
https://doi.org/10.31449/inf.v49i22.7715 Informatica 49 (2025) 145–166 145

Deep Reinforcement Learning-Based Intelligent Traffic Scheduling

in Software-Defined Networks

Baoxing Xie

The Department of Traffic Information Engineering, Henan College of Transportation, Zhengzhou 450000, China

E-mail: baoxing_xie@hotmail.com

Keywords: deep reinforcement learning; SDN, traffic scheduling; network optimization; algorithm performance

Received: January 20, 2025

With the continuous increase of Internet traffic, traditional network traffic scheduling methods are

facing the problems of insufficient efficiency and adaptability. Software - defined networking (SDN)

provides flexible control capabilities for network traffic management, and intelligent traffic scheduling

algorithms, especially scheduling methods based on deep reinforcement learning (DQN), can

dynamically adapt to traffic changes in different network environments. This paper proposes an

intelligent traffic scheduling algorithm based on DQN. The DQN - based algorithm effectively manages

and optimizes network traffic by continuously interacting with the network environment, making real -

time decisions on traffic path selection and resource allocation. It conducts experimental verification in

different network scenarios. By comparing with traditional static routing and load balancing

algorithms, the experimental results show that the traffic scheduling algorithm based on DQN has

obvious advantages in throughput, delay, packet loss rate and load balancing effect, especially in

dealing with network load fluctuations, dynamic changes and burst traffic, it can provide higher

robustness and adaptability. The experiment also shows that the DQN algorithm can quickly learn and

adjust the traffic path in a real - time network environment, thereby effectively reducing network

congestion and delay and improving the overall performance of the network. Finally, the article also

discusses the optimization direction of the algorithm, including multi - path traffic scheduling, transfer

learning, etc., in order to further improve the performance of the algorithm in complex network

environments.

Povzetek: Opisan je algoritem za inteligentno usklajevanje prometa v programsko določenih omrežjih

(SDN), ki temelji na globokem ojačevalnem učenju (DQN). Algoritem dinamično prilagaja omrežni

promet, kar izboljšuje zmogljivosti omrežja pri obvladovanju nihanj obremenitev in zmanjšanju zamud.

1 Introduction

With the rapid development of information

technology, the scale and complexity of networks have

shown explosive growth. In particular, the rise of

emerging technologies such as cloud computing, big

data, and the Internet of Things (IoT) [1, 2] has greatly

increased the load of global Internet traffic. Traditional

network architectures, due to their use of distributed

static routing control and over - reliance on hardware

devices, are often unable to cope with these ever -

changing demands and complex traffic patterns.

Traditional network architectures rely on fixed routing

tables configured in advance. When new traffic demands

emerge, especially those with diverse patterns like the

bursty traffic from cloud computing services or the large

- scale, concurrent data requests in IoT scenarios, these

fixed routing rules cannot be adjusted in real - time.

Also, the distributed control in traditional networks

means that each network device makes decisions

independently, lacking a global view of the network. As

a result, it is difficult to coordinate traffic across the

entire network, leading to inefficiencies such as network

congestion and sub - optimal resource utilization.

Therefore, how to efficiently manage and optimize

network traffic has become a key issue in current

network research and practical applications [3].

Software Defined Networking (SDN) is an

emerging network architecture that makes the network

more flexible, programmable, and centralized by

separating the network control plane from the data plane.

In SDN, the controller manages the forwarding path of

data flows in real time through a global view, while the

data forwarding function is performed by network

devices (such as switches and routers). Compared with

traditional networks, SDN provides a more flexible

means for traffic management [4] and can dynamically

adjust traffic according to the network status, thereby

achieving the effect of traffic optimization.

Under the SDN architecture, traffic management

has become one of the core issues in network

mailto:baoxing_xie@hotmail.com

146 Informatica 49 (2025) 145–166 B. Xie

performance optimization. Traditional traffic

management methods often rely on static configurations

and cannot cope with complex and dynamic network

requirements. However, intelligent algorithms,

especially intelligent traffic management technologies

based on machine learning and deep learning, can

achieve automated, real-time, and intelligent traffic

scheduling and optimization. Therefore, how to combine

the SDN architecture with intelligent algorithms to

improve the efficiency and performance of network

traffic management has become a hot topic in the

current network research field. With the maturity of

SDN technology [5], domestic and foreign researchers

have conducted a lot of exploration and experiments on

the application of SDN in traffic management. Existing

research can be roughly divided into two directions: one

is traffic optimization based on traditional algorithms,

and the other is traffic optimization based on intelligent

algorithms.

Traditional traffic management methods, such as

static routing, load balancing, and traffic engineering,

schedule network traffic through fixed rules or pre-set

parameters. Although these methods can reduce the

network burden to a certain extent, they cannot work

effectively in complex scenarios such as uneven

network load, topology changes, and traffic changes due

to their fixedness and limitations. Therefore, traditional

methods often show performance bottlenecks and poor

adaptability when facing modern complex network

environments.

In recent years, more and more research has begun

to focus on using intelligent algorithms such as machine

learning and deep learning to optimize traffic. Such

algorithms analyze historical network traffic data [6]

and learn the dynamic changes of traffic, so that they

can predict future traffic and schedule traffic based on

the predicted results. For example, the application of

reinforcement learning in SDN traffic scheduling can

achieve intelligent traffic allocation and routing

selection by continuously learning the relationship

between network status and traffic. In addition, traffic

prediction methods based on deep learning models such

as deep neural networks (DNNs) and long short-term

memory (LSTM) networks have achieved remarkable

results in many studies. Through these intelligent

algorithms, the network can adaptively respond to

factors such as traffic fluctuations and network topology

changes, improve network performance, and reduce

latency and packet loss. However, although many

studies have proposed different intelligent traffic

management algorithms, these methods still face some

challenges. First, the training of intelligent algorithms

usually requires a large amount of historical data, which

may be difficult to obtain in some dynamically changing

network environments. Second, the real-time

performance and computational complexity of

intelligent algorithms are also issues that need to be

addressed [7]. Especially in large-scale networks, how

to ensure that the algorithm has low computational

overhead while ensuring performance is still an urgent

problem to be solved. Finally, existing intelligent

algorithms often focus on the optimization of a single

objective, while in practical applications, traffic

management often involves the trade-off of multiple

objectives, such as throughput, latency, reliability, etc.

As the scale of networks continues to expand and

application scenarios become increasingly complex,

traditional traffic management methods have gradually

exposed many problems, especially in the face of

large-scale, dynamically changing network

environments, where flexible and efficient traffic

scheduling is not possible. The introduction of SDN

technology provides new opportunities for traffic

management, making traffic management more flexible

and efficient through centralized control and network

programmability. However, how to achieve efficient and

intelligent traffic optimization under the SDN

architecture remains a huge challenge.

Combining intelligent algorithms with SDN

architecture can effectively make up for the

shortcomings of traditional methods and achieve more

accurate and real-time traffic scheduling. Through

intelligent methods such as machine learning and deep

learning, the network can perform adaptive scheduling

and optimization according to the changing patterns of

traffic, which can not only improve the utilization

efficiency of the network, reduce congestion and latency,

but also effectively improve the stability and reliability

of the network. Especially when facing complex

scenarios such as 5G, data centers, and the Internet of

Things, intelligent traffic management can perform

personalized traffic optimization according to the needs

of different applications, greatly improving the

network's quality of service (QoS).

2 Overview of related work

2.1 SDN basics and architecture

Software Defined Networking (SDN) is a new type

of network architecture. Its core idea is to make network

control and management more flexible, programmable,

and centralized by separating the control plane from the

data plane in traditional networks. In traditional network

architecture, the control plane and the data plane are

usually tightly coupled. Routing decisions and data

forwarding are implemented by the hardware of network

devices, and communication between network devices is

limited by hardware performance and configuration. The

emergence of SDN breaks this traditional architecture

[8], separating the functions of network control and data

forwarding, so that the control function is managed by a

centralized software controller, while data forwarding is

performed by network devices (such as switches). This

separation structure greatly enhances the

programmability and flexibility of the network, allowing

Deep Reinforcement Learning-Based Intelligent Traffic Scheduling… Informatica 49 (2025) 145–166 147

network administrators to dynamically and on-demand

configure and control network traffic [9].

The key components of SDN include SDN

controllers, switches, flow tables, and applications. As

the "brain" of the network, the SDN controller is

responsible for managing the global network status and

making traffic control decisions. The controller can

collect data from the switch in real time, calculate the

optimal traffic route, and send the corresponding

forwarding rules to the network devices. The switch is

the "executor" of SDN, responsible for forwarding data

packets according to the flow table rules sent by the

controller. The flow table stores the forwarding

information of each data flow, including the matching

conditions, actions, and counters of the flow. Through

the centralized management of the controller and the

dynamic configuration of the flow table, SDN can adjust

the traffic route in real time according to the changes in

the network status, thereby achieving the optimization

and management of network traffic [10].

2.2 Traditional traffic management

methods

In traditional networks, traffic management mainly

relies on methods such as static routing, load balancing,

and traffic engineering. Static routing is the simplest

traffic management method, which forwards data traffic

from the source node to the destination node through a

pre - defined fixed path. Although static routing has a

simple structure and is easy to implement, it cannot cope

with changes in network topology or dynamic

fluctuations in traffic. For example, in the event of a

network failure or a sharp increase in traffic, static

routing will lead to a waste of network resources or

network congestion, thereby affecting overall

performance [11]. Load balancing is another common

traditional traffic management method, which aims to

evenly distribute traffic to multiple servers or links,

thereby reducing the burden on a single node or link.

Load balancing technology is usually based on certain

predefined strategies, such as polling, minimum number

of connections, etc. [12]. Traffic engineering in

traditional networks involves techniques for optimizing

the flow of network traffic. It attempts to direct traffic in

a way that maximizes the utilization of network

resources and minimizes congestion. However, similar

to static routing and load balancing, traditional traffic

engineering methods often rely on fixed rules or pre -

set parameters. Although these methods can reduce the

network burden to a certain extent, they cannot work

effectively in complex scenarios such as uneven

network load, topology changes, and traffic changes due

to their fixedness and limitations. Therefore, traditional

methods often show performance bottlenecks and poor

adaptability when facing modern complex network

environments.

2.3 Intelligent traffic management and

optimization algorithms

In recent years, with the rapid development of

machine learning and deep learning technologies,

intelligent traffic management and optimization

algorithms have gradually become a hot topic of

research. Unlike traditional methods, intelligent traffic

management algorithms can dynamically adjust traffic

scheduling through prediction and adaptive control

based on real - time network status and historical data,

thereby improving network performance and efficiency.

Some intelligent traffic management methods, such as

those based on long - short - term memory networks

(LSTMs) and convolutional neural networks (CNNs),

analyze historical network traffic data [13] and learn the

dynamic changes of traffic, so that they can predict

future traffic and schedule traffic based on the predicted

results. However, there are also intelligent algorithms

like reinforcement - learning - based ones, which

directly interact with the environment to learn the

optimal decision - making strategy. For example, the

application of reinforcement learning in SDN traffic

scheduling can achieve intelligent traffic allocation and

routing selection by continuously learning the

relationship between network status and traffic [14-16].

2.4 Congestion control and optimization

technology based on data analysis

In addition to prediction and scheduling,

congestion control technology based on data analysis is

also an important part of intelligent traffic management.

Network congestion is one of the main factors affecting

network performance. Especially in large-scale networks,

how to effectively predict and control congestion is the

key to optimizing network performance. In recent years,

congestion control methods based on big data analysis

and machine learning have become a hot topic of

research. Through real-time monitoring and analysis of

factors such as network data flow, delay, and packet loss,

potential congestion problems can be discovered in a

timely manner, and corresponding measures can be

taken to alleviate them [17]. For example, the literature

proposes a congestion control algorithm based on

machine learning. By analyzing network traffic and

resource usage in real time, the transmission rate of the

data flow is dynamically adjusted, thereby effectively

reducing the probability of network congestion. This

control strategy based on data analysis not only

improves the network throughput, but also effectively

reduces packet loss and delay [18].

148 Informatica 49 (2025) 145–166 B. Xie

Table 1: Comparison of research methods in intelligent traffic management.

Research

Direction
Methods Datasets

Performance

Metrics
Limitations

Machine -

Learning -

Based Traffic

Prediction and

Control

Support Vector

Machines,

Random Forests,

Long Short - Term

Memory

Networks,

Convolutional

Neural Networks,

etc.

Mostly

historical

network

traffic data

Prediction

accuracy,

network

throughput,

delay, packet

loss rate, etc.

Require a large

amount of historical

data, difficult to

obtain data in

dynamic network

environments;

problems of real -

time performance and

high computational

complexity; mostly

single - objective

optimization

Application of

Reinforcement

Learning in

Traffic

Scheduling

Deep Q -

Learning, etc.

Real - time

network

state data

combined

with

historical

data

Network

throughput,

delay, packet

loss rate, load

balancing

effect, etc.

Long training time,

high demand for

computing resources;

difficult to handle

large - scale and

complex network

scenarios; sensitive to

reward function

design

Data -

Analysis -

Based

Congestion

Control and

Optimization

Technology

Machine -

Learning - Based

Congestion

Control

Algorithms

Real - time

network

data flow,

delay,

packet loss,

etc. data

Network

throughput,

packet loss

rate, delay, etc.

Rely on accurate data

monitoring and

analysis, may not

respond in a timely

manner to dynamic

network changes

Table 1 systematically compares the key

information in the field of intelligent traffic management

from five dimensions: research direction, methods,

datasets, performance metrics, and limitations. In terms

of research directions, it covers machine - learning -

based traffic prediction and control, the application of

reinforcement learning in traffic scheduling, and data -

analysis - based congestion control and optimization

technology. The methods column lists common means in

each direction, such as machine - learning algorithms

like Support Vector Machines, Deep Q - Learning, and

machine - learning - based congestion control

Deep Reinforcement Learning-Based Intelligent Traffic Scheduling… Informatica 49 (2025) 145–166 149

algorithms. Regarding datasets, they respectively

involve historical network traffic data, combined real -

time and historical data, and real - time network - related

data. Performance metrics comprehensively measure the

effectiveness of each method through prediction

accuracy, network throughput, delay, packet loss rate,

and load balancing effect. The limitations clearly point

out the existing problems in each direction, such as

difficulties in data acquisition, high demand for training

resources, and slow response to network dynamics,

providing a clear understanding of the current situation

and directions for improvement in this field.

Software Defined Networking (SDN) is an emerging

network architecture that makes the network more

flexible, programmable, and centralized by separating

the network control plane from the data plane. In

traditional network architecture, the control plane and

the data plane are usually tightly coupled. Routing

decisions and data forwarding are implemented by the

hardware of network devices, and communication

between network devices is limited by hardware

performance and configuration. This tight coupling

leads to several limitations. For example, when network

traffic patterns change, it is difficult to reconfigure the

routing and forwarding rules in a timely manner. The

lack of a centralized control mechanism means that it is

challenging to optimize traffic across the entire network.

Also, traditional networks often suffer from

inefficiencies such as redundant traffic paths and sub -

optimal resource allocation. The emergence of SDN

breaks this traditional architecture [8], separating the

functions of network control and data forwarding, so

that the control function is managed by a centralized

software controller, while data forwarding is performed

by network devices (such as switches). This separation

structure greatly enhances the programmability and

flexibility of the network, allowing network

administrators to dynamically and on - demand

configure and control network traffic [9].

3 Intelligent traffic management

and optimization algorithm

With the continuous growth of network traffic and the

increasing complexity of network architecture,

traditional traffic management methods have become

incapable of coping with large-scale, dynamic and

heterogeneous networks. In order to improve network

performance and resource utilization, methods based on

deep reinforcement learning (DRL) as an innovative

traffic scheduling method have gradually become a hot

topic in traffic management research. This chapter

proposes an innovative method based on deep

reinforcement learning, which aims to achieve adaptive,

dynamic and efficient traffic management and

optimization through the interaction between the

intelligent agent and the environment. The specific

model framework is shown in Figure 1 [19].

In order to improve network performance and

resource utilization, methods based on deep

reinforcement learning (DRL) as an innovative traffic

scheduling method have gradually become a hot topic in

traffic management research. This chapter proposes an

innovative method based on deep reinforcement

learning, which aims to achieve adaptive, dynamic and

efficient traffic management and optimization through

the interaction between the intelligent agent and the

environment. Different from some other intelligent

algorithms that rely on traffic prediction, the proposed

DQN - based algorithm directly interacts with the

network environment. The agent in the DQN model

perceives the current state of the network (including

parameters like bandwidth utilization, link delay, etc.),

takes actions from the action space, and receives

rewards based on the environmental feedback. Through

continuous interaction, the agent learns the optimal

traffic scheduling strategy without necessarily explicitly

predicting future traffic.

Figure 1: Model framework

150 Informatica 49 (2025) 145–166 B. Xie

3.1 Method design concept and core

innovation

Traditional traffic management strategies usually

use static configuration or rule-based optimization

algorithms. These methods are difficult to quickly adapt

to new network conditions when the network

environment is complex and changeable. Especially

when faced with large-scale traffic and multiple service

requirements, traditional methods often cannot

automatically optimize resource allocation without

manual configuration intervention. To address these

problems, we propose an innovative traffic scheduling

method based on deep reinforcement learning [20].

The core innovation of this method is that it uses a

deep reinforcement learning framework for intelligent

traffic management, where each network device (such as

a switch, router) acts as an intelligent agent and makes

traffic scheduling decisions based on the real-time status

of the network. Compared with traditional methods, this

method does not rely on manual configuration, but

automatically learns traffic scheduling strategies through

interaction with the environment. In addition, a deep Q

network (DQN) is used to process high-dimensional and

complex network state space, and the self-learning

ability of the reinforcement learning model is used to

dynamically optimize network performance.

3.2 State space and action space modeling

In the reinforcement learning framework, the

agent’s decision is based on its perception of the current

state of the environment (state space) and the actions it

can take (action space). Therefore, how to accurately

model the network state and actions is the key to the

successful application of deep reinforcement learning

[21]

State space: In an SDN environment, the state space

includes important parameters of the network, such as

bandwidth utilization, link delay, packet loss rate, queue

length, etc. In order to better represent these state

variables, we can represent the network state as a vector.

Bandwidth utilization is measured as the ratio of the

current data transmission rate on a link to the maximum

available bandwidth of that link. For example, if the

current data transmission rate on a link is 50 Mbps and

the maximum available bandwidth is 100 Mbps, the

bandwidth utilization is 0.5. Link delay is the time it

takes for a data packet to travel from one end of a link to

the other. It can be measured using network monitoring

tools that record the time - stamps of packet

transmission and reception. Packet loss rate is calculated

as the ratio of the number of lost packets to the total

number of packets sent on a link, we can represent the

network state as a vector, as shown in Formula 1 [22].

 , , ,t t t t ts B L P Q= (1)

in,
tB Indicates the link bandwidth utilization at

the current moment.
tL Indicates the link delay,

tP

Indicates the link packet loss rate,
tQ is the queue

length. This status information can be obtained in real

time through the monitoring function of the SDN

controller and provided as input to the reinforcement

learning model.

Action space: In the traffic scheduling problem, the

actions of the agent usually include selecting the optimal

routing path, adjusting bandwidth allocation, or

controlling the traffic rate. Assuming that our action

space is discrete, at each moment t , the agent can select

an action from the action space
ta

, as shown in

Formula 2.

 1 2Select Path ,Select Path , ,Select Patht t Na  = A

(2)

Different selected paths or bandwidth allocations

will have different effects on network performance.

Therefore, the choice of action is the key to traffic

scheduling optimization.

3.3 Reward function design

In reinforcement learning, the reward function is

the basis for the agent to learn and make decisions based

on environmental feedback. In order to achieve

multi-objective optimization in traffic scheduling, we

designed a reward function that comprehensively

considers throughput, latency, and packet loss rate.

Assuming that the goal of the network is to

maximize throughput and minimize latency and packet

loss, then the reward function is
tR It can be expressed

as formula 3.

1 2 3Throughput(,) Latency(,) PacketLoss(,)t t t t t t tR w s a w s a w s a=  −  − 

(3)

Deep Reinforcement Learning-Based Intelligent Traffic Scheduling… Informatica 49 (2025) 145–166 151

in,
1 2 3, , w w w are weight coefficients, which

respectively control the influence of throughput, delay

and packet loss rate in the reward function. The

calculation method of throughput, delay and packet loss

rate is as follows:

 transmitted

total

Throughput(,)t t

N
s a

T
= (4)

 received

total

Latency(,)t t

T
s a

T
= (5)

lost

transmitted

PacketLoss(,)t t

N
s a

N
= (6)

in,
transmittedN Indicates the number of packets

transmitted,
totalT Indicates the total transmission time,

lostN Indicates the number of packets lost,
receivedT

Indicates the time when the data packet was received.

Through this reward function, the agent can

optimize according to the real-time changes of

throughput, delay and packet loss rate, and

automatically adjust the traffic scheduling strategy to

achieve the optimization of global performance.

In reinforcement learning, the reward function

serves as the basis for the agent to learn and make

decisions based on environmental feedback. To achieve

multi - objective optimization in traffic scheduling, we

designed a reward function that comprehensively takes

into account throughput, latency, and packet loss rate.

Assume that the goal of the network is to maximize

throughput while minimizing latency and packet loss

rate. The reward function here is influenced by several

weight coefficients, which respectively control the

influence of throughput, latency, and packet loss rate in

the reward function.

In practical scenarios, the selection of these weight

coefficients depends on the specific requirements of the

network. For instance, if the network is mainly used for

real - time applications such as video conferencing,

minimizing latency is of utmost importance. Then the

weight coefficient controlling the influence of latency

can be set relatively large. If the network focuses on

data storage, maximizing throughput may be more

crucial, and the weight coefficient controlling the

influence of throughput can be increased. These

coefficients can be adjusted through repeated trials in

the simulation environment or with the help of more

advanced optimization algorithms. When the weight

coefficient controlling throughput is increased, the agent

will be more inclined to take actions that improve

throughput. However, if this coefficient is set too large,

it may sacrifice the performance in terms of latency and

packet loss rate. Conversely, increasing the weight

coefficient controlling latency will make the agent more

focused on reducing latency but may also decrease the

throughput. Through this reward function, the agent can

optimize according to the real - time changes of

throughput, latency, and packet loss rate, and

automatically adjust the traffic scheduling strategy to

achieve the optimization of the overall network

performance.

3.4 Alternative reward function strategies

The current fixed reward function in our study has

demonstrated effectiveness in guiding the DQN - based

traffic scheduling algorithm. However, reinforcement

learning performance is often sensitive to reward design.

One alternative strategy is reward shaping. Reward

shaping involves adding additional rewards or penalties

to the agent's experience to guide its learning process

more effectively. For example, in our traffic scheduling

scenario, we could provide an immediate small reward

when the agent selects a path with a relatively low -

latency link at the beginning of a traffic flow. This

would encourage the agent to explore paths that are

more likely to lead to overall lower latency in the long

run.

Another alternative is multi - objective

reinforcement learning. Instead of a single reward

function that combines throughput, latency, and packet

loss rate, we could define multiple reward functions. For

instance, one reward function could focus solely on

maximizing throughput, another on minimizing latency,

and a third on minimizing packet loss rate. The agent

would then need to balance these multiple objectives

during the learning process. This approach might lead to

more comprehensive optimization in different network

scenarios. For example, in a network where real - time

applications are dominant, the agent could prioritize the

latency - focused reward function, while in a data -

intensive network, the throughput - focused reward

function could be given more weight.

To handle high - dimensional state spaces and

action spaces, we use a deep Q - network (DQN) to

approximate the Q - value function. DQN approximates

the Q - value function with the help of a deep neural

network, enabling the agent to handle complex state

spaces and continuously optimize the traffic scheduling

strategy by updating the Q - value. The Q - value update

rule of DQN is roughly as follows: At a certain moment,

the agent is in a specific state and takes an action. After

taking the action, the agent receives an immediate

reward and enters the next state. Then, the agent updates

the Q - value of the current state - action pair based on

the newly obtained information. When updating, it

considers the maximum Q - value that can be obtained

for all possible actions in the next state. Through such

152 Informatica 49 (2025) 145–166 B. Xie

an update rule, the agent gradually learns the optimal

scheduling strategy over time, thereby improving the

network performance. This learning process is like the

agent constantly making mistakes and summarizing

experiences, adjusting the Q - value to find out which

action can make the network perform best in different

states.

3.5 Reinforcement learning algorithm

In order to handle high-dimensional state space and

action space, we use a deep Q network (DQN) to

approximate the Q value function. DQN uses a deep

neural network to approximate the Q value function,

allowing the agent to handle complex state spaces and

continuously optimize the traffic scheduling strategy by

updating the Q value. The Q value update formula of

DQN is shown in Formula 7.

 1 1(,) (,) max (,) (,)t t t t t a t t tQ s a Q s a r Q s a Q s a  + +
 + + −

(7)

in, is the learning rate, is the discount factor,

1tr +
 The agent is in state

ts Next action
ta After

receiving the instant reward,
1max (,)a tQ s a +

 is the

next state
1ts +

 By continuously updating the Q value,

the agent can gradually learn the optimal scheduling

strategy, thereby improving the performance of the

network.

In large-scale networks, it is often difficult for a

single agent to handle all traffic scheduling tasks.

Therefore, this method adopts a distributed

reinforcement learning framework to assign traffic

scheduling tasks to multiple agents. In this framework,

each device in the network (such as switches, routers,

controllers) acts as an agent, which senses the network

status locally and makes scheduling decisions based on

its own status.

Each agent maintains global consistency by

periodically exchanging information. Specifically, the

agents i At time step t Moment, based on local state

()i

ts and actions taken
()i

ta Get rewards
()i

tr , and

updates its strategy through learning. The

communication mechanism between agents enables

them to share state information and thus collaboratively

optimize the traffic scheduling of the entire network.

3.6 Performance evaluation and

experimental verification

In order to verify the effectiveness of the proposed

traffic scheduling method based on deep reinforcement

learning (DQN), we conducted experiments in various

network environments. The experiments covered

different network topologies (such as tree topology, ring

topology and mesh topology), traffic patterns (such as

uniform load, dynamic load and burst traffic), and

network constraints (such as bandwidth limitation, delay

constraint and packet loss rate). By comparing with

traditional static routing and load balancing methods, we

verified the performance advantages of the deep

reinforcement learning traffic scheduling method.

3.6.1 Experimental environment and settings

The experimental environment uses an SDN

simulation platform, taking into account multiple

network topologies and different traffic patterns. The

network topologies include simple tree topologies, ring

topologies, and more complex mesh topologies. In terms

of traffic patterns, we simulated three conditions:

uniform load, dynamic load, and burst traffic. Under

each experimental setting, we performed a long network

operation to observe the performance of each method in

long-term operation.

3.6.2 Performance comparison table

Table 2: Comparison of throughput under different network topologies.

Network topology Throughput (based on DQN) (Gbps) Throughput (static routing) (Gbps) Throughput (load balancing) (Gbps)

Tree topology 10.5 8.2 9.1

Ring topology 12.3 9.5 10.4

Mesh topology 15.7 11.6 13.0

Deep Reinforcement Learning-Based Intelligent Traffic Scheduling… Informatica 49 (2025) 145–166 153

Table 2 shows the throughput comparison of three

traffic scheduling methods based on deep reinforcement

learning (DQN), static routing and load balancing under

different network topologies. Throughput refers to the

amount of data that can be successfully transmitted per

second in the network, measured in Gbps (gigabits per

second). The data in the table clearly shows that the

traffic scheduling method based on DQN is significantly

better than the static routing and load balancing methods

in all network topologies, especially in the mesh

topology, where the throughput of the DQN method is

improved by 35%. Specifically, the throughput based on

DQN in the tree topology is 10.5 Gbps, the static routing

is 8.2 Gbps, and the load balancing is 9.1 Gbps; while in

the mesh topology, the throughput based on DQN

reaches 15.7 Gbps, which is 4.1 Gbps and 2.7 Gbps

higher than static routing and load balancing,

respectively. Such results show that the scheduling

method based on deep reinforcement learning can make

more effective use of network resources, especially in

complex network topologies, and can significantly

improve data transmission efficiency. The DQN method

can reduce network bottlenecks, improve throughput,

and adapt to complex network structures by adjusting

the distribution strategy of network traffic in real time.

Figure 2 shows the comparison of the delay

between the DQN-based traffic scheduling method and

the traditional method under different traffic modes

(uniform load, dynamic load, burst traffic). Figure 2 lists

the performance of the DQN-based traffic scheduling

method and the traditional static routing and load

balancing methods in terms of delay under different

traffic modes (uniform load, dynamic load, burst traffic).

Delay refers to the transmission time of data from the

source node to the target node, in milliseconds (ms).

From the data in the table, it can be seen that the

DQN-based scheduling method has shown significant

delay advantages in all traffic modes, especially in the

case of dynamic load and burst traffic, the delay

performance of the DQN method is better than the other

two methods. For example, under dynamic load

conditions, the delay of DQN is 22.1 ms, while the delay

of static routing is 40.5 ms and the delay of load

balancing is 30.9 ms. Under burst traffic conditions, the

delay of the DQN method increases to 25.7 ms, static

routing is 55.6 ms, and load balancing is 40.3 ms. This

result shows that the DQN method can better adapt to

changes in network traffic and can effectively reduce the

delay caused by traffic fluctuations, thus having greater

advantages in real-time communications and sensitive

applications.

Figure 2: Delay comparison under different traffic modes.

154 Informatica 49 (2025) 145–166 B. Xie

Figure 3: Packet loss rate comparison under different network loads.

Figure 3 shows the packet loss rate comparison

between the DQN-based traffic scheduling method and

the traditional static routing and load balancing methods

under different network loads (low load, medium load,

and high load). The packet loss rate indicates the

proportion of packets lost during data transmission to

the total number of packets sent, expressed in

percentage (%). According to the table data, the packet

loss rate of the DQN-based scheduling method under

different load conditions is lower than that of the static

routing and load balancing methods. For example, under

low load, the packet loss rate of DQN is only 0.01%,

while that of static routing and load balancing are 0.02%

and 0.03% respectively; under high load, the packet loss

rate of DQN is 0.12%, compared with 0.15% and 0.13%

for static routing and load balancing respectively. This

shows that the traffic scheduling method based on deep

reinforcement learning can more effectively cope with

changes in network load, especially under high load, the

DQN method can optimize traffic scheduling and reduce

packet loss, thereby improving network reliability and

stability.

Table 3: Comparison of overall network performance under different network topologies.

Network

topology

Overall throughput

(Gbps)

Average

latency (ms)

Average packet

loss rate (%)

Performance

improvement (%)

Tree topology 10.5 20.3 0.01 35.0

Ring

topology
12.3 22.1 0.05 32.0

Mesh

topology
15.7 25.7 0.12 40.0

Table 3 presents the overall network performance

comparison of DQN - based traffic scheduling methods

under different network topologies. The performance

improvement percentage is calculated by comparing the

comprehensive performance of the DQN - based method

(taking into account throughput, latency, and packet loss

rate) with that of traditional methods (static routing and

load balancing). The higher throughput of the DQN -

based method in the tree, ring, and mesh topologies

indicates its better utilization of network resources. The

lower latency and packet loss rate also contribute to the

overall performance improvement. For example, in the

mesh topology, the DQN - based method has a 40%

performance improvement. This is mainly because the

Deep Reinforcement Learning-Based Intelligent Traffic Scheduling… Informatica 49 (2025) 145–166 155

DQN algorithm can dynamically adjust the traffic path

according to the real - time network state, reducing

congestion and improving the efficiency of data

transmission, thus leading to better performance in all

three key metrics.

Table 4: Comparison of throughput and latency under different bandwidth limits.

Bandwidth

limit

(Gbps)

Throughput

(based on

DQN)

(Gbps)

Throughput

(static

routing)

(Gbps)

Throughput

(load

balancing)

(Gbps)

Latency

(based

on

DQN)

(ms)

Latency

(static

routing)

(ms)

Latency

(load

balancing)

(ms)

1.0 0.85 0.65 0.72 25.3 30.5 28.2

2.0 1.80 1.50 1.60 20.8 24.6 22.3

5.0 4.70 4.20 4.50 18.3 21.2 20.1

Table 4 shows the comparison of DQN-based

traffic scheduling method and traditional methods in

terms of throughput and latency under different

bandwidth limits (1.0 Gbps, 2.0 Gbps, 5.0 Gbps).

Bandwidth limits reflect the physical capabilities of

network devices, and bandwidth bottlenecks affect

network throughput and latency. According to the table

data, the DQN-based scheduling method provides higher

throughput and lower latency under all bandwidth limits.

Under the bandwidth limit of 1.0 Gbps, DQN has a

throughput of 0.85 Gbps and a latency of 25.3 ms.

Compared with static routing (throughput 0.65 Gbps,

latency 30.5 ms) and load balancing (throughput 0.72

Gbps, latency 28.2 ms), the DQN method has better

performance. Under higher bandwidth limits (2.0 Gbps

and 5.0 Gbps), DQN continues to maintain superior

performance, with significant improvements in

throughput and latency compared to traditional methods.

This shows that the DQN-based traffic scheduling

method can effectively cope with bandwidth limitations,

make full use of bandwidth resources, and improve

network performance, especially when bandwidth is

limited.

Table 4 lists the comparison of throughput/latency

under different bandwidth limits. Here, the "bandwidth

limit" refers to the upper limit of the available

bandwidth of the network link. It simulates the

maximum data transmission rate limit that a link can

provide in an actual network due to physical devices or

network planning. For example, when the bandwidth

limit is set to 1.0 Gbps, it means that in the

experimentally simulated network environment, the data

transmission rate of the corresponding link cannot

exceed 1.0 Gbps at any time. By setting different

bandwidth limits, we can test the performance of the

algorithm under different available bandwidth

conditions, observe how it copes with bandwidth - tight

situations, and the impact on performance indicators

such as throughput and latency.

156 Informatica 49 (2025) 145–166 B. Xie

Figure 4: Comparison of packet loss rate and throughput under burst traffic.

Figure 4 shows the packet loss rate and throughput

comparison under different traffic peaks (10 Gbps, 20

Gbps, and 50 Gbps) under burst traffic. Burst traffic

refers to the situation where traffic in the network grows

rapidly, which is common in high-traffic application

scenarios such as video streaming and data transmission.

In this case, the network is prone to congestion, the

packet loss rate will increase, and the throughput will be

affected. As can be seen from the table, as the traffic

peak increases, the DQN-based traffic scheduling

method can effectively reduce the packet loss rate and

maintain a high throughput. For example, under a traffic

peak of 50 Gbps, the packet loss rate of DQN is 0.18%,

while the packet loss rates of static routing and load

balancing are 0.25% and 0.22% respectively; at the

same time, the throughput of DQN is 37.2 Gbps, and the

throughput of static routing and load balancing are 33.5

Gbps and 35.0 Gbps respectively. This shows that when

facing burst traffic, the scheduling method based on

deep reinforcement learning can better cope with traffic

fluctuations, reduce packet loss and maintain efficient

throughput, thereby ensuring the stability and reliability

of the network.

Dataset Information: The dataset used in the

experiments is a synthetic network traffic dataset. It was

generated by simulating various real - world network

scenarios. We first defined a set of network parameters

including different traffic patterns (such as uniform load,

dynamic load, and burst traffic), network topologies

(tree, ring, and mesh), and traffic volumes. Based on

these parameters, a traffic generation tool was developed

to generate the network traffic data. The tool randomly

generates traffic flows with different source - destination

pairs, packet sizes, and arrival times, while ensuring that

the overall traffic characteristics conform to the

predefined patterns.

Network Topology Configurations: We simulated

three main network topologies: tree topology, ring

topology, and mesh topology. In the tree topology, the

network is structured in a hierarchical manner, with a

root node and multiple levels of branches. The ring

topology forms a circular structure where each node is

connected to two adjacent nodes. The mesh topology

has a more complex and interconnected structure, with

multiple paths between nodes. To replicate real - world

scenarios, we adjusted the link capacities, node

processing capabilities, and traffic demands in each

topology to approximate the characteristics of actual

networks. For example, in the mesh topology, we set

different link bandwidths based on the typical

bandwidth distributions in enterprise networks.

Training Parameters of Deep Reinforcement

Learning Model: For the deep reinforcement learning

(DQN) model, the learning rate was set to 0.001. This

value was determined through a series of preliminary

experiments to ensure a balance between the speed of

learning and the stability of the model. The batch size

was set to 64, which means that the model processes 64

samples at a time during training. The number of

training episodes was set to 1000. During each episode,

the agent interacts with the environment, makes

decisions, and updates the Q - value function.

Computational Cost Details: The experiments were

conducted on a server with an Intel Xeon Platinum 8280

processor, 512GB of RAM, and an NVIDIA Tesla V100

GPU. The training time for the DQN model was

approximately 24 hours. This time includes the time for

the model to initialize, train on each episode, and update

the network parameters.

3.7 Summary

This section proposes an intelligent traffic

management method based on deep reinforcement

learning, aiming to improve network performance and

resource utilization in SDN environment. By designing

the state space, action space, reward function and DQN

algorithm, we implemented an end-to-end traffic

scheduling system. Through experimental verification,

the results show that this method can effectively

Deep Reinforcement Learning-Based Intelligent Traffic Scheduling… Informatica 49 (2025) 145–166 157

optimize performance indicators such as throughput,

delay and packet loss rate, and has strong adaptability in

dynamically changing network environments. This

method provides an innovative solution for intelligent

traffic management in SDN.

3.8 Hyperparameter sensitivity analysis

For the DQN model used in our traffic scheduling,

we conducted a hyperparameter sensitivity analysis. The

hyperparameters considered include the exploration -

exploitation trade - off (ε - greedy policy), discount

factor (γ), and learning rate (α).

When varying the ε value in the ε - greedy policy,

we found that as ε increased from 0.1 to 0.5, the

exploration ability of the agent increased. In the initial

stage of training, a higher ε value led to more random

exploration of different paths, which increased the

chance of finding better traffic scheduling strategies.

However, if ε was too large (e.g., ε = 0.8), the agent

would explore too much and not fully exploit the

learned good strategies, resulting in a longer training

time and sub - optimal performance in terms of

throughput and latency.

Regarding the discount factor γ, when γ increased

from 0.8 to 0.95, the agent placed more importance on

future rewards. This led to more long - term planning in

traffic scheduling. For example, in a network with a

relatively stable traffic pattern, a higher γ value enabled

the agent to select paths that might have a slightly

higher initial cost but would lead to lower overall costs

in the long run. However, if γ was set too close to 1, the

agent might become overly conservative and rely too

much on future rewards, ignoring the immediate

benefits.

When adjusting the learning rate α, a value of

0.001 was initially set. When we increased α to 0.01, the

model learned faster in the early stages of training but

was more likely to overshoot the optimal solution and

become unstable. On the other hand, when α was

decreased to 0.0001, the learning process became very

slow, and it took a much longer time for the model to

converge to a good solution. These results show that the

performance of the DQN - based traffic scheduling

algorithm is significantly affected by these

hyperparameters, and proper tuning of hyperparameters

is crucial for achieving optimal performance.

4 Design of intelligent traffic

management system based on

SDN

As modern networks have an increasing demand

for real-time, flexibility, and efficiency, traditional static

network architectures have gradually exposed their

shortcomings in being unable to cope with dynamic

traffic and burst loads. Software Defined Networking

(SDN), as an emerging network architecture, provides

more flexible traffic management and optimization

methods by separating the control plane from the data

plane. The SDN-based intelligent traffic management

system can not only monitor and analyze network traffic

in real time, but also dynamically optimize network

performance by combining traffic prediction and

scheduling algorithms. Therefore, this section will

design an SDN-based intelligent traffic management

system and explore the system architecture,

implementation framework, deployment process, and

experimental settings.

4.1 System architecture

The SDN-based intelligent traffic management

system architecture can be divided into multiple

modules, including SDN controller, intelligent traffic

management module, network topology, traffic

prediction and scheduling module, and data forwarding

module. These modules work closely together to ensure

efficient management of network traffic. As the core of

the system, the SDN controller is responsible for

managing the status and data flow of the entire network.

Unlike traditional network architecture, SDN separates

the control plane from the data plane, allowing network

traffic to be dynamically adjusted based on real-time

data. The intelligent traffic management module is the

"brain" of the system. It uses traffic prediction and

scheduling algorithms to calculate the optimal traffic

path and resource allocation method, thereby improving

network throughput, reducing latency, and reducing

packet loss.

The workflow of the system includes the following

steps: First, the SDN controller obtains network status

information in real time by interacting with switches and

routers; then, the intelligent traffic management module

predicts traffic based on this data and uses machine

learning or deep learning methods to analyze network

traffic trends; finally, based on the prediction results, the

scheduling module generates a traffic scheduling

strategy through an optimization algorithm, and issues

control instructions through the SDN controller to adjust

the traffic forwarding path, thereby achieving dynamic

optimization of the network.

4.2 System implementation and

deployment

In terms of implementation and deployment, the

SDN-based intelligent traffic management system

consists of two parts: hardware devices and software

platforms. Hardware devices mainly include SDN

switches, routers, and servers. Switches communicate

with SDN controllers through the OpenFlow protocol

and report network status data in real time, such as

bandwidth, latency, and traffic information. The server

is used to run traffic management and prediction

algorithms, is responsible for calculating traffic

scheduling strategies, and transmits control commands

158 Informatica 49 (2025) 145–166 B. Xie

to switches.

In terms of software platform, the SDN controller

is the core module of the system. It is recommended to

use OpenDaylight or ONOS controller. As an

open-source platform, OpenDaylight is highly modular

and flexible and suitable for a variety of network

environments. ONOS has stronger scalability and high

performance and is suitable for large-scale SDN

environments. The traffic management module and

prediction algorithm module can be integrated on the

controller, using network status data to achieve traffic

prediction and scheduling through machine learning,

deep learning and other technologies.

During the deployment of the system, it is

necessary to configure SDN switches and routers in the

network, and configure the communication interface

between the SDN controller and the traffic scheduling

module. The controller communicates with the switch

through the OpenFlow protocol, dynamically adjusts the

flow table and issues traffic scheduling commands. The

system can flexibly adapt to different network

topologies, such as tree topology, ring topology or mesh

topology, and provide real-time, dynamic traffic

management and optimization.

4.3 Experimental setup and scenario

design

In order to verify the performance of the

SDN-based intelligent traffic management system, the

experiment set up multiple different network scenarios

and used the Mininet network simulation tool for

simulation. Mininet is a lightweight network simulation

platform that supports the construction and simulation of

SDN networks and can simulate real network

environments. In the experiment, different network

structures such as tree topology, ring topology and mesh

topology will be used to simulate network environments

of different scales and complexities.

The main purpose of the experiment is to verify the

effect of the SDN-based intelligent traffic management

system under different network conditions, especially in

terms of throughput, latency, packet loss rate and load

balancing. The traffic simulation will use different

traffic modes, including uniform load, dynamic load and

burst traffic, to test the performance of the system under

different load conditions. In order to evaluate the

system's traffic scheduling capabilities, the experiment

will set certain network constraints, such as bandwidth

restrictions and latency constraints, to simulate the

network environment in actual applications.

The test indicators mainly include throughput,

latency, packet loss rate and load balancing. Throughput

reflects the amount of data successfully transmitted per

unit time, latency represents the transmission time of

data from source to destination, packet loss rate

measures the proportion of packets lost in the network,

and load balancing represents the distribution of traffic

between different network nodes. By comparing the

experimental results of different traffic scheduling

algorithms, the advantages of the traffic scheduling

method based on deep reinforcement learning in the

actual network environment are evaluated.

4.4 Experimental results

In order to verify the effectiveness of the traffic

scheduling algorithm based on deep reinforcement

learning (DQN), we designed a series of experiments

covering three different network scenarios: uniform load

scenario, dynamic load scenario and burst traffic

scenario. These scenarios simulate different traffic

patterns, aiming to comprehensively test the adaptability

of the DQN algorithm under various network topologies

and load changes. In each scenario, we used three traffic

scheduling algorithms for comparison: DQN-based

intelligent traffic scheduling algorithm, traditional static

routing algorithm and load balancing algorithm. In the

experiment, the SDN controller collected key

performance indicators such as bandwidth, latency,

packet loss rate and load balancing effect of each node

in the network in real time, including throughput (in

Gbps), latency (in milliseconds), packet loss rate (in

percentage) and load balancing effect (measured by load

standard deviation). These data will be used for

subsequent result analysis and comparison to evaluate

the performance differences of different algorithms

under different traffic patterns.

This section comprehensively evaluates the

performance of the traffic scheduling algorithm based

on deep reinforcement learning (DQN) in three different

network scenarios, including uniform load, dynamic

load, burst traffic, and comprehensive scenarios, and

compares it with traditional static routing algorithms and

load balancing algorithms.

As shown in Table 5, in the uniform load scenario,

the DQN-based traffic scheduling algorithm shows the

best performance, with a throughput of up to 9.8 Gbps, a

delay of only 23.4 ms, a packet loss rate as low as

0.03%, and a standard deviation of the load balancing

effect of 0.05. In contrast, the throughput (7.2 Gbps) and

delay (30.5 ms) of the traditional static routing

algorithm are poor, and the packet loss rate and load

balancing effect are also weak. Although the load

balancing algorithm is slightly better than the static

routing, it is still inferior to the DQN algorithm.

Deep Reinforcement Learning-Based Intelligent Traffic Scheduling… Informatica 49 (2025) 145–166 159

Table 5: Effects of uniform load scenario.

Traffic Scheduling

Algorithm

Throughput

(Gbps)

Delay

(ms)

Packet loss

rate (%)

Load balancing effect

(standard deviation)

Scheduling

algorithm based on

DQN

9.8 23.4 0.03 0.05

Static routing

algorithm
7.2 30.5 0.12 0.15

Load Balancing

Algorithm
8.1 27.8 0.08 0.10

As shown in Table 6, in the dynamic load scenario, the

adaptability of the DQN algorithm is verified, with a

throughput of 8.5 Gbps, a delay of 28.2 ms, and a packet

loss rate of 0.07%, all of which are better than the other

two algorithms. The static routing algorithm has a

significant performance degradation due to its inability

to adapt to load changes. Although the load balancing

algorithm performs slightly better, it is still inferior to

DQN.

Table 6: Algorithm performance under burst traffic scenario.

Traffic Scheduling

Algorithm

Throughput

(Gbps)

Delay

(ms)

Packet loss

rate (%)

Load balancing effect

(standard deviation)

Scheduling

algorithm based on

DQN

8.5 28.2 0.07 0.06

Static routing

algorithm
5.9 35.3 0.20 0.18

Load Balancing

Algorithm
7.4 32.6 0.13 0.12

As shown in Table 7, in the burst traffic scenario,

the DQN algorithm shows good control ability, with a

throughput of 6.2 Gbps, a delay of 40.2 ms, and a packet

loss rate of 0.15%, which is better than the static routing

and load balancing algorithms. The static routing

algorithm performs the worst in this scenario, and

although the load balancing algorithm has some relief,

its performance is still inferior to DQN.

160 Informatica 49 (2025) 145–166 B. Xie

Table 7: Algorithm performance for burst traffic.

Traffic Scheduling

Algorithm

Throughput

(Gbps)

Delay

(ms)

Packet loss

rate (%)

Load balancing effect

(standard deviation)

Scheduling

algorithm based on

DQN

6.2 40.2 0.15 0.08

Static routing

algorithm
3.1 60.1 1.10 0.30

Load Balancing

Algorithm
4.5 53.2 0.55 0.25

As shown in Figure 5, in the comprehensive

scenario, the DQN algorithm outperforms other

algorithms in terms of throughput (7.8 Gbps), latency

(31.4 ms), packet loss rate (0.10%), and load balancing

effect (standard deviation of 0.09). Although the load

balancing algorithm performs stably under certain loads,

it is still far inferior to DQN in high-load and fluctuating

scenarios.

Figure 5: Algorithm performance in comprehensive scenarios.

Deep Reinforcement Learning-Based Intelligent Traffic Scheduling… Informatica 49 (2025) 145–166 161

In order to verify the effectiveness of the traffic

scheduling algorithm based on deep reinforcement

learning (DQN), we designed a series of experiments

covering three different network scenarios: uniform load

scenario, dynamic load scenario and burst traffic

scenario. These scenarios simulate different traffic

patterns, aiming to comprehensively test the adaptability

of the DQN algorithm under various network topologies

and load changes. In each scenario, we used three traffic

scheduling algorithms for comparison: DQN - based

intelligent traffic scheduling algorithm, traditional static

routing algorithm and load balancing algorithm. In the

experiment, the SDN controller collected key

performance indicators such as bandwidth, latency,

packet loss rate and load balancing effect of each node

in the network in real time, including throughput (in

Gbps), latency (in milliseconds), packet loss rate (in

percentage) and load balancing effect (measured by load

standard deviation).

For the statistical verification of the results, we

calculated the 95% confidence intervals for each

performance metric. For example, in the uniform load

scenario, the 95% confidence interval for the throughput

of the DQN - based algorithm is [9.6, 10.0] Gbps, while

for the static routing algorithm, it is [7.0, 7.4] Gbps.

Regarding the latency, the 95% confidence interval for

the DQN - based algorithm is [23.0, 23.8] ms, and for

the static routing algorithm, it is [30.0, 31.0] ms.

In addition, a sensitivity analysis was conducted.

We tested the performance of the DQN algorithm under

different network loads (ranging from 20% to 100% of

the maximum load) and various network topologies. The

results showed that the DQN algorithm maintained

relatively stable performance in terms of throughput,

latency, and packet loss rate across different network

loads and topologies. For instance, when the network

load increased from 50% to 80% in the mesh topology,

the throughput of the DQN algorithm decreased by only

5%, while the latency increased by 10%. This indicates

the robustness of the DQN algorithm in different

network environments.

These data will be used for subsequent result

analysis and comparison to evaluate the performance

differences of different algorithms under different traffic

patterns.

This section comprehensively evaluates the

performance of the traffic scheduling algorithm based

on deep reinforcement learning (DQN) in three different

network scenarios, including uniform load, dynamic

load, burst traffic, and comprehensive scenarios, and

compares it with traditional static routing algorithms and

load balancing algorithms.

In addition to comparing with traditional static

routing and load balancing algorithms, we also

compared the DQN-based traffic scheduling algorithm

with more advanced machine learning-based traffic

optimization methods. For the long short-term memory

network (LSTM) used for traffic prediction, we built an

LSTM-based traffic scheduling model that uses

historical traffic data to predict future traffic and make

routing decisions based on it. In the same experimental

scenario, when dealing with complex dynamic traffic,

the LSTM model can predict traffic changes to a certain

extent, but in terms of throughput, compared with the

DQN-based algorithm, in the mesh topology and

dynamic load scenario, the throughput of the LSTM

model is 13.5 Gbps, which is lower than the 15.7 Gbps

of the DQN algorithm. In terms of latency, the LSTM

model has a latency of 35.6 ms in the burst traffic

scenario, which is higher than the 25.7 ms of the DQN

algorithm.

At the same time, we introduced two reinforcement

learning variants, the proximal policy optimization (PPO)

and the asynchronous advantage actor-critic algorithm

(A3C), for comparison. The PPO algorithm improves

learning efficiency by optimizing the policy network,

while the A3C algorithm speeds up training through an

asynchronous update mechanism. Experimental results

show that under large-scale network topologies, the

standard deviation of the load balancing effect of the

PPO algorithm is 0.12, which is higher than the 0.08 of

the DQN algorithm; the packet loss rate of the A3C

algorithm under high load reaches 0.20%, while that of

the DQN algorithm is 0.12%. These comparison results

further highlight the advantages of the DQN-based

traffic scheduling algorithm in multiple performance

indicators.

4.5 Performance optimization and

improvement directions

From the above experimental results, it can be seen

that the DQN-based traffic scheduling algorithm is

significantly superior to traditional static routing and

load balancing methods in terms of throughput, delay,

packet loss rate and load balancing. However, although

the DQN algorithm has shown strong adaptability and

robustness in most scenarios, there are still some

bottlenecks, especially in burst traffic scenarios, the

algorithm's delay and packet loss rate sometimes

fluctuate. To address these issues, the following

optimization directions can be considered:

(1) Transfer learning: Transfer learning enables the

DQN algorithm to adapt to new environments

more quickly, especially in bursty traffic situations,

shortening the learning and adjustment time.

(2) Multi-path selection: Add multi-path traffic

scheduling strategy to further reduce latency and

packet loss rate by selecting more network paths

for traffic distribution.

(3) Hybrid algorithms: Combine DQN with traditional

algorithms (such as dynamic routing or congestion

control algorithms) to form a hybrid traffic

scheduling method to improve stability under

extreme traffic conditions.

The SDN controller serves as the core of the

162 Informatica 49 (2025) 145–166 B. Xie

system. We choose the OpenDaylight controller. During

implementation, the OpenDaylight software needs to be

installed on the server and configured accordingly to

enable it to communicate with the switches in the

network. By configuring the interface parameters of the

controller, ensure that it can accurately receive network

state information from the switches, such as bandwidth

utilization and link latency.

The intelligent traffic management module is

written in Python and uses machine - learning and deep

- learning related libraries (such as TensorFlow or

PyTorch) to implement traffic prediction and scheduling

algorithms. This module is deployed on the same server

as the SDN controller and interacts with the controller

through an internal interface. For example, after

obtaining network state data from the controller, use the

trained model to predict traffic and return the generated

scheduling strategy to the controller.

The switches in the network topology adopt hardware

switches that support the OpenFlow protocol. During

deployment, the switches need to be initialized and

configured, and the parameters for their communication

with the SDN controller, such as the IP address and port

number of the controller, need to be set. Ensure that the

switches can forward data according to the flow table

rules sent by the controller.

The traffic prediction and scheduling module is

closely integrated with the intelligent traffic

management module. When implementing traffic

prediction, historical network traffic data and real - time

network state data are used for model training. For

example, a Long Short - Term Memory (LSTM) model

is used to learn from historical traffic data and predict

future traffic trends. The scheduling module then

generates specific traffic scheduling strategies, such as

choosing the optimal routing path and allocating

bandwidth, based on the prediction results and the

current network state.

The data forwarding module is mainly

implemented by the switches. The switches forward

network data according to the flow table rules issued by

the SDN controller. During the integration process,

ensure the accurate issuance and timely update of the

flow table rules to adapt to changes in the network state.

Through these specific implementation and integration

methods, the SDN - based intelligent traffic

management system can operate effectively to achieve

intelligent management and optimization of network

traffic.

4.6 Discussion

In this section, we directly compare the results of

the DQN-based traffic scheduling algorithm with the

current state-of-the-art (SOTA) technology.

Comparison of numerical results:

Latency: The experimental results show that in

dynamic load scenarios, the latency of the DQN-based

algorithm is 22.1 ms, while some state-of-the-art

algorithms that rely on static configuration may have a

latency of up to 40.5 ms. In burst traffic scenarios, the

latency of the DQN algorithm is 25.7 ms, which is

significantly lower than many traditional algorithms and

some existing state-of-the-art methods. This shows that

the DQN algorithm can better adapt to traffic

fluctuations and reduce the transmission time of data

packets.

Throughput: In a mesh topology, the DQN-based

algorithm has a throughput of 15.7 Gbps, which is much

higher than the 11.6 Gbps of static routing and 13.0

Gbps of load balancing, and is also better than some

state-of-the-art algorithms that do not fully utilize

real-time network status information for scheduling.

This shows that the DQN algorithm can effectively

improve the data transmission rate in complex network

topologies.

Packet loss rate: Under high load conditions, the

packet loss rate of the DQN algorithm is 0.12%, while

some traditional and state-of-the-art algorithms may

have a packet loss rate of up to 0.15% or even higher.

This demonstrates the ability of the DQN algorithm to

optimize traffic scheduling and reduce packet loss under

challenging network conditions.

Reasons for superiority:

The DQN-based algorithm outperforms many

existing methods, mainly because it can continuously

learn from the real-time network environment. The use

of deep neural networks in DQN enables it to handle

high-dimensional and complex network state spaces. For

example, in the state space, it comprehensively

considers parameters such as bandwidth utilization, link

delay, packet loss rate, and queue length. By interacting

with the environment and adjusting the traffic

scheduling strategy according to the reward function,

the DQN algorithm is able to make smarter decisions

compared to traditional static rule-based methods. In

contrast, traditional methods usually rely on fixed rules

or preset parameters and cannot adapt to the dynamic

changes of the network environment in a timely manner.

Analysis of potential weaknesses and improvement

directions:

Computational complexity: Although the DQN

algorithm shows good performance, its computational

complexity is relatively high. Training the deep neural

network in DQN requires a lot of computing resources,

which may limit its application in some

resource-constrained network devices. Future research

can focus on developing more efficient neural network

architectures or training algorithms to reduce the

computational burden.

Reward function design: The current reward

function takes into account throughput, latency, and

packet loss rate. However, the selection of related

weight coefficients is relatively empirical. The optimal

values of these weight coefficients may be different in

different network scenarios. Therefore, more research is

needed to develop a method to adaptively adjust these

Deep Reinforcement Learning-Based Intelligent Traffic Scheduling… Informatica 49 (2025) 145–166 163

weight coefficients according to the actual network

situation.

Scalability in very large-scale networks: In very

large-scale networks with a large number of nodes and

complex topologies, the current distributed learning and

collaborative optimization frameworks may face

challenges in information exchange and global

consistency maintenance. Further research is needed to

improve the scalability of the algorithm in such

scenarios.

4.7 Computational complexity analysis

The proposed deep reinforcement learning - based

traffic scheduling method, specifically the DQN

algorithm, has certain computational complexity. The

DQN algorithm uses a deep neural network to

approximate the Q - value function. The forward and

backward propagation processes in the neural network

contribute to the computational cost.

In terms of the number of parameters in the neural

network, if we assume a simple feed - forward neural

network structure with input neurons, hidden neurons,

and output neurons, the number of parameters between

the input and hidden layers is (including biases), and

between the hidden and output layers is . For our traffic

scheduling model, considering the state space

dimensions (such as bandwidth utilization, link delay,

etc., which might contribute to a relatively large number

of input neurons), the number of parameters can be

substantial.

During the training process, for each training

episode, the agent interacts with the environment, and

the Q - value function is updated. The time complexity

of each Q - value update is related to the complexity of

the neural network operations. With a learning rate of

0.001 and a batch size of 64, the computational cost per

update is non - trivial.

In real - time applications, although the training

time of approximately 24 hours on our experimental

server (Intel Xeon Platinum 8280 processor, 512GB of

RAM, and an NVIDIA Tesla V100 GPU) is a significant

factor, once the model is trained, the inference time for

making traffic scheduling decisions is relatively short.

For example, in a real - time network with a moderate

number of traffic flows, the DQN - based model can

make a scheduling decision within a few milliseconds,

which indicates its potential feasibility for real - time

applications. However, in extremely large - scale real -

time networks with high - frequency traffic changes,

further optimizations might be required to reduce the

computational overhead.

4.8 Scalability considerations

To evaluate the scalability of the proposed DQN -

based traffic scheduling method, we conducted

additional experiments on larger - scale networks. We

increased the number of network nodes from the

original 10 - 20 nodes in the previous experiments to

100 nodes in a more complex mesh - like topology.

As the number of nodes increased, the network

traffic patterns became more complex, with a greater

number of source - destination pairs and higher traffic

volumes. The results showed that the throughput of the

DQN - based algorithm decreased by 15% when the

number of nodes increased from 20 to 100. The latency

increased from an average of 20 ms to 30 ms. In terms

of the load balancing effect, the standard deviation of

the load distribution among nodes increased from 0.05

to 0.10.

When considering dynamic user behavior, we

simulated scenarios where users' traffic demands

changed rapidly. For example, in a scenario where 30%

of users suddenly increased their traffic requests by 50%,

the DQN - based algorithm was able to adjust the traffic

scheduling, but the packet loss rate increased from 0.1%

to 0.2%. These results indicate that while the DQN -

based method can still function in larger - scale

networks and dynamic user behavior scenarios, there is

a certain degree of performance degradation, and further

optimizations are needed to improve its scalability.

4.9 Practical deployment considerations

In practical implementation, the DQN - based

traffic scheduling method faces several challenges.

Regarding real - time adaptability, in real - world

networks, traffic patterns can change rapidly. The DQN

algorithm needs to be able to update its traffic

scheduling decisions in a timely manner. Although the

current algorithm can make decisions within a few

milliseconds after training, the time interval between

traffic pattern changes might be even shorter in some

high - speed networks. To address this, we might need to

optimize the model's update mechanism to reduce the

time required for re - evaluating the network state and

making new decisions. The software - defined network

(SDN) controller also has limitations. The SDN

controller in our experiments was able to manage the

network state and issue control commands. However, in

large - scale real - world deployments, the controller

might face performance bottlenecks when handling a

large number of network devices and high - volume

traffic data. For example, if there are thousands of

network switches, the controller might experience

delays in collecting network status information and

sending control instructions. In terms of performance

under real - world network traffic patterns, real - world

traffic often has more complex characteristics than the

simulated traffic in our experiments. There might be

long - tailed distributions of traffic volumes, and sudden

bursts of traffic from specific applications. The DQN -

based algorithm needs to be further tested and optimized

to ensure stable performance in such real - world

scenarios.

164 Informatica 49 (2025) 145–166 B. Xie

5 Conclusion

This paper proposes an intelligent traffic

scheduling algorithm based on deep reinforcement

learning (DQN), and conducts experimental verification

in different network scenarios to evaluate its

performance and advantages. The experimental results

show that the traffic scheduling algorithm based on

DQN has significant improvements in multiple key

performance indicators compared with traditional static

routing and load balancing algorithms. Specifically, the

DQN algorithm shows strong advantages in throughput,

delay, packet loss rate and load balancing effect.

Especially in dynamic load and burst traffic scenarios,

DQN can quickly adapt to changes and adjust traffic

paths, thus avoiding the bottlenecks in traditional

methods. In different scenarios such as uniform load,

dynamic load and burst traffic, the scheduling algorithm

based on DQN can always provide low delay and packet

loss rate, high throughput, and can effectively balance

the traffic distribution in the network. Especially in burst

traffic scenarios, the traditional static routing algorithm

often leads to network overload due to its lack of

flexibility, resulting in large packet loss rate and high

delay. Although the load balancing algorithm can

alleviate this problem to a certain extent, it still cannot

provide the same performance as the DQN algorithm

under high load. In addition to its advantages in basic

performance, the DQN algorithm also demonstrates its

strong adaptability and robustness, especially in the face

of changes in network topology and load fluctuations, it

can continuously adjust the traffic path to ensure the

stability and efficient operation of the network. This

feature makes the DQN algorithm have great application

potential in the field of intelligent traffic management,

especially for high-speed, high-load and frequently

changing network environments.

In addition to its advantages in basic performance,

the DQN algorithm also demonstrates its strong

adaptability and robustness, especially in the face of

changes in network topology and load fluctuations, it

can continuously adjust the traffic path to ensure the

stability and efficient operation of the network. This

feature makes the DQN algorithm have great application

potential in the field of intelligent traffic management,

especially for high - speed, high - load and frequently

changing network environments. However, as

mentioned in the discussion, transfer learning is a

potential optimization method that has not been

experimentally evaluated in this study. In future work,

we plan to conduct experiments on transfer learning. For

example, we will first train the DQN model in a

simulated network environment with a certain set of

traffic patterns and network topologies. Then, we will

attempt to transfer the learned knowledge to a new, real

- world - like network environment with different but

related traffic characteristics. By comparing the

performance of the DQN model with and without

transfer learning in the new environment, we can

evaluate the effectiveness of transfer learning in

improving the algorithm's adaptability and reducing the

training time in new scenarios.

References

[1] Bao K, Matyjas JD, Hu F, Kumar S. Intelligent

software-defined mesh networks with link-failure

adaptive traffic balancing. IEEE Transactions on

Cognitive Communications and Networking. 2018;

4(2):266-76.

https://doi.org/10.1109/tccn.2018.2790974

[2] Malboubi M, Peng SM, Sharma P, Chuah CN. A

learning-based measurement framework for traffic

matrix inference in software defined networks.

Computers & Electrical Engineering. 2018;

66:369-87.

https://doi.org/10.1016/j.compeleceng.2017.11.020

[3] Huang R, Guan WF, Zhai GT, He JH, Chu XL.

Deep graph reinforcement learning based intelligent

traffic routing control for software-defined wireless

sensor networks. Applied Sciences-Basel. 2022;

12(4):21. https://doi.org/10.3390/ app12041951

[4] Liu L, Zhou JT, Xing HF, Guo XY. Flow splitting

scheme over link-disjoint multiple paths in

software-defined networking. Concurrency and

Computation-Practice & Experience. 2022;

34(10):18. https://doi.org/10.1002/cpe. 6793

[5] Tam P, Math S, Kim S. Intelligent massive traffic

handling scheme in 5G bottleneck backhaul

networks. KSII Transactions on Internet and

Information Systems. 2021; 15(3):874-90.

https://doi.org/10.3837/tiis.2021.03.004

[6] Keshari SK, Kansal V, Kumar S. An intelligent way

for optimal controller placements in

software-defined-IoT networks for smart cities.

Computers & Industrial Engineering. 2021; 162:9.

https://doi.org/10.1016/j.cie.2021.107667

[7] Zhao L, Bi ZG, Lin MW, Hawbani A, Shi JL, Guan

YC. An intelligent fuzzy-based routing scheme for

software-defined vehicular networks. Computer

Networks. 2021; 187:13.

https://doi.org/10.1016/j.comnet.2021.107837

[8] Guo YY, Wang WP, Zhang H, Guo WZ, Wang ZL,

Tian Y, et al. Traffic Engineering in hybrid software

defined network via reinforcement learning. Journal

of Network and Computer Applications. 2021;

189:12. https://doi.org/10.1016/j.jnca.2021.103116

[9] Casas-Velasco DM, Rendon OMC, da Fonseca NLS.

DRSIR: A deep reinforcement learning approach for

routing in software-defined networking. IEEE

Transactions on Network and Service Management.

2022; 19(4):4807-20. https://doi.org/10.1109/

tnsm.2021.3132491

[10] Guo X, Xian HB, Feng T, Jiang YB, Zhang D, Fang

Deep Reinforcement Learning-Based Intelligent Traffic Scheduling… Informatica 49 (2025) 145–166 165

JL. An intelligent zero trust secure framework for

software defined networking. PeerJ Computer

Science. 2023; 9:37.

https://doi.org/10.7717/peerj-cs.1674

[11] Pitchai MP, Ramachandran M, Al-Turjman F,

Mostarda L. Intelligent framework for secure

transportation systems using

software-defined-internet of vehicles.

CMC-Computers Materials & Continua. 2021;

68(3):3947-66. https://doi.org/10.32604

/cmc.2021.015568

[12] Smida K, Tounsi H, Frikha M. Intelligent and

resizable control plane for software defined

vehicular network: a deep reinforcement learning

approach. Telecommunication Systems. 2022;

79(1):163-80.

https://doi.org/10.1007/s11235-021-00838- 2

[13] Wu CQ, Zhang YL, Li N, Rezaeipanah A. An

intelligent fuzzy-based routing algorithm for video

conferencing service provisioning in software

defined networking. Telecommunication Systems.

2024; 87(4):887-98.

https://doi.org/10.1007/s11235-023 -01044-y

[14] Lei JR, Deng SH, Lu ZB, He YH, Gao XP.

Energy-saving traffic scheduling in backbone

networks with software-defined networks. Cluster

Computing-the Journal of Networks Software Tools

and Applications. 2021; 24(1):279- 92.

https://doi.org/10.1007/s10586-020-03102-5

[15] Guo AP, Yuan CH. Network intelligent control and

traffic optimization Based on SDN and artificial

intelligence. Electronics. 2021; 10(6):18.

https://doi.org/10.3390/electronics10060700

[16] Prasanth LL, Uma E. A computationally intelligent

framework for traffic engineering and congestion

management in software-defined network (SDN).

EURASIP Journal on Wireless Communications

and Networking. 2024; 2024(1):22.

https://doi.org/10.1186/s13638-024- 02392-2

[17] Huo LW, Jiang DD, Lv ZH, Singh S. An intelligent

optimization-based traffic information acquisition

approach to software-defined networking.

Computational Intelligence. 2020; 36(1):151-71.

https://doi.org/10.1111/coin.12250

[18] Nam C, Math S, Tam P, Kim S. Intelligent resource

allocations for software-defined mission-critical IoT

services. CMC-Computers Materials & Continua.

2022; 73(2):4087-102.

https://doi.org/10.32604/cmc.2022.030575

[19] Kumar A, Anand D, Jha S, Joshi GP, Cho W.

Optimized load balancing technique for software

defined network. CMC-Computers Materials &

Continua. 2022; 72(1):1409-26.

https://doi.org/10.32604/cmc.2022.024970

[20] Casas-Velasco DM, Rendon OMC, da Fonseca NLS.

Intelligent routing based on reinforcement learning

for software-defined networking. IEEE

Transactions on Network and Service Management.

2021; 18(1):870-81.

https://doi.org/10.1109/tnsm.2020.3036911

[21] Balakiruthiga B, Deepalakshmi P.

(ITMP)-intelligent traffic management prototype

using reinforcement learning approach for software

defined data center (SDDC). Sustainable

Computing-Informatics & Systems. 2021; 32:19.

https://doi.org/10.1016/j.suscom.2021.100610

[22] Modi TM, Swain P. Intelligent routing using

convolutional neural network in software-defined

data center network. Journal of Supercomputing.

2022; 78(11):13373-92.

https://doi.org/10.1007/s11227-022-04348-z

166 Informatica 49 (2025) 145–166 B. Xie

