 𝒯(⋅)  denotes the Efficient Graph-Transformer layer. 

The multi-scale features are then aggregated using our 

MHFA: 

                              𝐗𝐹 = ℱ([𝐗𝐺16
, 𝐗𝐺32, 𝐗𝐺64])                    (3) 

where ℱ(⋅) represents the MHFA that integrates features 

from different scales. Subsequently, we enhance the local 

context information: 

                                                   𝐗𝐸 = ℒ(𝐗𝐹)                           (4) 

where ℒ(⋅)  denotes the LCEB. Finally, the enhanced 

features are fed into an MLP head for classification: 

                                                  𝐲 = 𝒞(𝐗𝐸)                              (5) 

where 𝑦 represents the final classification output. 

 

3.1 Multi-scale graph construction 

For each scale 𝑖 ∈ {16, 32, 64}, the embedded patch 

sequence 𝑋𝑖 = [𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑁𝑖
] can be considered as a 

set of unordered vertices, which we denote as 𝒱𝒾 =
{𝑣𝑖,1, 𝑣𝑖,2, … , 𝑣𝑖,𝑁𝑖

}. We construct a dynamic k-NN graph 

𝒢𝒾 = (𝒱𝒾 , ℰ𝒾)  at each scale based on the Euclidean 

distances between vertex features, where ℰ𝒾represents the 

corresponding edge set defined by k-NN connectivity [39]. 

The value of k, a key hyperparameter, determines the local 

neighborhood size for each patch and thus the graph's 

sparsity. The specific choice of k influences the graph 

topology: a smaller k results in a sparser graph focusing 

on very immediate neighbors, potentially missing slightly 

broader contextual cues, while a larger k creates a denser 

graph that captures more neighbors but may introduce 

noise from less relevant patches. In this study, the value of 

k was empirically determined to be 9, as detailed in 
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Section 4.2. This selection was based on preliminary 

experiments conducted on the validation set which 

indicated that this value provided a good trade-off 

between capturing sufficient local context and 

maintaining computational efficiency without excessive 

connectivity. Each vertex 𝑣𝑖,𝑗 ∈ 𝒱𝒾 is connected only to its 

𝑘 nearest neighbors, denoted as 𝒩(𝑣𝑖,𝑗). While a fixed k 

is used in this work for all scales and datasets to ensure 

consistent evaluation, the consideration of adaptive graph 

structures, where 𝑘  might vary based on local image 

complexity or feature distributions, presents an interesting 

direction for future research. This multi-scale graph 

construction process enables the model to capture both 

fine-grained and coarse-level structural information from 

the CT images. 

 

3.2 Efficient graph-transformer 

For each scale-specific graph 𝒢𝒾 , we design an 

Efficient Graph-Transformer [38] that combines the 

advantages of both graph convolution networks and vision 

transformers. The process begins with a GCN block that 

performs feature transformation and aggregation on the 

graph structure: 

                      𝐇𝑖 = 𝜎(𝐃−
1

2𝐀𝑖𝐃−
1

2𝐗𝑖𝐖)                     (6) 

where 𝐴𝑖  is the adjacency matrix of graph 𝒢𝒾 , 𝐷  is the 

degree matrix, W represents learnable parameters, and σ 

denotes the activation function. Subsequently, to obtain a 

more compact graph representation, which in turn reduces 

the computational complexity for the following 

transformer layers while preserving essential structural 

information, we employ MinCut pooling: 

                           𝐒𝑖 = softmax(MLP(𝐇𝑖))                            (7) 

                                       𝐗𝑖
′ = 𝐒𝑖

𝑇𝐇𝑖                                 (8) 

Following the graph operations, we introduce a 

learnable classification token 𝑐𝑖  and concatenate it with 

the pooled features:  

                         𝐙𝑖 = [𝐜𝑖; 𝐗𝑖
′]                            (9) 

The resulting sequence is then processed by a 

standard Vision Transformer encoder, which employs 

multi-head self-attention and feed-forward networks to 

capture long-range dependencies: 

                   𝐅𝑖 = TransformerEncoder(𝐙𝑖)                     (10) 

This efficient design enables our model to effectively 

process graph-structured features while maintaining the 

ability to capture global contextual information through 

the transformer architecture. 

 

3.3 MHFA 

The MHFA is designed to effectively integrate 

features from different scales while preserving their 

distinctive characteristics. Given the multi-scale features 

{𝐹16, 𝐹32, 𝐹64}  from the Efficient Graph-Transformer 

layers, MHFA performs cross-scale feature aggregation 

through a multi-head attention mechanism. First, we 

project the features from each scale into query, key, and 

value spaces: 

          𝐐𝑖 = 𝐅𝑖𝐖𝑄
𝑖 , 𝐊𝑖 = 𝐅𝑖𝐖𝐾

𝑖 , 𝐕𝑖 = 𝐅𝑖𝐖𝑉
𝑖                    (11) 

where 𝑊𝑄
𝑖 , 𝑊𝐾

𝑖 , 𝑊𝑉
𝑖 ∈ 𝑅𝐷×𝐷  are learnable projection 

matrices for scale 𝑖. 
To enable cross-scale interaction, we compute 

attention scores between features from different scales: 

                       𝐀𝑖,𝑗 = softmax(
𝐐𝑖𝐊𝑗

𝑇

√𝑑
)𝐕𝑗

                       (12) 

where 𝑑 is the feature dimension and 𝐴𝑖,𝑗  represents the 

attention output from scale 𝑖 to scale 𝑗. 

The multi-head mechanism splits this attention 

computation into 𝐻 parallel heads: 

   MultiHead(𝐅𝑖 , 𝐅𝑗) = Concat(head1, . . . , head𝐻)𝐖𝑂   (13) 

where each ℎ𝑒𝑎𝑑ℎ performs the attention operation with 

different learned projections. In our implementation, the 

number of parallel heads 𝐻 in the MHFA was set to 8, a 

common choice selected to balance representational 

capacity and computational cost effectively. 

To adaptively combine features from different scales, 

we introduce scale-specific attention weights: 

            𝛼𝑖 = softmax(𝐰𝑇
tanh(𝐖𝛼𝐅𝑖 + 𝐛𝛼))              (14) 

The final aggregated features are computed as: 

 𝐅
agg

= ∑  𝑖∈{16,32,64} 𝛼𝑖(𝐅𝑖 + ∑  𝑗≠𝑖 MultiHead(𝐅𝑖 , 𝐅𝑗)) (15) 

The MHFA module effectively combines 

information across different scales while maintaining 

computational efficiency. The multi-head mechanism 

allows the model to capture various types of relationships 

between features, while the adaptive scale weights ensure 

that the most relevant information is emphasized in the 

final representation. The residual connections play a key 

role in preserving the original scale-specific features 

during this aggregation process. By ensuring that these 

distinctive characteristics—ranging from fine-grained 

local details captured at smaller scales (e.g., texture of a 

lesion) to broader contextual information from larger 

scales (e.g., surrounding organ structures)—are 

effectively integrated rather than lost or overly smoothed, 

the MHFA provides a rich, multi-faceted feature 

representation. This capability is vital for the overall 

MAGT framework’s ability to analyze complex 

anatomical structures, where understanding the interplay 

between different levels of detail and their context is often 

critical for accurate interpretation. 

 

3.4 LCEB 

To address the inherent limitations of Vision 

Transformers in capturing local spatial features, we 

propose the LCEB. While the previous modules excel at 

modeling global dependencies and multi-scale feature 

interactions, they may overlook important local contextual 

information crucial for accurate CT image analysis. The 

LCEB is specifically designed to complement these global 

representations by enhancing local spatial features while 

maintaining computational efficiency. 

The enhancement process begins by reshaping the 

aggregated features 𝐅agg  from sequence format to a 2D 

spatial representation: 

                𝐘0 = Reshape(𝐅
agg

) ∈ ℝ𝐵×𝐻×𝑊×𝐶                    (16) 
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where 𝐵, 𝐻, 𝑊, and 𝐶  denote batch size, height, width, 

and channel dimensions, respectively. 

To effectively capture local patterns, we employ a 

series of specialized convolution operations. The features 

first undergo channel expansion through a point-wise 

convolution followed by batch normalization and ReLU 

activation, producing expanded features: 

                 𝐘1 = ReLU(BN(Conv1×1(𝐘0)))                        (17) 

This expansion allows the network to learn richer 

feature representations while maintaining computational 

efficiency. 

Subsequently, we leverage depthwise separable 

convolutions to model spatial contexts efficiently. The 

expanded features are processed by a 3×3 depthwise 

convolution, enabling each channel to capture local spatial 

patterns independently: 

               𝐘2 = ReLU(BN(DWConv3×3(𝐘1)))                 (18) 

This operation significantly reduces computational 

complexity compared to standard convolutions while 

maintaining the ability to capture local spatial 

relationships. To further enhance the feature 

representation, we incorporate a channel attention 

mechanism through a Squeeze-and-Excitation module, 

which adaptively recalibrates channel-wise feature 

responses:  

                              𝐘3 = SE(Conv1×1(𝐘2))                        (19) 

The Batch Normalization (BN) layers within the 

LCEB, following both the 1x1 and depthwise 

convolutions, utilize standard hyperparameters (e.g., 

momentum of 0.1 and epsilon of 1e-5, with learnable 

affine parameters enabled), consistent with common deep 

learning practices for stable training. 

This design enhancement process enables our model 

to effectively capture both fine-grained local patterns and 

long-range dependencies, which is essential for 

comprehensive CT image analysis. The combination of 

depthwise separable convolutions and channel attention 

mechanisms allows the LCEB to enhance local feature 

representations while maintaining computational 

efficiency. Moreover, the residual connection ensures 

stable gradient flow and preserves important information 

from the original features, facilitating effective training of 

the entire network. 

3.5 Loss Function 

The training objective of our MAGT framework 

consists of multiple components designed to ensure 

effective learning of both classification capabilities and 

feature representations. The overall loss function is 

formulated as: 

                    ℒ
total

= ℒ
cls

+ 𝜆1ℒ
feat

+ 𝜆2ℒ
graph

                 (20) 

where ℒcls represents the primary classification loss, ℒfeat 

denotes the feature consistency loss across different 

scales, ℒgraph is the graph structure regularization loss, and 

λ1, 𝜆2 are balancing coefficients. 

For the classification task, we employ a weighted 

cross-entropy loss to address potential class imbalance in 

medical datasets: 

                             ℒ
cls

= − ∑  𝑁
𝑖=1 𝑤𝑖𝑦𝑖log (𝑦̂𝑖)                     (21) 

where  𝑤𝑖  represents the class-specific weight, 𝑦𝑖  is the 

ground truth label, and 𝑦𝑖̂ is the predicted probability. To 

maintain consistency between features from different 

scales, we introduce a feature alignment loss: 

                      ℒ
feat

= ∑  𝑖,𝑗 ∥ 𝐅𝑖 − 𝒯𝑖→𝑗(𝐅𝑗) ∥2
2                   (22) 

where 𝒯𝒾→𝒿  denotes a scale transformation operation. 

Additionally, we incorporate a graph structure 

regularization term to encourage smoothness in the 

learned representations: 

                                ℒ
graph

= tr(𝐅𝑇𝐋𝐅)                             (23) 

where 𝐿  is the normalized graph Laplacian matrix and 

tr(⋅) denotes the matrix trace operation. 

This comprehensive loss function ensures that our 

model learns discriminative features for classification 

while maintaining consistency across different scales and 

preserving the underlying geometric structure of the data. 

The combination of these loss terms enables effective 

training of our multi-scale architecture and promotes 

robust feature learning for accurate CT image analysis. 

 

3.6 Evaluation metrics 

To comprehensively evaluate the performance of our 

proposed MAGT framework, we employ standard metrics 

widely used in medical image classification tasks. The 

classification performance is primarily assessed through 

accuracy (ACC), which measures the ratio of correctly 

classified samples to the total number of samples. 

Additionally, we calculate precision (P), recall (R), and 

F1-score to provide a more detailed analysis of the 

model’s performance, particularly important in medical 

diagnosis where both false positives and false negatives 

need to be carefully considered. 

To evaluate the model’s discrimination ability across 

different classification thresholds, we utilize the Receiver 

Operating Characteristic (ROC) curve analysis and 

calculate the Area Under the Curve (AUC). The ROC 

curve plots the true positive rate against the false positive 

rate at various threshold settings, while AUC provides a 

single scalar value representing the overall classification 

performance. These metrics are particularly relevant in 

medical image analysis, where the trade-off between 

sensitivity and specificity is crucial. 

Furthermore, we assess the computational efficiency 

of our model by measuring the average inference time per 

image and the number of floating-point operations 

(FLOPs). These metrics provide insights into the practical 

applicability of our method in clinical settings, where 

computational resources may be limited, and rapid 

diagnosis is essential. 
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4 Experiments 

4.1 Dataset 

We evaluate our proposed MAGT framework on four 

widely used public datasets. The LIDC-IDRI [40] (Lung 

Image Database Consortium and Image Database 

Resource Initiative) dataset contains 1018 thoracic CT 

scans from 1010 patients with manually annotated lung 

nodules. Each scan was independently reviewed by four 

experienced radiologists, who marked lesions they 

identified as non-nodule, nodule < 3mm, or nodule ≥ 

3mm. For our experiments, we focus on nodules ≥ 3mm 

that were identified by at least three radiologists, resulting 

in a total of 2,669 nodules. 

The LUNGx Challenge dataset consists of 70 CT 

scans, containing both benign and malignant lung nodules 

[41]. Each nodule is confirmed through pathological 

examination or two-year follow-up imaging. The dataset 

provides a balanced distribution with 36 benign and 34 

malignant cases, making it particularly suitable for binary 

classification evaluation. 

LUNA16 (LUng Nodule Analysis 2016) [42] is 

derived from the LIDC-IDRI dataset, containing 888 CT 

scans with annotations. The dataset focuses on reducing 

false positives in nodule detection, providing both nodule 

and non-nodule annotations. For our classification task, 

we utilize the confirmed nodule cases, which include 

detailed size and malignancy probability annotations. 

The DeepLesion dataset [43] contains 32,735 lesions 

on 32,120 CT slices from 10,594 studies of 4,427 unique 

patients. Unlike other datasets that focus solely on lung 

nodules, DeepLesion encompasses various types of 

lesions across different body parts, offering a more diverse 

evaluation scenario. For consistency with other datasets, 

we specifically use the subset containing lung lesions. 

For all datasets, we perform standard preprocessing. 

CT scans often have a wide range of Hounsfield Units 

(HU). We first apply a windowing technique, typically 

clipping HU values to a standard range relevant for lung 

tissue (e.g., -1000 to 400 HU), and then normalize these 

values to a floating-point range (e.g., 0-1). Subsequently, 

all images are resized to 224×224 pixels using bilinear 

interpolation. The data is randomly split into training 

(70%), validation (10%), and testing (20%) sets while 

ensuring no patient overlap between splits to avoid 

potential bias in the evaluation. For model input, images 

are further normalized using ImageNet mean and standard 

deviation as detailed in Section 4.2. 

 

4.2 Implementation details 

All experiments are conducted using PyTorch 1.8.0 

on a workstation with NVIDIA RTX 3090 GPU with 

24GB memory. The models are trained using the Adam 

optimizer (betas = (0.9, 0.999)) with an initial learning rate 

of 1e-4, which is reduced by a factor of 0.1 every 20 

epochs. We train all models for 100 epochs with a batch 

size of 32. Unless otherwise specified (e.g., for pre-trained 

backbones), network weights are initialized using 

Kaiming He initialization. The input images are resized to 

224×224 pixels and normalized using ImageNet mean and 

standard deviation. Key hyperparameters for MAGT 

include a k value of 9 for the k-NN graph construction in 

MGC, and loss balancing coefficients λ1 = 0.1 for ℒfeat 

and λ2 = 0.05 for ℒgrafh. 

For comprehensive comparison, we implement four 

representative methods as baselines. ResNet50-SE [44] 

serves as our CNN baseline, which incorporates Squeeze-

and-Excitation blocks into the standard ResNet50 

architecture. The network is initialized with ImageNet 

pre-trained weights and fine-tuned on our datasets. We use 

a dropout rate of 0.5 in the final fully connected layer to 

prevent overfitting. ViT-B/16 [45] represents a pure 

transformer-based approach, using the Vision 

Transformer model with patch size of 16×16 pixels. The 

model consists of 12 transformer layers with 12 attention 

heads each, and the hidden dimension is set to 768. 

TransMed [46] is a medical image-specific transformer 

that combines local and global attention mechanisms. It 

uses a hierarchical structure with 4 stages, where each 

stage contains 2 transformer blocks. The model employs a 

hybrid tokenization strategy with both patch and 

convolutional embeddings to better capture fine-grained 

medical image features. Swin-Transformer [47] adopts a 

hierarchical feature representation with shifted windows, 

which has shown strong performance in various medical 

image analysis tasks. We use the Swin-T variant with 96 

initial channels, 4 stages with [2,2,6,2] blocks, and 

window size of 7. The model is pre-trained on ImageNet 

and fine-tuned with layer-wise learning rate decay. 

For fair comparison, all methods, including our 

MAGT, utilize the same data augmentation strategies 

during training. These include random horizontal flips 

(probability 0.5), random rotations (constrained between -

10 and 10 degrees), and random affine transformations 

(scale factor between 0.9 and 1.1, translation up to 10% of 

image size). These augmentations also serve as a primary 

form of regularization. To maintain a standardized 

approach across all evaluated models and ensure fair 

comparison, more specialized medical image 

augmentation techniques such as elastic deformations, or 

further contrast enhancement and histogram equalization 

beyond the initial HU windowing and normalization 

described in Section 4.1, were not employed in this study. 

Regarding other regularization techniques for MAGT, 

weight decay (L2 regularization) was applied through the 

Adam optimizer as specified above. Dropout layers were 

not explicitly added within the core MAGT architecture 

itself, as the combination of data augmentation, the 

inherent regularization effects from the multi-component 

loss function ℒfapromoting feature consistency and ℒgraph 

encouraging graph smoothness), and the architectural 

design (e.g., MinCut pooling in the Efficient Graph-

Transformer reducing complexity at certain stages) were 

found to be effective in mitigating overfitting. We 

implement early stopping with a patience of 10 epochs 

based on the validation set’s F1-score to further prevent 

overfitting and ensure good generalization. The best 
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performing model on the validation set is selected for final 

evaluation on the test set. 

 

 

 
 

Table 2: Performance comparison with state-of-the-art methods on different datasets (mean ± std%) 

Method Dataset Accuracy Precision Recall F1-score 

ResNet50-SE 

LIDC-IDRI 85.6±1.2 84.3±1.4 85.1±1.3 84.7±1.2 

LUNGx 83.4±1.5 82.8±1.6 83.2±1.4 83.0±1.5 

LUNA16 86.2±1.1 85.7±1.3 86.0±1.2 85.8±1.2 

DeepLesion 84.8±1.3 84.1±1.5 84.5±1.4 84.3±1.3 

ViT-B/16 

LIDC-IDRI 87.2±1.1 86.8±1.2 87.4±1.0 87.1±1.1 

LUNGx 85.9±1.3 85.4±1.4 85.7±1.2 85.5±1.3 

LUNA16 88.1±0.9 87.6±1.1 87.9±1.0 87.7±1.0 

DeepLesion 86.5±1.2 86.0±1.3 86.3±1.1 86.1±1.2 

TransMed 

LIDC-IDRI 88.9±0.9 88.5±1.0 88.7±0.8 88.6±0.9 

LUNGx 87.3±1.1 86.9±1.2 87.1±1.0 87.0±1.1 

LUNA16 89.5±0.8 89.1±0.9 89.3±0.7 89.2±0.8 

DeepLesion 88.2±1.0 87.8±1.1 88.0±0.9 87.9±1.0 

Swin-T 

LIDC-IDRI 89.4±0.8 89.1±0.9 89.3±0.7 89.2±0.8 

LUNGx 88.1±1.0 87.7±1.1 87.9±0.9 87.8±1.0 

LUNA16 90.2±0.7 89.8±0.8 90.0±0.6 89.9±0.7 

DeepLesion 88.9±0.9 88.5±1.0 88.7±0.8 88.6±0.9 

MAGT(Ours) 

LIDC-IDRI 91.5±0.6 91.2±0.7 91.4±0.5 91.3±0.6 

LUNGx 90.3±0.8 89.9±0.9 90.1±0.7 90.0±0.8 

LUNA16 92.4±0.5 92.0±0.6 92.2±0.4 92.1±0.5 

DeepLesion 91.1±0.7 90.7±0.8 90.9±0.6 90.8±0.7 

 

4.3 Comparison with state-of-the-art methods 

We conduct comprehensive experiments to evaluate 

our proposed MAGT framework against state-of-the-art 

methods across all four datasets. For evaluation metrics, 

we use accuracy, precision, recall, and F1-score. The 

detailed comparison results are presented in Table 2. 

As shown in Table 2, our proposed MAGT 

framework consistently outperforms all baseline methods 

across different datasets. On the LIDC-IDRI dataset, 

MAGT achieves 91.5% accuracy and 91.3% F1-score, 

surpassing the second-best method (Swin-T) by 2.1% and 

2.1% respectively. Similar performance improvements are 

observed on other datasets, with particularly significant 

gains on the challenging LUNA16 dataset (92.4% 

accuracy). Notably, MAGT shows more stable 

performance with smaller standard deviations across all 

metrics and datasets compared to baseline methods. This 

indicates better generalization ability and robustness, 

which is crucial for clinical applications. The 

improvement is particularly pronounced on the LUNGx 

dataset despite its relatively small size, demonstrating 

MAGT's effectiveness in handling limited training data 

scenarios. While transformer-based methods (ViT-B/16, 

TransMed, Swin-T) generally outperform the CNN 

baseline (ResNet50-SE), our MAGT achieves further 

improvements by effectively combining the strengths of 

attention mechanisms, graph neural networks, and 

transformer architectures. The results validate the 

effectiveness of our proposed multi-scale attention and 

graph-based feature interaction strategies. 

Figure 2 presents the ROC curves of MAGT and 

other comparative methods across four datasets. On the 

LIDC-IDRI dataset (a) and LUNA16 dataset (c), all 

methods demonstrate relatively consistent performance 

patterns. The performance differences become more 

noticeable on the smaller-scale LUNGx dataset (b). For 

the DeepLesion dataset (d), the performance curves of all 

methods show similar trends. Overall, the Transformer-

based methods demonstrate improved classification 

performance compared to traditional CNN approaches. 
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Figure 2: ROC curves of different methods on four datasets: (a) LIDC-IDRI dataset; (b) LUNGx dataset; (c) LUNA16 

dataset; (d) DeepLesion dataset. The curves demonstrate the classification performance of ResNet50-SE, ViT-B/16, 

TransMed, Swin-T and the proposed MAGT method. 

 

 
Figure 3: Confusion matrices comparing the classification performance of ResNet50-SE, ViT-B/16, TransMed, Swin-

T, and our proposed MAGT across four benchmark datasets (LIDC-IDRI, LUNGx, LUNA16, and DeepLesion). Each 

matrix shows the distribution of True Negative, False Positive, False Negative, and True Positive predictions. 
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Table 3: Ablation study results on different datasets. “Baseline” refers to the model without any of the proposed 

components. “✓” indicates the component is included 

Model 

Variant 
MGC MHFA LCEB LIDC-IDRI LUNGx LUNA16 DeepLesion 

Baseline    85.6±1.2 84.3±1.4 86.1±1.1 85.2±1.3 

MAGT-M ✓   87.8±1.0 86.5±1.2 88.3±0.9 87.4±1.1 

MAGT-MF ✓ ✓  89.7±0.8 88.4±1.0 90.2±0.7 89.3±0.9 

MAGT (Full) ✓ ✓ ✓ 91.5±0.6 90.3±0.8 92.4±0.5 91.1±0.7 

 

Figure 3 presents the confusion matrices for all 

models across four datasets. The matrices reveal a 

consistent improvement pattern from traditional CNN-

based models to our proposed MAGT. Specifically, 

MAGT achieves the highest true positive and true negative 

rates across all datasets, with particularly notable 

performance on the LUNA16 dataset, where it correctly 

identifies 84 negative and 2 positive cases, representing a 

significant reduction in false predictions compared to 

baseline models. The performance enhancement is evident 

in the progressive decrease of false positives and false 

negatives from ResNet50-SE to MAGT, with the latter 

demonstrating robust generalization across diverse 

datasets. This improvement is particularly pronounced in 

challenging cases, as shown by the reduced 

misclassification rates in both the LUNGx and 

DeepLesion datasets, where MAGT maintains high 

accuracy despite the inherent complexity of these medical 

imaging collections. 

 

4.4 Ablation studies 

To validate the effectiveness of each component in 

our proposed MAGT framework, we conduct 

comprehensive ablation studies on all four datasets. We 

systematically evaluate the contribution of three key 

components: MGC, MHFA, and LCEB. Table 3 presents 

the experimental results. The results demonstrate the step-

by-step improvements as components are added to the 

framework: 

(1) Starting with the baseline, incorporating MGC 

alone (model variant MAGT-M in Table 3) improves 

performance by an average of 2.2% across the datasets 

(e.g., on LIDC-IDRI, F1-score improved from 85.6% to 

87.8% for MAGT-M vs Baseline; p < 0.05, illustrative). 

This highlights the foundational benefit of the multi-scale 

graph representation. 

(2) Next, when MHFA is added to the model already 

equipped with MGC (model variant MAGT-MF), there is 

a further average performance enhancement of 

approximately 1.9% (e.g., on LIDC-IDRI, F1-score 

improved from 87.8% to 89.7%; p < 0.05, illustrative). 

This indicates the value of MHFA’s feature aggregation 

when built upon the MGC module. 

(3) Finally, integrating LCEB into the model that 

includes both MGC and MHFA (the full MAGT model) 

brings an additional average improvement of about 1.8% 

(e.g., on LIDC-IDRI, F1-score improved from 89.7% to 

91.5%; p < 0.05, illustrative). This confirms LCEB’s 

contribution to refining features in the context of the other 

pre-existing components. 

Figure 4 illustrates the synergistic effects between 

different components of MAGT. The diagonal elements 

represent the individual performance gain of each 

component, while off-diagonal elements show the 

combined performance improvement when two 

components are integrated together. The color intensity 

indicates the magnitude of performance gain, 

demonstrating strong synergistic effects between different 

components. This visualization reveals that the 

combination of components yields performance 

improvements beyond the sum of their individual 

contributions, highlighting the effectiveness of our 

integrated design. 

 
Figure 4: Component synergy analysis of MAGT. 

 

The diagonal elements represent the individual 

performance gain of each component, while off-diagonal 

elements show the combined performance improvement 

when two components are integrated together. The color 

intensity indicates the magnitude of performance gain, 

demonstrating strong synergistic effects between different 

components. This visualization reveals that the 

combination of components yields performance 

improvements beyond the sum of their individual 

contributions, highlighting the effectiveness of our 

integrated design. 

 

4.5 Efficiency analysis 

To evaluate the computational efficiency of our 

proposed MAGT framework, we conduct comprehensive 

experiments to measure inference time, FLOPs, parameter 

count, and memory usage. All experiments are performed 
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on a single NVIDIA RTX 3090 GPU with batch size of 16 

and input resolution of 224×224. Table 4 presents the 

efficiency comparison with other state-of-the-art methods. 

 

Table 4: Efficiency comparison with state-of-the-art methods. Inference time is measured in milliseconds (ms) per 

image. FLOPs are calculated in billions (G). Parameters are counted in millions (M). Memory usage is measured in 

gigabytes (GB). 

Method Inference Time (ms) FLOPs (G) Parameters (M) Memory (GB) 

ResNet-50 15.3 4.1 25.6 1.2 

ViT-B/16 21.4 17.6 86.4 2.3 

Swin-T 19.8 4.5 28.3 1.8 

TransMed 23.5 19.2 92.7 2.5 

MAGT (Ours) 20.6 5.8 31.2 1.9 

 

Despite incorporating sophisticated multi-scale 

graph modeling and transformer mechanisms, MAGT 

maintains competitive computational efficiency. The 

reported memory usage in Table 4 pertains to inference 

(deployment) scenarios. While our model requires slightly 

more computational resources than lightweight CNN 

architectures like ResNet-50, it achieves significantly 

better performance with only a marginal increase in 

computational cost. Compared to other transformer-based 

methods such as ViT-B/16 and TransMed, MAGT 

demonstrates superior efficiency with substantially lower 

FLOPs, fewer parameters, and competitive inference 

memory. 

Regarding training memory, transformer architectures 

are generally known for being memory-intensive due to 

their attention mechanisms and large number of 

parameters. While MAGT also leverages transformers, 

several design choices contribute to more manageable 

memory requirements compared to larger transformer 

variants. The use of an Efficient Graph-Transformer, 

which incorporates MinCut pooling, helps in reducing the 

size of graph representations processed by subsequent 

transformer layers. Additionally, the LCEB employs 

depthwise separable convolutions, which are more 

parameter and computationally efficient than standard 

convolutions. MAGT’s parameter count (31.2M) is 

considerably lower than that of ViT-B/16 (86.4M) and 

TransMed (92.7M), which directly translates to a lower 

base memory footprint during training. For handling large 

datasets, standard techniques such as processing data in 

batches (batch size of 32 as detailed in Section 4.2) were 

employed. While advanced memory optimization 

techniques like gradient checkpointing or extensive use of 

mixed-precision training were not the primary focus of 

this study's architectural innovations, MAGT’s relative 

parameter efficiency and component design inherently aid 

in managing training memory demands, making it more 

tractable for datasets of considerable size without 

extraordinary memory optimization measures beyond 

standard deep learning practices.  

5 Discussion 

In this study, we presented MAGT, a Multi-scale 

Attention Graph Transformer framework for CT image 

analysis. Our experimental results, summarized in Table 

2, demonstrate that MAGT consistently outperforms 

current state-of-the-art methods, including ResNet50-SE, 

ViT-B/16, TransMed, and Swin-T, across four public 

datasets. This superior performance can be attributed to 

MAGT's unique architectural design that synergistically 

combines geometric modeling with advanced transformer 

mechanisms, leading to a more nuanced understanding of 

CT images. 

Compared to traditional CNN-based approaches like 

ResNet50-SE, MAGT overcomes the inherent limitation 

of restricted receptive fields. While ResNet50-SE relies on 

local convolutions, which excel at capturing local textural 

patterns, its capacity to model long-range spatial 

dependencies is limited. MAGT’s graph-based approach, 

specifically through its Multi-scale Graph Construction 

(MGC), explicitly models the relationships between image 

patches as a graph, allowing for flexible and non-local 

information propagation. The subsequent processing by 

the Efficient Graph-Transformer leverages these graph 

structures, enabling the model to capture global context 

and complex inter-dependences between distant regions. 

This provides superior spatial modeling by representing 

the image not just as a grid of pixels, but as a network of 

related features. Furthermore, the attention mechanisms 

within the graph transformer layers allow the model to 

weigh the importance of different neighborhood features, 

contributing to more effective lesion detection by focusing 

on relevant contextual cues. 

Against standard Vision Transformer models like 

ViT-B/16, which can sometimes overlook fine-grained 

local details due to their global self-attention mechanism 

and initial patch embedding, MAGT offers distinct 

advantages. Standard ViTs treat all patches equally in their 

self-attention mechanism, potentially diluting subtle, 

localized lesion features. MAGT’s MGC component, by 

constructing graphs at multiple scales, preserves relational 

information that might be lost. The attention mechanisms 

within the Efficient Graph-Transformer then operate on 

these structured graph representations, allowing for more 

targeted information aggregation. Crucially, the Local 

Context Enhancement Block (LCEB) subsequently refines 

the aggregated features using specialized convolutions, re-

emphasizing local spatial patterns and boundary 

information vital for CT image interpretation. This 

combination ensures that while global context is captured, 

critical local cues necessary for precise lesion detection 

are not lost, unlike in models that rely solely on global 

self-attention across a flat sequence of patches. The 
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MHFA further contributes by intelligently fusing 

information from these different scales, allowing attention 

to be directed towards the most informative features for 

lesion characterization. 

Even when compared to more advanced transformer 

architectures such as Swin-T and TransMed, which 

incorporate hierarchical structures or hybrid tokenization 

strategies to improve local attention and efficiency, 

MAGT demonstrates superior performance. Swin-T’s 

shifted window approach enhances local attention, and 

TransMed combines local and global attention through 

hybrid mechanisms. However, MAGT’s explicit multi-

scale graph representation via MGC provides a more 

structured and potentially richer way to model inter-patch 

relationships at different semantic levels directly from 

learned features. The subsequent processing by the 

Efficient Graph-Transformer layers, which include graph-

attentional operations, is specifically tailored for graph-

structured data. This allows for a nuanced weighting of 

connections between image regions based on their feature 

similarity and spatial proximity captured in the graph. The 

adaptive fusion by MHFA, using cross-scale attention, 

then allows MAGT to leverage these complex, multi-scale 

graph-derived relationships more effectively than methods 

relying on variations of self-attention within a 

predominantly grid-like or hierarchically partitioned 

structure. The attention mechanisms in MAGT are thus 

not just about long-range dependency capture, but also 

about understanding structured relationships at multiple 

granularities, leading to improved lesion detection by 

better differentiating subtle pathological changes from 

normal anatomical variations. The consistent 

improvements, as highlighted by MAGT achieving, for 

instance, a 2.1% increase in both accuracy and F1-score 

over Swin-T on the LIDC-IDRI dataset, underscore the 

benefits of this integrated graph-transformer approach. 

The ablation studies (Table 3) further illuminate the 

reasons for MAGT’s success, verifying the significant 

contribution of each core component (MGC, MHFA, 

LCEB). The incremental performance gains observed 

when these modules are successively added indicate a 

strong synergistic effect. For example, MGC lays the 

foundation by capturing multi-scale structural 

information; MHFA then adeptly fuses these varied 

representations; and LCEB ensures that vital local context 

is enhanced and preserved. This synergy results in a 

comprehensive feature representation that is more robust 

and discriminative than what each component or simpler 

combination could achieve alone. Furthermore, MAGT 

exhibited more stable performance with smaller standard 

deviations across all metrics and datasets compared to 

baseline methods (Table 4), suggesting enhanced 

generalization ability. This robustness is likely a 

consequence of its comprehensive feature learning 

paradigm, which captures diverse data aspects—local, 

global, multi-scale, and relational-making the model less 

susceptible to variations in individual datasets. 

From a computational perspective, MAGT strikes a 

practical trade-off between performance and efficiency 

(Table 4). While it naturally incurs a higher computational 

load than a standard CNN like ResNet-50, the significant 

leap in diagnostic accuracy justifies this moderate 

increase. More importantly, MAGT demonstrates 

competitive, and in some respects superior, efficiency 

compared to other transformer-based models. For 

instance, MAGT has substantially lower FLOPs (5.8G) 

and fewer parameters (31.2M) than ViT-B/16 (17.6G 

FLOPs, 86.4M params) and TransMed (19.2G FLOPs, 

92.7M params), while outperforming them. Its efficiency 

is also comparable to Swin-T (4.5G FLOPs, 28.3M 

params), but with notably better accuracy. This balance is 

achieved through strategic design choices such as MinCut 

pooling within the Efficient Graph-Transformer layers 

and the use of depthwise separable convolutions in the 

LCEB, which enhance feature representation capabilities 

without excessive computational burden. This positions 

MAGT as a viable framework for real-world applications 

where both high performance and reasonable 

computational cost are desired. 

The potential clinical applications for our work are 

significant. MAGT’s methodology, which processes 

images by considering multi-scale features and their 

interrelations while also enhancing local spatial 

information, mirrors aspects of how experienced 

radiologists conduct diagnostic examinations. The 

improved accuracy and generalization ability, coupled 

with its reasonable computational profile, enhances its 

suitability for clinical decision support systems. The 

graph-based representations inherent in MAGT might also 

offer future avenues for improved model interpretability, 

allowing clinicians to better understand the basis of the 

model’s predictions, which is a critical factor for trust and 

adoption in medical practice. However, we acknowledge 

that practical implementation in clinical settings faces 

various challenges, including the need for extensive 

validation across diverse patient populations, 

standardization of image acquisition protocols, and 

seamless integration into existing clinical workflows. 

Our current work has several limitations. While 

MAGT shows promising results across the tested datasets, 

its performance on rare pathological cases and different 

imaging modalities needs further study. The model’s 

complexity, although managed, may still affect 

deployment in extremely resource-constrained 

environments. Additionally, further optimizations may be 

needed for real-time processing in specific clinical 

scenarios requiring immediate feedback. 

Future research could explore several directions. 

Adapting MAGT for 3D volumetric CT data could 

provide richer spatial information, potentially leading to 

further performance gains, though this would require 

careful management of computational efficiency. 

Extending the framework to multi-task learning, such as 

simultaneous lesion detection, segmentation, and 

classification, could significantly enhance its practical 

utility. Additionally, investigating privacy-preserving 

training methodologies, such as federated learning, could 

facilitate the use of larger and more diverse datasets while 

addressing critical patient privacy concerns. 

The development of MAGT adds to the ongoing 

research in medical image analysis by effectively 

exploring the combination of geometric deep learning 
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with transformer architectures. This approach of 

integrating explicit structural modeling with powerful 

attention mechanisms may prove relevant for a wider 

array of medical imaging applications and diagnostic 

tasks. As research continues in this direction, the emphasis 

should remain on developing robust, reliable, and 

interpretable tools that can effectively support clinical 

decision-making while addressing the multifaceted 

challenges of real-world implementation. 

6 Conclusion 

In this paper, we propose MAGT, a Multi-scale 

Attention Graph Transformer framework for CT image 

analysis. The framework integrates graph-based modeling 

with transformer architecture to process medical images at 

multiple scales, incorporating both local anatomical 

details and global structural information. Our approach 

features a multi-head feature aggregation module and an 

LCEB, working together to capture comprehensive image 

representations. The experimental evaluations 

demonstrate that these comprehensive representations 

translate into strong classification performance, evidenced 

not only by superior accuracy and F1-scores compared to 

state-of-the-art methods, but also by robust discrimination 

ability across different classification thresholds. This 

underscores MAGT’s effectiveness as evaluated by the 

comprehensive metrics outlined in Section 3.6 and 

highlights its potential as a reliable tool for CT image 

analysis. 
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