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In contemporary society, with advancements in science and technology, many global activities, ranging
from financial transactions to information transfers, are conducted through the Internet via dedicated
websites and applications. Unfortunately, the prevalence of online platforms has increased the
proliferation of fake websites aimed at exploiting sensitive data, such as bank card information and
personal details. It addresses the problem of cybersecurity w.r.t. the categorization of a set of 1353
websites by a machine learning algorithm into three categories, namely phishing, suspicious, and
legitimate URLs. The dataset was gathered from published papers and divided into 70-30 in the training
and testing phases. This will help keep members' banking and personal data much safer online. This paper
uses the RFC model with two optimization schemes, Sea Horse Optimizer (SHO) and Jellyfish Search
Optimization Algorithm (JSOA), to improve performance. After that, optimized versions of the schemes
are tagged as RFSH and RFJS, respectively. After extensive training and testing on these three schemes,
the best model was identified by comparing the performances of the three on the database in hand. The
RFSH model performed better predicting, achieving 0.952 for all the data. It outperformed the RFJS
model with a precision of 0.932 and the RFC single framework with an accuracy of 0.9106. Hence, it
emerged as the best-predicting model.

Povzetek: Opisana je metoda za kategorizacijo spletnih strani kot laznih, sumljivih ali legitimnih, ki
uporablja klasifikator nakljucnih gozdov z metahevristicno optimizacijo na osnovi morskega konjicka in

meduze; pristop izboljSa ucenje in zanesljivost brez rocnega prilagajanja.

1 Introduction

Phishing typically entails the creation of a fraudulent
website with a sophisticated resemblance to a legitimate
and trusted business site, designed to trick users and
illicitly acquire their credentials, including login
information [1]. The malevolent intent of phishers is to
exploit acquired credentials to unlawfully access sensitive
financial records—such as bank account numbers and
credit card details—making the early detection and
classification of malicious websites a critical step in
preventing such breaches [2]. The significance of the
Internet extends beyond member users to encompass
organizations engaged in online business activities. Many
enterprises provide online trading and services and goods
sales [3]. Regrettably, the repercussions of falling victim
to phishing are severe for users, as they become
susceptible to identity theft and information breaches [4].
In a typical phishing attack, the initiation involves
dispatching an email that seems to be from a lawful
organization to potential victims. These emails prompt
users to click on a URL embedded within it, encouraging
recipients to modify their login information [5].
Alternative means of disseminating phishing Uniform
Resource Locators (URLS) encompass Black Hat search
engine optimization (Black Hat SEO) [6], peer-to-peer file

sharing, blogs, forums [7], instant messaging (IM) [8], and

Internet Relay Chat (IRC) [9].

Phishing toolkits, utilized by attackers, consist of
compressed files containing replicated legitimate login
pages (HTML, PHP, etc.) and associated resource files
(images, CSS, logos, favicons, JavaScripts, etc.). These
compressed files are then uploaded to a web server for
hosting the phishing site, with attackers choosing various
web servers, including compromised ones, free hosting
providers, or paid services. The designers of these toolkits
take precautions to evade traditional anti-phishing
measures, employing techniques such as omitting or
misspelling brand names found in titles, URLSs, copyright
information, headers, and descriptions. Additional tactics
involve removing anchor links originally directed to
legitimate URLs and replacing them with null anchor
links. While attackers have the option to develop phishing
sites from scratch, it is a resource-intensive process in
terms of both time and design [10], [11], [12], [13], [14],
[15], [16].

The categorization of phishing attacks is explained as
follows [17]:

e Deceptive Phishing: Deceptive Phishing is a
prevalent form of cyber-attack in which attackers
impersonate legitimate companies to acquire personal
information and login  passwords illicitly.
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Subsequently, they use this information to blackmail
users to comply with their demands.

Spear Phishing: Spear Phishing involves analyzing
wireless network traffic using a wireless intrusion
detection prevention system. While effectively
detecting unauthorized wireless networks, it falls
short in identifying suspicious activity at the
application layer, transport layer, and protocol
activities within a specific monitoring range.

Clone Phishing: Clone Phishing entails creating an
identical or cloned email using a legal or previously
acquired email's attachment, link, and recipient
address. The link is then substituted with a harmful
version and transmitted to the victim from a spoofed
email address, potentially leading to information
compromise or gaining a foothold on another
machine.

Whaling: Whaling targets high-profile members,
aiming to extract information through mediums like
social media. Victims, called Whales or Big Phishers,
are subjected to attacks similar to Spear Phishing,
which involves acquiring personal data for malicious
purposes.

Link Manipulation: This is a phishing tactic in which
a phisher sends a link to a spoofed or malicious
website. When opened, the link directs the user to the
phisher's website instead of the one mentioned. Still,
users can prevent being deceived by manipulated
links by checking the actual address before clicking.

Y. Chen et al.

Voice Phishing: This, also known as vishing, is a
phone-based violent crime that employs social
engineering through the telephone system. It aims to
extract personal and financial information for illicit
economic activities.

Certain threat intelligence entities specializing in
security identify and disclose malevolent web URLs or
IPs, offering a blocklist database. This proactive approach
aids in safeguarding others from the deleterious impacts of
phishing.

Two distinct approaches are employed to differentiate
between legitimate and phishing websites. The first
method involves checking whether the requested URL is
present on blocklists and comparing it with entries in those
lists [18]. The second approach utilizes meta-heuristic
tactics, wherein an extensive set of traits is retrieved from
the site to categorize it as authentic or fraudulent [19]. The
accuracy of the meta-heuristic tactic relies on retrieving a
distinctive set of traits crucial for discerning between
website types [20]. Data mining techniques are commonly
employed to extract website traits to uncover patterns and
relationships [21]. The significance of data mining
schemes lies in their role in decision-making, as decisions
can be informed by rules derived from these schemes [22].

Table 1 shows the literature review on literature
reviews on studies that utilized various phishing website
detection techniques.

Table 1: Literature reviews on studies that utilized various phishing website detection techniques.

No. Utilized approach Algorithm Dataset Year Ref.
UCI ML Repository,
o Random Forest and .
1 Heuristic and ML . 11,000 URL instances, and 2018 [23]
Multilayer Perceptron
30 features
PhishTank
2 Heuristic and ML Random Forest 11,055 instances and 30 2020 [24]
features
PhishTank
Visual Similarity, L . Yahoo
3 o Logistic Regression . 2019 [25]
Heuristic and ML URLBIacklist
DMOZzZ
Support Vector
Machine
. o Random Forest PhishTank
Visual Similarity, .
4 . Decision Tree Alexa 2019 [26]
Heuristic and ML
K-Nearest Neighbor 2000 web pages
XGBoost
Gradient Boosting and LightGBM
OpenPhish
Visual Similarity L . .
5 Logistic Regression PhishTank 2021 [27]
and ML

PhishStats
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Blacklist-Based, Visual Adaptive Neuro-Fuzzy Inference PhishTank
6 Similarity, Heuristic, System (ANFIS) MillerSmiles 2021 [28]
and ML Nave Bayes, PART, J48 Tree, and JRip Relbanks
Support Vector
Machine
List-Based, Visual PhishTank (4097
o o Random Forest .
7 Similarity, Heuristic, . instances) and Google 2020 [29]
Decision Tree
and ML (5438 instances)
AdaBoost
XGBoost
ML and K-Nearest Neighbor, Logistic Regression, Kaggle 11,504 URL with
8 o . 2020 [30]
Heuristic and Random Forest 32 attributes
Random Forest Kaggle 11,504 URL with
9 ML . . 2020 [31]
Decision tree 32 attributes
Support Vector
Machine
LightGBM ISCXURL-2016, 2978
ML and . ) .
10 . Multilayer instances, and 77 different 2021 [32]
Heuristic
Perceptron features

Convolution Neural

Network

Support Vector
Machine,
Grey Wolf Optimizer .
PhishTank
ML and algorithm,
11 o . Yahoo 2021 [33]
Heuristic Bat Algorithm, .
L UCI ML repository
Whale Optimization
Algorithm,

Firefly Algorithm

Neural Network
K-Nearest Neighbor

. Logistic Regression
Deep Learning, .
12 o Support Vector GitHub 2020 [34]
Heuristic, and ML .
Machine

Gradient boosting, Ada-boost, and Random

Forest
. Multilayer
Deep Learning, Kaggle (10,000 web
13 o Perceptron 2020 [35]
Heuristic, and ML pages), ten features

Neural Network

Convolutional Neural

14 Long Short-Term Memory (LSTM) 651191 URLs 2024 [36]
Network (CNN)
XGBoost classifier, CNN, LSTM, and two
15 ML and Deep Learning hybrid models (CNN-LSTM and LSTM- 88647 instances 2024 [37]
CNN)
Reinforcement .
16 . Q-Learning-based Large URLs dataset 2024 [38]
Learning
Reinforcement . .
17 . SmartiPhish 83275 instances 2024 [39]
Learning

The research on large-scale sophisticated machine benign websites, lending considerable importance to
learning with data mining methods will be highly accurate  increasing the user's information security. This work will
in differentiating between phishing, suspicious, and  further develop the effectiveness by adding two new
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optimization schemes: SHO and JSOA. This cautious
approach adds to cybersecurity strategy development and
further convinces one to commit to improving and
optimizing the prevalent framework to provide more
accurate and reliable outcomes in detecting potential
threats within the online environment.

2 Materials and methodology

2.1 RFC

RF is a type of supervised ML used for categorization and
anticipation problems. In categorization problems, the
performance of a random forest is excellent. A forest
means multiple DTs and grows stronger with more trees.
Every tree will be constructed using different data samples
using the RFC method. Each of these trees predicts new
data points independently and is involved in the voting
system of the decision-making. The ultimate forecast
(CLZ;) is derived from most voting mechanisms,
categorizing it as an ensemble tactic. This collective
strategy, which utilizes uncorrelated tree schemes,
outperforms a member model by mitigating errors and
improving overall precision via the varied inputs
contributed to the final forecast.

In developing DTs, trait retrieval and pruning
techniques are vital. The Gini Index method [40] is
particularly notable for trait retrieval in RFC, evaluating
trait inconsistency concerning their classes. This method
assesses inconsistency by haphazardly choosing a sample
from the training set and predicting its class as Cl;. The
trait retrieval is expressed through the formula, where
F((lc;"l’;) displays the likelihood that a selected case belongs
to Cl; [41].

Yl T/ATYFEL, T/ AT

J#i

1)

Two critical parameters must be defined in
constructing an RFC anticipation model: the count of trees
(N, user-defined) and the input variables assigned to each
tree. Comprising N DTs, RFC jointly utilizes their
anticipations to determine the class of new data points
through a voting mechanism [42].

2.2 Sea Horse optimizer (SHO)

Zhao et al. [43] introduced the SHO, a novel metaheuristic
inspired by swarm intelligence and derived from the
unique actions of SHs, including their transience, hunting
strategies, and birthing strategies. The SHO is designed to
adapt and survive in its environment, drawing inspiration
from these key characteristics of SHs.

SHO entails four steps: 1_initialization, 2_mobility,
3_predation, and 4_breeding, with thorough explanations
below.

2.2.1 Initialization step

Like various other metaheuristic schemes, SHO initiates
by establishing the group. In this instance, the SHs within
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the group are potential solutions to an issue within the
search domain, expressed through Eq. (2):
xt . xf
S=|.. . . 2
xp . xf

d displays the dimensionality of the variable, P
signifies the group volume, and s displays the SHs in the
group.

To create member solutions, the upper bound (Ub)
and lower bound (Lb) of the problem were deployed as
first spots for random creation. The process for creating
the i — th member, X;, in the search domain [Lb, Ub], is
outlined by Egs. (3) and (4).

X; =[x}, .. xf] ®)

x! = rand » (Ub/ — Lb7) + LB/ 4

Ub and Lb for the j — th variable in the enhanced
issue is displayed as Ub’ and LbJ, accordingly.

rand displays a random number within the [0, 1]
range, where:

j displays an integer from 1 to d (dimensionality of the
problem), d displays the dimensionality of the problem, i
displays a positive integer from 1 to P (size of the group),
P displays the size of the group, x’i signifies the j — th
aspect of the i — th member in the group.

When addressing a minimum/maximum enhancement
issue, the member exhibiting the lowest/highest fitness
degree is recognized as X;, showcasing the best
resolution. The value of X;, can be calculated using Eq.

(5):
Xb = aAr'8min or max (f(Xl)) (5)

f(X;) displays the value of the objective function for
a particular task.

2.2.2 Transition step

SHs exhibit varied transition schemes influenced by a
normal distributed random spread (0,1). Balancing
exploration and exploitation, a cut-off point at , =0
divides SHs into halves for local and global search. Later
algorithm steps handle the transition treatment.

First step:

SHs spiral in response to ocean vortices. If the chance
value r; surpasses the SHO limit, the scheme emphasizes
local exploitation. SHs move spirally toward the best
resolution X, using Lévy flights for the step size. This
benefits exploration in early cycles and prevents over-
localization. The spiral transition dynamically adjusts the
rotation angle, expanding the search domain. Eq. (6) is
employed to create a fresh position for SHs.

Xnew(t +1) = X;() + Levy (D) ((X,(1)
—Xi()xxxyxz
+ X, (1))
x =p * cos (0) (6)
y =p *sin (0)
z=p=*0

p:u*ee”

h.t



Enhanced Phishing Website Categorization Using Random Forest with...

The parameters u and v characterize the logarithmic
spiral, influencing the stem length (p), with a constant set
to 0.05 for every u and v combination. The three-
dimensional coordinates under spiral transition are
displayed by x,y, and z. 6 is chosen haphazardly within
the range of [0, 2n].

The Lévy flight spreadfunction (Levy(z)) is gauged
by Eq. (7).

Levy(z) = h =5 @
k]2

Random positive numbers w and k are chosen from
the range of zero to one. The variable h is fixed at 0.01,
and 4 is haphazardly picked from the interval [0, 2], with
a specific value of 1.5. The computation of ¢ is identified
by applying Eq. (8).

_ rQ+d)ssin (2
7 (r(l;r—’l)*a*z(lz;l) ®

Second step:

This step illustrates SHs' Brownian transition, which
was influenced by ocean waves. If r; is on the left of the
restriction, SHO shifts to a drifting mode to avoid local
optima. As described by Eq. (9), Brownian transition
extends SHs' transition range for enhanced exploration in
the search domain.

XL, t+1)=X;t) +rand ==,
* (X;(t) — By * Xpest)

(9)

Xiew(t+1) = |

The refreshed position of the SH after transition at
cycle t is displayed by X1.,(t). The variable r, is a
haphazardly created integer in the interval of 0 to 1.

The computation outlined in Eq. (12) determines that
the SH's transition step size diminishes linearly with
cycles when chasing prey.

2t

I\NT
a=(1-7)
T displays the algorithm's maximum number of
cycles.

(12)

2.2.4 Breeding behavior phase

The group is split into male and female groups based on
fitness levels to address male SHs' breeding action. In
SHO, members with the highest fitness become selected
fathers, while the rest form the group of chosen mothers.
Eg. (13) demonstrates that this separation hinders
excessive localization of fresh approaches and facilitates
the inheritance of beneficial traits by both mothers (M)
and fathers (F), ultimately benefiting the next generation.

ax (X, —rand * X}, (t) + (1 — a) x X,
(1 - a) * (X‘rllew(t) —rand x Xb) t+ax X}Lew(t)x
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1 x?
h.t {ﬁt = P (= ?)}

The random walk coefficient for Brownian transition
is displayed by B;, and a fixed parameter with a value of
0.05 is represented by the symbol 1.

The fresh position of the SH at cycle t can be gauged
by mixing the two described situations with the use of Eq.
(20):

Xrllew(t +1) =
{xi(t) + Levy() ((Xp(8) = Xi(0) * x * y + 2 + Xy (&
Xi(t) +rand * L= B = (X;(¢) — By * Xp), 11:

(10

2.2.3 Predation step

When SHs hunt for zooplankton, success or failure is
identified by a random number, r,, created by SHO. With
a probability of over 90% for successful predation, the
critical value of r,, is set at 0.1. Effective hunting, indicated
by r, greater than 0.1, involves the SH approaching,
overtaking, and capturing the prey (ideal resolution).
Unsuccessful attempts result in sea horse and prey moving
in the opposite direction, indicating continued exploration.
The predation behavior is mathematically represented by
Eq. (11).

if r,>0.1

if 1, <01 (1

) P
F= Xsort(l:i)
P (13)
M= stort(z + 1:p)

X2, signifies the solutions X2,,, sorted by increasing
fitness values. In SHO, mothers and fathers match the
female and male groups. It functions on the presumption
that fresh offspring arise from the chance pairing of
females and males. Efficiency is maintained by assuming
each sea horse pair produces only one offspring, as
illustrated in Eq. (14).

XTI = X 4 (1 — 1) XM (14)
The variable i is a positive value in the range [1,’2—’],
where p is a metric. XF and XM denote the haphazardly
selected male and female members, respectively. The
integer r5 is haphazardly created and falls within the range

[0, 1]. Fig. 1 displays the diagram of SHO. In this figure,
t represents the iteration.
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Figure 1: Flowchart of SHO

2.3 Jellyfish search algorithm (JSO)

A recent addition to swarm-based metaheuristics is JSO,
developed by Chou and Truong in 2021 [44]. JSO mimics
the way jellyfish search for food in the ocean [45].

2.3.1 Numerical framework
JSO adheres to three theoretical standards:

2.3.1.1. Marine flow

Jellyfish can sense the path of marine flows (as per Eqg.
(15)) to discover and consume smaller planktonic forms.
0C=X'—BxMxd(0,1) (15)
Here, D displays the direction of the marine flow,
B (f > 0) is the coefficient defining the length
distribution of OC, X' displays the place of the current
best jellyfish in the swarm, and M is the mean location
of all jellyfish.
The refreshed position of every jellyfish can be
articulated as follows:
X;(t+1) = X;(t) +d(0,1) x OC (16)
After adjusting each jellyfish's situation, a
favorable place, potentially with increased food source
availability, is selected as the jellyfish's current
position.

2.3.1.2. Jellyfish bloom

Jellyfish within a bloom display two kinds of transitions:
passive and active. Here, mathematical schemes for these
transitions are presented:
Passive transition: X;(t+ 1) = 17)
X;(t) + 1 xd(0,1) x (w, — L)

Here, A (A > 0) is a coefficient linked to the degree of
passive transition. The lower bound, w,, and the upper
bound, L, define the search domain.

Active transition:  X;(t + 1) = X;(t) + r(0,1) x D
Were
D=
{Xi(t) -X@© if gX)< g
X;@®-X @) if g&X)=z g&X))

The values of the objective function for jellyfish i and

j are displayed as g (X;) and g(X;) respectively.

(19)

2.3.1.3. Time management system

It governs both the transition of the two types of jellyfish
in the bloom and their transitions toward marine flows.
The function representing this time control is expressed
as:

T(t) = |<1 - W) x (2 x d(0,1)

(20)
]
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Here, t displays the time index, expressed as the cycle
count, and MaxlIter displays the peak count of cycles.

2.3.2 Group initialization

The initial group is created using the Logistic map.
Xiy1 = vX;(1 = X)), 0<X,
<1 (21)
Here, X; displays the chaotic value corresponding to
the location of the i — th jellyfish and X, displays a
location created haphazardly. Throughout all experiments,
the parameter v is fixed at a value of 4.
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2.3.3 Boundary regulation system

If a jellyfish exceeds the boundaries of the defined search
domain, it will be positioned in those boundaries using Eq.
(37).
Xip=Xig =Wpr) + Loy if  Xip> Wy (22
{X’i,r = (Xi,r - Lb,r) + Wb,r if Xi,r < Wb,r )

Here, X;, and X'; . display the present and refreshed
place of the d-th dimension for the i-th jellyfish.
Wy -and Ly, denote the lower and upper bounds,
respectively, for the r —th dimension in the search
domain.

The diagram for JSO is illustrated in Fig. 2, and the
corresponding pseudocode is provided below.

Initialization phase

group X;(i = 1,2, ...,npep) Using Eq. (21)
Assess the initial group, f(X;)(i = 1,2, ..., Mpop)
Identify the current top-performing jellyfish (X")
Initialize time: t = 1
Cyclic body of the algorithm
While t <MaxlIter
Fori=1:n,,,
Gauge the time regulation T (t) using Eq. (20)
IfT(t) = 0.5
Calculate the path of the marine flow using Eq. (15)

Else
If (1-T(t)) <rand(0,1)

Else

End if
End if
Verify restriction situations using Eq. (22)
Examine the fresh place of the i-th jellyfish
Refresh the place of the i-th jellyfish (X;)
Update the place of the currently best jellyfish (X"
End for i

t=t+1
End while
Output the ideal outcomes

Define the parameters for the algorithm: number of population (n,,,) and maximum cycle (MaxIter) generate the primary

Compute the refreshed position of the i — th jellyfish using Eq. (16)

Calculate the refreshed position of the i — th jellyfish using Eq. (17)

Compute the refreshed position of the i — th jellyfish using Formulas (18) and (19)
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Figure 2: Flowchart of JSO

2.4 Data collection

An integral phase in the data mining procedure entails
thoroughly preprocessing the database. During this step,
textual information is meticulously transformed into
numerical values, laying the basis for utilizing machine
learning schemes and sophisticated statistical approaches.
This is a critical transformation that will enable an in-
depth analysis of the database and, therefore, yield
material insight into its usage.

The database contains different factors organized
carefully to distinguish between phishing websites and
real ones. The data is presented in a structured framework
that allows for in-depth, organized scrutiny for more
accurate and reliable analysis in the future.

The present work examines a manifold of inputs over
various dimensions that drastically affect the decision
between phishing and legitimate websites. Its
comprehensiveness embraces a wide range of elements,
from technical indications to behaviorist trends, to delve
deeply into the interactions related to web security. The
dataset gathered from the published study [46].

e SFH (Server Form Handler): Evaluates the security
of form submissions on a webpage.

e Pop-Up Window: Assesses the presence or behavior
of pop-up windows on a webpage.

e SSL final state: displays the final state of an SSL
(Secure Sockets Layer) connection, providing
insights into the website's security.

e Request URL: This examines the URLSs requested
during a web page's loading. It is often used to assess
potential security threats.

e URL of Anchor: Analyzes the anchor (hyperlink) tags
in the webpage, assessing the quality and security of
linked URLSs.

e Web traffic: Measures a website's web traffic or
popularity, which can indicate its trustworthiness.

e URL Length: Assesses the length of the URL, as
excessively long URLs may be associated with
phishing or deceptive websites.

e Age of domain: Displays the age of the domain, with
older domains often considered more trustworthy.
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e Having IP Address: Showcases whether the URL has
an IP address, and the presence of an IP address in the
URL may be a security concern.

A diversified strategy like this would ensure
completeness in the analysis regarding various factors
that, when combined, help differentiate phishing websites
from real ones. In this respect, it involves a broad appraisal
of technical criteria, behavioral trends, and contextual
influences. This is multi-dimensional research in this
direction, aspiring to encapsulate the intricacy of detecting
deceitful online actions versus real sites.

Fig. 3 presents the correlation matrix, illustrating the
relationships between the input features and the target
classification outcome (i.e., whether a URL is phishing,
suspicious, or legitimate). The figure uses color intensity
to represent the strength of the correlation, with darker
shades indicating stronger relationships. The most
influential feature in this analysis is "Having an IP
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Address," which shows the highest positive correlation
score of 3.8, highlighting its critical role in distinguishing
fraudulent websites. This aligns with cybersecurity
principles, as phishing sites often use direct IP addresses
to bypass domain reputation checks. Additionally, the SSL
final state exhibits a moderately strong correlation of 1.9,
indicating that the presence or absence of a secure SSL
certificate substantially affects phishing likelihood.
Another significant input is the domain age, which shows
a positive correlation, emphasizing that newer domains
are often associated with phishing behavior. Conversely,
SFH presents a negative correlation of -0.70, suggesting
that poorly configured or insecure form handlers are
strongly associated with fraudulent websites. Overall, the
correlation analysis underscores that most features
negatively influence a website's authenticity, with only a
few—Ilike Web Traffic (0.21) and Having an IP Address
(1.7)—exerting clear positive impacts.

1

SFH | 1.0 038 039 0.23 0.31 -0.70
0.8

popUpWindow | 0,38 1.0 0.24 -0.51
0.6

SSLfinal_State | 0.39 0.24 1.0 0.20 -0.53
0.4

Request URL | (.23 1.0 031 -0.26
0.2

URL_of Anchor | (.31 0.31 1.0 -0.29
0

web_traffic 1.0 -0.68 0.24
-0.2

URI._Length 1.0

-0.4

age_of_domain 0.20 -0.68 1.0 -0.23
-0.6

having_IP_Address

-0.8

Result | -0.70 -0.51 -0.53 -0.26 -0.29 0.24 -0.23 1.0
-1

ngb . @“é c;“"& & Q&é & > qs\’Sb &‘;’& b&‘é& Q&*’\.}

S &M T oS T
& & & o TS
&

Figure 3: Correlation matrix for the link between inputs and output.

3 Outcomes

3.1 Framework practicality appraisal

Accuracy is a common metric for assessing a framework's
total productivity in classifying issues. It relies on True
Positives (Tp), True Negatives (Ty), False Positives (Fp),
and False Negatives (Fy). However, Accuracy may be less

effective in imbalanced data, favoring the majority class.
To address this, Recall, Precision, and F1-Score are
additional metrics offering nuanced insights into model
performance, particularly in imbalanced situations. These
metrics, expressed in numerical formulas (typically
numbered 23 to 26), collectively refine the appraisal of a
categorization model's effectiveness. In addition, Table 2
displays the formula of appraisal metrics.
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Table 2: Formulation of appraisal metrics

Metrics Number

ey = Ty + Fp + Fy
T

Precision = 24
recision T+ F, (24)

Recall = TR = £ — ' 25
R Y (25)

1 _2X Recall x Precision 26)

-seore = Recall + Precision

3.2 Convergence outcomes

Convergence diagrams are widely used in scholarly
communication to visually illustrate the optimization
progress in schemes or schemes across cycles. Fig. 4
illustrates the convergence behavior of the two
optimization-based models—RFSH and RFJS—over 200
learning cycles. Initially, both models start from similar
baselines. The RFJS model demonstrates an early surge in
performance during the first few cycles, indicating a faster
initial convergence. However, this gain plateaus over
time. In contrast, the RFSH model shows a more
consistent and gradual improvement in accuracy

throughout the training process. By the 200th cycle, RFSH
achieves a superior final accuracy of approximately 0.91,
compared to 0.89 for RFJS. This convergence pattern
highlights the resilience and adaptive efficiency of the
RFSH model, particularly in later training stages. The
performance advantage of RFSH may be attributed to the
exploitation—exploration balance managed by the Sea
Horse Optimizer, enabling more refined learning during
prolonged iterations. Both models were fine-tuned using a
random search hyperparameter optimization technique,
which explored multiple combinations of parameters to
maximize model performance.

Figure 4: 3D ribbons for the convergence of hybrid models

3.3 Comparing outcomes of predictive
schemes

Table 3 presents a thorough overview of the outcomes
derived from the developed RFC schemes, providing a
detailed insight into their performances. In addition, Fig.
5 employs a 3D bar chart to visually illustrate how
assessors evaluated these schemes, aiming to pinpoint the
model that excels in precision when predicting practical
results. A considerable portion of the database endures
intensive training, while the remaining values undergo
meticulous testing. The outcomes, covering the entire
database, are carefully noted in Fig. 5, graphically
showcasing the essential parameter for scheme appraisal.

Accuracy appraisal is performed in three phases: Train,
Test, and All. The outcomes observed during the training
phase across all three schemes expose superior
performance relative to the subsequent phases. A
comparative analysis of the data from both the training and
test phases, as presented in the consolidated All phase,
highlighted that the RFSH model, exhibiting an
approximate value of 0.952, surpasses the optimized RFJS
model with a value of 0.932 and the single RFC model,
which records a value of 0.91. This highlights the RFSH
model's distinction as superior in this evaluative context.
The elucidated values from Table 3 are graphically
depicted in Fig. 5. Notably, the RFC and RFJS schemes
exhibit relatively consistent columnar patterns. However,
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the RFHS model displays a decrement in performance
during the test section, followed by a subsequent recovery
in the all-encompassing section. This resurgence
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underscores its superiority and establishes a notable
advantage over the other schemes.

Table 3: Result of RFC-based developed models in the training, testing, and All sections.

Schemes
Phase Index values
RFC RFJS RFSH
Accuracy 0.9113 0.9324 0.9567
. Precision 0.9104 0.9324 0.9570
Train
Recall 0.9113 0.9324 0.9567
F1 score 0.9102 0.9324 0.9567
Accuracy 0.9089 0.9310 0.9409
Test Precision 0.9095 0.9323 0.9423
es
Recall 0.9089 0.9310 0.9409
F1 score 0.9083 0.9312 0.9409
Accuracy 0.9106 0.9320 0.9520
Al Precision 0.9097 0.9320 0.9524
Recall 0.9106 0.9320 0.9520
F1 score 0.9095 0.9320 0.9520
I:l Accuracy- Precisionl:l Recall- Fl _core
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-
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Figure 5: Achievement-based 3D bar chart for the developed models' productivity by evaluators

3.4 Categorization outcomes

Table 4 and Fig. 6. facilitate a comparison of the model's
accuracy in predicting legitimate, phishing, and suspicious
instances. Examining Fig. 6. indicates specific gauged
values, where phishing instances are recorded as 548,
suspicious instances as 702, and legitimate instances as
103. Notably, the RFSH model exhibits the highest correct

anticipation rates across the three categories, with
numerical values corresponding to 101 legitimate cases,
514 instances of phishing, and 673 instances of suspicious
categories. Additionally, Table 4 underscores the
precision values, revealing a remarkable match of 95.72%
for phishing, 95.73% for suspicious, and 89.38% for
legitimate instances within the RFSH model. This
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underscores its pronounced superiority in accuracy.
Further substantiating this superiority, the F1-score and

Y. Chen et al.

Recall sections also reflect favorable outcomes for the
RFSH model.

Table 4: Appraisal indexes of the designed schemes' productivity drawing on grades.

Index values
Model Grade Precision Recall F1-score
Phishy 0.918 0.9051 0.9084
RFC Suspicious | 0.917 0.9444 0.9305
legitimate | 0.8488 0.7087 0.7725
Phishy 0.9336 0.9234 0.9284
RFJS Suspicious | 0.9392 0.9459 0.9425
legitimate | 0.875 0.8835 0.8792
Phishy 0.9572 0.938 0.9475
RFSH Suspicious | 0.9573 0.9587 0.958
legitimate | 0.8938 0.9806 0.9352
710
WU 548 1_%32 —&— Phishy
0 —e— Suspicious °101 700
4 — e
: @ legitimate
530 - - 690
91
520 - 680
514-¢
510 /0673
506-¢ / - 670
Yt
= 660
73 “
490 , , , I
Measured RFC RFIS RFSH
Figure 6: Line-symbol plot for comparing the measured and predicted values
Utilizing the confusion matrix enables the On the other hand, the RFSH model manifests 34

determination of miscategorizations for each model out of
1353 websites in Fig. 7. A detailed examination of the
columns illustrates specific miscategorization numbers for
each model. The RFC model exhibits 52
miscategorizations in phishy, 39 miscategorizations in
suspicious, and 30 miscategorizations in legitimate
instances. Similarly, the RFJS model records 42
miscategorizations in phishy, 38 miscategorizations in
suspicious, and 12 miscategorizations in legitimate cases.

miscategorizations in phishy, 29 miscategorizations in
suspicious, and two miscategorizations in legitimate
cases.

Given the fewest anticipation errors compared to the
gauged values, RFSH rises as the most favorable scheme
for future anticipations. This miscategorization reduction
underscores its potential for enhanced accuracy and
reliability in subsequent predictive scenarios.
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RFJS
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Figure 7: Confusion pattern showcasing the accuracy of each model

Fig. 8 presents the Receiver Operating Characteristic
(ROC) curves for three models—RFC, RFJS, and
RFSH—to evaluate their capability in distinguishing
phishing, suspicious, and legitimate websites. The ROC
curve illustrates the trade-off between the True Positive
Rate (TPR) and the False Positive Rate (FPR) across
different classification thresholds, where a curve closer to
the top-left corner signifies superior classification
performance. The baseline RFC model performs
adequately with an Area Under the Curve (AUC) of
0.8993 but shows a comparatively higher FPR. Upon
integrating optimization strategies, the RFJS model

achieves a notable improvement with an AUC of 0.9385,
reflecting  enhanced  sensitivity and  reduced
misclassifications. The RFSH model, with the highest
AUC of 0.9654, demonstrates exceptional discriminative
ability, with a steep curve that indicates high sensitivity
and minimal false positives. This figure underscores the
effectiveness of incorporating metaheuristic optimization
algorithms into the Random Forest framework, resulting
in significant performance gains, with the RFSH model
emerging as the most robust and reliable for phishing
detection.

1.0 1

0.8 1
aO.G B
= 0.4 4
0.2 1

0.0 4

— RFC (AUC= 0.8993)
RFIS (AUC = 0.9385)
—— RI'SH (AUC = 0.9654)

0.0 0.2 0.4

0.6 0.8 1.0
Fpr

Figure 8: Receiver Operating Characteristic (ROC) curve for the top-performing hybrid model



262 Informatica 49 (2025) 249-266

The SHAP analysis results in Fig. 9 highlight the most
influential features in categorizing websites as phishy,
suspicious, or legitimate. Among all features, the SFH
demonstrates the highest importance, particularly for
identifying phishy and legitimate websites, indicating that
insecure form handling is a strong indicator of phishing
behavior. Pop-Up Windows and SSL Final State are
impactful features, showing that deceptive pop-ups and
lack of proper SSL implementation are common traits in
phishing websites, while secure SSL practices are
associated with legitimate sites. Request URL and URL of
Anchor have moderate importance, emphasizing the role

Y. Chen et al.

of embedded links in signaling potential malicious intent.
Web traffic, URL length, and age of the domain offer
additional  discriminative  power,  especially in
differentiating legitimate sites from suspicious or phishy
ones. Notably, the feature of Having an IP Address has
minimal influence across all categories, suggesting that its
standalone effect is limited in modern phishing detection.
Overall, this analysis affirms that the model relies on
behaviorally relevant features and offers a transparent
interpretation of how each input contributes to the
classification outcome.
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Figure9: Impact of the input variables on models' output based on SHAP sensitivity analyses.

To assess the statistical significance of the differences
in the performance of the three models, including RFC,
RFSH, and RFJS, a one-way Analysis of Variance
(ANOVA) test was conducted. The results are presented
in Table 5. The F-values for RFC (0.2523), RFSH
(0.0587), and RFJS (0.0491) are all notably low, and their
corresponding P-values are substantially greater than the
conventional significance level of 0.05 (specifically,
0.6155, 0.8086, and 0.8246, respectively). These high P-
values indicate no statistically significant difference in the
mean performances of the models based on the dataset
under consideration. Despite RFSH achieving a higher
accuracy in practice, the ANOVA results suggest that the
observed performance improvements over RFC and RFJS
may not be statistically significant at the 95% confidence
level. This could be attributed to the relatively small test
set size or the inherent variability in model predictions
across different folds.

Table 5: Result of statistical analyses based on ANOVA

Model F-value P-value
RFC 0.2523 0.6155
RFSH 0.0587 0.8086
RFJS 0.0491 0.8246

4 Discussion

The results of this study indicate that both optimized
models, including RFSH and RFJS, outperform the

baseline RFC in phishing website classification. The
RFSH model achieved the best performance with an
accuracy of 95.20%, followed by RFJS (93.20%) and RFC
(91.06%). These gains are attributed to the capability of
the metaheuristic optimizers to fine-tune model
parameters, improving convergence, reducing overfitting,
and enhancing generalization.

The superior performance of RFSH compared to
RFJS may stem from the SHO's more effective balance
between exploration and exploitation. The SHO mimics
the spatially aware swimming patterns of sea-horses,
which may help it escape local optima better than the
JSOA, whose dynamics are influenced by time-varying
ocean currents and may be more susceptible to premature
convergence.

Table 6 presents a comparative analysis of the
approach against state-of-the-art phishing detection
models from recent studies. While the Extra Trees
Classifier by Awasthi and Goel [46] reports a marginally
higher accuracy (98.59%), other ensembles and gradient-
boosted models demonstrate performance comparable to
or lower than the proposed RFSH model. For instance,
Gradient Boosting (GB) in Pandey et al. [47] yielded
95.7%, only slightly higher than our result, whereas
XGBoost and GBDT methods in Yang et al. [48] achieved
88.46% and 89.04%, respectively.
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Table 6: Comparison of the current work with
state of art phishing prediction articles.

Model Result

Source Article
(%)

Voting ensemble  95.51
Awasthi and Goel
[47] Extra trees 98.59

classifier

GBDT 89.04
Yang et al. [48]

XGB 88.46

GB 95.7
Pandey et al [49]

DT 94.2
Current Study RFSH 95.20

The RFSH model offers competitive performance

compared to these works, especially considering its
relatively low  computational  complexity and
interpretability. Models like Extra Trees may require more
extensive feature engineering and hyperparameter tuning,
whereas the proposed RFSH balances efficiency and
accuracy. Despite these promising results, there are
several limitations to consider. First, the dataset was
compiled from existing literature and may not fully
capture the variability of real-time or zero-day phishing
websites. Second, the static feature set may not be
adaptable to evolving phishing techniques. Third, the
study does not evaluate model latency or deployment
feasibility in real-world scenarios. Future work will
incorporate real-time URL streams, adaptive feature
extraction, and ensemble optimization strategies to
improve robustness and scalability further. Additionally,
exploring hybrid deep learning approaches and evaluating
model performance on live threat feeds could offer deeper
insight into practical deployment in cybersecurity
systems.

4.1 Real-world application

The proposed RFSH and RFJS models hold strong
potential for real-world cybersecurity applications,
particularly for detecting phishing websites in real-time.
These models can be integrated into security tools such as
browser extensions, secure web gateways, email filtering
systems, and SIEM/SOAR platforms. Their main
advantage lies in their ability to analyze website features
and accurately flag suspicious activity quickly. From a
computational standpoint, while training the models—
especially with optimization algorithms like SHO and
JSO—requires moderate to high computational resources,
the inference phase (actual prediction) is lightweight and
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fast. This makes the models suitable for real-time
deployment, even on devices with limited resources.
Moreover, their compatibility with various programming
languages and deployment frameworks allows for easy
integration into current infrastructures. They can be
deployed via APIs or containerized environments (e.g.,
Docker) and scaled across cloud-based or enterprise
systems. The models are also maintainable, as they
support periodic retraining to adapt to new phishing
techniques and can be updated remotely. In summary,
RFSH and RFJS offer a practical, scalable, and efficient
solution for phishing detection in real-time security
systems, with minimal latency, strong interoperability,
and manageable computational demands.

4.2 Model adaptability and resilience against
evolving phishing techniques

Phishing techniques are constantly evolving, making
it crucial for detection models to remain adaptive and
resilient. While demonstrating strong performance on the
current dataset, the proposed model may face challenges
when exposed to newly developed phishing tactics that
differ significantly from the patterns it has learned. To
address this, the model would benefit from periodic
retraining using updated datasets that reflect emerging
threats and evolving attack vectors. Incorporating a
continuous learning framework or active learning
mechanism could enhance adaptability, allowing the
model to identify novel patterns in real-time and adjust
accordingly. Additionally, integrating threat intelligence
feeds and community-reported phishing samples could
ensure the model remains current and effective against the
latest phishing strategies. Acknowledging and preparing
for the dynamic nature of phishing threats significantly
increases the proposed detection system's practical utility
and long-term relevance.

5 Conclusion

This research classifies 1353 websites using machine
learning (RFC model) and optimized schemes (Sea Horse
and Jellyfish). It enhances technology for privacy and
security, preventing information theft. The database is
divided into subsets, and accuracy is assessed using
metrics. Ultimately, the findings of this research are
summarized as follows, which contribute to significant
advancement in technology:

e The presence of an IP address exhibited the most
positive impact on the outcome, while the Server
Form Handler had the most negative effect. This
highlights a substantial discrepancy in the
significance of these inputs, emphasizing the critical
role of the IP address and the adverse consequences
linked to the Server Form Handler.

e The data table analysis indicates that the RFSH
consistently outperformed the other two schemes in
the training, test, and integration phases. The RFSH
model showed a significant superiority of 2.14% over
the RFJS model and a notable 4.54% advantage over
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the RFC model in overall accuracy appraisal.
Notably, the RFSH model accurately predicted a
substantial number (1353) of sites with an impressive
95.19% correct anticipation rate, reinforcing its
effectiveness in predictive modeling compared to
alternative schemes.

e The tabular outcomes were visually represented in
figures, enhancing visibility and comprehension.
Additional figures delineated the miscategorization
rates, revealing 1.41 times more miscategorizations
for the RFJS model and 1.86 times more for the RFC
model than the RFSH model. Furthermore, the ROC
diagram for the superior RFSH model illustrated a
Micro Average ROC curve with a significantly larger
area, which is evidenced by this.

e Substantiates its role as the primary agent or actor in
the superiority of this model.
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