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In contemporary society, with advancements in science and technology, many global activities, ranging 

from financial transactions to information transfers, are conducted through the Internet via dedicated 

websites and applications. Unfortunately, the prevalence of online platforms has increased the 

proliferation of fake websites aimed at exploiting sensitive data, such as bank card information and 

personal details. It addresses the problem of cybersecurity w.r.t. the categorization of a set of 1353 

websites by a machine learning algorithm into three categories, namely phishing, suspicious, and 

legitimate URLs. The dataset was gathered from published papers and divided into 70-30 in the training 

and testing phases. This will help keep members' banking and personal data much safer online. This paper 

uses the RFC model with two optimization schemes, Sea Horse Optimizer (SHO) and Jellyfish Search 

Optimization Algorithm (JSOA), to improve performance. After that, optimized versions of the schemes 

are tagged as RFSH and RFJS, respectively. After extensive training and testing on these three schemes, 

the best model was identified by comparing the performances of the three on the database in hand. The 

RFSH model performed better predicting, achieving 0.952 for all the data. It outperformed the RFJS 

model with a precision of 0.932 and the RFC single framework with an accuracy of 0.9106. Hence, it 

emerged as the best-predicting model. 

Povzetek: Opisana je metoda za kategorizacijo spletnih strani kot lažnih, sumljivih ali legitimnih, ki 

uporablja klasifikator naključnih gozdov z metahevristično optimizacijo na osnovi morskega konjička in 

meduze; pristop izboljša učenje in zanesljivost brez ročnega prilagajanja.

1 Introduction 
Phishing typically entails the creation of a fraudulent 

website with a sophisticated resemblance to a legitimate 

and trusted business site, designed to trick users and 

illicitly acquire their credentials, including login 

information [1]. The malevolent intent of phishers is to 

exploit acquired credentials to unlawfully access sensitive 

financial records—such as bank account numbers and 

credit card details—making the early detection and 

classification of malicious websites a critical step in 

preventing such breaches [2]. The significance of the 

Internet extends beyond member users to encompass 

organizations engaged in online business activities. Many 

enterprises provide online trading and services and goods 

sales [3]. Regrettably, the repercussions of falling victim 

to phishing are severe for users, as they become 

susceptible to identity theft and information breaches [4]. 

In a typical phishing attack, the initiation involves 

dispatching an email that seems to be from a lawful 

organization to potential victims. These emails prompt 

users to click on a URL embedded within it, encouraging 

recipients to modify their login information [5]. 

Alternative means of disseminating phishing Uniform 

Resource Locators (URLs) encompass Black Hat search 

engine optimization (Black Hat SEO) [6], peer-to-peer file  

 

sharing, blogs, forums [7], instant messaging (IM) [8], and 

Internet Relay Chat (IRC) [9]. 

Phishing toolkits, utilized by attackers, consist of 

compressed files containing replicated legitimate login 

pages (HTML, PHP, etc.) and associated resource files 

(images, CSS, logos, favicons, JavaScripts, etc.). These 

compressed files are then uploaded to a web server for 

hosting the phishing site, with attackers choosing various 

web servers, including compromised ones, free hosting 

providers, or paid services. The designers of these toolkits 

take precautions to evade traditional anti-phishing 

measures, employing techniques such as omitting or 

misspelling brand names found in titles, URLs, copyright 

information, headers, and descriptions. Additional tactics 

involve removing anchor links originally directed to 

legitimate URLs and replacing them with null anchor 

links. While attackers have the option to develop phishing 

sites from scratch, it is a resource-intensive process in 

terms of both time and design [10], [11], [12], [13], [14], 

[15], [16]. 

The categorization of phishing attacks is explained as 

follows [17]: 

• Deceptive Phishing: Deceptive Phishing is a 

prevalent form of cyber-attack in which attackers 

impersonate legitimate companies to acquire personal 

information and login passwords illicitly. 
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Subsequently, they use this information to blackmail 

users to comply with their demands. 

• Spear Phishing: Spear Phishing involves analyzing 

wireless network traffic using a wireless intrusion 

detection prevention system. While effectively 

detecting unauthorized wireless networks, it falls 

short in identifying suspicious activity at the 

application layer, transport layer, and protocol 

activities within a specific monitoring range. 

• Clone Phishing: Clone Phishing entails creating an 

identical or cloned email using a legal or previously 

acquired email's attachment, link, and recipient 

address. The link is then substituted with a harmful 

version and transmitted to the victim from a spoofed 

email address, potentially leading to information 

compromise or gaining a foothold on another 

machine. 

• Whaling: Whaling targets high-profile members, 

aiming to extract information through mediums like 

social media. Victims, called Whales or Big Phishers, 

are subjected to attacks similar to Spear Phishing, 

which involves acquiring personal data for malicious 

purposes. 

• Link Manipulation: This is a phishing tactic in which 

a phisher sends a link to a spoofed or malicious 

website. When opened, the link directs the user to the 

phisher's website instead of the one mentioned. Still, 

users can prevent being deceived by manipulated 

links by checking the actual address before clicking. 

• Voice Phishing: This, also known as vishing, is a 

phone-based violent crime that employs social 

engineering through the telephone system. It aims to 

extract personal and financial information for illicit 

economic activities. 

Certain threat intelligence entities specializing in 

security identify and disclose malevolent web URLs or 

IPs, offering a blocklist database. This proactive approach 

aids in safeguarding others from the deleterious impacts of 

phishing.  

Two distinct approaches are employed to differentiate 

between legitimate and phishing websites. The first 

method involves checking whether the requested URL is 

present on blocklists and comparing it with entries in those 

lists [18]. The second approach utilizes meta-heuristic 

tactics, wherein an extensive set of traits is retrieved from 

the site to categorize it as authentic or fraudulent [19]. The 

accuracy of the meta-heuristic tactic relies on retrieving a 

distinctive set of traits crucial for discerning between 

website types [20]. Data mining techniques are commonly 

employed to extract website traits to uncover patterns and 

relationships [21]. The significance of data mining 

schemes lies in their role in decision-making, as decisions 

can be informed by rules derived from these schemes [22]. 

Table 1 shows the literature review on literature 

reviews on studies that utilized various phishing website 

detection techniques.

 

Table 1: Literature reviews on studies that utilized various phishing website detection techniques. 

No. Utilized approach Algorithm Dataset Year Ref. 

1 Heuristic and ML 
Random Forest and 

Multilayer Perceptron 

UCI ML Repository, 

11,000 URL instances, and 

30 features 

2018 [23] 

2 Heuristic and ML Random Forest 

PhishTank 

11,055 instances and 30 

features 

2020 [24] 

3 
Visual Similarity, 

Heuristic and ML 
Logistic Regression 

PhishTank 

Yahoo 

URLBlacklist 

DMOZ 

2019 [25] 

4 
Visual Similarity, 

Heuristic and ML 

Support Vector 

Machine 

Random Forest 

Decision Tree 

K-Nearest Neighbor 

XGBoost 

Gradient Boosting and LightGBM 

PhishTank 

Alexa 

2000 web pages 

2019 [26] 

5 
Visual Similarity 

 and ML 
Logistic Regression 

OpenPhish 

PhishTank 

PhishStats 

2021 [27] 
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6 

Blacklist-Based, Visual 

Similarity, Heuristic, 

and ML 

Adaptive Neuro-Fuzzy Inference 

System (ANFIS) 

Nave Bayes, PART, J48 Tree, and JRip 

PhishTank 

MillerSmiles 

Relbanks 

2021 [28] 

7 

List-Based, Visual 

Similarity, Heuristic, 

and ML 

Support Vector 

Machine 

Random Forest 

Decision Tree 

AdaBoost 

XGBoost 

PhishTank (4097 

instances) and Google 

(5438 instances) 

2020 [29] 

8 
ML and 

Heuristic 

K-Nearest Neighbor, Logistic Regression, 

and Random Forest 

Kaggle 11,504 URL with 

32 attributes 
2020 [30] 

9 ML 
Random Forest 

Decision tree 

Kaggle 11,504 URL with 

32 attributes 
2020 [31] 

10 
ML and 

Heuristic 

Support Vector 

Machine 

LightGBM 

Multilayer 

Perceptron 

Convolution Neural 

Network 

ISCXURL-2016, 2978 

instances, and 77 different 

features 

2021 [32] 

11 
ML and 

Heuristic 

Support Vector 

Machine, 

Grey Wolf Optimizer 

algorithm, 

Bat Algorithm, 

Whale Optimization 

Algorithm, 

Firefly Algorithm 

PhishTank 

Yahoo 

UCI ML repository 

2021 [33] 

12 
Deep Learning, 

Heuristic, and ML 

Neural Network 

K-Nearest Neighbor 

Logistic Regression 

Support Vector 

Machine 

Gradient boosting, Ada-boost, and Random 

Forest 

GitHub 2020 [34] 

13 
Deep Learning, 

Heuristic, and ML 

Multilayer 

Perceptron 

Neural Network 

Kaggle (10,000 web 

pages), ten features 
2020 [35] 

14 
Convolutional Neural 

Network (CNN) 
Long Short-Term Memory (LSTM) 651191 URLs 2024 [36] 

15 ML and Deep Learning 

XGBoost classifier, CNN, LSTM, and two 

hybrid models (CNN-LSTM and LSTM-

CNN) 

88647 instances 2024 [37] 

16 
Reinforcement 

Learning 
Q-Learning-based Large URLs dataset 2024 [38] 

17 
Reinforcement 

Learning 
SmartiPhish 83275 instances 2024 [39] 

The research on large-scale sophisticated machine 

learning with data mining methods will be highly accurate 

in differentiating between phishing, suspicious, and 

benign websites, lending considerable importance to 

increasing the user's information security. This work will 

further develop the effectiveness by adding two new 
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optimization schemes: SHO and JSOA. This cautious 

approach adds to cybersecurity strategy development and 

further convinces one to commit to improving and 

optimizing the prevalent framework to provide more 

accurate and reliable outcomes in detecting potential 

threats within the online environment. 

2 Materials and methodology 

2.1 RFC 

RF is a type of supervised ML used for categorization and 

anticipation problems. In categorization problems, the 

performance of a random forest is excellent. A forest 

means multiple DTs and grows stronger with more trees. 

Every tree will be constructed using different data samples 

using the RFC method. Each of these trees predicts new 

data points independently and is involved in the voting 

system of the decision-making. The ultimate forecast 

(𝐶𝑙𝑟𝑓
𝐵 ) is derived from most voting mechanisms, 

categorizing it as an ensemble tactic. This collective 

strategy, which utilizes uncorrelated tree schemes, 

outperforms a member model by mitigating errors and 

improving overall precision via the varied inputs 

contributed to the final forecast. 

In developing DTs, trait retrieval and pruning 

techniques are vital. The Gini Index method [40] is 

particularly notable for trait retrieval in RFC, evaluating 

trait inconsistency concerning their classes. This method 

assesses inconsistency by haphazardly choosing a sample 

from the training set and predicting its class as 𝐶𝑙𝑖. The 

trait retrieval is expressed through the formula, where 
𝐹(𝐶𝑙𝑖,𝑇)

(|𝑇|)
 displays the likelihood that a selected case belongs 

to 𝐶𝑙𝑖 [41].  

∑∑(𝐹(

𝑗≠𝑖

𝐶𝑙𝑖 , 𝑇)/(|𝑇|)(𝐹(𝐶𝑙𝑗, 𝑇)/(|𝑇|) 
(1) 

Two critical parameters must be defined in 

constructing an RFC anticipation model: the count of trees 

(N, user-defined) and the input variables assigned to each 

tree. Comprising N DTs, RFC jointly utilizes their 

anticipations to determine the class of new data points 

through a voting mechanism [42]. 

2.2  Sea Horse optimizer (SHO) 

Zhao et al. [43] introduced the SHO, a novel metaheuristic 

inspired by swarm intelligence and derived from the 

unique actions of SHs, including their transience, hunting 

strategies, and birthing strategies. The SHO is designed to 

adapt and survive in its environment, drawing inspiration 

from these key characteristics of SHs. 

SHO entails four steps: 1_initialization, 2_mobility, 

3_predation, and 4_breeding, with thorough explanations 

below. 

2.2.1 Initialization step 

Like various other metaheuristic schemes, SHO initiates 

by establishing the group. In this instance, the SHs within 

the group are potential solutions to an issue within the 

search domain, expressed through Eq. (2): 

𝑆 = [
𝑥1
1 … 𝑥1

𝑑

… … …
𝑥𝑃
1 … 𝑥𝑃

𝑑
]  (2) 

𝑑 displays the dimensionality of the variable, 𝑃 

signifies the group volume, and 𝑠 displays the SHs in the 

group. 

To create member solutions, the upper bound (Ub) 

and lower bound (Lb) of the problem were deployed as 

first spots for random creation. The process for creating 

the 𝑖 − 𝑡ℎ member, 𝑋𝑖, in the search domain [Lb, Ub], is 

outlined by Eqs. (3) and (4). 

𝑋𝑖 = [𝑥𝑖
1, … , 𝑥𝑖

𝑑]  (3) 

𝑥𝑖
𝑗
= 𝑟𝑎𝑛𝑑 ∗ (𝑈𝑏𝑗 − 𝐿𝑏𝑗) + 𝐿𝐵𝑗   (4) 

Ub and Lb for the j − th variable in the enhanced 

issue is displayed as Ubj and Lbj, accordingly. 

rand displays a random number within the [0, 1] 

range, where: 

j displays an integer from 1 to d (dimensionality of the 

problem), d displays the dimensionality of the problem, i 
displays a positive integer from 1 to P (size of the group), 

P displays the size of the group, xi
j
 signifies the j − th 

aspect of the i − th member in the group. 

When addressing a minimum/maximum enhancement 

issue, the member exhibiting the lowest/highest fitness 

degree is recognized as Xb, showcasing the best 

resolution. The value of Xb can be calculated using Eq. 

(5): 

𝑋𝑏 = argmin 𝑜𝑟max  (𝑓(𝑋𝑖))  (5) 

𝑓(𝑋𝑖)  displays the value of the objective function for 

a particular task. 

2.2.2 Transition step 

SHs exhibit varied transition schemes influenced by a 

normal distributed random spread (0,1). Balancing 

exploration and exploitation, a cut-off point at 𝑟1 = 0 

divides SHs into halves for local and global search. Later 

algorithm steps handle the transition treatment. 

First step: 

SHs spiral in response to ocean vortices. If the chance 

value 𝑟1 surpasses the SHO limit, the scheme emphasizes 

local exploitation. SHs move spirally toward the best 

resolution 𝑋𝑏, using Lévy flights for the step size. This 

benefits exploration in early cycles and prevents over-

localization. The spiral transition dynamically adjusts the 

rotation angle, expanding the search domain. Eq. (6) is 

employed to create a fresh position for SHs.  

𝑋𝑛𝑒𝑤
1 (𝑡 + 1) = 𝑋𝑖(𝑡) + 𝐿𝑒𝑣𝑦 (𝜆)((𝑋𝑏(𝑡)

− 𝑋𝑖(𝑡) ∗ 𝑥 ∗ 𝑦 ∗ 𝑧
+ 𝑋𝑏(𝑡)) 

ℎ. 𝑡

{
 

 
𝑥 = 𝑝 ∗ cos (𝜃)

𝑦 = 𝑝 ∗ sin (𝜃)
𝑧 = 𝑝 ∗ 𝜃

𝑝 = 𝑢 ∗ 𝑒𝜃𝑣 }
 

 
 

(6) 
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The parameters 𝑢 and 𝑣 characterize the logarithmic 

spiral, influencing the stem length (𝑝), with a constant set 

to 0.05 for every 𝑢 and 𝑣 combination. The three-

dimensional coordinates under spiral transition are 

displayed by 𝑥, 𝑦, and 𝑧. 𝜃 is chosen haphazardly within 

the range of [0, 2𝜋]. 

The Lévy flight spreadfunction (Levy(z)) is gauged 

by Eq. (7). 

𝐿𝑒𝑣𝑦(𝑧) = ℎ ∗ 
𝜔∗𝜎

|𝑘|
1
𝜆

  (7) 

Random positive numbers 𝑤 and 𝑘 are chosen from 

the range of zero to one. The variable ℎ is fixed at 0.01, 

and 𝜆 is haphazardly picked from the interval [0, 2], with 

a specific value of 1.5. The computation of 𝜎 is identified 

by applying Eq. (8). 

𝜎 = (
Γ(1+𝜆)∗sin (

𝜋𝜆

2

Γ(
1+𝜆

2
)∗𝜆∗2

(
𝜆−1
2 )
)  (8) 

Second step: 

This step illustrates SHs' Brownian transition, which 

was influenced by ocean waves. If 𝑟1 is on the left of the 

restriction, SHO shifts to a drifting mode to avoid local 

optima. As described by Eq. (9), Brownian transition 

extends SHs' transition range for enhanced exploration in 

the search domain. 

𝑋𝑛𝑒𝑤
1 (𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑟𝑎𝑛𝑑 ∗ 𝑙 ∗ 𝛽𝑡

∗ (𝑋𝑖(𝑡) − 𝛽𝑖 ∗ 𝑋𝑏𝑒𝑠𝑡) 
(9) 

ℎ. 𝑡 {𝛽𝑡 =
1

√2𝜋
exp (−

𝑥2

2
)} 

The random walk coefficient for Brownian transition 

is displayed by βi, and a fixed parameter with a value of 

0.05 is represented by the symbol l. 
The fresh position of the SH at cycle t can be gauged 

by mixing the two described situations with the use of Eq. 

(10):  
𝑋𝑛𝑒𝑤
1 (𝑡 + 1) = 

{
𝑋𝑖(𝑡) + 𝐿𝑒𝑣𝑦(𝜆) ((𝑋𝑏(𝑡) − 𝑋𝑖(𝑡)) ∗ 𝑥 ∗ 𝑦 ∗ 𝑧 + 𝑋𝑏(𝑡)),    𝑟1 > 0

𝑋𝑖(𝑡) + 𝑟𝑎𝑛𝑑 ∗ 𝑙 ∗ 𝛽𝑡 ∗ (𝑋𝑖(𝑡) − 𝛽𝑖 ∗ 𝑋𝑏),   𝑟1 ≤ 0 
 

(10

) 

2.2.3 Predation step 

When SHs hunt for zooplankton, success or failure is 

identified by a random number, 𝑟2, created by SHO. With 

a probability of over 90% for successful predation, the 

critical value of 𝑟2 is set at 0.1. Effective hunting, indicated 

by 𝑟2 greater than 0.1, involves the SH approaching, 

overtaking, and capturing the prey (ideal resolution). 

Unsuccessful attempts result in sea horse and prey moving 

in the opposite direction, indicating continued exploration. 

The predation behavior is mathematically represented by 

Eq. (11). 

𝑋𝑛𝑒𝑤
2 (𝑡 + 1) = {

𝛼 ∗ (𝑋𝑏 − 𝑟𝑎𝑛𝑑 ∗ 𝑋𝑛𝑒𝑤
1 (𝑡) + (1 − 𝛼) ∗ 𝑋𝑏 ,                 𝑖𝑓   𝑟2 > 0.1

(1 − 𝛼) ∗ (𝑋𝑛𝑒𝑤
1 (𝑡) − 𝑟𝑎𝑛𝑑 ∗ 𝑋𝑏) + 𝛼 ∗ 𝑋𝑛𝑒𝑤

1 (𝑡),          𝑖𝑓  𝑟2 ≤ 0.1 
 (11) 

The refreshed position of the SH after transition at 

cycle 𝑡 is displayed by 𝑋𝑛𝑒𝑤
1 (𝑡). The variable 𝑟2 is a 

haphazardly created integer in the interval of 0 to 1. 

The computation outlined in Eq. (12) determines that 

the SH's transition step size diminishes linearly with 

cycles when chasing prey.  

𝛼 = (1 −
𝑡

𝑇
)

2𝑡
𝑇

 (12) 

𝑇 displays the algorithm's maximum number of 

cycles. 

2.2.4 Breeding behavior phase 

The group is split into male and female groups based on 

fitness levels to address male SHs' breeding action. In 

SHO, members with the highest fitness become selected 

fathers, while the rest form the group of chosen mothers. 

Eq. (13) demonstrates that this separation hinders 

excessive localization of fresh approaches and facilitates 

the inheritance of beneficial traits by both mothers (𝑀) 

and fathers (𝐹), ultimately benefiting the next generation. 

{
𝐹 = 𝑋𝑠𝑜𝑟𝑡

2 (1:
𝑃

2
)

𝑀 = 𝑋𝑠𝑜𝑟𝑡
2 (

𝑃

2
+ 1: 𝑝)

 (13) 

𝑋𝑠𝑜𝑟𝑡
2  signifies the solutions 𝑋𝑛𝑒𝑤

2  sorted by increasing 

fitness values. In SHO, mothers and fathers match the 

female and male groups. It functions on the presumption 

that fresh offspring arise from the chance pairing of 

females and males. Efficiency is maintained by assuming 

each sea horse pair produces only one offspring, as 

illustrated in Eq. (14). 

𝑋𝑖
𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔

= 𝑟3𝑋𝑖
𝐹 + (1 − 𝑟3)𝑋𝑖

𝑀 (14) 

The variable 𝑖 is a positive value in the range [1,
𝑝

2
], 

where p is a metric. 𝑋𝑖
𝐹 and 𝑋𝑖

𝑀 denote the haphazardly 

selected male and female members, respectively. The 

integer 𝑟3 is haphazardly created and falls within the range 

[0, 1]. Fig. 1 displays the diagram of SHO. In this figure, 

t represents the iteration.
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Figure 1: Flowchart of SHO 

2.3 Jellyfish search algorithm (JSO) 

A recent addition to swarm-based metaheuristics is JSO, 

developed by Chou and Truong in 2021 [44]. JSO mimics 

the way jellyfish search for food in the ocean [45]. 

2.3.1 Numerical framework 

JSO adheres to three theoretical standards: 

2.3.1.1. Marine flow 

Jellyfish can sense the path of marine flows (as per Eq. 

(15)) to discover and consume smaller planktonic forms. 

𝑂𝐶⃗⃗⃗⃗  ⃗ = 𝑋′ − 𝛽 ×𝑀 × 𝑑(0,1) (15) 

Here, 𝐷⃗⃗  displays the direction of the marine flow, 
𝛽 (𝛽 > 0) is the coefficient defining the length 

distribution of 𝑂𝐶⃗⃗⃗⃗  ⃗, 𝑋′ displays the place of the current 
best jellyfish in the swarm, and M is the mean location 
of all jellyfish. 

The refreshed position of every jellyfish can be 
articulated as follows: 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑑(0,1) × 𝑂𝐶⃗⃗⃗⃗  ⃗ (16) 

After adjusting each jellyfish's situation, a 
favorable place, potentially with increased food source 
availability, is selected as the jellyfish's current 
position. 

2.3.1.2.  Jellyfish bloom 

Jellyfish within a bloom display two kinds of transitions: 

passive and active. Here, mathematical schemes for these 

transitions are presented: 

Passive transition:      𝑋𝑖(𝑡 + 1) =
𝑋𝑖(𝑡) + 𝜆 × 𝑑(0,1) × (𝑤𝑏 − 𝐿𝑏)  

(17) 

Here, λ (λ > 0) is a coefficient linked to the degree of 

passive transition. The lower bound, 𝑤𝑏 , and the upper 

bound, 𝐿𝑏, define the search domain. 

Active transition:      𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑟(0,1) × 𝐷⃗⃗   
Were    

 𝐷⃗⃗ =

 {
𝑋𝑖(𝑡) − 𝑋𝑗(𝑡)     𝑖𝑓      𝑔(𝑋𝑖) <   𝑔(𝑋𝑗)

𝑋𝑗(𝑡) − 𝑋𝑖(𝑡)     𝑖𝑓      𝑔(𝑋𝑖) ≥   𝑔(𝑋𝑗)
  

(19) 

The values of the objective function for jellyfish 𝑖 and 

𝑗 are displayed as 𝑔(𝑋𝑖) and 𝑔(𝑋𝑗) respectively. 

2.3.1.3.  Time management system 

It governs both the transition of the two types of jellyfish 

in the bloom and their transitions toward marine flows. 

The function representing this time control is expressed 

as: 

𝑇(𝑡) = |(1 −
𝑡

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
) × (2 × 𝑑(0,1)

− 1| 
(20) 



Enhanced Phishing Website Categorization Using Random Forest with…                                     Informatica 49 (2025) 249–266   255                                                                                                                         

Here, 𝑡 displays the time index, expressed as the cycle 

count, and 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 displays the peak count of cycles. 

2.3.2 Group initialization 

The initial group is created using the Logistic map. 

 𝑋𝑖+1 = 𝜐𝑋𝑖(1 − 𝑋𝑖),                      0 ≤ 𝑋0
≤ 1 

(21) 

Here, 𝑋𝑖 displays the chaotic value corresponding to 

the location of the 𝑖 − 𝑡ℎ jellyfish and 𝑋0 displays a 

location created haphazardly. Throughout all experiments, 

the parameter 𝜐 is fixed at a value of 4. 

2.3.3 Boundary regulation system 

If a jellyfish exceeds the boundaries of the defined search 

domain, it will be positioned in those boundaries using Eq. 

(37). 

{
𝑋′𝑖,𝑟 = (𝑋𝑖,𝑟 −𝑊𝑏,𝑟) + 𝐿𝑏,𝑟      𝑖𝑓      𝑋𝑖,𝑟 >  𝑊𝑏,𝑟

𝑋′𝑖,𝑟 = (𝑋𝑖,𝑟 − 𝐿𝑏,𝑟) +𝑊𝑏,𝑟      𝑖𝑓      𝑋𝑖,𝑟 <  𝑊𝑏,𝑟

 
(22

) 

Here, 𝑋𝑖,𝑟  and 𝑋′𝑖,𝑟 display the present and refreshed 

place of the d-th dimension for the i-th jellyfish. 

𝑊𝑏,𝑟𝑎𝑛𝑑 𝐿𝑏,𝑟 denote the lower and upper bounds, 

respectively, for the 𝑟 − 𝑡ℎ dimension in the search 

domain. 

The diagram for JSO is illustrated in Fig. 2, and the 

corresponding pseudocode is provided below. 

Initialization phase 

Define the parameters for the algorithm: number of population (𝑛𝑝𝑜𝑝) and maximum cycle (𝑀𝑎𝑥𝐼𝑡𝑒𝑟) generate the primary 

group 𝑋𝑖(𝑖 = 1,2,… , 𝑛𝑝𝑜𝑝) using Eq. (21) 

Assess the initial group, 𝑓(𝑋𝑖)(𝑖 = 1,2, … , 𝑛𝑝𝑜𝑝) 

Identify the current top-performing jellyfish (𝑋′) 
Initialize time: 𝑡 = 1 

Cyclic body of the algorithm 

While 𝑡 ≤𝑀𝑎𝑥𝐼𝑡𝑒𝑟 
For 𝑖 = 1: 𝑛𝑝𝑜𝑝 

Gauge the time regulation 𝑇(𝑡) using Eq. (20) 

If 𝑇(𝑡) ≥ 0.5 

Calculate the path of the marine flow using Eq. (15) 

Compute the refreshed position of the 𝑖 − 𝑡ℎ jellyfish using Eq. (16) 

Else 

If (1 − 𝑇(𝑡)) < 𝑟𝑎𝑛𝑑(0,1) 

Calculate the refreshed position of the 𝑖 − 𝑡ℎ jellyfish using Eq. (17) 

Else 

Compute the refreshed position of the 𝑖 − 𝑡ℎ jellyfish using Formulas (18) and (19) 

End if 

End if 

Verify restriction situations using Eq. (22) 

Examine the fresh place of the 𝑖-th jellyfish 

Refresh the place of the 𝑖-th jellyfish (𝑋𝑖) 
Update the place of the currently best jellyfish (𝑋′) 
End for 𝑖 

𝑡 = 𝑡 + 1 

End while 

Output the ideal outcomes 
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Figure 2: Flowchart of JSO 

2.4 Data collection 

An integral phase in the data mining procedure entails 

thoroughly preprocessing the database. During this step, 

textual information is meticulously transformed into 

numerical values, laying the basis for utilizing machine 

learning schemes and sophisticated statistical approaches. 

This is a critical transformation that will enable an in-

depth analysis of the database and, therefore, yield 

material insight into its usage. 

The database contains different factors organized 

carefully to distinguish between phishing websites and 

real ones. The data is presented in a structured framework 

that allows for in-depth, organized scrutiny for more 

accurate and reliable analysis in the future. 

The present work examines a manifold of inputs over 

various dimensions that drastically affect the decision 

between phishing and legitimate websites. Its 

comprehensiveness embraces a wide range of elements, 

from technical indications to behaviorist trends, to delve 

deeply into the interactions related to web security. The 

dataset gathered from the published study [46].  

• SFH (Server Form Handler): Evaluates the security 

of form submissions on a webpage. 

• Pop-Up Window: Assesses the presence or behavior 

of pop-up windows on a webpage. 

• SSL final state: displays the final state of an SSL 

(Secure Sockets Layer) connection, providing 

insights into the website's security. 

• Request URL: This examines the URLs requested 

during a web page's loading. It is often used to assess 

potential security threats. 

• URL of Anchor: Analyzes the anchor (hyperlink) tags 

in the webpage, assessing the quality and security of 

linked URLs. 

• Web traffic: Measures a website's web traffic or 

popularity, which can indicate its trustworthiness. 

• URL Length: Assesses the length of the URL, as 

excessively long URLs may be associated with 

phishing or deceptive websites. 

• Age of domain: Displays the age of the domain, with 

older domains often considered more trustworthy. 
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• Having IP Address: Showcases whether the URL has 

an IP address, and the presence of an IP address in the 

URL may be a security concern. 

A diversified strategy like this would ensure 

completeness in the analysis regarding various factors 

that, when combined, help differentiate phishing websites 

from real ones. In this respect, it involves a broad appraisal 

of technical criteria, behavioral trends, and contextual 

influences. This is multi-dimensional research in this 

direction, aspiring to encapsulate the intricacy of detecting 

deceitful online actions versus real sites. 

Fig. 3 presents the correlation matrix, illustrating the 

relationships between the input features and the target 

classification outcome (i.e., whether a URL is phishing, 

suspicious, or legitimate). The figure uses color intensity 

to represent the strength of the correlation, with darker 

shades indicating stronger relationships. The most 

influential feature in this analysis is "Having an IP 

Address," which shows the highest positive correlation 

score of 3.8, highlighting its critical role in distinguishing 

fraudulent websites. This aligns with cybersecurity 

principles, as phishing sites often use direct IP addresses 

to bypass domain reputation checks. Additionally, the SSL 

final state exhibits a moderately strong correlation of 1.9, 

indicating that the presence or absence of a secure SSL 

certificate substantially affects phishing likelihood. 

Another significant input is the domain age, which shows 

a positive correlation, emphasizing that newer domains 

are often associated with phishing behavior. Conversely, 

SFH presents a negative correlation of -0.70, suggesting 

that poorly configured or insecure form handlers are 

strongly associated with fraudulent websites. Overall, the 

correlation analysis underscores that most features 

negatively influence a website's authenticity, with only a 

few—like Web Traffic (0.21) and Having an IP Address 

(1.7)—exerting clear positive impacts. 

 

Figure 3: Correlation matrix for the link between inputs and output. 

3 Outcomes 

3.1 Framework practicality appraisal 

Accuracy is a common metric for assessing a framework's 

total productivity in classifying issues. It relies on True 

Positives (𝑇𝑃), True Negatives (𝑇𝑁), False Positives (𝐹𝑃), 

and False Negatives (𝐹𝑁). However, Accuracy may be less 

effective in imbalanced data, favoring the majority class. 

To address this, Recall, Precision, and F1-Score are 

additional metrics offering nuanced insights into model 

performance, particularly in imbalanced situations. These 

metrics, expressed in numerical formulas (typically 

numbered 23 to 26), collectively refine the appraisal of a 

categorization model's effectiveness. In addition, Table 2 

displays the formula of appraisal metrics. 
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Table 2: Formulation of appraisal metrics 

Metrics Number 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (23) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (24) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 =
𝑇𝑃
𝑃
=

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

 (25) 

𝐹1_𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑅𝑒𝑐𝑎𝑙𝑙 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (26) 

3.2 Convergence outcomes 

Convergence diagrams are widely used in scholarly 

communication to visually illustrate the optimization 

progress in schemes or schemes across cycles. Fig. 4 

illustrates the convergence behavior of the two 

optimization-based models—RFSH and RFJS—over 200 

learning cycles. Initially, both models start from similar 

baselines. The RFJS model demonstrates an early surge in 

performance during the first few cycles, indicating a faster 

initial convergence. However, this gain plateaus over 

time. In contrast, the RFSH model shows a more 

consistent and gradual improvement in accuracy 

throughout the training process. By the 200th cycle, RFSH 

achieves a superior final accuracy of approximately 0.91, 

compared to 0.89 for RFJS. This convergence pattern 

highlights the resilience and adaptive efficiency of the 

RFSH model, particularly in later training stages. The 

performance advantage of RFSH may be attributed to the 

exploitation–exploration balance managed by the Sea 

Horse Optimizer, enabling more refined learning during 

prolonged iterations. Both models were fine-tuned using a 

random search hyperparameter optimization technique, 

which explored multiple combinations of parameters to 

maximize model performance. 

 

Figure 4: 3D ribbons for the convergence of hybrid models 

3.3 Comparing outcomes of predictive 

schemes 

Table 3 presents a thorough overview of the outcomes 

derived from the developed RFC schemes, providing a 

detailed insight into their performances. In addition, Fig. 

5 employs a 3D bar chart to visually illustrate how 

assessors evaluated these schemes, aiming to pinpoint the 

model that excels in precision when predicting practical 

results. A considerable portion of the database endures 

intensive training, while the remaining values undergo 

meticulous testing. The outcomes, covering the entire 

database, are carefully noted in Fig. 5, graphically 

showcasing the essential parameter for scheme appraisal. 

Accuracy appraisal is performed in three phases: Train, 

Test, and All. The outcomes observed during the training 

phase across all three schemes expose superior 

performance relative to the subsequent phases. A 

comparative analysis of the data from both the training and 

test phases, as presented in the consolidated All phase, 

highlighted that the RFSH model, exhibiting an 

approximate value of 0.952, surpasses the optimized RFJS 

model with a value of 0.932 and the single RFC model, 

which records a value of 0.91. This highlights the RFSH 

model's distinction as superior in this evaluative context. 

The elucidated values from Table 3 are graphically 

depicted in Fig. 5. Notably, the RFC and RFJS schemes 

exhibit relatively consistent columnar patterns. However, 
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the RFHS model displays a decrement in performance 

during the test section, followed by a subsequent recovery 

in the all-encompassing section. This resurgence 

underscores its superiority and establishes a notable 

advantage over the other schemes. 

Table 3: Result of RFC-based developed models in the training, testing, and All sections. 

Phase Index values 
Schemes 

RFC RFJS RFSH 

Train 

Accuracy 0.9113 0.9324 0.9567 

Precision 0.9104 0.9324 0.9570 

Recall 0.9113 0.9324 0.9567 

F1 _score 0.9102 0.9324 0.9567 

Test 

Accuracy 0.9089 0.9310 0.9409 

Precision 0.9095 0.9323 0.9423 

Recall 0.9089 0.9310 0.9409 

F1 _score 0.9083 0.9312 0.9409 

All 

Accuracy 0.9106 0.9320 0.9520 

Precision 0.9097 0.9320 0.9524 

Recall 0.9106 0.9320 0.9520 

F1 _score 0.9095 0.9320 0.9520 

 

 
 

 

Figure 5: Achievement-based 3D bar chart for the developed models' productivity by evaluators 

3.4 Categorization outcomes 

Table 4 and Fig. 6. facilitate a comparison of the model's 

accuracy in predicting legitimate, phishing, and suspicious 

instances. Examining Fig. 6. indicates specific gauged 

values, where phishing instances are recorded as 548, 

suspicious instances as 702, and legitimate instances as 

103. Notably, the RFSH model exhibits the highest correct 

anticipation rates across the three categories, with 

numerical values corresponding to 101 legitimate cases, 

514 instances of phishing, and 673 instances of suspicious 

categories. Additionally, Table 4 underscores the 

precision values, revealing a remarkable match of 95.72% 

for phishing, 95.73% for suspicious, and 89.38% for 

legitimate instances within the RFSH model. This 
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underscores its pronounced superiority in accuracy. 

Further substantiating this superiority, the F1-score and 

Recall sections also reflect favorable outcomes for the 

RFSH model. 

Table 4: Appraisal indexes of the designed schemes' productivity drawing on grades. 

Model Grade 
Index values 

Precision Recall F1-score 

RFC 

Phishy 0.918 0.9051 0.9084 

Suspicious 0.917 0.9444 0.9305 

legitimate 0.8488 0.7087 0.7725 

RFJS 

Phishy 0.9336 0.9234 0.9284 

Suspicious 0.9392 0.9459 0.9425 

legitimate 0.875 0.8835 0.8792 

RFSH 

Phishy 0.9572 0.938 0.9475 

Suspicious 0.9573 0.9587 0.958 

legitimate 0.8938 0.9806 0.9352 

 

 

Figure 6: Line-symbol plot for comparing the measured and predicted values 

Utilizing the confusion matrix enables the 

determination of miscategorizations for each model out of 

1353 websites in Fig. 7. A detailed examination of the 

columns illustrates specific miscategorization numbers for 

each model. The RFC model exhibits 52 

miscategorizations in phishy, 39 miscategorizations in 

suspicious, and 30 miscategorizations in legitimate 

instances. Similarly, the RFJS model records 42 

miscategorizations in phishy, 38 miscategorizations in 

suspicious, and 12 miscategorizations in legitimate cases. 

On the other hand, the RFSH model manifests 34 

miscategorizations in phishy, 29 miscategorizations in 

suspicious, and two miscategorizations in legitimate 

cases. 

Given the fewest anticipation errors compared to the 

gauged values, RFSH rises as the most favorable scheme 

for future anticipations. This miscategorization reduction 

underscores its potential for enhanced accuracy and 

reliability in subsequent predictive scenarios. 
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Figure 7: Confusion pattern showcasing the accuracy of each model

Fig. 8 presents the Receiver Operating Characteristic 

(ROC) curves for three models—RFC, RFJS, and 

RFSH—to evaluate their capability in distinguishing 

phishing, suspicious, and legitimate websites. The ROC 

curve illustrates the trade-off between the True Positive 

Rate (TPR) and the False Positive Rate (FPR) across 

different classification thresholds, where a curve closer to 

the top-left corner signifies superior classification 

performance. The baseline RFC model performs 

adequately with an Area Under the Curve (AUC) of 

0.8993 but shows a comparatively higher FPR. Upon 

integrating optimization strategies, the RFJS model 

achieves a notable improvement with an AUC of 0.9385, 

reflecting enhanced sensitivity and reduced 

misclassifications. The RFSH model, with the highest 

AUC of 0.9654, demonstrates exceptional discriminative 

ability, with a steep curve that indicates high sensitivity 

and minimal false positives. This figure underscores the 

effectiveness of incorporating metaheuristic optimization 

algorithms into the Random Forest framework, resulting 

in significant performance gains, with the RFSH model 

emerging as the most robust and reliable for phishing 

detection. 

 

Figure 8: Receiver Operating Characteristic (ROC) curve for the top-performing hybrid model 
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The SHAP analysis results in Fig. 9 highlight the most 

influential features in categorizing websites as phishy, 

suspicious, or legitimate. Among all features, the SFH 

demonstrates the highest importance, particularly for 

identifying phishy and legitimate websites, indicating that 

insecure form handling is a strong indicator of phishing 

behavior. Pop-Up Windows and SSL Final State are 

impactful features, showing that deceptive pop-ups and 

lack of proper SSL implementation are common traits in 

phishing websites, while secure SSL practices are 

associated with legitimate sites. Request URL and URL of 

Anchor have moderate importance, emphasizing the role 

of embedded links in signaling potential malicious intent. 

Web traffic, URL length, and age of the domain offer 

additional discriminative power, especially in 

differentiating legitimate sites from suspicious or phishy 

ones. Notably, the feature of Having an IP Address has 

minimal influence across all categories, suggesting that its 

standalone effect is limited in modern phishing detection. 

Overall, this analysis affirms that the model relies on 

behaviorally relevant features and offers a transparent 

interpretation of how each input contributes to the 

classification outcome. 

 

Figure9: Impact of the input variables on models' output based on SHAP sensitivity analyses. 

To assess the statistical significance of the differences 

in the performance of the three models, including RFC, 

RFSH, and RFJS, a one-way Analysis of Variance 

(ANOVA) test was conducted. The results are presented 

in Table 5. The F-values for RFC (0.2523), RFSH 

(0.0587), and RFJS (0.0491) are all notably low, and their 

corresponding P-values are substantially greater than the 

conventional significance level of 0.05 (specifically, 

0.6155, 0.8086, and 0.8246, respectively). These high P-

values indicate no statistically significant difference in the 

mean performances of the models based on the dataset 

under consideration. Despite RFSH achieving a higher 

accuracy in practice, the ANOVA results suggest that the 

observed performance improvements over RFC and RFJS 

may not be statistically significant at the 95% confidence 

level. This could be attributed to the relatively small test 

set size or the inherent variability in model predictions 

across different folds. 

Table 5: Result of statistical analyses based on ANOVA 

Model F-value P-value 

RFC 0.2523 0.6155 

RFSH 0.0587 0.8086 

RFJS 0.0491 0.8246 

 

4 Discussion 
The results of this study indicate that both optimized 

models, including RFSH and RFJS, outperform the 

baseline RFC in phishing website classification. The 

RFSH model achieved the best performance with an 

accuracy of 95.20%, followed by RFJS (93.20%) and RFC 

(91.06%). These gains are attributed to the capability of 

the metaheuristic optimizers to fine-tune model 

parameters, improving convergence, reducing overfitting, 

and enhancing generalization. 

The superior performance of RFSH compared to 

RFJS may stem from the SHO's more effective balance 

between exploration and exploitation. The SHO mimics 

the spatially aware swimming patterns of sea-horses, 

which may help it escape local optima better than the 

JSOA, whose dynamics are influenced by time-varying 

ocean currents and may be more susceptible to premature 

convergence. 

Table 6 presents a comparative analysis of the 

approach against state-of-the-art phishing detection 

models from recent studies. While the Extra Trees 

Classifier by Awasthi and Goel [46] reports a marginally 

higher accuracy (98.59%), other ensembles and gradient-

boosted models demonstrate performance comparable to 

or lower than the proposed RFSH model. For instance, 

Gradient Boosting (GB) in Pandey et al. [47] yielded 

95.7%, only slightly higher than our result, whereas 

XGBoost and GBDT methods in Yang et al. [48] achieved 

88.46% and 89.04%, respectively. 
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Table 6: Comparison of the current work with 

state of art phishing prediction articles. 

Source Article 
Model Result 

(%) 

Awasthi and Goel  

[47] 

Voting ensemble 95.51 

Extra trees 

classifier 

98.59 

Yang et al. [48] 

GBDT 89.04 

XGB 88.46 

Pandey et al [49] 

GB 95.7 

DT 94.2 

Current Study RFSH 95.20 

 

The RFSH model offers competitive performance 

compared to these works, especially considering its 

relatively low computational complexity and 

interpretability. Models like Extra Trees may require more 

extensive feature engineering and hyperparameter tuning, 

whereas the proposed RFSH balances efficiency and 

accuracy. Despite these promising results, there are 

several limitations to consider. First, the dataset was 

compiled from existing literature and may not fully 

capture the variability of real-time or zero-day phishing 

websites. Second, the static feature set may not be 

adaptable to evolving phishing techniques. Third, the 

study does not evaluate model latency or deployment 

feasibility in real-world scenarios. Future work will 

incorporate real-time URL streams, adaptive feature 

extraction, and ensemble optimization strategies to 

improve robustness and scalability further. Additionally, 

exploring hybrid deep learning approaches and evaluating 

model performance on live threat feeds could offer deeper 

insight into practical deployment in cybersecurity 

systems. 

4.1 Real-world application 

The proposed RFSH and RFJS models hold strong 

potential for real-world cybersecurity applications, 

particularly for detecting phishing websites in real-time. 

These models can be integrated into security tools such as 

browser extensions, secure web gateways, email filtering 

systems, and SIEM/SOAR platforms. Their main 

advantage lies in their ability to analyze website features 

and accurately flag suspicious activity quickly. From a 

computational standpoint, while training the models—

especially with optimization algorithms like SHO and 

JSO—requires moderate to high computational resources, 

the inference phase (actual prediction) is lightweight and 

fast. This makes the models suitable for real-time 

deployment, even on devices with limited resources. 

Moreover, their compatibility with various programming 

languages and deployment frameworks allows for easy 

integration into current infrastructures. They can be 

deployed via APIs or containerized environments (e.g., 

Docker) and scaled across cloud-based or enterprise 

systems. The models are also maintainable, as they 

support periodic retraining to adapt to new phishing 

techniques and can be updated remotely. In summary, 

RFSH and RFJS offer a practical, scalable, and efficient 

solution for phishing detection in real-time security 

systems, with minimal latency, strong interoperability, 

and manageable computational demands. 

4.2 Model adaptability and resilience against 

evolving phishing techniques 

Phishing techniques are constantly evolving, making 

it crucial for detection models to remain adaptive and 

resilient. While demonstrating strong performance on the 

current dataset, the proposed model may face challenges 

when exposed to newly developed phishing tactics that 

differ significantly from the patterns it has learned. To 

address this, the model would benefit from periodic 

retraining using updated datasets that reflect emerging 

threats and evolving attack vectors. Incorporating a 

continuous learning framework or active learning 

mechanism could enhance adaptability, allowing the 

model to identify novel patterns in real-time and adjust 

accordingly. Additionally, integrating threat intelligence 

feeds and community-reported phishing samples could 

ensure the model remains current and effective against the 

latest phishing strategies. Acknowledging and preparing 

for the dynamic nature of phishing threats significantly 

increases the proposed detection system's practical utility 

and long-term relevance. 

 

5 Conclusion 
This research classifies 1353 websites using machine 

learning (RFC model) and optimized schemes (Sea Horse 

and Jellyfish). It enhances technology for privacy and 

security, preventing information theft. The database is 

divided into subsets, and accuracy is assessed using 

metrics. Ultimately, the findings of this research are 

summarized as follows, which contribute to significant 

advancement in technology: 

• The presence of an IP address exhibited the most 

positive impact on the outcome, while the Server 

Form Handler had the most negative effect. This 

highlights a substantial discrepancy in the 

significance of these inputs, emphasizing the critical 

role of the IP address and the adverse consequences 

linked to the Server Form Handler. 

• The data table analysis indicates that the RFSH 

consistently outperformed the other two schemes in 

the training, test, and integration phases. The RFSH 

model showed a significant superiority of 2.14% over 

the RFJS model and a notable 4.54% advantage over 

https://scholar.google.com/citations?user=1en2NzYAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=jYbuZR8AAAAJ&hl=en&oi=sra
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the RFC model in overall accuracy appraisal. 

Notably, the RFSH model accurately predicted a 

substantial number (1353) of sites with an impressive 

95.19% correct anticipation rate, reinforcing its 

effectiveness in predictive modeling compared to 

alternative schemes. 

• The tabular outcomes were visually represented in 

figures, enhancing visibility and comprehension. 

Additional figures delineated the miscategorization 

rates, revealing 1.41 times more miscategorizations 

for the RFJS model and 1.86 times more for the RFC 

model than the RFSH model. Furthermore, the ROC 

diagram for the superior RFSH model illustrated a 

Micro Average ROC curve with a significantly larger 

area, which is evidenced by this. 

• Substantiates its role as the primary agent or actor in 

the superiority of this model.  
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