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With the continuous increase of Internet traffic, traditional network traffic scheduling methods are 

facing the problems of insufficient efficiency and adaptability. Software - defined networking (SDN) 

provides flexible control capabilities for network traffic management, and intelligent traffic scheduling 

algorithms, especially scheduling methods based on deep reinforcement learning (DQN), can 

dynamically adapt to traffic changes in different network environments. This paper proposes an 

intelligent traffic scheduling algorithm based on DQN. The DQN - based algorithm effectively manages 

and optimizes network traffic by continuously interacting with the network environment, making real - 

time decisions on traffic path selection and resource allocation. It conducts experimental verification in 

different network scenarios. By comparing with traditional static routing and load balancing 

algorithms, the experimental results show that the traffic scheduling algorithm based on DQN has 

obvious advantages in throughput, delay, packet loss rate and load balancing effect, especially in 

dealing with network load fluctuations, dynamic changes and burst traffic, it can provide higher 

robustness and adaptability. The experiment also shows that the DQN algorithm can quickly learn and 

adjust the traffic path in a real - time network environment, thereby effectively reducing network 

congestion and delay and improving the overall performance of the network. Finally, the article also 

discusses the optimization direction of the algorithm, including multi - path traffic scheduling, transfer 

learning, etc., in order to further improve the performance of the algorithm in complex network 

environments. 

Povzetek: Opisan je algoritem za inteligentno usklajevanje prometa v programsko določenih omrežjih 

(SDN), ki temelji na globokem ojačevalnem učenju (DQN). Algoritem dinamično prilagaja omrežni 

promet, kar izboljšuje zmogljivosti omrežja pri obvladovanju nihanj obremenitev in zmanjšanju zamud. 

 

1 Introduction 

With the rapid development of information 

technology, the scale and complexity of networks have 

shown explosive growth. In particular, the rise of 

emerging technologies such as cloud computing, big 

data, and the Internet of Things (IoT) [1, 2] has greatly 

increased the load of global Internet traffic. Traditional 

network architectures, due to their use of distributed 

static routing control and over - reliance on hardware 

devices, are often unable to cope with these ever - 

changing demands and complex traffic patterns. 

Traditional network architectures rely on fixed routing 

tables configured in advance. When new traffic demands 

emerge, especially those with diverse patterns like the 

bursty traffic from cloud computing services or the large 

- scale, concurrent data requests in IoT scenarios, these 

fixed routing rules cannot be adjusted in real - time. 

Also, the distributed control in traditional networks 

means that each network device makes decisions 

independently, lacking a global view of the network. As 

a result, it is difficult to coordinate traffic across the 

entire network, leading to inefficiencies such as network 

congestion and sub - optimal resource utilization.  

Therefore, how to efficiently manage and optimize 

network traffic has become a key issue in current 

network research and practical applications [3]. 

Software Defined Networking (SDN) is an 

emerging network architecture that makes the network 

more flexible, programmable, and centralized by 

separating the network control plane from the data plane. 

In SDN, the controller manages the forwarding path of 

data flows in real time through a global view, while the 

data forwarding function is performed by network 

devices (such as switches and routers). Compared with 

traditional networks, SDN provides a more flexible 

means for traffic management [4] and can dynamically 

adjust traffic according to the network status, thereby 

achieving the effect of traffic optimization. 

Under the SDN architecture, traffic management 

has become one of the core issues in network 
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performance optimization. Traditional traffic 

management methods often rely on static configurations 

and cannot cope with complex and dynamic network 

requirements. However, intelligent algorithms, 

especially intelligent traffic management technologies 

based on machine learning and deep learning, can 

achieve automated, real-time, and intelligent traffic 

scheduling and optimization. Therefore, how to combine 

the SDN architecture with intelligent algorithms to 

improve the efficiency and performance of network 

traffic management has become a hot topic in the 

current network research field. With the maturity of 

SDN technology [5], domestic and foreign researchers 

have conducted a lot of exploration and experiments on 

the application of SDN in traffic management. Existing 

research can be roughly divided into two directions: one 

is traffic optimization based on traditional algorithms, 

and the other is traffic optimization based on intelligent 

algorithms. 

Traditional traffic management methods, such as 

static routing, load balancing, and traffic engineering, 

schedule network traffic through fixed rules or pre-set 

parameters. Although these methods can reduce the 

network burden to a certain extent, they cannot work 

effectively in complex scenarios such as uneven 

network load, topology changes, and traffic changes due 

to their fixedness and limitations. Therefore, traditional 

methods often show performance bottlenecks and poor 

adaptability when facing modern complex network 

environments. 

In recent years, more and more research has begun 

to focus on using intelligent algorithms such as machine 

learning and deep learning to optimize traffic. Such 

algorithms analyze historical network traffic data [6] 

and learn the dynamic changes of traffic, so that they 

can predict future traffic and schedule traffic based on 

the predicted results. For example, the application of 

reinforcement learning in SDN traffic scheduling can 

achieve intelligent traffic allocation and routing 

selection by continuously learning the relationship 

between network status and traffic. In addition, traffic 

prediction methods based on deep learning models such 

as deep neural networks (DNNs) and long short-term 

memory (LSTM) networks have achieved remarkable 

results in many studies. Through these intelligent 

algorithms, the network can adaptively respond to 

factors such as traffic fluctuations and network topology 

changes, improve network performance, and reduce 

latency and packet loss. However, although many 

studies have proposed different intelligent traffic 

management algorithms, these methods still face some 

challenges. First, the training of intelligent algorithms 

usually requires a large amount of historical data, which 

may be difficult to obtain in some dynamically changing 

network environments. Second, the real-time 

performance and computational complexity of 

intelligent algorithms are also issues that need to be 

addressed [7]. Especially in large-scale networks, how 

to ensure that the algorithm has low computational 

overhead while ensuring performance is still an urgent 

problem to be solved. Finally, existing intelligent 

algorithms often focus on the optimization of a single 

objective, while in practical applications, traffic 

management often involves the trade-off of multiple 

objectives, such as throughput, latency, reliability, etc. 

As the scale of networks continues to expand and 

application scenarios become increasingly complex, 

traditional traffic management methods have gradually 

exposed many problems, especially in the face of 

large-scale, dynamically changing network 

environments, where flexible and efficient traffic 

scheduling is not possible. The introduction of SDN 

technology provides new opportunities for traffic 

management, making traffic management more flexible 

and efficient through centralized control and network 

programmability. However, how to achieve efficient and 

intelligent traffic optimization under the SDN 

architecture remains a huge challenge. 

Combining intelligent algorithms with SDN 

architecture can effectively make up for the 

shortcomings of traditional methods and achieve more 

accurate and real-time traffic scheduling. Through 

intelligent methods such as machine learning and deep 

learning, the network can perform adaptive scheduling 

and optimization according to the changing patterns of 

traffic, which can not only improve the utilization 

efficiency of the network, reduce congestion and latency, 

but also effectively improve the stability and reliability 

of the network. Especially when facing complex 

scenarios such as 5G, data centers, and the Internet of 

Things, intelligent traffic management can perform 

personalized traffic optimization according to the needs 

of different applications, greatly improving the 

network's quality of service (QoS). 

2 Overview of related work 

2.1 SDN basics and architecture 

Software Defined Networking (SDN) is a new type 

of network architecture. Its core idea is to make network 

control and management more flexible, programmable, 

and centralized by separating the control plane from the 

data plane in traditional networks. In traditional network 

architecture, the control plane and the data plane are 

usually tightly coupled. Routing decisions and data 

forwarding are implemented by the hardware of network 

devices, and communication between network devices is 

limited by hardware performance and configuration. The 

emergence of SDN breaks this traditional architecture 

[8], separating the functions of network control and data 

forwarding, so that the control function is managed by a 

centralized software controller, while data forwarding is 

performed by network devices (such as switches). This 

separation structure greatly enhances the 

programmability and flexibility of the network, allowing 
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network administrators to dynamically and on-demand 

configure and control network traffic [9]. 

The key components of SDN include SDN 

controllers, switches, flow tables, and applications. As 

the "brain" of the network, the SDN controller is 

responsible for managing the global network status and 

making traffic control decisions. The controller can 

collect data from the switch in real time, calculate the 

optimal traffic route, and send the corresponding 

forwarding rules to the network devices. The switch is 

the "executor" of SDN, responsible for forwarding data 

packets according to the flow table rules sent by the 

controller. The flow table stores the forwarding 

information of each data flow, including the matching 

conditions, actions, and counters of the flow. Through 

the centralized management of the controller and the 

dynamic configuration of the flow table, SDN can adjust 

the traffic route in real time according to the changes in 

the network status, thereby achieving the optimization 

and management of network traffic [10]. 

2.2 Traditional traffic management 

methods 

In traditional networks, traffic management mainly 

relies on methods such as static routing, load balancing, 

and traffic engineering. Static routing is the simplest 

traffic management method, which forwards data traffic 

from the source node to the destination node through a 

pre - defined fixed path. Although static routing has a 

simple structure and is easy to implement, it cannot cope 

with changes in network topology or dynamic 

fluctuations in traffic. For example, in the event of a 

network failure or a sharp increase in traffic, static 

routing will lead to a waste of network resources or 

network congestion, thereby affecting overall 

performance [11]. Load balancing is another common 

traditional traffic management method, which aims to 

evenly distribute traffic to multiple servers or links, 

thereby reducing the burden on a single node or link. 

Load balancing technology is usually based on certain 

predefined strategies, such as polling, minimum number 

of connections, etc. [12]. Traffic engineering in 

traditional networks involves techniques for optimizing 

the flow of network traffic. It attempts to direct traffic in 

a way that maximizes the utilization of network 

resources and minimizes congestion. However, similar 

to static routing and load balancing, traditional traffic 

engineering methods often rely on fixed rules or pre - 

set parameters. Although these methods can reduce the 

network burden to a certain extent, they cannot work 

effectively in complex scenarios such as uneven 

network load, topology changes, and traffic changes due 

to their fixedness and limitations. Therefore, traditional 

methods often show performance bottlenecks and poor 

adaptability when facing modern complex network 

environments. 

2.3 Intelligent traffic management and 

optimization algorithms 

In recent years, with the rapid development of 

machine learning and deep learning technologies, 

intelligent traffic management and optimization 

algorithms have gradually become a hot topic of 

research. Unlike traditional methods, intelligent traffic 

management algorithms can dynamically adjust traffic 

scheduling through prediction and adaptive control 

based on real - time network status and historical data, 

thereby improving network performance and efficiency. 

Some intelligent traffic management methods, such as 

those based on long - short - term memory networks 

(LSTMs) and convolutional neural networks (CNNs), 

analyze historical network traffic data [13] and learn the 

dynamic changes of traffic, so that they can predict 

future traffic and schedule traffic based on the predicted 

results. However, there are also intelligent algorithms 

like reinforcement - learning - based ones, which 

directly interact with the environment to learn the 

optimal decision - making strategy. For example, the 

application of reinforcement learning in SDN traffic 

scheduling can achieve intelligent traffic allocation and 

routing selection by continuously learning the 

relationship between network status and traffic [14-16]. 

2.4 Congestion control and optimization 

technology based on data analysis 

In addition to prediction and scheduling, 

congestion control technology based on data analysis is 

also an important part of intelligent traffic management. 

Network congestion is one of the main factors affecting 

network performance. Especially in large-scale networks, 

how to effectively predict and control congestion is the 

key to optimizing network performance. In recent years, 

congestion control methods based on big data analysis 

and machine learning have become a hot topic of 

research. Through real-time monitoring and analysis of 

factors such as network data flow, delay, and packet loss, 

potential congestion problems can be discovered in a 

timely manner, and corresponding measures can be 

taken to alleviate them [17]. For example, the literature 

proposes a congestion control algorithm based on 

machine learning. By analyzing network traffic and 

resource usage in real time, the transmission rate of the 

data flow is dynamically adjusted, thereby effectively 

reducing the probability of network congestion. This 

control strategy based on data analysis not only 

improves the network throughput, but also effectively 

reduces packet loss and delay [18]. 
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Table 1: Comparison of research methods in intelligent traffic management. 

Research 

Direction 
Methods Datasets 

Performance 

Metrics 
Limitations 

Machine - 

Learning - 

Based Traffic 

Prediction and 

Control 

Support Vector 

Machines, 

Random Forests, 

Long Short - Term 

Memory 

Networks, 

Convolutional 

Neural Networks, 

etc. 

Mostly 

historical 

network 

traffic data 

Prediction 

accuracy, 

network 

throughput, 

delay, packet 

loss rate, etc. 

Require a large 

amount of historical 

data, difficult to 

obtain data in 

dynamic network 

environments; 

problems of real - 

time performance and 

high computational 

complexity; mostly 

single - objective 

optimization 

Application of 

Reinforcement 

Learning in 

Traffic 

Scheduling 

Deep Q - 

Learning, etc. 

Real - time 

network 

state data 

combined 

with 

historical 

data 

Network 

throughput, 

delay, packet 

loss rate, load 

balancing 

effect, etc. 

Long training time, 

high demand for 

computing resources; 

difficult to handle 

large - scale and 

complex network 

scenarios; sensitive to 

reward function 

design 

Data - 

Analysis - 

Based 

Congestion 

Control and 

Optimization 

Technology 

Machine - 

Learning - Based 

Congestion 

Control 

Algorithms 

Real - time 

network 

data flow, 

delay, 

packet loss, 

etc. data 

Network 

throughput, 

packet loss 

rate, delay, etc. 

Rely on accurate data 

monitoring and 

analysis, may not 

respond in a timely 

manner to dynamic 

network changes 

 

Table 1 systematically compares the key 

information in the field of intelligent traffic management 

from five dimensions: research direction, methods, 

datasets, performance metrics, and limitations. In terms 

of research directions, it covers machine - learning - 

based traffic prediction and control, the application of 

reinforcement learning in traffic scheduling, and data - 

analysis - based congestion control and optimization 

technology. The methods column lists common means in 

each direction, such as machine - learning algorithms 

like Support Vector Machines, Deep Q - Learning, and 

machine - learning - based congestion control 
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algorithms. Regarding datasets, they respectively 

involve historical network traffic data, combined real - 

time and historical data, and real - time network - related 

data. Performance metrics comprehensively measure the 

effectiveness of each method through prediction 

accuracy, network throughput, delay, packet loss rate, 

and load balancing effect. The limitations clearly point 

out the existing problems in each direction, such as 

difficulties in data acquisition, high demand for training 

resources, and slow response to network dynamics, 

providing a clear understanding of the current situation 

and directions for improvement in this field. 

Software Defined Networking (SDN) is an emerging 

network architecture that makes the network more 

flexible, programmable, and centralized by separating 

the network control plane from the data plane. In 

traditional network architecture, the control plane and 

the data plane are usually tightly coupled. Routing 

decisions and data forwarding are implemented by the 

hardware of network devices, and communication 

between network devices is limited by hardware 

performance and configuration. This tight coupling 

leads to several limitations. For example, when network 

traffic patterns change, it is difficult to reconfigure the 

routing and forwarding rules in a timely manner. The 

lack of a centralized control mechanism means that it is 

challenging to optimize traffic across the entire network. 

Also, traditional networks often suffer from 

inefficiencies such as redundant traffic paths and sub - 

optimal resource allocation. The emergence of SDN 

breaks this traditional architecture [8], separating the 

functions of network control and data forwarding, so 

that the control function is managed by a centralized 

software controller, while data forwarding is performed 

by network devices (such as switches). This separation 

structure greatly enhances the programmability and 

flexibility of the network, allowing network 

administrators to dynamically and on - demand 

configure and control network traffic [9]. 

 

 

3 Intelligent traffic management 

and optimization algorithm 

With the continuous growth of network traffic and the 

increasing complexity of network architecture, 

traditional traffic management methods have become 

incapable of coping with large-scale, dynamic and 

heterogeneous networks. In order to improve network 

performance and resource utilization, methods based on 

deep reinforcement learning (DRL) as an innovative 

traffic scheduling method have gradually become a hot 

topic in traffic management research. This chapter 

proposes an innovative method based on deep 

reinforcement learning, which aims to achieve adaptive, 

dynamic and efficient traffic management and 

optimization through the interaction between the 

intelligent agent and the environment. The specific 

model framework is shown in Figure 1 [19]. 

In order to improve network performance and 

resource utilization, methods based on deep 

reinforcement learning (DRL) as an innovative traffic 

scheduling method have gradually become a hot topic in 

traffic management research. This chapter proposes an 

innovative method based on deep reinforcement 

learning, which aims to achieve adaptive, dynamic and 

efficient traffic management and optimization through 

the interaction between the intelligent agent and the 

environment. Different from some other intelligent 

algorithms that rely on traffic prediction, the proposed 

DQN - based algorithm directly interacts with the 

network environment. The agent in the DQN model 

perceives the current state of the network (including 

parameters like bandwidth utilization, link delay, etc.), 

takes actions from the action space, and receives 

rewards based on the environmental feedback. Through 

continuous interaction, the agent learns the optimal 

traffic scheduling strategy without necessarily explicitly 

predicting future traffic. 

 

Figure 1: Model framework 
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3.1 Method design concept and core 

innovation 

Traditional traffic management strategies usually 

use static configuration or rule-based optimization 

algorithms. These methods are difficult to quickly adapt 

to new network conditions when the network 

environment is complex and changeable. Especially 

when faced with large-scale traffic and multiple service 

requirements, traditional methods often cannot 

automatically optimize resource allocation without 

manual configuration intervention. To address these 

problems, we propose an innovative traffic scheduling 

method based on deep reinforcement learning [20]. 

The core innovation of this method is that it uses a 

deep reinforcement learning framework for intelligent 

traffic management, where each network device (such as 

a switch, router) acts as an intelligent agent and makes 

traffic scheduling decisions based on the real-time status 

of the network. Compared with traditional methods, this 

method does not rely on manual configuration, but 

automatically learns traffic scheduling strategies through 

interaction with the environment. In addition, a deep Q 

network (DQN) is used to process high-dimensional and 

complex network state space, and the self-learning 

ability of the reinforcement learning model is used to 

dynamically optimize network performance. 

3.2 State space and action space modeling 

In the reinforcement learning framework, the 

agent’s decision is based on its perception of the current 

state of the environment (state space) and the actions it 

can take (action space). Therefore, how to accurately 

model the network state and actions is the key to the 

successful application of deep reinforcement learning 

[21] 

State space: In an SDN environment, the state space 

includes important parameters of the network, such as 

bandwidth utilization, link delay, packet loss rate, queue 

length, etc. In order to better represent these state 

variables, we can represent the network state as a vector. 

Bandwidth utilization is measured as the ratio of the 

current data transmission rate on a link to the maximum 

available bandwidth of that link. For example, if the 

current data transmission rate on a link is 50 Mbps and 

the maximum available bandwidth is 100 Mbps, the 

bandwidth utilization is 0.5. Link delay is the time it 

takes for a data packet to travel from one end of a link to 

the other. It can be measured using network monitoring 

tools that record the time - stamps of packet 

transmission and reception. Packet loss rate is calculated 

as the ratio of the number of lost packets to the total 

number of packets sent on a link, we can represent the 

network state as a vector, as shown in Formula 1 [22]. 

 , , ,t t t t ts B L P Q=  (1) 

in,
tB  Indicates the link bandwidth utilization at 

the current moment.
tL  Indicates the link delay,

tP  

Indicates the link packet loss rate,
tQ  is the queue 

length. This status information can be obtained in real 

time through the monitoring function of the SDN 

controller and provided as input to the reinforcement 

learning model. 

Action space: In the traffic scheduling problem, the 

actions of the agent usually include selecting the optimal 

routing path, adjusting bandwidth allocation, or 

controlling the traffic rate. Assuming that our action 

space is discrete, at each moment t , the agent can select 

an action from the action space 
ta

, as shown in 

Formula 2.
 

 1 2Select Path ,Select Path , ,Select Patht t Na  = A

(2) 

Different selected paths or bandwidth allocations 

will have different effects on network performance. 

Therefore, the choice of action is the key to traffic 

scheduling optimization. 

3.3 Reward function design 

In reinforcement learning, the reward function is 

the basis for the agent to learn and make decisions based 

on environmental feedback. In order to achieve 

multi-objective optimization in traffic scheduling, we 

designed a reward function that comprehensively 

considers throughput, latency, and packet loss rate. 

Assuming that the goal of the network is to 

maximize throughput and minimize latency and packet 

loss, then the reward function is
tR  It can be expressed 

as formula 3.

 

1 2 3Throughput( , ) Latency( , ) PacketLoss( , )t t t t t t tR w s a w s a w s a=  −  − 

(3) 
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in,
1 2 3,  ,  w w w  are weight coefficients, which 

respectively control the influence of throughput, delay 

and packet loss rate in the reward function. The 

calculation method of throughput, delay and packet loss 

rate is as follows: 

 transmitted

total

Throughput( , )t t

N
s a

T
= (4) 

 received

total

Latency( , )t t

T
s a

T
= (5) 

 
lost

transmitted

PacketLoss( , )t t

N
s a

N
= (6) 

in,
transmittedN  Indicates the number of packets 

transmitted,
totalT  Indicates the total transmission time,

lostN  Indicates the number of packets lost,
receivedT  

Indicates the time when the data packet was received. 

Through this reward function, the agent can 

optimize according to the real-time changes of 

throughput, delay and packet loss rate, and 

automatically adjust the traffic scheduling strategy to 

achieve the optimization of global performance. 

In reinforcement learning, the reward function 

serves as the basis for the agent to learn and make 

decisions based on environmental feedback. To achieve 

multi - objective optimization in traffic scheduling, we 

designed a reward function that comprehensively takes 

into account throughput, latency, and packet loss rate. 

Assume that the goal of the network is to maximize 

throughput while minimizing latency and packet loss 

rate. The reward function here is influenced by several 

weight coefficients, which respectively control the 

influence of throughput, latency, and packet loss rate in 

the reward function.  

In practical scenarios, the selection of these weight 

coefficients depends on the specific requirements of the 

network. For instance, if the network is mainly used for 

real - time applications such as video conferencing, 

minimizing latency is of utmost importance. Then the 

weight coefficient controlling the influence of latency 

can be set relatively large. If the network focuses on 

data storage, maximizing throughput may be more 

crucial, and the weight coefficient controlling the 

influence of throughput can be increased. These 

coefficients can be adjusted through repeated trials in 

the simulation environment or with the help of more 

advanced optimization algorithms. When the weight 

coefficient controlling throughput is increased, the agent 

will be more inclined to take actions that improve 

throughput. However, if this coefficient is set too large, 

it may sacrifice the performance in terms of latency and 

packet loss rate. Conversely, increasing the weight 

coefficient controlling latency will make the agent more 

focused on reducing latency but may also decrease the 

throughput. Through this reward function, the agent can 

optimize according to the real - time changes of 

throughput, latency, and packet loss rate, and 

automatically adjust the traffic scheduling strategy to 

achieve the optimization of the overall network 

performance. 

3.4 Alternative reward function strategies 

The current fixed reward function in our study has 

demonstrated effectiveness in guiding the DQN - based 

traffic scheduling algorithm. However, reinforcement 

learning performance is often sensitive to reward design. 

One alternative strategy is reward shaping. Reward 

shaping involves adding additional rewards or penalties 

to the agent's experience to guide its learning process 

more effectively. For example, in our traffic scheduling 

scenario, we could provide an immediate small reward 

when the agent selects a path with a relatively low - 

latency link at the beginning of a traffic flow. This 

would encourage the agent to explore paths that are 

more likely to lead to overall lower latency in the long 

run.  

Another alternative is multi - objective 

reinforcement learning. Instead of a single reward 

function that combines throughput, latency, and packet 

loss rate, we could define multiple reward functions. For 

instance, one reward function could focus solely on 

maximizing throughput, another on minimizing latency, 

and a third on minimizing packet loss rate. The agent 

would then need to balance these multiple objectives 

during the learning process. This approach might lead to 

more comprehensive optimization in different network 

scenarios. For example, in a network where real - time 

applications are dominant, the agent could prioritize the 

latency - focused reward function, while in a data - 

intensive network, the throughput - focused reward 

function could be given more weight. 

To handle high - dimensional state spaces and 

action spaces, we use a deep Q - network (DQN) to 

approximate the Q - value function. DQN approximates 

the Q - value function with the help of a deep neural 

network, enabling the agent to handle complex state 

spaces and continuously optimize the traffic scheduling 

strategy by updating the Q - value. The Q - value update 

rule of DQN is roughly as follows: At a certain moment, 

the agent is in a specific state and takes an action. After 

taking the action, the agent receives an immediate 

reward and enters the next state. Then, the agent updates 

the Q - value of the current state - action pair based on 

the newly obtained information. When updating, it 

considers the maximum Q - value that can be obtained 

for all possible actions in the next state. Through such 



152   Informatica 49 (2025) 145–166                                                                    B. Xie 

an update rule, the agent gradually learns the optimal 

scheduling strategy over time, thereby improving the 

network performance. This learning process is like the 

agent constantly making mistakes and summarizing 

experiences, adjusting the Q - value to find out which 

action can make the network perform best in different 

states. 

3.5 Reinforcement learning algorithm 

In order to handle high-dimensional state space and 

action space, we use a deep Q network (DQN) to 

approximate the Q value function. DQN uses a deep 

neural network to approximate the Q value function, 

allowing the agent to handle complex state spaces and 

continuously optimize the traffic scheduling strategy by 

updating the Q value. The Q value update formula of 

DQN is shown in Formula 7. 

 1 1( , ) ( , ) max ( , ) ( , )t t t t t a t t tQ s a Q s a r Q s a Q s a  + +
 + + −

(7) 

in,  is the learning rate,  is the discount factor,

1tr +
 The agent is in state

ts  Next action
ta  After 

receiving the instant reward,
1max ( , )a tQ s a +

  is the 

next state
1ts +

 By continuously updating the Q value, 

the agent can gradually learn the optimal scheduling 

strategy, thereby improving the performance of the 

network. 

In large-scale networks, it is often difficult for a 

single agent to handle all traffic scheduling tasks. 

Therefore, this method adopts a distributed 

reinforcement learning framework to assign traffic 

scheduling tasks to multiple agents. In this framework, 

each device in the network (such as switches, routers, 

controllers) acts as an agent, which senses the network 

status locally and makes scheduling decisions based on 

its own status. 

Each agent maintains global consistency by 

periodically exchanging information. Specifically, the 

agents i  At time step t  Moment, based on local state

( )i

ts  and actions taken
( )i

ta  Get rewards
( )i

tr , and 

updates its strategy through learning. The 

communication mechanism between agents enables 

them to share state information and thus collaboratively 

optimize the traffic scheduling of the entire network. 

3.6 Performance evaluation and 

experimental verification 

In order to verify the effectiveness of the proposed 

traffic scheduling method based on deep reinforcement 

learning (DQN), we conducted experiments in various 

network environments. The experiments covered 

different network topologies (such as tree topology, ring 

topology and mesh topology), traffic patterns (such as 

uniform load, dynamic load and burst traffic), and 

network constraints (such as bandwidth limitation, delay 

constraint and packet loss rate). By comparing with 

traditional static routing and load balancing methods, we 

verified the performance advantages of the deep 

reinforcement learning traffic scheduling method. 

3.6.1 Experimental environment and settings 

The experimental environment uses an SDN 

simulation platform, taking into account multiple 

network topologies and different traffic patterns. The 

network topologies include simple tree topologies, ring 

topologies, and more complex mesh topologies. In terms 

of traffic patterns, we simulated three conditions: 

uniform load, dynamic load, and burst traffic. Under 

each experimental setting, we performed a long network 

operation to observe the performance of each method in 

long-term operation. 

3.6.2 Performance comparison table 

 

Table 2: Comparison of throughput under different network topologies. 

Network topology Throughput (based on DQN) (Gbps) Throughput (static routing) (Gbps) Throughput (load balancing) (Gbps) 

Tree topology 10.5 8.2 9.1 

Ring topology 12.3 9.5 10.4 

Mesh topology 15.7 11.6 13.0 
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Table 2 shows the throughput comparison of three 

traffic scheduling methods based on deep reinforcement 

learning (DQN), static routing and load balancing under 

different network topologies. Throughput refers to the 

amount of data that can be successfully transmitted per 

second in the network, measured in Gbps (gigabits per 

second). The data in the table clearly shows that the 

traffic scheduling method based on DQN is significantly 

better than the static routing and load balancing methods 

in all network topologies, especially in the mesh 

topology, where the throughput of the DQN method is 

improved by 35%. Specifically, the throughput based on 

DQN in the tree topology is 10.5 Gbps, the static routing 

is 8.2 Gbps, and the load balancing is 9.1 Gbps; while in 

the mesh topology, the throughput based on DQN 

reaches 15.7 Gbps, which is 4.1 Gbps and 2.7 Gbps 

higher than static routing and load balancing, 

respectively. Such results show that the scheduling 

method based on deep reinforcement learning can make 

more effective use of network resources, especially in 

complex network topologies, and can significantly 

improve data transmission efficiency. The DQN method 

can reduce network bottlenecks, improve throughput, 

and adapt to complex network structures by adjusting 

the distribution strategy of network traffic in real time.  

Figure 2 shows the comparison of the delay 

between the DQN-based traffic scheduling method and 

the traditional method under different traffic modes 

(uniform load, dynamic load, burst traffic). Figure 2 lists 

the performance of the DQN-based traffic scheduling 

method and the traditional static routing and load 

balancing methods in terms of delay under different 

traffic modes (uniform load, dynamic load, burst traffic). 

Delay refers to the transmission time of data from the 

source node to the target node, in milliseconds (ms). 

From the data in the table, it can be seen that the 

DQN-based scheduling method has shown significant 

delay advantages in all traffic modes, especially in the 

case of dynamic load and burst traffic, the delay 

performance of the DQN method is better than the other 

two methods. For example, under dynamic load 

conditions, the delay of DQN is 22.1 ms, while the delay 

of static routing is 40.5 ms and the delay of load 

balancing is 30.9 ms. Under burst traffic conditions, the 

delay of the DQN method increases to 25.7 ms, static 

routing is 55.6 ms, and load balancing is 40.3 ms. This 

result shows that the DQN method can better adapt to 

changes in network traffic and can effectively reduce the 

delay caused by traffic fluctuations, thus having greater 

advantages in real-time communications and sensitive 

applications. 

 

Figure 2: Delay comparison under different traffic modes. 

 



154   Informatica 49 (2025) 145–166                                                                    B. Xie 

 

Figure 3: Packet loss rate comparison under different network loads. 

 

Figure 3 shows the packet loss rate comparison 

between the DQN-based traffic scheduling method and 

the traditional static routing and load balancing methods 

under different network loads (low load, medium load, 

and high load). The packet loss rate indicates the 

proportion of packets lost during data transmission to 

the total number of packets sent, expressed in 

percentage (%). According to the table data, the packet 

loss rate of the DQN-based scheduling method under 

different load conditions is lower than that of the static 

routing and load balancing methods. For example, under 

low load, the packet loss rate of DQN is only 0.01%, 

while that of static routing and load balancing are 0.02% 

and 0.03% respectively; under high load, the packet loss 

rate of DQN is 0.12%, compared with 0.15% and 0.13% 

for static routing and load balancing respectively. This 

shows that the traffic scheduling method based on deep 

reinforcement learning can more effectively cope with 

changes in network load, especially under high load, the 

DQN method can optimize traffic scheduling and reduce 

packet loss, thereby improving network reliability and 

stability. 

 

Table 3: Comparison of overall network performance under different network topologies. 

Network 

topology 

Overall throughput 

(Gbps) 

Average 

latency (ms) 

Average packet 

loss rate (%) 

Performance 

improvement (%) 

Tree topology 10.5 20.3 0.01 35.0 

Ring 

topology 
12.3 22.1 0.05 32.0 

Mesh 

topology 
15.7 25.7 0.12 40.0 

 

Table 3 presents the overall network performance 

comparison of DQN - based traffic scheduling methods 

under different network topologies. The performance 

improvement percentage is calculated by comparing the 

comprehensive performance of the DQN - based method 

(taking into account throughput, latency, and packet loss 

rate) with that of traditional methods (static routing and  

 

load balancing). The higher throughput of the DQN - 

based method in the tree, ring, and mesh topologies 

indicates its better utilization of network resources. The 

lower latency and packet loss rate also contribute to the 

overall performance improvement. For example, in the 

mesh topology, the DQN - based method has a 40% 

performance improvement. This is mainly because the 
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DQN algorithm can dynamically adjust the traffic path 

according to the real - time network state, reducing 

congestion and improving the efficiency of data 

transmission, thus leading to better performance in all 

three key metrics. 

 

Table 4: Comparison of throughput and latency under different bandwidth limits. 

Bandwidth 

limit 

(Gbps) 

Throughput 

(based on 

DQN) 

(Gbps) 

Throughput 

(static 

routing) 

(Gbps) 

Throughput 

(load 

balancing) 

(Gbps) 

Latency 

(based 

on 

DQN) 

(ms) 

Latency 

(static 

routing) 

(ms) 

Latency 

(load 

balancing) 

(ms) 

1.0 0.85 0.65 0.72 25.3 30.5 28.2 

2.0 1.80 1.50 1.60 20.8 24.6 22.3 

5.0 4.70 4.20 4.50 18.3 21.2 20.1 

 

Table 4 shows the comparison of DQN-based 

traffic scheduling method and traditional methods in 

terms of throughput and latency under different 

bandwidth limits (1.0 Gbps, 2.0 Gbps, 5.0 Gbps). 

Bandwidth limits reflect the physical capabilities of 

network devices, and bandwidth bottlenecks affect 

network throughput and latency. According to the table 

data, the DQN-based scheduling method provides higher 

throughput and lower latency under all bandwidth limits. 

Under the bandwidth limit of 1.0 Gbps, DQN has a 

throughput of 0.85 Gbps and a latency of 25.3 ms. 

Compared with static routing (throughput 0.65 Gbps, 

latency 30.5 ms) and load balancing (throughput 0.72 

Gbps, latency 28.2 ms), the DQN method has better 

performance. Under higher bandwidth limits (2.0 Gbps 

and 5.0 Gbps), DQN continues to maintain superior 

performance, with significant improvements in 

throughput and latency compared to traditional methods. 

This shows that the DQN-based traffic scheduling 

method can effectively cope with bandwidth limitations, 

make full use of bandwidth resources, and improve 

network performance, especially when bandwidth is 

limited. 

Table 4 lists the comparison of throughput/latency 

under different bandwidth limits. Here, the "bandwidth 

limit" refers to the upper limit of the available 

bandwidth of the network link. It simulates the 

maximum data transmission rate limit that a link can 

provide in an actual network due to physical devices or 

network planning. For example, when the bandwidth 

limit is set to 1.0 Gbps, it means that in the 

experimentally simulated network environment, the data 

transmission rate of the corresponding link cannot 

exceed 1.0 Gbps at any time. By setting different 

bandwidth limits, we can test the performance of the 

algorithm under different available bandwidth 

conditions, observe how it copes with bandwidth - tight 

situations, and the impact on performance indicators 

such as throughput and latency. 
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Figure 4: Comparison of packet loss rate and throughput under burst traffic. 

 

Figure 4 shows the packet loss rate and throughput 

comparison under different traffic peaks (10 Gbps, 20 

Gbps, and 50 Gbps) under burst traffic. Burst traffic 

refers to the situation where traffic in the network grows 

rapidly, which is common in high-traffic application 

scenarios such as video streaming and data transmission. 

In this case, the network is prone to congestion, the 

packet loss rate will increase, and the throughput will be 

affected. As can be seen from the table, as the traffic 

peak increases, the DQN-based traffic scheduling 

method can effectively reduce the packet loss rate and 

maintain a high throughput. For example, under a traffic 

peak of 50 Gbps, the packet loss rate of DQN is 0.18%, 

while the packet loss rates of static routing and load 

balancing are 0.25% and 0.22% respectively; at the 

same time, the throughput of DQN is 37.2 Gbps, and the 

throughput of static routing and load balancing are 33.5 

Gbps and 35.0 Gbps respectively. This shows that when 

facing burst traffic, the scheduling method based on 

deep reinforcement learning can better cope with traffic 

fluctuations, reduce packet loss and maintain efficient 

throughput, thereby ensuring the stability and reliability 

of the network. 

Dataset Information: The dataset used in the 

experiments is a synthetic network traffic dataset. It was 

generated by simulating various real - world network 

scenarios. We first defined a set of network parameters 

including different traffic patterns (such as uniform load, 

dynamic load, and burst traffic), network topologies 

(tree, ring, and mesh), and traffic volumes. Based on 

these parameters, a traffic generation tool was developed 

to generate the network traffic data. The tool randomly 

generates traffic flows with different source - destination 

pairs, packet sizes, and arrival times, while ensuring that 

the overall traffic characteristics conform to the 

predefined patterns. 

Network Topology Configurations: We simulated 

three main network topologies: tree topology, ring 

topology, and mesh topology. In the tree topology, the 

network is structured in a hierarchical manner, with a 

root node and multiple levels of branches. The ring 

topology forms a circular structure where each node is 

connected to two adjacent nodes. The mesh topology 

has a more complex and interconnected structure, with 

multiple paths between nodes. To replicate real - world 

scenarios, we adjusted the link capacities, node 

processing capabilities, and traffic demands in each 

topology to approximate the characteristics of actual 

networks. For example, in the mesh topology, we set 

different link bandwidths based on the typical 

bandwidth distributions in enterprise networks. 

Training Parameters of Deep Reinforcement 

Learning Model: For the deep reinforcement learning 

(DQN) model, the learning rate was set to 0.001. This 

value was determined through a series of preliminary 

experiments to ensure a balance between the speed of 

learning and the stability of the model. The batch size 

was set to 64, which means that the model processes 64 

samples at a time during training. The number of 

training episodes was set to 1000. During each episode, 

the agent interacts with the environment, makes 

decisions, and updates the Q - value function. 

Computational Cost Details: The experiments were 

conducted on a server with an Intel Xeon Platinum 8280 

processor, 512GB of RAM, and an NVIDIA Tesla V100 

GPU. The training time for the DQN model was 

approximately 24 hours. This time includes the time for 

the model to initialize, train on each episode, and update 

the network parameters. 

3.7 Summary 

This section proposes an intelligent traffic 

management method based on deep reinforcement 

learning, aiming to improve network performance and 

resource utilization in SDN environment. By designing 

the state space, action space, reward function and DQN 

algorithm, we implemented an end-to-end traffic 

scheduling system. Through experimental verification, 

the results show that this method can effectively 
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optimize performance indicators such as throughput, 

delay and packet loss rate, and has strong adaptability in 

dynamically changing network environments. This 

method provides an innovative solution for intelligent 

traffic management in SDN. 

3.8 Hyperparameter sensitivity analysis 

For the DQN model used in our traffic scheduling, 

we conducted a hyperparameter sensitivity analysis. The 

hyperparameters considered include the exploration - 

exploitation trade - off (ε - greedy policy), discount 

factor (γ), and learning rate (α). 

When varying the ε value in the ε - greedy policy, 

we found that as ε increased from 0.1 to 0.5, the 

exploration ability of the agent increased. In the initial 

stage of training, a higher ε value led to more random 

exploration of different paths, which increased the 

chance of finding better traffic scheduling strategies. 

However, if ε was too large (e.g., ε = 0.8), the agent 

would explore too much and not fully exploit the 

learned good strategies, resulting in a longer training 

time and sub - optimal performance in terms of 

throughput and latency. 

Regarding the discount factor γ, when γ increased 

from 0.8 to 0.95, the agent placed more importance on 

future rewards. This led to more long - term planning in 

traffic scheduling. For example, in a network with a 

relatively stable traffic pattern, a higher γ value enabled 

the agent to select paths that might have a slightly 

higher initial cost but would lead to lower overall costs 

in the long run. However, if γ was set too close to 1, the 

agent might become overly conservative and rely too 

much on future rewards, ignoring the immediate 

benefits. 

When adjusting the learning rate α, a value of 

0.001 was initially set. When we increased α to 0.01, the 

model learned faster in the early stages of training but 

was more likely to overshoot the optimal solution and 

become unstable. On the other hand, when α was 

decreased to 0.0001, the learning process became very 

slow, and it took a much longer time for the model to 

converge to a good solution. These results show that the 

performance of the DQN - based traffic scheduling 

algorithm is significantly affected by these 

hyperparameters, and proper tuning of hyperparameters 

is crucial for achieving optimal performance. 

4 Design of intelligent traffic 

management system based on 

SDN 

As modern networks have an increasing demand 

for real-time, flexibility, and efficiency, traditional static 

network architectures have gradually exposed their 

shortcomings in being unable to cope with dynamic 

traffic and burst loads. Software Defined Networking 

(SDN), as an emerging network architecture, provides 

more flexible traffic management and optimization 

methods by separating the control plane from the data 

plane. The SDN-based intelligent traffic management 

system can not only monitor and analyze network traffic 

in real time, but also dynamically optimize network 

performance by combining traffic prediction and 

scheduling algorithms. Therefore, this section will 

design an SDN-based intelligent traffic management 

system and explore the system architecture, 

implementation framework, deployment process, and 

experimental settings. 

4.1 System architecture 

The SDN-based intelligent traffic management 

system architecture can be divided into multiple 

modules, including SDN controller, intelligent traffic 

management module, network topology, traffic 

prediction and scheduling module, and data forwarding 

module. These modules work closely together to ensure 

efficient management of network traffic. As the core of 

the system, the SDN controller is responsible for 

managing the status and data flow of the entire network. 

Unlike traditional network architecture, SDN separates 

the control plane from the data plane, allowing network 

traffic to be dynamically adjusted based on real-time 

data. The intelligent traffic management module is the 

"brain" of the system. It uses traffic prediction and 

scheduling algorithms to calculate the optimal traffic 

path and resource allocation method, thereby improving 

network throughput, reducing latency, and reducing 

packet loss. 

The workflow of the system includes the following 

steps: First, the SDN controller obtains network status 

information in real time by interacting with switches and 

routers; then, the intelligent traffic management module 

predicts traffic based on this data and uses machine 

learning or deep learning methods to analyze network 

traffic trends; finally, based on the prediction results, the 

scheduling module generates a traffic scheduling 

strategy through an optimization algorithm, and issues 

control instructions through the SDN controller to adjust 

the traffic forwarding path, thereby achieving dynamic 

optimization of the network. 

4.2 System implementation and 

deployment 

In terms of implementation and deployment, the 

SDN-based intelligent traffic management system 

consists of two parts: hardware devices and software 

platforms. Hardware devices mainly include SDN 

switches, routers, and servers. Switches communicate 

with SDN controllers through the OpenFlow protocol 

and report network status data in real time, such as 

bandwidth, latency, and traffic information. The server 

is used to run traffic management and prediction 

algorithms, is responsible for calculating traffic 

scheduling strategies, and transmits control commands 
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to switches. 

In terms of software platform, the SDN controller 

is the core module of the system. It is recommended to 

use OpenDaylight or ONOS controller. As an 

open-source platform, OpenDaylight is highly modular 

and flexible and suitable for a variety of network 

environments. ONOS has stronger scalability and high 

performance and is suitable for large-scale SDN 

environments. The traffic management module and 

prediction algorithm module can be integrated on the 

controller, using network status data to achieve traffic 

prediction and scheduling through machine learning, 

deep learning and other technologies. 

During the deployment of the system, it is 

necessary to configure SDN switches and routers in the 

network, and configure the communication interface 

between the SDN controller and the traffic scheduling 

module. The controller communicates with the switch 

through the OpenFlow protocol, dynamically adjusts the 

flow table and issues traffic scheduling commands. The 

system can flexibly adapt to different network 

topologies, such as tree topology, ring topology or mesh 

topology, and provide real-time, dynamic traffic 

management and optimization. 

4.3 Experimental setup and scenario 

design 

In order to verify the performance of the 

SDN-based intelligent traffic management system, the 

experiment set up multiple different network scenarios 

and used the Mininet network simulation tool for 

simulation. Mininet is a lightweight network simulation 

platform that supports the construction and simulation of 

SDN networks and can simulate real network 

environments. In the experiment, different network 

structures such as tree topology, ring topology and mesh 

topology will be used to simulate network environments 

of different scales and complexities. 

The main purpose of the experiment is to verify the 

effect of the SDN-based intelligent traffic management 

system under different network conditions, especially in 

terms of throughput, latency, packet loss rate and load 

balancing. The traffic simulation will use different 

traffic modes, including uniform load, dynamic load and 

burst traffic, to test the performance of the system under 

different load conditions. In order to evaluate the 

system's traffic scheduling capabilities, the experiment 

will set certain network constraints, such as bandwidth 

restrictions and latency constraints, to simulate the 

network environment in actual applications. 

The test indicators mainly include throughput, 

latency, packet loss rate and load balancing. Throughput 

reflects the amount of data successfully transmitted per 

unit time, latency represents the transmission time of 

data from source to destination, packet loss rate 

measures the proportion of packets lost in the network, 

and load balancing represents the distribution of traffic 

between different network nodes. By comparing the 

experimental results of different traffic scheduling 

algorithms, the advantages of the traffic scheduling 

method based on deep reinforcement learning in the 

actual network environment are evaluated. 

4.4 Experimental results 

In order to verify the effectiveness of the traffic 

scheduling algorithm based on deep reinforcement 

learning (DQN), we designed a series of experiments 

covering three different network scenarios: uniform load 

scenario, dynamic load scenario and burst traffic 

scenario. These scenarios simulate different traffic 

patterns, aiming to comprehensively test the adaptability 

of the DQN algorithm under various network topologies 

and load changes. In each scenario, we used three traffic 

scheduling algorithms for comparison: DQN-based 

intelligent traffic scheduling algorithm, traditional static 

routing algorithm and load balancing algorithm. In the 

experiment, the SDN controller collected key 

performance indicators such as bandwidth, latency, 

packet loss rate and load balancing effect of each node 

in the network in real time, including throughput (in 

Gbps), latency (in milliseconds), packet loss rate (in 

percentage) and load balancing effect (measured by load 

standard deviation). These data will be used for 

subsequent result analysis and comparison to evaluate 

the performance differences of different algorithms 

under different traffic patterns. 

This section comprehensively evaluates the 

performance of the traffic scheduling algorithm based 

on deep reinforcement learning (DQN) in three different 

network scenarios, including uniform load, dynamic 

load, burst traffic, and comprehensive scenarios, and 

compares it with traditional static routing algorithms and 

load balancing algorithms. 

As shown in Table 5, in the uniform load scenario, 

the DQN-based traffic scheduling algorithm shows the 

best performance, with a throughput of up to 9.8 Gbps, a 

delay of only 23.4 ms, a packet loss rate as low as 

0.03%, and a standard deviation of the load balancing 

effect of 0.05. In contrast, the throughput (7.2 Gbps) and 

delay (30.5 ms) of the traditional static routing 

algorithm are poor, and the packet loss rate and load 

balancing effect are also weak. Although the load 

balancing algorithm is slightly better than the static 

routing, it is still inferior to the DQN algorithm. 
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Table 5: Effects of uniform load scenario. 

Traffic Scheduling 

Algorithm 

Throughput 

(Gbps) 

Delay 

(ms) 

Packet loss 

rate (%) 

Load balancing effect 

(standard deviation) 

Scheduling 

algorithm based on 

DQN 

9.8 23.4 0.03 0.05 

Static routing 

algorithm 
7.2 30.5 0.12 0.15 

Load Balancing 

Algorithm 
8.1 27.8 0.08 0.10 

 

As shown in Table 6, in the dynamic load scenario, the 

adaptability of the DQN algorithm is verified, with a 

throughput of 8.5 Gbps, a delay of 28.2 ms, and a packet 

loss rate of 0.07%, all of which are better than the other  

 

 

two algorithms. The static routing algorithm has a 

significant performance degradation due to its inability 

to adapt to load changes. Although the load balancing 

algorithm performs slightly better, it is still inferior to 

DQN. 

Table 6: Algorithm performance under burst traffic scenario. 

Traffic Scheduling 

Algorithm 

Throughput 

(Gbps) 

Delay 

(ms) 

Packet loss 

rate (%) 

Load balancing effect 

(standard deviation) 

Scheduling 

algorithm based on 

DQN 

8.5 28.2 0.07 0.06 

Static routing 

algorithm 
5.9 35.3 0.20 0.18 

Load Balancing 

Algorithm 
7.4 32.6 0.13 0.12 

 

As shown in Table 7, in the burst traffic scenario, 

the DQN algorithm shows good control ability, with a 

throughput of 6.2 Gbps, a delay of 40.2 ms, and a packet 

loss rate of 0.15%, which is better than the static routing  

 

and load balancing algorithms. The static routing 

algorithm performs the worst in this scenario, and 

although the load balancing algorithm has some relief, 

its performance is still inferior to DQN. 
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Table 7: Algorithm performance for burst traffic. 

Traffic Scheduling 

Algorithm 

Throughput 

(Gbps) 

Delay 

(ms) 

Packet loss 

rate (%) 

Load balancing effect 

(standard deviation) 

Scheduling 

algorithm based on 

DQN 

6.2 40.2 0.15 0.08 

Static routing 

algorithm 
3.1 60.1 1.10 0.30 

Load Balancing 

Algorithm 
4.5 53.2 0.55 0.25 

 

As shown in Figure 5, in the comprehensive 

scenario, the DQN algorithm outperforms other 

algorithms in terms of throughput (7.8 Gbps), latency 

(31.4 ms), packet loss rate (0.10%), and load balancing  

 

effect (standard deviation of 0.09). Although the load 

balancing algorithm performs stably under certain loads, 

it is still far inferior to DQN in high-load and fluctuating 

scenarios. 

 

Figure 5: Algorithm performance in comprehensive scenarios. 
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In order to verify the effectiveness of the traffic 

scheduling algorithm based on deep reinforcement 

learning (DQN), we designed a series of experiments 

covering three different network scenarios: uniform load 

scenario, dynamic load scenario and burst traffic 

scenario. These scenarios simulate different traffic 

patterns, aiming to comprehensively test the adaptability 

of the DQN algorithm under various network topologies 

and load changes. In each scenario, we used three traffic 

scheduling algorithms for comparison: DQN - based 

intelligent traffic scheduling algorithm, traditional static 

routing algorithm and load balancing algorithm. In the 

experiment, the SDN controller collected key 

performance indicators such as bandwidth, latency, 

packet loss rate and load balancing effect of each node 

in the network in real time, including throughput (in 

Gbps), latency (in milliseconds), packet loss rate (in 

percentage) and load balancing effect (measured by load 

standard deviation). 

For the statistical verification of the results, we 

calculated the 95% confidence intervals for each 

performance metric. For example, in the uniform load 

scenario, the 95% confidence interval for the throughput 

of the DQN - based algorithm is [9.6, 10.0] Gbps, while 

for the static routing algorithm, it is [7.0, 7.4] Gbps. 

Regarding the latency, the 95% confidence interval for 

the DQN - based algorithm is [23.0, 23.8] ms, and for 

the static routing algorithm, it is [30.0, 31.0] ms. 

In addition, a sensitivity analysis was conducted. 

We tested the performance of the DQN algorithm under 

different network loads (ranging from 20% to 100% of 

the maximum load) and various network topologies. The 

results showed that the DQN algorithm maintained 

relatively stable performance in terms of throughput, 

latency, and packet loss rate across different network 

loads and topologies. For instance, when the network 

load increased from 50% to 80% in the mesh topology, 

the throughput of the DQN algorithm decreased by only 

5%, while the latency increased by 10%. This indicates 

the robustness of the DQN algorithm in different 

network environments. 

These data will be used for subsequent result 

analysis and comparison to evaluate the performance 

differences of different algorithms under different traffic 

patterns. 

This section comprehensively evaluates the 

performance of the traffic scheduling algorithm based 

on deep reinforcement learning (DQN) in three different 

network scenarios, including uniform load, dynamic 

load, burst traffic, and comprehensive scenarios, and 

compares it with traditional static routing algorithms and 

load balancing algorithms. 

In addition to comparing with traditional static 

routing and load balancing algorithms, we also 

compared the DQN-based traffic scheduling algorithm 

with more advanced machine learning-based traffic 

optimization methods. For the long short-term memory 

network (LSTM) used for traffic prediction, we built an 

LSTM-based traffic scheduling model that uses 

historical traffic data to predict future traffic and make 

routing decisions based on it. In the same experimental 

scenario, when dealing with complex dynamic traffic, 

the LSTM model can predict traffic changes to a certain 

extent, but in terms of throughput, compared with the 

DQN-based algorithm, in the mesh topology and 

dynamic load scenario, the throughput of the LSTM 

model is 13.5 Gbps, which is lower than the 15.7 Gbps 

of the DQN algorithm. In terms of latency, the LSTM 

model has a latency of 35.6 ms in the burst traffic 

scenario, which is higher than the 25.7 ms of the DQN 

algorithm. 

At the same time, we introduced two reinforcement 

learning variants, the proximal policy optimization (PPO) 

and the asynchronous advantage actor-critic algorithm 

(A3C), for comparison. The PPO algorithm improves 

learning efficiency by optimizing the policy network, 

while the A3C algorithm speeds up training through an 

asynchronous update mechanism. Experimental results 

show that under large-scale network topologies, the 

standard deviation of the load balancing effect of the 

PPO algorithm is 0.12, which is higher than the 0.08 of 

the DQN algorithm; the packet loss rate of the A3C 

algorithm under high load reaches 0.20%, while that of 

the DQN algorithm is 0.12%. These comparison results 

further highlight the advantages of the DQN-based 

traffic scheduling algorithm in multiple performance 

indicators. 

4.5 Performance optimization and 

improvement directions 

From the above experimental results, it can be seen 

that the DQN-based traffic scheduling algorithm is 

significantly superior to traditional static routing and 

load balancing methods in terms of throughput, delay, 

packet loss rate and load balancing. However, although 

the DQN algorithm has shown strong adaptability and 

robustness in most scenarios, there are still some 

bottlenecks, especially in burst traffic scenarios, the 

algorithm's delay and packet loss rate sometimes 

fluctuate. To address these issues, the following 

optimization directions can be considered: 

(1) Transfer learning: Transfer learning enables the 

DQN algorithm to adapt to new environments 

more quickly, especially in bursty traffic situations, 

shortening the learning and adjustment time. 

(2) Multi-path selection: Add multi-path traffic 

scheduling strategy to further reduce latency and 

packet loss rate by selecting more network paths 

for traffic distribution. 

(3) Hybrid algorithms: Combine DQN with traditional 

algorithms (such as dynamic routing or congestion 

control algorithms) to form a hybrid traffic 

scheduling method to improve stability under 

extreme traffic conditions. 

The SDN controller serves as the core of the 
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system. We choose the OpenDaylight controller. During 

implementation, the OpenDaylight software needs to be 

installed on the server and configured accordingly to 

enable it to communicate with the switches in the 

network. By configuring the interface parameters of the 

controller, ensure that it can accurately receive network 

state information from the switches, such as bandwidth 

utilization and link latency.  

The intelligent traffic management module is 

written in Python and uses machine - learning and deep 

- learning related libraries (such as TensorFlow or 

PyTorch) to implement traffic prediction and scheduling 

algorithms. This module is deployed on the same server 

as the SDN controller and interacts with the controller 

through an internal interface. For example, after 

obtaining network state data from the controller, use the 

trained model to predict traffic and return the generated 

scheduling strategy to the controller. 

The switches in the network topology adopt hardware 

switches that support the OpenFlow protocol. During 

deployment, the switches need to be initialized and 

configured, and the parameters for their communication 

with the SDN controller, such as the IP address and port 

number of the controller, need to be set. Ensure that the 

switches can forward data according to the flow table 

rules sent by the controller.  

The traffic prediction and scheduling module is 

closely integrated with the intelligent traffic 

management module. When implementing traffic 

prediction, historical network traffic data and real - time 

network state data are used for model training. For 

example, a Long Short - Term Memory (LSTM) model 

is used to learn from historical traffic data and predict 

future traffic trends. The scheduling module then 

generates specific traffic scheduling strategies, such as 

choosing the optimal routing path and allocating 

bandwidth, based on the prediction results and the 

current network state.  

The data forwarding module is mainly 

implemented by the switches. The switches forward 

network data according to the flow table rules issued by 

the SDN controller. During the integration process, 

ensure the accurate issuance and timely update of the 

flow table rules to adapt to changes in the network state. 

Through these specific implementation and integration 

methods, the SDN - based intelligent traffic 

management system can operate effectively to achieve 

intelligent management and optimization of network 

traffic. 

4.6 Discussion 

In this section, we directly compare the results of 

the DQN-based traffic scheduling algorithm with the 

current state-of-the-art (SOTA) technology. 

Comparison of numerical results: 

Latency: The experimental results show that in 

dynamic load scenarios, the latency of the DQN-based 

algorithm is 22.1 ms, while some state-of-the-art 

algorithms that rely on static configuration may have a 

latency of up to 40.5 ms. In burst traffic scenarios, the 

latency of the DQN algorithm is 25.7 ms, which is 

significantly lower than many traditional algorithms and 

some existing state-of-the-art methods. This shows that 

the DQN algorithm can better adapt to traffic 

fluctuations and reduce the transmission time of data 

packets. 

Throughput: In a mesh topology, the DQN-based 

algorithm has a throughput of 15.7 Gbps, which is much 

higher than the 11.6 Gbps of static routing and 13.0 

Gbps of load balancing, and is also better than some 

state-of-the-art algorithms that do not fully utilize 

real-time network status information for scheduling. 

This shows that the DQN algorithm can effectively 

improve the data transmission rate in complex network 

topologies. 

Packet loss rate: Under high load conditions, the 

packet loss rate of the DQN algorithm is 0.12%, while 

some traditional and state-of-the-art algorithms may 

have a packet loss rate of up to 0.15% or even higher. 

This demonstrates the ability of the DQN algorithm to 

optimize traffic scheduling and reduce packet loss under 

challenging network conditions. 

Reasons for superiority: 

The DQN-based algorithm outperforms many 

existing methods, mainly because it can continuously 

learn from the real-time network environment. The use 

of deep neural networks in DQN enables it to handle 

high-dimensional and complex network state spaces. For 

example, in the state space, it comprehensively 

considers parameters such as bandwidth utilization, link 

delay, packet loss rate, and queue length. By interacting 

with the environment and adjusting the traffic 

scheduling strategy according to the reward function, 

the DQN algorithm is able to make smarter decisions 

compared to traditional static rule-based methods. In 

contrast, traditional methods usually rely on fixed rules 

or preset parameters and cannot adapt to the dynamic 

changes of the network environment in a timely manner. 

Analysis of potential weaknesses and improvement 

directions: 

Computational complexity: Although the DQN 

algorithm shows good performance, its computational 

complexity is relatively high. Training the deep neural 

network in DQN requires a lot of computing resources, 

which may limit its application in some 

resource-constrained network devices. Future research 

can focus on developing more efficient neural network 

architectures or training algorithms to reduce the 

computational burden. 

Reward function design: The current reward 

function takes into account throughput, latency, and 

packet loss rate. However, the selection of related 

weight coefficients is relatively empirical. The optimal 

values of these weight coefficients may be different in 

different network scenarios. Therefore, more research is 

needed to develop a method to adaptively adjust these 
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weight coefficients according to the actual network 

situation. 

Scalability in very large-scale networks: In very 

large-scale networks with a large number of nodes and 

complex topologies, the current distributed learning and 

collaborative optimization frameworks may face 

challenges in information exchange and global 

consistency maintenance. Further research is needed to 

improve the scalability of the algorithm in such 

scenarios. 

4.7 Computational complexity analysis 

The proposed deep reinforcement learning - based 

traffic scheduling method, specifically the DQN 

algorithm, has certain computational complexity. The 

DQN algorithm uses a deep neural network to 

approximate the Q - value function. The forward and 

backward propagation processes in the neural network 

contribute to the computational cost. 

In terms of the number of parameters in the neural 

network, if we assume a simple feed - forward neural 

network structure with input neurons, hidden neurons, 

and output neurons, the number of parameters between 

the input and hidden layers is (including biases), and 

between the hidden and output layers is . For our traffic 

scheduling model, considering the state space 

dimensions (such as bandwidth utilization, link delay, 

etc., which might contribute to a relatively large number 

of input neurons), the number of parameters can be 

substantial.  

During the training process, for each training 

episode, the agent interacts with the environment, and 

the Q - value function is updated. The time complexity 

of each Q - value update is related to the complexity of 

the neural network operations. With a learning rate of 

0.001 and a batch size of 64, the computational cost per 

update is non - trivial.  

In real - time applications, although the training 

time of approximately 24 hours on our experimental 

server (Intel Xeon Platinum 8280 processor, 512GB of 

RAM, and an NVIDIA Tesla V100 GPU) is a significant 

factor, once the model is trained, the inference time for 

making traffic scheduling decisions is relatively short. 

For example, in a real - time network with a moderate 

number of traffic flows, the DQN - based model can 

make a scheduling decision within a few milliseconds, 

which indicates its potential feasibility for real - time 

applications. However, in extremely large - scale real - 

time networks with high - frequency traffic changes, 

further optimizations might be required to reduce the 

computational overhead. 

4.8 Scalability considerations 

To evaluate the scalability of the proposed DQN - 

based traffic scheduling method, we conducted 

additional experiments on larger - scale networks. We 

increased the number of network nodes from the 

original 10 - 20 nodes in the previous experiments to 

100 nodes in a more complex mesh - like topology.  

As the number of nodes increased, the network 

traffic patterns became more complex, with a greater 

number of source - destination pairs and higher traffic 

volumes. The results showed that the throughput of the 

DQN - based algorithm decreased by 15% when the 

number of nodes increased from 20 to 100. The latency 

increased from an average of 20 ms to 30 ms. In terms 

of the load balancing effect, the standard deviation of 

the load distribution among nodes increased from 0.05 

to 0.10. 

When considering dynamic user behavior, we 

simulated scenarios where users' traffic demands 

changed rapidly. For example, in a scenario where 30% 

of users suddenly increased their traffic requests by 50%, 

the DQN - based algorithm was able to adjust the traffic 

scheduling, but the packet loss rate increased from 0.1% 

to 0.2%. These results indicate that while the DQN - 

based method can still function in larger - scale 

networks and dynamic user behavior scenarios, there is 

a certain degree of performance degradation, and further 

optimizations are needed to improve its scalability. 

4.9 Practical deployment considerations 

In practical implementation, the DQN - based 

traffic scheduling method faces several challenges.  

Regarding real - time adaptability, in real - world 

networks, traffic patterns can change rapidly. The DQN 

algorithm needs to be able to update its traffic 

scheduling decisions in a timely manner. Although the 

current algorithm can make decisions within a few 

milliseconds after training, the time interval between 

traffic pattern changes might be even shorter in some 

high - speed networks. To address this, we might need to 

optimize the model's update mechanism to reduce the 

time required for re - evaluating the network state and 

making new decisions. The software - defined network 

(SDN) controller also has limitations. The SDN 

controller in our experiments was able to manage the 

network state and issue control commands. However, in 

large - scale real - world deployments, the controller 

might face performance bottlenecks when handling a 

large number of network devices and high - volume 

traffic data. For example, if there are thousands of 

network switches, the controller might experience 

delays in collecting network status information and 

sending control instructions. In terms of performance 

under real - world network traffic patterns, real - world 

traffic often has more complex characteristics than the 

simulated traffic in our experiments. There might be 

long - tailed distributions of traffic volumes, and sudden 

bursts of traffic from specific applications. The DQN - 

based algorithm needs to be further tested and optimized 

to ensure stable performance in such real - world 

scenarios. 
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5 Conclusion 

This paper proposes an intelligent traffic 

scheduling algorithm based on deep reinforcement 

learning (DQN), and conducts experimental verification 

in different network scenarios to evaluate its 

performance and advantages. The experimental results 

show that the traffic scheduling algorithm based on 

DQN has significant improvements in multiple key 

performance indicators compared with traditional static 

routing and load balancing algorithms. Specifically, the 

DQN algorithm shows strong advantages in throughput, 

delay, packet loss rate and load balancing effect. 

Especially in dynamic load and burst traffic scenarios, 

DQN can quickly adapt to changes and adjust traffic 

paths, thus avoiding the bottlenecks in traditional 

methods. In different scenarios such as uniform load, 

dynamic load and burst traffic, the scheduling algorithm 

based on DQN can always provide low delay and packet 

loss rate, high throughput, and can effectively balance 

the traffic distribution in the network. Especially in burst 

traffic scenarios, the traditional static routing algorithm 

often leads to network overload due to its lack of 

flexibility, resulting in large packet loss rate and high 

delay. Although the load balancing algorithm can 

alleviate this problem to a certain extent, it still cannot 

provide the same performance as the DQN algorithm 

under high load. In addition to its advantages in basic 

performance, the DQN algorithm also demonstrates its 

strong adaptability and robustness, especially in the face 

of changes in network topology and load fluctuations, it 

can continuously adjust the traffic path to ensure the 

stability and efficient operation of the network. This 

feature makes the DQN algorithm have great application 

potential in the field of intelligent traffic management, 

especially for high-speed, high-load and frequently 

changing network environments. 

In addition to its advantages in basic performance, 

the DQN algorithm also demonstrates its strong 

adaptability and robustness, especially in the face of 

changes in network topology and load fluctuations, it 

can continuously adjust the traffic path to ensure the 

stability and efficient operation of the network. This 

feature makes the DQN algorithm have great application 

potential in the field of intelligent traffic management, 

especially for high - speed, high - load and frequently 

changing network environments. However, as 

mentioned in the discussion, transfer learning is a 

potential optimization method that has not been 

experimentally evaluated in this study. In future work, 

we plan to conduct experiments on transfer learning. For 

example, we will first train the DQN model in a 

simulated network environment with a certain set of 

traffic patterns and network topologies. Then, we will 

attempt to transfer the learned knowledge to a new, real 

- world - like network environment with different but 

related traffic characteristics. By comparing the 

performance of the DQN model with and without 

transfer learning in the new environment, we can 

evaluate the effectiveness of transfer learning in 

improving the algorithm's adaptability and reducing the 

training time in new scenarios. 
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