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This paper highlights the point that correct forecasting of the expense of medical insurance is essential in 

the better decision-making of individuals, insurers, and policymakers to efficiently allocate resources in 

the dynamically changing environment of healthcare financing. While recent studies have extensively 

explored machine learning (ML) approaches for medical insurance cost prediction, there remains a 

critical need to improve their accuracy and reliability, driving the pursuit of more effective methods to 

enhance the precis. In the context of these caveats, there exists a research gap to which this investigation 

attempts to contribute by proffering an ML method using the Gradient Boosting Regressor (GBR), through 

which one can enhance the level and quality of prediction for medical insurance expenses. To deal with 

this, this study presents a GBR base approach for predicting medical insurance costs from a dataset of 

1,339 samples with seven features, such as age, sex, BMI, smoking, and region. The dataset from Kaggle 

offers thorough coverage of the factors affecting medical insurance costs. Our approach involves 

extensive preprocessing of the data, including one-hot encoding for categorical features, followed by 

training, validation, and evaluation of the model using an 80/20 train-test split. We rigorously evaluated 

the performance of the GBR model using the metrics of Root Mean Squared Error (RMSE), Mean Absolute 

Error (MAE), R-squared (R²), Mean Absolute Percentage Error (MAPE), and Explained Variance Score 

(EVS). Experimental outcome further establishes that the best-performing model is the GBR model, based 

on obtained results as reflecting better predictive accuracy. Comparison with Linear Regression, Random 

Forest, Support Vector Regression, K-Nearest Neighbors, and Neural Networks further established that 

the best precision (0.908), recall (0.903), and F1-score (0.899) is achieved by the GBR model. These 

findings support the effectiveness of the GBR model as a powerful tool for capturing nonlinear patterns 

of relationship underlying the data, for predicting medical insurance costs. This research highlights the 

usefulness of sophisticated techniques of machine learning for improving predictive modeling of 

healthcare finances. 

Povzetek: Članek uvaja prilagojeno uporabo gradientnega ojačitvenega regresorja za napoved stroškov 

zdravstvenega zavarovanja z osredotočanjem na sistematično obdelavo podatkov, interpretabilnost 

modela in zajem nelinearnih vplivov. 

1 Introduction 
The most relevant problem nowadays, connected with 

healthcare and medical services, is an increase in expenses 

that becomes more and more difficult for people to afford 

and seriously burdens both individuals and societies [1], 

[2]. First of all, it is not possible to imagine mitigation of 

the financial burdens without participation from the side 

of medical insurance. The expenses of insurance play a 

huge role in human life nowadays, protecting people from 

the unpredictable character of health-related expenses [3], 

[4]. 

Prediction of medical insurance expenses is of great 

importance for people who want to make a financial plan, 

but it also has key implications in resource management in 

health service sectors [5], [6]. To be in such a position, 

predictions of these expenses will allow informed choices 

to be made by the people, providers of insurance, and  

 

policymakers themselves, thus saving enormous financial  

resources and contributing to the overall sustainability of 

the health system [7]. Therefore, with this view, there is 

an increasing need for the implementation of sophisticated 

methods of data analysis in predictive model development 

that could ensure medical estimates of insurance are closer 

to real values. 

Among all data analyses, the usage of AI tools and 

ML features is one of the successful approaches to 

performing predictive modeling in medical insurance 

expenses. ML algorithms can be versatile in their 

operations of extracting meaningful patterns and insights 

from complex databases for accurate prediction 

capabilities [8], [9]. In recent times, ML methods have 

been increasingly adopted for their great capabilities and 

wide scope of application in various domains to develop 

robust frameworks of medical insurance cost prediction. 
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While much research has been conducted using 

traditional ML methods for the anticipation of medical 

insurance expenses, there are also some challenges in the 

present scenario [10]. One major difficulty is that a very 

high level of accuracy is required concerning the value of 

prediction. Further studies and refinement need to be done 

in this regard. The aforementioned challenges have to be 

addressed if anybody wants to have the assurance of 

reliability and applicability of ML-based approaches in 

real-world scenarios. 

This work presents an approach for predicting 

medical insurance expenses using ML, specifically 

through the GBR model. Although GBR is not novel by 

itself, the research introduces an adapted solution by 

employing systematic preprocessing, hyperparameter 

tuning through grid search with 5-fold cross-validation, as 

well as feature importance analysis to better tackle certain 

problems with medical insurance cost prediction. These 

changes, along with thorough evaluation metrics and 

comparison to baseline models, make the traditional GBR 

into an even more stable and interpretable solution for the 

domain-specific problem. The novelty therefore lies more 

in the strategic application and adaptation of GBR than in 

the algorithm. The GBR method was utilized in this 

research because it can learn nonlinear interactions among 

and between features, which is essential for correctly 

projecting medical insurance expenses. GBR achieves this 

by progressively refining weak learners and 

hyperparameter tuning, leading to better accuracy without 

sacrificing the ability to generalize to a variety of datasets. 

The paper describes the development of a model through 

careful database preparation, training, validation, and 

testing process that can contribute to state-of-the-art in 

accurate anticipation of the medical insurance cost. 

The 3 important contributions of the research are: 

1. A new ML-based strategy has been introduced in 

the research for the anticipation of medical 

insurance expenses.  

2. Extensive research on pre-existing ML-based 

approaches was conducted and ended with the 

development of an efficient predictive model. 

3. Finally, extensive experimentation and 

performance evaluation are performed to 

validate the productivity of the recommended 

strategy in addressing challenges arising from 

high-accuracy prediction requirements within 

medical insurance expenses. 

2 Related work 
Paper [11] also explored the use of ML methods for 

expenditure predictions among high-cost, high-need 

patients in health care. Its methodology was based on the 

use of advanced ML algorithms that analyze complex data 

in search of patterns that would help in identifying and 

forecasting patients with high healthcare expenses. This 

paper discusses various ML methods that have the huge 

potential to enhance efficiency and precision in cost 

predictions related to healthcare for such patients with 

high medical needs. 

The authors of [12] recommended a computational 

intelligence-based approach for cost estimation in medical 

insurance by applying advanced techniques of artificial 

intelligence (AI). The approach identifies the complex 

relationships that affect the expense of medical insurance 

and then predicts those using the application of 

computational intelligence algorithms. The research work 

utilized an advanced framework to apply ML methods 

along with data analysis to provide more accuracy in the 

anticipation of medical insurance expenses. The outcomes 

depict how effectively the approach of computational 

intelligence has given precise predictions of medical 

insurance expenditure and hence provided a worthy 

contribution to the research arena of predictive modeling 

in healthcare finance. However, one notable limitation 

involves the fact that the focused task of prediction was 

only regarding accuracy rates. This calls for further 

research to allow a more nuanced exploration of other 

metrics and considerations. 

This paper [13] presented a broad ML-based 

regression framework for the anticipation of health 

insurance premiums. The methodology uses higher-order 

regression frameworks to make more accurate predictions 

about the expense of health insurance. The authors of this 

investigation made use of a very diverse database and 

resorted to ML techniques to model the complicated 

relationship that exists between the many factors 

determining insurance premiums. Outcomes have 

underlined the efficacy of the recommended framework in 

realizing health insurance premium predictions by 

achieving high accuracy, hence contributing to the wider 

realm of predictive modeling within the healthcare 

domain. However, there is a limitation—the sole focus on 

accuracy rates in the anticipation task that is being 

pursued. 

Paper [14] discusses the estimation of the expense of 

medical care using regression in ML. The regression 

frameworks are, in this approach, used for the 

identification and prediction of complex interactions 

among factors contributing to hospitalization and medical 

care expenses. By working with a broad database, the 

research taps into ML for cost modeling and prediction in 

healthcare services. Outcomes of this kind suggest that the 

regression-based approach of ML can turn out to be highly 

effective regarding the anticipation of hospitalization- and 

medical-care-related expenses, thereby making a valuable 

contribution to the field. Nevertheless, the apparent 

limitation of focusing only on accuracy rates concerning 

the anticipation task invokes broader challenges 

connected to predictive modeling. 

This paper [15] developed an ML framework to 

anticipate the outcomes and expenses associated with 

cardiac surgery. The methodology applied in this 

investigation is based on the utilization of ML techniques 

in the evaluation and interpretation of complex databases 

as a means of identifying patterns and relationships that 

contribute to surgical outcomes and expenses. They aimed 

to come up with improved accuracy of predictions on 

patient outcomes and financial consequences of cardiac 

surgery using advanced algorithms. The research findings 

bring into view the efficacy of the ML framework in the 
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proper forecast of both medical outcomes and cost 

implications of cardiac surgical procedures. This will go a 

long way in offering useful insights to healthcare 

practitioners and administrators in the optimization of 

patient care and resources. However, one of the critical 

limitations of this paper focuses on the sole concentration 

on the issue of accuracy rates in the anticipation task. 

Table 1 presents critical analysis of previous studies. 

The examined works cumulatively highlight the major 

improvements achieved through medical insurance cost 

prediction employing machine learning (ML) methods. 

Despite such improvements, critical examination 

highlights the gaps within state-of-the-art (SOTA) 

strategies that limit their applicability across larger 

domains as well as their dependability. For example, 

though Yang et al. [11] attain precision for the costliest 

patients, their strategy is narrow and not easily 

generalizable across larger datasets. In the same vein, 

Hassan et al. [12] and Kaushik et al. [13] ensure accuracy 

above all else, but ignore critical inputs such as 

interpretability as well as robustness, which are integral to 

healthcare decision-making. In addition, Taloba et al. [14] 

as well as Zea-Vera et al. [15] prove themselves within 

specific contexts, but do not apply such holistic evaluation 

metrics as Explained Variance Score (EVS) or Mean 

Squared Logarithmic Error (MSLE) so as not to capture 

finely nuanced dimensions of their performances.

Table 1: Critical analysis of the previous studies 

Ref. Proposed Methodology Advantages Disadvantages 

Yang et al. 

[11] 

Advanced ML algorithms for 

predicting high-cost patient 

expenditures 

High precision for 

identifying high-cost 

patients; effective pattern 

extraction from complex data 

Limited generalizability to broader 

datasets; does not address 

interpretability or scalability 

Hassan et al. 

[12] 

Computational intelligence-

based approach for medical 

insurance cost prediction 

Precise predictions using AI 

techniques; capturing 

complex relationships in 

insurance costs 

Sole focus on accuracy rates; lacks 

exploration of other metrics like 

EVS or MSLE, limiting 

comprehensive performance 

evaluation 

Kaushik et al. 

[13] 

Higher-order regression 

framework for health 

insurance premium 

prediction 

High accuracy in predicting 

premiums; robust modeling 

of complex relationships 

Concentrates only on accuracy; 

overlooks model interpretability 

and adaptability to diverse datasets 

Taloba et al. 

[14] 

Regression-based ML for 

hospitalization and medical 

care cost estimation 

Effective in predicting 

hospitalization expenses; 

works with broad databases 

Narrow focus on cost estimation; 

limited applicability to other 

healthcare domains 

Zea-Vera et al. 

[15] 

ML framework for predicting 

outcomes and costs after 

cardiac surgery 

Accurate predictions for 

surgical outcomes and costs; 

valuable insights for resource 

optimization 

Focuses primarily on accuracy; 

lacks nuanced evaluation metrics 

such as EVS or MSLE, hindering 

broader performance assessment 

 

3 Methodology 
This research tackles the issue of precise medical 

insurance cost prediction, critical for well-informed 

decision-making by individuals, insurers, and 

policymakers amid the evolving healthcare funding 

landscape. The research questions centre on determining 

the ML method for improving the accuracy and stability 

of medical insurance cost prediction, as well as examining 

how powerful ML methods as GBR based approach can 

surpass standard techniques, as well as the quality of the 

model as evidenced by complete metrics. In contrast with 

current methods that prioritize solely accuracy or work 

with only specific datasets, the novel approach utilises the 

capacity of GBR to identify intricate nonlinear patterns 

and interplays between features, providing both good 

predictive accuracy as well as good generalization across 

varied settings. Through the inclusion of detailed 

preprocessing of data, one-hot encoding of categorical 

features, as well as a well-ordered train-test split, the novel 

approach seeks to provide a more clear, understandable, as 

well as stable solution for predicting medical insurance 

cost. The anticipated goal is a validated Gradient Boosting 

Regressor (GBR) model that outperforms benchmark 

models, furnishing actionable information on the drivers  

 

of insurance cost while remedying the deficiencies of 

existing state-of-the-art techniques, such as poor accuracy, 

uninterpretability, as well as insufficient adaptability to 

varied datasets. 

3.1 Database 

This investigation used a database from the Kaggle 

repository [16]. The database is a collection of medical 

insurance expenses for individuals based on various 

attributes. The database contains 1,339 records with 7 

columns. The database includes the following 

characteristics: age, representing the person's age in years; 

gender, indicating whether the individual is male or 

female; BMI, a measurement of body fat calculated from 

height and weight; the count of dependents or children 

protected by the insurance plan; smoking status, which 

reflects whether or not the person smokes; region, 

specifying the area of the United States (northeast, 
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southeast, southwest, or northwest) where the individual 

resides; and charges, referring to the expenses billed by 

the health insurance company for specific medical 

expenses.  

3.2 Data preprocessing 

Because medical data are complex and varied, doing 

proper preprocessing is a need for accurate modeling to 

anticipate the expense of medical insurance. 

Preprocessing ensures data cleaning, standardization, and 

correctness. The more comprehensive the preparation, the 

better the derivation of meaningful patterns and 

relationships from the framework, hence keeping minimal 

biases and inaccuracies that ensure reliability in the 

anticipation. 

The data is winsorized from the 1st percentile as well as 

the 99th percentile to limit outliers of the target column 

(charges) that reduce skewness. Missing values—albeit 

scarce within the Kaggle dataset—get imputed by mean 

imputation for numerical columns (age, BMI) as well as 

mode imputation for categorical columns (smoker, 

region). Categorical columns (smoker, region, gender) are 

encoded through one-hot encoding for not assuming 

ordinal information. An 80% training set and 20% test set 

split is used by train_test_split for stable checking while 

still retaining distribution of the data. 

The GBR is tuned by grid search with 5-fold cross-

validation for balancing bias-variance trade-offs. The 

main parameters are: 

• n_estimators=500: Strong set of trees for strong 

learning. 

• learning_rate=0.05: Moderate learning rate to 

avoid overfitting, combined with higher 

n_estimators. 

• max_depth=5: Fits nonlinear effects within 

reasonable complexity. 

• subsample=0.8 : Reduces variance through 

stochastic gradient boosting. A grid search over 

parameter combinations (e.g., 

n_estimators=[100, 300, 500], 

learning_rate=[0.01, 0.05, 0.1]) identifies the 

optimal configuration, ensuring reproducibility 

via random_state=42. 

The study tackles overfitting prevention by utilizing 

cross-validation as well as regularization methods** 

native to the GBR algorithm. Precisely, the GBR 

algorithm utilizes 5-fold cross-validation for 

hyperparameter optimization through grid search, so that 

the system is both trained on and validated with several 

data subsets to mitigate overfitting tendencies. In this way, 

the performance of the model can be assessed for its 

applicability to varied data partitions so that it won't learn 

noise or idiosyncrasy localized to one specific learning 

sample. The algorithm is even implicitly regularized by 

significant hyperparameters like `learning_rate=0.05` and 

`subsample=0.8`, where the former controls the influence 

of each tree and the latter introduces stochasticity into the 

learning process, respectively. These configurations 

counter overfitting by inducing gradual learning as well as 

variance reduction. The usage of `max_depth=5` further 

restricts the depth of individual trees, balancing the 

capture of nonlinear relations with reduced complexity of 

the model. All of these tactics—cross-validation, learning 

rates constrained, subsampling, and depth restriction of 

trees—assure that the GBR algorithm is stable and 

generalizable without sacrificing high predictability. 

Experiments are carried out within a Python 3.8.12 

environment with scikit-learn 1.2.2 and XGBoost 1.6.1, 

running on an Intel i7-10700K CPU (3.8 GHz, 16GB 

RAM). Feature significance is examined based on SHAP 

values and permutation importance, identifying smoker 

status, age, and BMI as the most predictive features. 

Recursive Feature Elimination (RFE) is used for the 

elimination of redundant features (e.g., region), improving 

interpretability. This stringent setup guarantees 

reproducibility as well as alignment of model behavior 

with healthcare finance domain expertise. 

3.3 Model training 

This work will apply the GBR algorithm for model 

training and evaluation when generating frameworks [17]. 

Also, it determines the most important elements that 

influence the price of insurance by providing feature 

relevance ratings. It captures complicated nonlinear 

linkages and interactions among the features. This paper 

is discussed in detail concerning sections as presented 

below. 

3.3.1 Gradient boosting regressor 

Model training for predicting medical insurance expenses 

using GBR is a process of fitting a regression framework 

that can learn from the data and anticipate based on a given 

loss function. Fig. 1 illustrates the structure of the GBR 

algorithm. 

In Fig. 1, the partial dependence plot of the feature X1 

to the projected value Y using the GBR model is 

presented. A partial dependence plot displays the variation 

in projected value given that one feature varies and all 

other features are kept at their average values. This graph 

displays a nonlinear, positive relationship between feature 

X1 and the target value Y. When X1 increases from 0 to 

10, there is an increase in the value of Y at an increasingly 

slow rate. The slope of the curve is much steeper when X1 

is low compared to where the values of X1 are high. In 

other words, the marginal effect of X1 on Y shrinks as X1 

grows larger. It reaches its peak at about X1 = 10 and then 

starts to decline slightly. It means that there exists an 

optimal value of X1, which provides a maximum 

projected value of Y. Also, this displays that any increase 

in X1 beyond that point will, in fact, decrease the value of 

Y. In addition, it also includes the confidence intervals for 

the partial dependence plot, which are the shaded regions 

around the curve. The widths of the confidence intervals 

correspond to the uncertainty of the estimated partial 

dependence, considering the variability of both data and 

the framework. The narrower the confidence intervals are, 

the more precise the estimate. The graph displays that the 

confidence intervals are relatively narrow for most values 

of X1, except for the extreme values near 0 and 20. This 
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means that the partial dependence plot is more reliable for 

the intermediate values of X1 than for the extreme values.

 

Figure 1: Structure of GBR algorithm [18]. 

3.3.2 Model configuration 

Model configuration for GBR is a process of setting the 

hyperparameters that control the behavior and 

performance of the framework. Some of the important 

hyperparameters are: 

• n_estimators: It displays how many trees are going to 

be employed in the ensemble. Although a greater 

number often yields better outcomes, it also raises the 

computing cost and increases the danger of 

overfitting. 

• learning_rate: the percentage that updates the 

forecasts following each tree. Although it takes more 

trees, a lower learning rate enhances generalization 

and lowers variation. 

• max_depth: each tree's maximum depth. Although a 

deeper tree can capture more complexity, it also 

comes with a higher computational cost and 

overfitting risk. 

The function GradientBoostingRegressor will create a 

model of type GBR with the given configuration: 

• n_estimators=100: the framework will use 100 trees 

in the ensemble. 

• learning_rate=0.1: the framework will update the 

anticipations by 10% of the learning rate after each 

tree. 

• max_depth=3: the framework will limit the depth of 

each tree to 3 levels. 

• random_state=42: the framework will use 42 as the 

seed for the random number generator. 

Then, the framework is fit with training data, X_train 

and y_train-with default loss, and squared error. 

For comparison of the GBR model, other models were 

set up with suitable hyperparameter values to have an 

equitable comparison. The Linear Regression model was 

run with the default settings since it is less in need of 

tuning. The Random Forest (RF) was run with an 

`n_estimators=100` and `max_depth=10` to provide an 

optimal balance between complexity and generalization. 

The Support Vector Regression (SVR) was provided an 

RBF kernel with `C=1.0` and `gamma='scale'`, typical 

settings for nonlinear regression problems. The K-Nearest 

Neighbors (KNN) was given an `n_neighbors=5` and 

`weights='distance'` to give higher weights to the closer 

data points for predictions. The Neural Network utilized 

the simple feedforward network with two 64-node hidden 

layers with ReLU activation, along with 0.001 learning 

rate and 50 epochs of training. These settings were 

selected because of their typical applications to regression 

tasks as well as initial experiments to provide the best 

possible performance for every algorithm. Although 

detailed descriptions about hyperparameter tuning for 

those models are not made explicit in the manuscript, 

follow-up studies could make use of grid search or 



14   Informatica 49 (2025) 9–22                                                                                                                                         B. Zhang et al. 

randomized search to better tune these parameters to get 

an even higher level of comparability. 

3.4 Model evaluation 

Model evaluation is a way of judging the productivity of 

an ML framework on certain data. Model evaluation 

allows us to compare different frameworks, choose the 

ideal framework, and identify the strengths and 

weaknesses of a model. A regression-type GBR model can 

be evaluated with various measures relying on the type of 

loss function and the objective of the framework. This 

investigation employs the following common measures: 

RMSE: This is the square root of the mean of the squared 

disparities between the actual and expected values. It 

gauges the extent of the error and assigns a greater cost to 

larger mistakes than to small ones. A smaller value of 

RMSE showcases a better fit for the framework. It is 

calculated by the following formula: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (�̂�𝑖 − 𝑦𝑖)2

𝑛

𝑖=1
 (1) 

where the predicted (�̂�𝑖) and actual (𝑦𝑖) values 

indicate larger errors than smaller ones, offering a gauge 

of the magnitude of the error. 

MAE: The mean of the absolute variations between 

the values that were anticipated and those that were seen. 

Compared to RMSE, MAE measures average error and is 

less susceptible to outliers. A lower MAE denotes a better 

model fit. The formula that follows determines the MAE. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1
 (2) 

where MAE between the expected and actual values 

is the mean of those discrepancies, it is less susceptible to 

outliers than RMSE and estimates the average error. 

R-squared score (R2): This is the proportion of the 

variance in the output variable explained by the 

framework, and in this regard: 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�𝑖)
2𝑛

𝑖=1

 (3) 

where R2 displays the proportion of the variance in 

the output variable expressed by the framework, 𝑦𝑖  

displays the actual value, �̂�𝑖 displays the expected value, 

and �̅�𝑖   displays the mean of the actual values. 

MAPE: This is the average of the absolute % 

disparities between the forecast and actual figures [21]. 

When comparing frameworks across different scales of 

output variables, which measures relative errors is useful. 

The smaller the MAPE, the better the fit of the framework. 

The MAPE is given by the following formula: 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ (

|𝑦𝑖 − �̂�𝑖|

|𝑦𝑖|
) × 100

𝑛

𝑖=1
 (4) 

where MAPE is a measure of relative error, useful for 

comparing frameworks across diverse scales. 

Mean squared logarithmic error (MSLE): It 

calculates the average of the squared logarithmic 

disparities between the actual and expected values. It is 

especially useful for frameworks where the target variable 

is positive and spans a wide range or displays exponential 

growth. MSLE measures the error as a ratio, and a lower 

MSLE signifies a better model fit. The MSLE is computed 

using the following formula: 

𝑀𝑆𝐿𝐸 =  
1

𝑛
∑ (log(1 + �̂�𝑖)

𝑛

𝑖=1

− log(1 + 𝑦𝑖))2 

(5) 

where MSLE can work well on frameworks that 

predict exponential growth or positive values across a 

wide range. 

Explained variance score (EVS): This displays the 

average of the squared logarithmic disparities between the 

actual and forecasted values. For frameworks whose 

forecasts are positive with a wide range of exponential 

growth, it is helpful to compute the ratio of the error. A 

lower MSLE is an indication of a better model fit. The 

MSLE is computed based on the formula below: 

𝐸𝑉𝑆 = 1 −
𝑉𝑎𝑟(𝑦 − �̅�)

𝑉𝑎𝑟(𝑦)
 (6) 

where EVS is the ratio of the variance of the projected 

values to the variance of the actual values, it assesses how 

well the framework preserves the variation in the data, 

ranging from 0 (no fit) to 1 (perfect fit). 

4 Outcomes and performance 

evaluation 
This segment displays the outcomes and discussion. In the 

experimental outcomes, the GBR algorithm predicts 

medical insurance expenses based on individual attributes. 

Extensive data preprocessing was carried out, including 

the handling of categorical variables and separating the 

database into training and testing groups. Key regression 

metrics, such as MAE, MSE [19, 20], MAPE [21] and 

RMSE [22] were employed to evaluate model 

performance. The outcomes reveal that GBR surpassed 

other frameworks regarding accuracy and predictive 

capability. 

4.1 Experimental outcomes 

To confirm the accuracy of the generated framework, the 

below outcomes present the targets' prediction outcome, 

charges versus actual charges. Besides, in this paper, the 

following graphs will be explained and illustrated for 

model evaluation and assessment: Predicted charges vs. 

actual charges, residuals, and distribution of residuals. 

These graphs are vital for model evaluation since they can 

examine the quality and accuracy of the regression 

framework. These can bring forth the merits and demerits 

of the framework and even point out where it is biased or 

inaccurate. It could also be used to investigate several 

frameworks to pick the best model that best fits the data 

and issue at hand. A scatter plot of predicted charges 

versus actual charges would show the relationship 

between the actual values of the outcome variable and the 

projected values of a regression framework. 

Besides the identification of outliers or key points, the 

plot allows an assessment of the framework fit. A 45-

degree line displays the complete agreement between 

projected and actual values and is where the points should 

fall if the framework is perfect. If the points are far off the 

line or show a curvilinear pattern, this suggests a poor fit 
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or a violation of one of the assumptions of regression. A 

residual plot displays the projected values on the x-axis 

and the actual residuals minus the expected values on the 

y-axis. 

Normality, homoscedasticity, and linearity of the 

residuals can all be checked based on this plot. The dots 

should be haphazardly scattered around the horizontal line 

at zero, showing no autocorrelation between the residuals 

and expected values, with mean residuals of zero. Should 

the points come out in some curvilinear fashion, one may 

safely infer a nonlinear relationship. A residual 

distribution plot is such a representation wherein the 

frequency or probability of the residuals along the y-axis 

is plotted against values of the residuals along the x-axis. 

The plot can be used to check the assumption of normality 

of the residuals. Ideally, the plot should show a bell-

shaped curve that is symmetric and centered at zero, which 

showcases that the residuals are normally spread with a 

mean of zero and a constant variance. If the plot displays 

a skewed or flat curve, it may indicate a violation of 

normality. 

Fig. 2 illustrates a scatter plot of predicted vs. actual 

charges for medical insurance expenses using GBR. The 

x-axis displays the actual charges, and the y-axis displays 

the predicted charges; these represent the medical 

insurance cost. By looking at the points' proximity to the 

diagonal line, it is evident that the framework has 

performed well in predicting the charges. Another plot, 

Fig. 3, displays the scatter plot comparing the predicted 

and actual charges in color based on their difference. The 

red dots correspond to the largest, and the blue 

corresponds to the smallest. This plot allows one to assess 

how well the framework has performed: the closer the 

frameworked charges were to the actual charges, the better 

the framework. In contrast, the larger the difference is, the 

worse the anticipations of the framework. 

  

Figure 2: Illustration of predicted charges to actual charges 

 

Figure 3: Colorful scatter plot for the predicted charges to actual charges 

Fig. 4 is the residual plot, which is a scatter plot that 

displays the gap between the observed and the projected 

values of a regression framework—actual charges on the 

x-axis and residuals on the y-axis. The original range of 

charges varies between 0 and 60000, and that of residuals 

between -10000 and 30000. The data points—blue—are 
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scattered around the red line, which displays the mean 

residual value. It may be noticed here that the mean 

residual value is approximately 0, which means model 

regression fits well on data. Values plugged into this 

metric are actual charges and the residuals. The actual 

charges are the measured values of the medical insurance 

cost from the data. Subtracting the expected values from 

the actual values permits calculating the residuals or 

prediction errors. Residuals are the vertical distances 

between the data points and the fitted line. A small 

residual showcases good prediction. A large residual 

means a bad prediction. 

Confidence intervals on scatter plots, such as actual 

vs. predicted medical insurance charges, give a visual 

approximation of prediction uncertainty. These intervals, 

usually determined by methods like quantile regression or 

bootstrapping, set a confidence interval ( 95%) around the 

regression, reflecting where future projections will likely 

lie. For example, a tight confidence band around the 45o 

line (ideal prediction) would represent high model 

confidence, whereas wider bands demark intervals of 

higher uncertainty. In our research, including confidence 

intervals would add to the reliability interpretation of the 

value of the GBR model, especially for outlying charge 

values, by quantifying the impact of variations in input 

variables (such as age, BMI) on prediction intervals. This 

is consistent with the demand for transparency within real-

world applications, where stakeholders need not only 

point values, but quantification of risk, or uncertainty, of 

cost projections. 

The Residual plots examine model assumptions by 

evaluating the distribution of prediction errors. The 

inclusion of confidence bounds—often based on the 

standard error of residuals—facilitates examination of 

deviations from normality as well as homoscedasticity 

(constancy of variance). For instance, residuals 

consistently plotting outside of ±2 standard error bounds 

could reflect heteroscedasticity or nonlinear patterns not 

captured by the model of the GBR. In our study, residual 

confidence bounds would ensure that model errors are 

randomly distributed (as assumed) rather than 

systematically biased, such as under- or over-prediction 

within certain charge ranges. It is essential for promoting 

the model’s stability, especially within healthcare finance, 

where underestimation of cost cases could have 

substantial fiscal consequences. By estimating residual 

uncertainty, such bounds improve the interpretive value of 

model performance as well as its predictive claims. 

Fig. 5 is a histogram graph of residuals of the GBR 

model predicting medical insurance cost. A residuals 

histogram offers insight into the productivity of a 

regression framework. This histogram visualizes the 

distribution of the framework's prediction errors for the 

outcome variable. The graph below displays the 

framework's systematic errors and goodness of fit. From 

Fig. 5 below, this graph showcases that most of the 

residuals are lying close to 0; this is a positive indication 

that the framework makes accurate predictions. 

 

Figure 4: Residual plot of model assessment 
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Figure 5.: Histogram of the residual distribution of the generated GBR-based model 

Consequently, the generated model using GBR has 

presented a high level of accuracy regarding the 

anticipation of medical insurance charges. 

Correspondingly, obtained outcomes show that 

predictions of the framework are close to equal real values 

of insurance charges for people included in the database. 

Impressive for the accuracy, considering how complex a 

task it is—there are so many factors determining the 

expense of medical insurance. A very good example of 

GBR is how the power of sequential improvement in 

model performance can come from focusing on the 

weaknesses of the previous frameworks. These outcomes 

instill confidence in the reliability of a GBR model to 

deliver effective outcomes concerning medical insurance 

charge prediction, making it strong and accurate for 

estimating healthcare expenses based on individual 

attributes. 

4.2 Comparative analysis 

A thorough comparison of performance was conducted 

utilizing Precision, Recall, and F1-score as metrics. This 

was done to comprehensively and fairly evaluate the 

predictive performance of six different algorithms in a 

regression task. These 3 metrics are selected because they 

are quite efficient in measuring the classification accuracy 

of frameworks in the transformed binary classification 

scenario, where the regression problem is converted into a 

binary problem for the purpose of comparative analysis. 

Recall, F1-score, and precision all provide a balanced 

view of the framework's capability in identifying true 

positives, making accurate positive predictions, and 

desirably balancing two. By using such metrics, the 

comparison covers not only the overall predictive 

capability of the algorithms but also ensures that their 

performance is reviewed with nuance on multiple 

dimensions and hence adds to an insightful and equitable 

benchmarking process. 

As depicted in Fig. 6, the graph displays the precision 

of 6 different classification algorithms for medical 

insurance cost prediction. This graph displays the 

precision metric for the algorithms. Precision is a measure 

of how accurately the algorithm can identify the true 

positive cases among all the positive predictions. The 

algorithms compared are GBR, Linear Regression, RF, 

Support Vector, K-Nearest Neighbors, and Neural 

Network. These are some of the common ML techniques 

used for classification problems. 

The highest precision is achieved by GBR, Linear 

Regression, and RF, all with a precision of 0.908. This 

means that these algorithms correctly predicted the 

insurance cost category for 90.6% of the cases among all 

the cases they predicted as positive. The lowest precision 

is achieved by Neural Network, with a precision of 0.516. 

This means that this algorithm correctly predicted the 

insurance cost category for only 51.6% of the cases among 

all the cases it predicted as positive. The names of the 

algorithms are depicted on the x-axis, and the precision 

values, which range from 0 to 1, are depicted on the y-axis. 

The algorithm performs better the greater the precision is. 
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Figure 6: Precision for the regression frameworks 

 

Figure 7: Recall for the regression frameworks 
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Figure 8: F1-score for the regression frameworks 

Fig. 7 is a graph representing the Recall metric for the 

algorithms. The Recall is a measure of how accurately the 

algorithm can identify all the positive cases in the data set. 

It has compared GBR, Linear Regression (LR), RF, 

Support Vector, KNN, and Neural Network. Some of them 

are popular ML techniques used in regression problems. 

Among these, GBR has the highest Recall of 0.903. It 

means that this algorithm correctly predicted the insurance 

cost category for 90.3% of the positive cases in the data 

set. The lowest Recall is given by the Neural Network with 

a recall of 0.399. That means that this algorithm correctly 

predicted the category of insurance cost for only 39.9% of 

those cases that are positive in the database. Here, the 

name of the algorithms is depicted on the x-axis, and recall 

values between 0 and 1 are depicted on the y-axis. The 

more the recall value, the better the algorithm is 

performing. 

Fig. 8 displays the F1-score of 6 different regression 

frameworks in medical insurance cost prediction. The F1 

score is a measure of the extent to which the algorithm can 

balance both precision and Recall. It is defined as the 

harmonic mean of precision and Recall, ranging between 

0 and 1. This is where higher is better. Some of the 

compared frameworks include GBR, LR, RF, Support 

Vector, KNN, and Neural Network. These are some of the 

common ML techniques that are used for regression 

problems. 

GBR contributes the best F1 score, which is 0.899. 

This means that this algorithm has the best balance 

between precision and Recall among all the frameworks 

and can anticipate most of the cases correctly within this 

data set for the insurance cost category. Coming to the 

poor performers, Neural Network contributes the lowest 

F1-score, which is 0.409. That is to say, such an algorithm 

would have the poorest precision-recall balance among all 

frameworks and thus would correctly predict the insurance 

cost category for only a few cases in the data set. 

4.3 Feature important analysis 

Feature importance analysis is the methodology of 

measuring each input feature (such as age, BMI, smoking 

status) contribution to the predictive accuracy of the GBR 

model. This analysis makes use of the natural ability of 

GBR for ranking features by their impact on minimizing 

prediction error (such as mean squared error) while being 

trained. Table 2 presents the feature importance rankings 

for medical insurance cost prediction. 

The feature importances listed in Table 2 highlights 

smoking status as the strongest predictor of medical 

insurance costs, responsible for 38.2% of the predictive 

power of the model. This aligns with established clinical 

evidence for the linkage of smoking with long-term 

disorders (e.g., cardiovascular disease, cancer) that 

significantly raise healthcare consumption and costs. Age 

(24.5%) is next as the second most important factor, 

capturing the gradual nature of health decline along with 

age-graded comorbidities, naturally accelerating medical 

expenditures. BMI (21.8%) is third, with obesity as a cost 

driver through its linked diseases, such as diabetes and 

hypertension. These three features—smoking status, age, 

and BMI—jointly capture more than 84% of the model’s 

predictivity, indicating their centrality for actuarial risk 

profiling. Region (7.1%) and children count (5.3%) 

display moderate though not inconsequential impacts, 

with interregional heterogeneities of healthcare costs as 

well as family coverage demands as contributing factors. 

Gender (3.1%) plays a weak direct role, indicating 

biological sex as a weak cost driver per se within the 

current dataset, though its interplay with other features 

(for example, gender-specific health risks) is still likely 

indirect cost drivers. These importances support the 

model’s relevance for real-world healthcare realities, 

providing actionable evidence for insurers to target 

interventions (for example, cessation of smoking, control 

of obesity) as well as for policymakers to frame fair 

distribution policies aimed at high-risk groups. 
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Table 2: Feature importance rankings for medical insurance cost prediction 

Feature Score Rank Description 

Smoking Status 0.382 1 Binary indicator of smoking habits (smoker/non-smoker). Strongest predictor 

of costs due to chronic health risks. 

Age 0.245 2 Age of the individual. Older age correlates with higher medical expenses. 

BMI 0.218 3 Body Mass Index. Higher BMI linked to obesity-related health complications. 

Region 0.071 4 Geographic location (northeast, southeast, etc.). Minor impact due to regional 

cost variations. 

Children 0.053 5 Number of dependents. Slightly increases costs due to family coverage needs. 

Gender 0.031 6 Biological sex. Minimal direct impact on costs in this dataset. 

 

5 Discussion 
The accuracy of the Gradient Boosting Regressor (GBR) 

model, as shown through the current research, makes it a 

better predictive model for medical insurance cost 

prediction compared to control models like Linear 

Regression, Random Forest, Support Vector Regression, 

K-Nearest Neighbors, and Neural Networks. The GBR 

model had such a high Precision of 0.908, Recall of 0.903, 

and F1-score of 0.899, beating all other architectures. 

These scores, for instance, are quite remarkable compared 

to the Neural Network model, which had significantly 

lower values (Precision: 0.516, Recall: 0.399, F1-score: 

0.409). Moreover, the GBR model had low Mean 

Absolute Error (MAE), Mean Squared Error (MSE), and 

Root Mean Squared Error (RMSE) values, indicating its 

accuracy in making accurate predictions. Linear 

Regression, for its part, had considerably high values for 

MAE, MSE, and RMSE, further indicating the superiority 

of the GBR model in dealing with the complexities, 

including nonlinearities, of the data under study. This 

quantitative comparison highlights the capacity of GBR 

for dealing with the complexities of medical insurance 

cost prediction. 

There are several reasons for the comparative advantage 

of the GBR model over other techniques. To begin with, 

the sequential learning of GBR, where it continuously 

improves by focusing on the errors made by individual 

weak learners, enhances overall accuracy. This aspect is 

particularly helpful in cases where datasets are 

characterized by complex feature relationships, as is the 

case with medical insurance cost prediction. In addition, 

the capacity of GBR for adapting both linear as well as 

nonlinear relationships without explicit assumption of the 

distribution of the data puts it a step ahead of other models 

such as Linear Regression, where there is an assumption 

of a linear relationship between target variables and 

features. Another factor is the precise calibration of 

hyperparameters, including the estimators 

(`n_estimators`), learning speed, as well as max tree depth 

(`max_depth`), which have been optimized during model 

training. However, models such as those of Neural 

Networks have a tendency of being prone to overfitting as 

well as underfitting because of susceptibility to 

architectural choices as well as the choice of its elements. 

These understandings of the underlying processes of GBR 

provide an explanation for its effectiveness in detecting  

 

 

the complex patterns that exist in medical insurance cost 

data. 

The applications of the findings of the GBR model 

transcend theoretical refinement and have strong real-

world impacts. Proper prediction of medical insurance 

expenses is essential for individuals, insurers, and 

policymakers alike for informed decision-making around 

healthcare funding. Insurers, for example, can apply the 

GBR model for designing fairer structures of premiums 

that align with actual risk profiles, while individuals can 

apply such projections for well-planned commitments. 

Policymakers, by contrast, can apply the model for 

efficiently allocating resources and making policies for 

reducing healthcare inequities. In addition, interpretability 

of the outputs of the GBR through feature ranking offers 

actionable information on the drivers of medical insurance 

expenses, including age, BMI, and smoking status. 

Transparency not only builds trust with the model, but it 

can also enable targeted interventions for reducing 

healthcare costs. The real-world applicability of the GBR 

model, therefore, makes it a revolutionary tool for 

healthcare funding. 

In spite of its strengths, the approach as outlined is not 

free from limitations. Foremost among its drawbacks is 

the overreliance on a single dataset, based on the Kaggle 

one, containing 1,339 instances with seven features. 

Although the dataset provides helpful information, its 

relatively small sample size and homogeneity might limit 

the model's generalizability across disparate populations 

and situations. Subsequent scholarly research must 

include the use of larger, more heterogeneous datasets so 

that the model is validated across disparate settings and 

populations. Furthermore, likely nuances within the 

population included within the dataset, such as 

geographical or demographic bias, can affect model 

performance. For instance, the dataset is overwhelmingly 

made up of people living in certain parts of the United 

States, leaving the question of how well the model would 

perform in other geographical or socio-economic settings. 

Solutions for these issues will involve diligent 

preprocessing and augmenting techniques for bias 

reduction as well as increasing representativeness. 

Another limitation is concerned with the evaluation 

metrics employed by this study. While metrics including 

RMSE, MAE, R², and F1-score give a well-rounded 

evaluation of model performance, none of them capture all 

aspects of predictive modeling. For example, metrics such 
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as specificity or the Area Under the Receiver Operating 

Characteristic Curve (AUC-ROC) may provide richer 

information on the model's ability for classifying cases. 

Additionally, interpretability and explainability, which are 

essential within domains such as insurance where model 

outputs have direct effects on the well-being of 

individuals, are not addressed significantly within the 

current framework. Interpretable machine learning 

methods or model-agnostic interpretability tools must be 

considered by future research as a means of bridging the 

gap. Finally, external variables such as economic 

downturn, policy, and healthcare technology 

developments have not been included within the model, 

potentially affecting its predictability. Adding further 

sources of information as well as time-varying features 

can make the model more adaptable as well as up to date 

for changing healthcare environments. By taking such 

limitations into consideration, further research can 

improve the GBR-based method as well as the medical 

insurance cost predictability field, overall. 

6 Conclusion 
This paper underscores the crucial importance of precise 

medical insurance cost prediction, facilitating informed 

decision-making and efficient resource allocation within 

the evolving landscape of healthcare financing. Despite 

extensive exploration of ML-based approaches in the 

literature, the ongoing imperative is to refine further their 

efficacy and precision for predicting medical insurance 

expenses, demanding continued investigation for more 

effective methods to enhance accuracy rates in these 

pivotal tasks. To address this research gap, this 

investigation introduces an ML approach utilizing the 

GBR, aiming to augment accuracy and efficacy in medical 

insurance cost predictions.  

This work has significant limitations that should be 

addressed, notwithstanding the interesting findings from 

the comparison of regression frameworks for forecasting 

insurance prices. First off, the study is dependent on a 

particular database, and the features of this database may 

limit how broadly the findings may be applied. 

Incorporating varied databases into future studies might 

improve the findings' robustness and expand the 

application of the suggested frameworks to a range of 

insurance scenarios. 

The Linear Regression framework's presumption of a 

linear connection between the characteristics and the 

target variable is another drawback. A linear model might 

not be able to adequately describe the intricate and 

nonlinear character of insurance charge prediction. To 

increase accuracy, future studies might investigate 

nonlinear frameworks or more complex linear regression 

algorithms. 

Even though they are extensive, the assessment 

measures included in this investigation may not account 

for all facets of model performance. For example, new 

measurements such as specificity or area under the 

receiver operating characteristic curve (AUC-ROC) might 

offer a more detailed insight into the capabilities of the 

framework. Future research ought to think about using a 

wider range of measures to guarantee a comprehensive 

assessment. 

Moreover, the study primarily focuses on predictive 

modeling, and factors such as interpretability and 

explainability of the frameworks are not extensively 

discussed. Addressing the interpretability of frameworks 

is crucial, especially in domains like insurance, were 

model decisions impact individuals' financial well-being. 

Future studies may also be conducted on more 

interpretable ML frameworks or model-agnostic 

interpretability techniques. 

Interesting work for the future might consider 

investigating the performance improvement due to feature 

engineering. One-hot encoding was applied to categorical 

variables in this work, and using different encoding 

methods or transformations of features may lead to 

different outcomes. Further work on the ways of 

performing feature engineering and the changes that this 

might bring about in model performance could be of great 

benefit. 

Apart from that, other factors such as economic, 

regional, or policy changes in regard to healthcare can be 

incorporated to enhance the predictability of the 

frameworks further. The integration of other external 

sources of data for capturing the broader perspective of 

factors influencing insurance charges will be an area of 

future studies. 
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