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Air pollution is a significant global concern, posing a major challenge to sustainable development if 

neglected. Leveraging mathematical frameworks through ML offers an optimal and cost-effective 

solution for modeling air pollution. This investigation introduces hybrid ML-based frameworks to 

anticipate air quality pollutants and classify air quality. Specifically, the CatBoost algorithm was 

combined with the Arithmetic Optimization Algorithm (AOA) and the Hunger Games Search algorithm 

(HGS) for prediction and classification purposes. The database comprises daily time series data of air 

pollutants in China from 2018 to 2021. Autocorrelation function (ACF) and partial autocorrelation 

function (PACF) approaches were utilized to select input combinations for each pollutant. Results 

indicate that the integrated model provides highly accurate forecasts of pollution index time series using 

the regression method. Furthermore, evaluation metrics reveal that the classification method surpasses 

the regression method regarding accuracy for predicting the AQI. 

Povzetek:  Članek predstavlja hibridna modela CatBoost-AOA in CatBoost-HGS za napovedovanje 

onesnaženosti zraka na osnovi časovnih vrst, kjer se uporabljata tudi optimizacijska algoritma HGS in 

AOA.

1 Introduction 
Air pollution implies the existence of additives on natural 

compounds to the degree that they are caused by natural 

phenomena or air-polluting activities by humans. It 

implies the existence of any substance in the air that can 

be harmful to humans or their environment. Pollutants, 

whose number reaches more than 180, may be natural or 

man-made and exist in different forms such as solid 

particles, liquid droplets, or gas [1,2]. 

Its basic resources are industries and factories, as well 

as vehicles. The gradual and long-term but silent effects 

of air pollution have made officials and people pay less 

attention to it. This is while the upward trend of death 

statistics, cancer, and heart attacks caused by air pollution 

displays that many industrialized societies have suffered a 

gradual death, the main cause of which is air pollution. Air 

pollution is, therefore, fatal to humans in the long run 

[3,4]. 

Air pollution is a worldwide problem that severely 

impacts human health and the environment as well. As 

many as 4 million premature deaths occur every year 

because of air pollution, according to reports from the 

WHO [5]. Due to this issue, air quality monitoring has 

turned out to be highly significant these days. Real-time 

monitoring allows early warnings of air-polluting events 

that are so crucial to protecting public health [6]. This 

article describes the development of a web-based air 

quality warning system that uses streaming data in support 

of dynamic environmental management. Traditionally, air 

quality has been monitored by periodic measurements of  

 

the levels of air pollution. However, with advanced 

technology, air pollution levels can now be continuously  

monitored in real time. Real-time monitoring is thus 

capable of providing early warnings of air pollution 

events, which are one of the critical premises for public 

health protection [6]. Real-time monitoring can also 

enable the capture of extensive amounts of data, whereby 

trends and patterns of air pollution levels may be 

disaggregated over time [7]. 

The increasing demand for accurate air quality 

forecasting models has led to the development of hybrid 

machine learning frameworks that integrate multiple 

algorithms to enhance predictive performance. This study 

aims to address the following key research questions: 

How can hybrid machine learning models improve the 

accuracy of air quality predictions compared to traditional 

statistical methods? 

Which optimization techniques (such as AOA and 

HGS) yield the best performance when combined with 

CatBoost for air quality forecasting? 

What is the impact of feature selection and time-

lagged variables on the predictive capabilities of air 

pollution models? 

How does the proposed hybrid framework compare to 

benchmark models in terms of computational efficiency 

and real-time applicability? 

An appropriate air quality predictive model is to be 

developed, which will help in developing an effective 

early warning system. The model can be developed 

through various techniques, including the statistical 

model, ML model, and neural network model. These 
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statistical frameworks are simple to develop and not 

responsive in capturing the complexity of the variables of 

air pollutants and other atmospheric factors [8]. The ML 

frameworks of relatively higher complexity and able to 

capture non-linear interaction between the variables are 

RFs and SVMs. Last but not least, NN frameworks, to be 

more precise, coming under the category of DL, are an 

even more complex model; hence, they can detect very 

subtle patterns in data [9]. 

It will allow the implementation of early warning 

systems and mitigation measures that avoid harmful 

impacts on public health and the environment. During the 

last years, several research works were undertaken for the 

development of various approaches of air pollutant 

forecasting. The next section reviews the mainstream 

approaches to air pollutant forecasting. 

• ML-based approaches: 

These ML-based approaches have been of more recent 

interest because they can model complex nonlinear 

relationships between meteorological and air pollutant 

variables. Several ML techniques, such as ANN, SVR, 

and RF, have been utilized for the prediction of air 

pollutant density. One of the very latest publications is that 

of Song et al. (2023), where they used the XGBoost 

algorithm, based on ML, for forecasting the density of 

PM2.5. It was found that the use of XGBoost was effective 

in optimizing the hyperparameters of the model [10]. 

• Time series-based approaches: 

The time series data-based approaches essentially make 

their forecasting of future air pollutant densities based on 

historical data. The approaches based on time series are 

widely applied owing to their simplicity and their 

capability for the portrayal of seasonal and temporal 

variations in air pollutant densities. Bhatti et al. (2021) 

have used the SARIMA model to anticipate the PM2.5 

density. It followed from the given analysis that the 

SARIMA model had high prediction accuracy and was 

suitable for time series anticipation of PM2.5 density  [11]. 

• Hybrid approaches: 

Hybrid approaches combine at least two frameworks to 

boost the precision of forecasts of air pollutants. Very 

recently, Liu and Chen recommended a neural network-

based hybrid framework for PM2.5 density anticipation 

whose performance outperforms that of an individual 

model [12]. 

Also, Kaushal et al. (2025) proposed a hybrid CatBoost-

SVR model for earthquake prediction using the LANL 

dataset, achieving superior accuracy over individual 

models. Their findings highlight the effectiveness of 

hybrid ML approaches in complex forecasting tasks, 

aligning with our study’s methodology for air quality 

prediction [13]. 

• Statistical frameworks: 

Various statistical frameworks have been utilized to 

anticipate the density of air pollutants, which include 

linear regression, multivariate regression, and principal 

component regression. A very recent study applies a 

multivariate LR framework for PM2.5 density anticipation 

in urban areas. As explained in this investigation, the 

model showed very high accuracy in its prediction [14]. 

• Physical frameworks: 

The physical frameworks, in turn, simulate the physical 

processes governing dispersion using mathematical 

equations. Recently, Kong et al. (2021) have used the 

WRF-Chem model for forecasting PM2.5 densities within 

China. The WRF-Chem model presented accuracy within 

the forecast [15]. 

In other words, the selection of an optimal approach for 

forecasting air pollutants may be heavily dependent on 

several parameters; besides, it is often common to 

combine more than one approach to come out with more 

accurate and reliable predictions. However, hybrid 

frameworks using DL and ML frameworks, PCA-based 

linear regression frameworks, and time series-based 

frameworks like SARIMA are some prominent 

approaches that have displayed promising results in recent 

research. 

In the last years, genuinely promising results on AQI 

prediction using ML techniques, based on several 

environmental factors, have been possible to observe. 

Some of the works analyze the use of classification and 

regression approaches for AQI forecasting. An example is 

the work of Li et al., recently published in the Journal of 

Cleaner Production, where an SVM classifier and an RF 

regression framework are recommended to anticipate AQI 

in China. Other studies have estimated the AQI using a 

combination of ANN and multiple linear regressions by 

Shams et al. (2023) [16]. 

Other research has also been conducted on the 

effectiveness of the utilization of machine learning (ML) 

approaches in AQI prediction. For example, Jiang et al., in 

their study published in Atmospheric Environment, 

compared the productivity of many ML frameworks, 

including LR, DT, and ANNs, to anticipate the AQI in 

Beijing, China. In another study published in the Journal 

of Environmental Management, Sharma et al. applied 

multiple linear regression and ANNs to meteorological 

variables and road traffic data to anticipate AQI in Jaipur, 

India. 

ML classification approaches have also received 

broad attention in air quality forecasting due to their 

competence in the forecast of air pollutant densities and 

improvement of air quality management. These provide a 

proper and efficient way of analyzing not only the 

complicated relationship between air quality parameters 

and meteorological variables but also identifying key 

factors affecting air quality. Over the last few years, 

several articles have appeared on the state-of-the-art 

applications of ML classification approaches for air 

quality forecasts in prestigious journals. 

The investigation adapted the ML classification 

approaches to simulate AQI using meteorological 

variables and air pollution densities based on an 

Atmospheric Environment publication. In the 

investigation, SVR, RF, and neural network frameworks 

were applied for the simulation of AQI in Beijing, China, 

with great precision. A similar study in the Journal of 

Environmental Management applied ML classification 

approaches for predicting air pollutant densities 

concerning traffic and meteorological variables in the 

urban area. Decision tree, RF, and k-nearest neighbor 

frameworks were employed in this investigation to 

anticipate the density of particulate matter, nitrogen 
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oxides, and sulfur dioxide. These studies therefore hint at 

the potential of ML classification approaches in air quality 

forecasting and their capability to provide efficient and 

accurate predictions. Given the ever-increasing demand 

for effective air quality management, applications of such 

approaches are foreseen to increase further in the coming 

years. 

Some studies showed that the approaches of 

regression and classification performed well, but their 

success depended on the database and modeling 

techniques adopted. This paper compares and evaluates 

regression and classification frameworks based on their 

performance in AQI prediction. In the present study, the 

considered model is the CatBoost model, linked to 2 

metaheuristic algorithms, applied to a database of AQI 

measurements combined with environmental factors. The 

remainder of this paper is outlined below:  

In Section 2, materials and approaches are described. 

In the continuation of this section, while explaining the 

methodology, the algorithms used in the research, 

evaluation indices, and research database are explained. 

Section 3 reviews the results of the case study and 

discusses them. Finally, the conclusion is displayed in 

Section 4. 

Table 1 presents a comparative analysis of various air 

quality forecasting approaches based on recent research. It 

categorizes different methodologies, including machine 

learning, time series models, hybrid frameworks, 

statistical techniques, and physical simulation models.  

This comparison provides insights into the strengths of 

different models and their effectiveness in predicting air 

pollutant levels and AQI. 

Table 1: Comparison of air quality forecasting approaches in recent studies 

Approach Algorithms Used Authors (Year) Dataset Evaluation Metrics Key Findings 

ML-Based 
Approaches 

XGBoost Song et al. (2023) PM2.5 data 
Hyperparameter 
tuning 

XGBoost was 
effective in 
optimizing 
hyperparameters 
and predicting 
PM2.5 levels. 

Time Series-
Based 
Approaches 

SARIMA 
Bhatti et al. 
(2021) 

Historical 
PM2.5 data 

Forecast accuracy 

SARIMA 
demonstrated high 
accuracy and 
suitability for time 
series-based PM2.5 
forecasting. 

Physical 
Frameworks 

WRF-Chem 
Kong et al. 
(2021) 

Air 
pollution 
data in 
China 

Model accuracy 

The WRF-Chem 
model provided 
accurate PM2.5 
forecasts for China. 

AQI Prediction 
with ML 

SVM 
(classification), 
RF (regression) 

Li et al. (2020) 
AQI data 
from China 

Prediction accuracy 

SVM classification 
and RF regression 
were effective for 
AQI forecasting in 
China. 

Hybrid AQI 
Prediction 
Models 

ANN + Multiple 
Linear Regression 

Shams et al. 
(2023) 

AQI data Prediction accuracy 

Combining ANN 
and MLR produced 
reliable AQI 
forecasts. 

ML Model 
Comparisons 

LR, DT, ANN Jiang et al. (2019) 
AQI data 
from 
Beijing 

Model comparison 

ANN-based models 
performed better 
than LR and DT in 
AQI forecasting. 

2 Materials and approaches 

2.1 Methodology 

The purpose of this investigation is to provide an approach 

to boost the precision of daily anticipation of air pollutants 

based on the capabilities of hybridization and ML 

approaches. The series of data related to air quality has 

random, irregular, and unstable characteristics, and this 

has made it difficult to anticipate pollutants and air quality.  

 

In the following, the methodology of the research will be 

explained. The first step is data collection. The database 

used in this investigation includes seven pollutants related 

to air quality, including SO2, NO2, O3, PM10, PM2.5, 

and AQI, all in µg/m3 units, as well as CO pollutants in 

mg/m3 units. After data collection, pre-processing takes 
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place. Preprocessing is an efficient step in boosting the 

accuracy of predictions and reducing the processing time 

of special algorithms in AI. In this investigation, the 

prediction of each air pollutant is based on the historical 

data of that pollutant. In other words, predictions are made 

based on a function of values at earlier time steps (Q1, Q2, 

...). To determine the various input combinations, the ACF 

and PACF of the observed data are used. There is a 

temporal dependence between the observations in the time 

series discussion. The phrase "autocorrelation" refers to 

"serial correlation," or the dependency between sequence 

values across time, since statistics frequently refer to 

correlation as dependence. The ACF is the function that 

determines autocorrelation as a function of the time 

interval between observations. The ACF was applied to 

identify significant lag dependencies, helping to determine 

the overall structure of autocorrelations. PACF was then 

utilized to select the appropriate lag order for modeling the 

autoregressive (AR) component of the time series. This 

approach ensured that only the most relevant lagged 

variables were included in the forecasting models. ACF 

and PACF are used to determine the process's time- or 

location-specific behavior in random processes and time 

series. 

Following this, with the help of statistical appraisal 

indexes and by using the method of the SVR, it selected 

the best inputs. Supervised learning algorithms are for 

SVM intended to be used for classification and regression 

analysis. The key importance of SVMs is that they can 

handle high-dimensional data with excellent performance; 

it is excellent for working in cases where sample sizes are 

small, which means that they can be versatile for many 

applications. In application fields boasting its capacious 

ability to precisely identify complex features and 

categories, the SVM algorithm is employed. After 

choosing the best input combinations for each pollutant 

separately, two hybrid frameworks, CatBoost-HGS and 

CatBoost-AOA, were formed for prediction and 

classification with the CatBoost algorithm and AOA and 

HGS algorithms.  The ACF/PACF-based input selection 

process was specifically applied to the regression models, 

ensuring that only the most significant lag variables were 

used. In contrast, the classification task utilized AQI class 

labels derived from the original AQI values. Furthermore, 

the two approaches—regression and classification—were 

compared independently using appropriate evaluation 

metrics: RMSE and MAE for regression, and Accuracy, 

Precision, and F1-Score for classification. This 

comparison highlights the suitability of classification 

models, such as CatBoost-HGS, for AQI forecasting, as 

classification effectively captures the discrete categories 

of AQI levels. the incorporation tries to boost and adjust 

the CatBoost hyperparameters at every stage of 

processing. Accuracy in the pollutant prediction of 

recommended hybrid frameworks was considered by 

different evaluation indices, taking into account error 

analyses in what follows. Other analyses, such as 

sensitivity analysis and correlation between variables, also 

formed a part of this investigation. 

2.2 Evaluation indices related to regression 

The evaluation indices employed in this investigation to 

compare the precision of regression frameworks include 

MBE, RMSE, MAPE, R2, JSD, and RAE, expressed 

drawing on the subsequent formulas: 
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where N displays the count of observations, 𝑦𝑖  and �̂�𝑖 

are ith real value and ith estimated value, respectively, and 

�̅� displays the mean of data points,  𝐽𝑆𝐷(𝑃 || 𝑄) displays 

Jensen-Shannon divergence between P and Q, and 𝑀 =
 (𝑃 +  𝑄) / 2. 

The evaluation indices used in this investigation 

related to classification include Precision, Recall, and F1 

Score. Based on potential states for existing and projected 

samples, 4 probable states—TP (true positive), TN (true 

negative), FP (false positive), and FN (false negative)—

will probably occur. These 4 factors are used to derive the 

evaluation indices using the following equations [17,18]: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (8) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑅𝑒𝑐𝑎𝑙𝑙 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (9) 

2.3 Categorical boosting (CatBoost) 

CatBoost is a gradient-boosting ML framework that is 

particularly effective for handling categorical features. It 

is an open-source library developed by Yandex and offers 

high performance and accuracy in various ML tasks. 

CatBoost provides seamless handling of categorical 

variables so that explicit preprocessing involving one-hot 

encoding is not explicitly required. There is an internal 

implementation of a novel algorithm, "Ordered Boosting," 

which uses statistical approaches and gradient boosting 

intelligently to handle categorical features effectively. 

CatBoost comes under the gradient boosting framework, 

where an ensemble of weak decision trees is built 

sequentially. It iteratively improves the model by fitting 

new trees to the residuals of the previous iterations, 

intending to minimize a loss function. It has built-in 

mechanisms for handling missing values in data. It learns 

from missing values either as another category or using 

the most frequent or mean value strategy. Model 

interpretability is supported by CatBoost because it allows 

both calculating and visualizing feature importance. These 
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are very helpful for understanding various features' 

influences on the model's predictions. In contrast to 

traditional boosting methods, CatBoost utilizes Ordered 

Boosting, which improves the handling of categorical 

features and reduces overfitting. This technique involves 

generating permutations of the data to maintain the 

temporal ordering of data points while ensuring unbiased 

updates to the model. The key advantage of Ordered 

Boosting is its ability to better capture the relationships in 

categorical features by considering their sequential 

dependencies, leading to more accurate predictions. This 

method also helps mitigate the common issue of 

overfitting seen in other gradient boosting algorithms, 

particularly when working with small datasets or highly 

imbalanced classes. Due to its robustness, high 

performance, and efficient handling of categorical 

variables, it gained its momentum in various ML 

competitions and real-world applications. It facilitates 

classification and regression; thus, this algorithm finds its 

applications in a wide range of areas, starting from 

customer churn prediction, recommendation systems, 

fraud detection, and many more [19,20]. 

2.4 SVR 

SVR is an ML framework used for regression tasks. SVR 

is an extension of SVM for regression problems. In SVR, 

the goal is to find a function that approximates the 

mapping between input variables (features) and the 

continuous output variable. The algorithm aims to 

diminish the error between the projected and actual values 

while also adhering to a specified margin of tolerance. 

SVR requires labeled training data, consisting of input 

features and corresponding continuous target values. It is 

important to scale the input features to ensure they have 

similar ranges. SVR uses kernel functions to transform the 

input features into a higher-dimensional space. Commonly 

used kernels include linear, polynomial, radial basis 

function (RBF), and sigmoid. The SVR algorithm finds an 

optimal hyperplane in the transformed trait domain that 

boosts the margin while minimizing the error. The training 

process involves solving a constrained optimization 

problem. Once trained, the SVR model can be evaluated 

using suitable metrics. The trained SVR model can make 

predictions on new, unseen data by transforming the input 

features using the learned mapping and applying the 

regression function. SVR is a robust framework for 

regression tasks, especially when dealing with complex, 

non-linear relationships between features and targets. It is 

widely used in various domains, including finance, 

economics, and engineering, where predicting continuous 

values is essential [21–23]. 

2.5 HGS 

HGS is a crowd-based framework that combines elements 

of competition and cooperation between individuals to 

search for optimal solutions. The main inspiration for this 

algorithm was the collaborative behavior of animals in 

nature to search for food when they are hungry.  HGS is 

based on the actions and behavioral preferences of animals 

driven by hunger. This dynamic, fitness-wise search 

strategy makes the optimization process more 

comprehensible and consistent for novice users and 

decision-makers by basing it on the straightforward idea 

that "Hunger" is the most important homeostatic 

motivation and cause for all animal behaviors, decisions, 

and actions. To replicate the impact of hunger on each 

search stage, the HGS integrates the idea of hunger into 

the trait process. To put it another way, an adaptive weight 

drawing on the notion of hunger is produced and utilized. 

It adheres to the computationally logical rules (games) that 

nearly all animals play. These competitive games and 

activities are frequently flexible evolutionary strategies 

that elevate the chances of surviving and obtaining food. 

This approach is more efficient than the existing 

enhancement approaches because of its dynamic 

character, straightforward structure, high productivity 

regarding convergence, and acceptable quality of 

resolutions [24–26]. The reference to animals searching 

for food during hunger is intended to explain the 

biological inspiration behind the HGS algorithm. In 

nature, animals search for food based on their needs, often 

following certain patterns and behaviors. Similarly, the 

HGS algorithm imitates this natural process by searching 

for optimal solutions in a computationally logical manner. 

While the algorithm is inspired by nature, its design is 

mathematically structured to perform optimally in 

computational environments, balancing exploration and 

exploitation of the search space. The combination of 

biological inspiration and computational efficiency allows 

the algorithm to effectively solve optimization problems. 

2.6 AOA 

AOA is a population-based framework introduced in 2020 

by Abualigah.  The algorithm aims to optimize 

mathematical expressions by reducing redundant 

computations, simplifying expressions, or reordering 

operations to minimize the count of operations required.  

Some common arithmetic optimization approaches that 

are used include Constant Folding, Strength Reduction, 

Common Subexpression Elimination, Loop-Invariant 

Code Motion, Compiler optimization, etc. Constant 

folding involves evaluating constant expressions at 

compile time rather than runtime. This optimization 

replaces constant expressions with their computed values, 

eliminating unnecessary computations during program 

execution.  Strength reduction replaces expensive 

operations with equivalent but cheaper operations.  This 

technique reduces the computational complexity of 

arithmetic operations.  Common subexpression 

elimination identifies and eliminates redundant 

computations by reusing the result of a previously 

computed subexpression. Instead of recomputing the same 

subexpression multiple times, the result is stored and 

reused when needed. Loop-invariant code motion moves 

computations outside loops when the result of the 

computation remains invariant throughout the loop 

iterations. By performing the computation once and 

reusing the result, redundant computations within loops 

can be avoided. Modern compilers employ various 

optimization techniques to optimize arithmetic operations 
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automatically. These include instruction scheduling, 

register allocation, loop optimizations, and more. 

Compiler optimizations take advantage of the specific 

hardware architecture and aim to generate efficient 

machine code for arithmetic computations. It's noteworthy 

that the choice and efficacy of the optimization 

approaches depend on factors such as the programming 

language, compiler, target platform, and specific 

characteristics of the arithmetic operations being 

optimized [27–29]. 

In the context of air quality forecasting, redundant 

computations in AOA are primarily associated with 

unnecessary re-evaluations of the objective function and 

excessive position updates within the population. This can 

lead to increased processing time without significant gains 

in solution accuracy. To address this, an adaptive 

convergence strategy has been incorporated to reduce 

redundant evaluations once the algorithm stabilizes, 

preventing excessive iterations. Additionally, dynamic 

step-size adjustments were introduced to refine the search 

process, minimizing ineffective position updates while 

maintaining the integrity of the optimization process. 

These refinements improve the computational efficiency 

of AOA, making it more suitable for large-scale 

environmental modeling where high-dimensional data 

processing is required. 

In this study, hyperparameter tuning was performed using 

the Hunger Games Search (HGS) and Arithmetic 

Optimization Algorithm (AOA), which combine the 

exhaustive search capability of grid search with the 

computational efficiency of Hyperband’s early-stopping 

strategy. This method allowed for the efficient exploration 

of a broad hyperparameter space while focusing resources 

on the most promising configurations. The tuning process 

was applied independently to both regression and 

classification tasks, with optimization based on 5-fold 

cross-validation performance on the training data.The 

optimal hyperparameters for the CatBoost model were 

found to be a learning rate of 0.1, a depth of 6, 500 

iterations, an l2_leaf_reg of 3, random_strength set to 1, 

and early stopping rounds of 50. 

algorithm 1 outlines the process of hyperparameter 

optimization using a hybrid approach that integrates 

CatBoost, Arithmetic Optimization Algorithm (AOA), 

and Hunger Games Search (HGS). The optimization 

process begins with initializing a population of random 

CatBoost hyperparameters. The AOA phase focuses on 

exploring and exploiting the search space through 

arithmetic operations, while the HGS phase refines the 

search by incorporating energy levels and "hunger" values 

for each solution. The algorithm iteratively updates the 

best solution based on performance evaluations and 

continues until the optimal hyperparameter set is found. 

This method efficiently balances exploration and 

exploitation, ensuring optimal tuning of hyperparameters 

for the CatBoost model. 

 

Algorithm 1: Hybrid CatBoost-AOA-HGS Hyperparameter Optimization 
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2.7 Description of the database 

The database used in this investigation includes a set of air 

pollutants collected in 2 major cities of China, i.e., 

Changchun, and Zhengzhou from 2018 to 2021. The 

dependent variable, or output, is the same as AQI. The 

input variables SO2, NO2, O3, PM10, and PM2.5 are all in 

µg/m3 units, as well as CO pollutants in mg/m3 units. It 

should be noted that all data are collected on a daily basis. 

All air pollutants can be classified based on their chemical 

origin and physical state. These classifications are used to 

organize discussion and research in air pollution factors. 

Pollutants are divided into primary and secondary groups 

depending on their origin. Primary pollutants, such as 

carbon monoxide, sulfur dioxide, nitrogen oxides, and 

hydrocarbons, are those pollutants that have entered the  

 

atmosphere directly and are found in the atmosphere in the 

same way they are released. Secondary pollutants, such as 

ozone, are those pollutants that are formed in the 

atmosphere by a photochemical reaction as a result of 

hydrolysis or oxidation. Table 2 displays the statistical 

description of the research database. More information 

about the research database is available from reference 

[30]. In this table, individual pollutants (SO₂, NO₂, CO, 

O₃, PM₁₀, PM₂.₅) represent direct atmospheric 

components, while AQI and Index serve as air quality 

indicators. AQI is a composite metric derived from 

pollutant concentrations, and Index categorizes AQI 

values into six discrete levels, representing different air 

quality conditions. Their inclusion in Table 2 provides a 

comprehensive overview of the dataset by connecting raw 

pollutant data with overall air quality assessments. 

Table 2: Statistical description of pollutants and air quality indicators in the dataset 

 Count Mean STD Min 25% 50% 75% Max 

So2 8216 32.46762 35.22384 2 7 15 49 220 

No2 8216 42.11648 22.68928 6 25 38 54 199 

Co 8216 0.877057 0.507142 0.279 0.549 0.736 1.02425 6.5 

O3 8216 61.14606 41.25921 3 29 53 84 232 

Pm10 8216 103.3738 100.5177 6 48 78 124 1665 

Pm2.5 8216 63.5611 74.02761 4 23 43 76 899 

AQI 8216 96.27081 74.66038 16 53 73 111 500 

Index 8216 2.324124 1.196457 1 2 2 3 6 

In this database, the AQI index has 6 different labels 

from number 1 to 6, each of which displays air quality, 

which is displayed by the name of Index in Table 2. Unlike 

individual pollutants, AQI provides an aggregated 

measure of air pollution levels, and Index further classifies 

AQI into standard air quality categories. Their inclusion 

alongside pollutant statistics ensures a holistic 

representation of the dataset, facilitating a clearer 

interpretation of how pollutant levels correlate with air 

quality status. Therefore, drawing on the AQI label, air 

quality can be separated into 6 different groups. Table 3 

displays the range values of AQI for each category, where 

each AQI range is associated with a specific air quality 

category to indicate pollution severity. The Category 

column provides a numerical encoding of these 

classifications, facilitating structured data processing in 

the study. This representation ensures consistency in air 

quality assessment and aligns with widely recognized air 

quality reporting frameworks. The classification structure 

allows for a clear interpretation of pollutant concentrations 

and their corresponding health implications. According to 

this table, with the increase of AQI values and placing the 

data in classes with a larger label, the amount of air quality 

decreases. 

Table 3: Statistical description of the research database 

AQI range Description of the category Category 

0 to 50 Good 1 

51 to 100 Moderate 2 

101 to 150 Unhealthy for Sensitive Groups 3 

151 to 200 Unhealthy 4 

201 to 300 Very Unhealthy 5 

301 to 500 Hazardous 6 

To get familiar with the research variables, Fig. 1 

displays the correlation matrix between the features. The 

dependent variable of AQI has a direct link with all 

independent (input) variables except O3. In the range of -

1 to 1, correlation matrices display the link between 2 sets 

of data or variables. A correlation of -1 denotes a totally 

negative linear link, a correlation of 0 denotes no 

relationship at all, and a correlation of 1 denotes a positive 

linear relationship between 2 variables. 
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Figure 1: The correlation matrix between the features 

As it is clear from this figure, Pm10 and Pm2.5 

indices have the most positive correlation with AQI. In 

other words, with their increase, it can be expected to 

increase the value of AQI. Also, the correlation value 

between AQI and O3 indices is equal to -0.12191, which 

displays an inverse relationship between them. 

Fig. 2 displays the sensitivity analysis of variables 

drawing on DMIM. The values of the delta and sensitivity 

indices in this graphic range from 0 to 1. The more closely 

these indices' values resemble 1, the more influence the 

pertinent variable has over the model's output. The delta 

index displays how much the distribution has changed, 

and the sensitivity index displays how much the output's 

variance has decreased [31]. This chart makes it evident 

that the PM10 variable has the most influence on the AQI. 

The sensitivity analysis indices for the PM2.5 variable 

have the greatest values after that. Conversely, because of 

its low indices, the O3 variable has the least effect on the 

AQI. 

 

Figure 2: Sensitivity analysis of variables based on the DMIM method 

3 Determining the Best Input 

Combinations 

To find the best input combinations, the ACF and PACF 

of the observed data are used. In Fig. 3, the Lag-1–lag-25  

 

 

 

 

ACF and PACF of the pollutants with the 95% confidence 

interval are displayed. 
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Figure 3: Preprocessing the data and determining the optimal combination of inputs 

Using ACF and PACF subplots, it is possible to 

identify lags that are significant with the 95% confidence 

interval for each pollutant. A lag was considered 

significant if its corresponding spike exceeded the 95% 

confidence interval, calculated as ±1.96/√n, where n is the 

sample size. This threshold is visually indicated by the 

shaded region in the plots. Only the lags that crossed this 

boundary were selected as inputs. For instance, CO 

exhibited significant partial autocorrelations up to lag 8, 

while PM₂.₅ showed significance only at earlier lags. 

Finally, by combining the values of the pollutants 

corresponding to the significant lag numbers indicated by 

Q1, Q2, ..., and Qn, 4 different input combinations were 

identified separately for each pollutant, indicated by M1, 

M2, M3, and M4. Table 4 displays different input 

combinations for each pollutant. In this table, the index 

related to Q displays the lag number. 

Table 4: Input combinations 

 SO2 NO2 CO O3 PM10 PM2.5 AQI 

M

1 

Q1, Q2, Q3, 

Q4 

Q1, Q2, Q3, 

Q5 

Q1, Q2, Q3, 

Q4 

Q1, Q2, Q3, 

Q11 

Q1, Q2, Q3, 

Q4 

Q1, Q2, Q6, 

Q9 

Q1, Q2, Q3, 

Q4 

M

2 

Q1, Q2, Q3, 

Q4, Q5 

Q1, Q2, Q3, 

Q5, Q6 

Q1, Q2, Q3, 

Q4, Q5 

Q1, Q2, Q3, 

Q11, Q12 

Q1, Q2, Q3, 

Q4, Q7 

Q1, Q2, Q6, 

Q9, Q13 

Q1, Q2, Q3, 

Q4, Q6 

M

3 

Q1, Q2, Q3, 

Q4, Q5, Q6 

Q1, Q2, Q3, 

Q5, Q6, Q7 

Q1, Q2, Q3, 

Q4, Q5, Q6 

Q1, Q2, Q3, 

Q11, Q12, Q13 

Q1, Q2, Q3, 

Q4, Q7, Q12 

Q1, Q2, Q6, 

Q9, Q13, Q14 

Q1, Q2, Q3, 

Q4, Q6, Q8 

M

4 

Q1, Q2, Q3, 

Q4, Q5, Q6, 

Q7 

Q1, Q2, Q3, 

Q5, Q6, Q7, 

Q8 

Q1, Q2, Q3, 

Q4, Q5, Q6, 

Q8 

Q1, Q2, Q3, 

Q11, Q12, 

Q13, Q14 

Q1, Q2, Q3, 

Q4, Q7, Q12, 

Q13 

Q1, Q2, Q6, 

Q9, Q13, Q14, 

Q15 

Q1, Q2, Q3, 

Q4, Q6, Q8, 

Q9 

In the following, the SVM method was used to select 

the best input combinations. Table 5 displays the values of 

R2 and RMSE indices in input combinations. 
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Table 5: Select the best input combinations 

 SO2 NO2 CO O3 PM10 PM2.5 AQI 

 R2 
RMS

E 
R2 

RMS

E 
R2 

RMS

E 
R2 

RMS

E 
R2 

RMS

E 
R2 

RMS

E 
R2 

RMS

E 

M

1 

0.86

41 

12.23

8 

0.89

53 

8.57

79 

0.86

71 

0.25

64 

0.90

741 

6.89

254 

0.90

91 

42.84

92 

0.79

47 

65.79

32 

0.95

93 

21.27

6 

M

2 

0.86

91 

11.80

7 

0.90

63 

8.15

50 

0.86

96 

0.25

28 

0.93

155 

6.05

131 

0.91

72 

37.65

71 

0.80

75 

63.89

89 

0.96

96 

19.88

0 

M

3 

0.87

0382

76 

11.73

0948

6 

0.90

2783

43 

8.40

9057

02 

0.86

9189

35 

0.25

1039

42 

0.93

4105

05 

5.86

7911

77 

0.90

8249

21 

43.07

6434

55 

0.81

3349

51 

62.58

7421

22 

0.96

5640

26 

21.31

8339

29 

M

4 

0.86

8111

69 

11.63

6827

03 

0.90

6524

65 

8.21

8370

44 

0.87

0278

24 

0.25

2428

83 

0.93

4559

9 

5.91

8425

16 

0.90

4191

35 

44.13

8648

03 

0.82

4064

97 

61.81

0775

66 

0.96

4871

94 

22.05

6339

74 

According to the findings of this table, for SO2, the 

values of R2, and RMSE indices related to M3 were better 

than the corresponding values in other input combinations. 

Therefore, M3 was chosen as the best input combination. 

For all NO2, CO, O3, and PM2.5 pollutants, M4 was 

selected as the best input combination. Also, for AQI, M2 

was selected as the best input combination. 

4 Results related to the prediction of 

pollutants 

This section looks at and analyzes the pollution 

forecasting findings using hybrid frameworks. A time 

record of the actual and anticipated pollution levels based 

on the hybrid frameworks (CatBoost-AOA and CatBoost-

HGS) divided by test and train databases is presented in 

Figure 4. In this figure, the black line represents the actual 

observed values (Target), while the green and yellow lines 

indicate the predicted values generated by the CatBoost-

HGS and CatBoost-AOA models, respectively. Each 

subplot corresponds to a specific pollutant (AQI, CO, 

NO₂, O₃, PM₁₀, PM₂.₅, SO₂), illustrating the temporal 

variations captured by the models. It is evident that all 

hybrid frameworks' time series curves suit the real data's 

time series curve rather well. The close alignment between 

predicted and actual values confirms the reliability of 

these hybrid models in accurately estimating pollutant 

concentrations. Additionally, it can be observed that 

CatBoost-HGS exhibits stronger predictive accuracy for 

AQI and CO, whereas CatBoost-AOA provides improved 

performance in pollutants with complex fluctuations, such 

as O₃ and PM₁₀. This demonstrates that the observational 

data have been properly estimated by all ML frameworks 

in both the test and train intervals. 

 

Figure 4: Time series of the actual and projected values based on the hybrid frameworks 
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The following will include a comparison of the 

frameworks based on the assessment indicators to offer a 

more realistic comparison of the hybrid frameworks. The 

hybrid framework's observation-prediction scatter plot, 

divided by the train and test databases, is displayed in 

Figure 5. The hybrid framework's observation-prediction 

scatter plot, divided by the train and test databases, is 

displayed in Figure 5. The R2 index is also displayed for 

each database. Based on the training database, this figure 

displays that both hybrid frameworks' performance is 

appropriate for all contaminants. The CatBoost-HGS 

hybrid framework demonstrated higher R2 values in the 

prediction of CO and AQI contaminants based on the test 

database. Therefore, for these 2 pollutants, the CatBoost-

HGS hybrid framework is more accurate. R2 values, 

however, indicate that the CatBoost-AOA hybrid 

framework performs better in predicting PM10 and O3 

contaminants drawing on the test database. Furthermore, 

the analysis of R2 values using the test database 

demonstrates that both hybrid frameworks predict NO2 

and PM2.5 pollutants with excellent accuracy and near 

equality. 

 

(a) CatBoost-AOA hybrid framework 

 

(b) CatBoost-HGS hybrid framework 

Figure 5: The observation-prediction scatter plot 

This section examines the productivity of hybrid 

frameworks by concentrating on the values of the 

statistical assessment indicators. The values of the 

statistical evaluation indices for the CatBoost-AOA and 
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CatBoost-HGS hybrid frameworks for the test and train 

databases are displayed in Tables 6 and 7, respectively. 

The train and test databases were used to construct these 

indexes independently. 

Table 6: The statistical evaluation indices related to the CatBoost-AOA hybrid framework 

 AQI CO NO2 O3 PM2.5 PM10 

Train 

MBE 0.000504 2.49E-05 -0.00167 -0.00042 -0.0004 -0.00104 

RMSE 6.896245 0.067492 3.572921 4.345468 3.999833 10.9663 

MAPE 0.068246 0.063471 0.080875 0.076767 0.086226 0.110219 

R2s 0.98688 0.974821 0.971562 0.98982 0.992733 0.984699 

JSD 631.628 6.281885 412.0346 436.8669 460.9586 1548.496 

RAE 0.065875 0.073739 0.079478 0.054661 5.657481 0.085293 

 Test 

MBE -2.40123 -0.01414 -1.36256 1.705325 -11.676 1.708281 

RMSE 17.2221 0.25353 8.029421 6.933788 61.76703 38.2423 

MAPE 0.077989 0.088881 0.097297 0.154836 0.118598 0.102993 

R2s 0.975361 0.867402 0.908667 0.911033 0.818498 0.91736 

JSD 404.9435 7.678394 265.9971 363.296 2502.604 1208.524 

RAE 0.098815 0.190031 0.138356 0.156295 87.40505 0.196445 

Table 7: The statistical evaluation indices related to the CatBoost-HGS hybrid framework 

 AQI CO NO2 O3 PM2.5 PM10 

Train 

MBE 0.002563 0.000002 -0.00167 0.001449 -0.00037 -0.00181 

RMSE 6.89878 0.069591 3.572889 6.663152 3.999854 9.119149 

MAPE 0.068145 0.064045 0.080874 0.108812 0.086225 0.097581 

R2s 0.98687 0.973229 0.971563 0.976024 0.992733 0.989421 

JSD 625.0642 6.540241 412.0287 936.7454 460.963 1170.28 

RAE 0.065899 0.076032 5.053598 9.424557 5.65751 12.89839 

 Test 

MBE -1.99532 -0.01647 -1.36254 2.317816 -11.676 -2.70887 

RMSE 16.88679 0.250533 8.029452 6.983025 61.77031 42.97614 

MAPE 0.077577 0.086798 0.097297 0.155553 0.118599 0.09913 

R2s 0.975609 0.870867 0.908666 0.896567 0.818464 0.898578 

JSD 393.458 7.554049 265.9998 357.9991 2502.871 1312.712 

RAE 0.096891 0.187784 11.36229 9.881513 87.40969 60.81451 

To make it easier to compare hybrid frameworks, Fig. 6 

displays the bar plot related to the evaluation indices 

separately by the type of data. In the following, these 

indices will be examined.  
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(a) CatBoost-AOA hybrid framework 

 

(b) CatBoost-HGS hybrid framework 

Figure 6: Performance of hybrid frameworks based on the evaluation indices. 

 

Figure 7: The box plot diagram of errors
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The comparison of evaluation indices based on the 

outcomes of Tables 5 and 6 and Fig. 6 displays that the 

recommended hybrid frameworks have good accuracy in 

predicting pollutants. Based on the test database, it can be 

found that the CatBoost-HGS hybrid framework has more 

accurate evaluation index values in predicting AQI and 

CO pollutants. This is while the evaluation indicators 

show that the CatBoost-AOA hybrid framework is more 

accurate in predicting O3 and PM10 pollutants. Regarding 

NO2 and PM2.5 pollutants, both hybrid frameworks have 

the same and close evaluation index values. Therefore, 

both recommended hybrid frameworks have appropriate 

and acceptable accuracy in predicting these 2 pollutants. 

The box plot diagram of errors for all hybrid 

frameworks is displayed in Fig. 7 based on the kind of 

database, i.e., train and test. 

This figure illustrates how the productivity of the two 

suggested hybrid frameworks is nearly identical 

throughout both the training and testing stages. Stated 

differently, the locations of the box plots for each pollutant 

in the training and test databases are nearly identical. This 

figure further demonstrates the accuracy of the proposed 

frameworks in predicting CO concentrations. The 

scholars. Put otherwise, the lowest and maximum amounts 

of error, together with the first, second, and third quartile 

values, are lower than the others. Therefore, it makes sense 

that this model will have less inaccuracy. Moreover, the 

overall distribution of errors remains centered around 

zero, indicating the absence of systemic bias in both 

frameworks. The slight variations in error spread across 

different pollutants, particularly in O₃ and PM₁₀, suggest 

that while the models perform well across most cases, 

pollutant-specific atmospheric behaviors contribute to 

variations in prediction accuracy. The CatBoost-HGS 

model exhibits a narrower interquartile range for CO and 

AQI, reinforcing its stability in these predictions. In 

contrast, the CatBoost-AOA model shows a slightly wider 

error spread, likely due to its broader optimization search, 

which, while enhancing performance in some cases, 

introduces greater variance in others. These results 

confirm that both models provide robust predictions while 

maintaining a balanced trade-off between accuracy and 

generalization. These graphic displays that the largest plot 

sizes and, consequently, the largest. 

The bar charts showing the overall run time for each 

hybrid framework are displayed in Fig. 8. This figure 

displays that the overall run time of the CatBoost-AOA 

hybrid framework is longer than the total run time of the 

CatBoost-HGS hybrid framework for all pollutants. As a 

result, the hybrid CatBoost-HGS model completes tasks 

more quickly. Also, using the CatBoost-AOA hybrid 

framework to anticipate O3 pollutants has the highest total 

run time among all pollutants. 

This analysis highlights the trade-off between 

accuracy and computational cost, as CatBoost-AOA’s 

broader optimization strategy increases runtime while 

potentially improving prediction performance for certain 

pollutants. Despite its longer execution time, CatBoost-

AOA remains feasible for offline analysis, whereas 

CatBoost-HGS, with its lower computational burden, is 

more suitable for real-time applications. The feasibility of 

these models in real-time scenarios can be further 

enhanced through techniques such as parallel processing, 

feature selection, and model compression to optimize 

runtime without compromising prediction accuracy.

 

Figure 8: Comparison of the run times of hybrid frameworks 

figure 9 illustrate the feature importance for various 

air quality prediction models, highlighting the significance 

of different pollutants and their influence on predicting 

AQI. The charts depict the relative importance of 

pollutants such as PM2.5, PM10, O3, CO, and AQI, with 

bars representing their impact on model accuracy. Figure 

1 shows the ranking of various pollutants in terms of their 

contribution to AQI prediction. Figure 2 compares the 

importance of NO2 and SO2 with other pollutants, 

illustrating their varying effects across different features. 

Figure 3 presents a combined analysis of AQI, PM2.5, and 

PM10, showing how these pollutants together influence 

the overall prediction model. These visualizations help in 

understanding the key factors that drive air quality 

forecasting, assisting in more effective model 

optimization and feature selection. 
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Figure 9: Feature importance analysis for air quality prediction models 

Table 8 presents the results of the Wilcoxon signed-

rank test to compare the performance of the AE_HGS and 

AE_AOA models for different pollutants. The Median 

Difference between the two models is provided, along 

with the statistical test statistic and p-value. The p-value is 

used to determine whether the difference is statistically 

significant at a significance level of α = 0.05. If the p-value 

is less than 0.05, the difference is considered statistically 

significant. The conclusion column summarizes the 

outcome for each target variable, indicating whether one 

model performed better in terms of lower AE (Absolute 

Error). The Target refers to the specific pollutant or air 

quality index being tested (e.g., AQI, CO, NO2), and N 

represents the number of samples used in the test. The 

Compare column indicates the median difference between 

AE_HGS and AE_AOA, while the Statistic shows the test 

statistic calculated for the Wilcoxon signed-rank test. The 

P-value column reflects the p-value associated with the 

test, determining the statistical significance of the 

difference. Significant (α=0.05) shows whether the result 

is statistically significant, and the Conclusion provides a 

final judgment based on the p-value, indicating which 

model performed better in terms of AE. 

Table 8: Statistical significance test results for model comparison (wilcoxon signed-rank test)

Target N_Compared 

Median_Difference 

(AE_HGS - 

AE_AOA) 

Statistic P-value 
Significant 

(α=0.05) 
Conclusion 

AQI 1641 0.0072 671061.0 0.8935 FALSE 
NoSignificant 

Difference 

CO 1641 -0.0011 643982.0 0.1225 FALSE 
No Significant 

Difference 

NO2 1641 0.0000 506085.0 
2.617e-

18 
TRUE 

AOA Significantly 

Better (Lower AE) 

O3 1641 -0.0070 672465.0 0.9516 FALSE 
No Significant 

Difference 
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PM2.5 1641 -0.0000 604140.0 0.0003 TRUE 
HGS Significantly 

Better (Lower AE) 

PM10 1641 -0.3864 615175.0 0.0023 TRUE 
HGS Significantly 

Better (Lower AE) 

SO2 1641 -0.4735 592792.0 
2.547e-

05 
TRUE 

HGS Significantly 

Better (Lower AE) 

5 Results related to AQI category 

classification 

This section examines the CatBoost-AOA and CatBoost-

HGS hybrid frameworks' accuracy in classifying the AQI. 

As was previously noted, the AQI is categorized into six  

 

 

groups according to air quality ratings. The evaluation 

index values for hybrid classification frameworks are 

displayed in Fig. 10. These graphic displays that both 

hybrid frameworks of classification have acceptable class 

classification accuracy. All of the evaluation indices for 

both hybrid frameworks have values of 1 based on the 

training database. This displays that the frameworks' 

training data accuracy is faultless. 

 

Figure 10: Comparing the accuracy of hybrid classification frameworks 

The CatBoost-HGS hybrid framework's Precision, 

Recall, and F1 Score indices are all more than 0.985 across 

all classes when compared to the test database. In every 

class, these values are almost greater than the equivalent 

values of the hybrid CatBoost-AOA model. Consequently, 

it may be said that the hybrid CatBoost-HGS model 

classifies classes more accurately. The confusion matrix 

associated with the hybrid classification frameworks is 

displayed separately from the database in Fig. 11 to more 

precisely compare the accuracy of the classification 

frameworks. The horizontal axis in this picture displays 

the true and observed label, while the vertical axis displays 

the anticipated label. 
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(a) CatBoost-AOA hybrid framework 

  

(b) CatBoost-HGS hybrid framework 

Figure 11: The confusion matrix related to the hybrid classification frameworks 

This image displays that both hybrid frameworks 

were able to be fully and accurately trained based on 

observational classifications using the training database. 

The values of the primary diameter cells in all classes for 

the CatBoost-HGS hybrid framework are greater than the 

comparable values in the CatBoost-AOA hybrid 

framework, according to the test database. This 

demonstrates the CatBoost-HGS hybrid framework's 

increased accuracy in classifying data using the test 

database. 

6 Discussion 
The results demonstrate that the proposed CatBoost-HGS 

model outperforms traditional models like XGBoost 

(Song et al., 2023) and SARIMA (Bhatti et al., 2021) in 

most pollutants, particularly CO and AQI. As seen in 

Table 6, CatBoost-HGS achieves an R² of 0.9756 for AQI 

and 0.870867 for CO, reflecting strong predictive 

capabilities. Compared to SARIMA, which struggles with 

nonlinear dependencies, and XGBoost, which lacks 

dynamic hyperparameter tuning, CatBoost-HGS 

leverages the Hunger Games Search (HGS) algorithm for 

superior parameter optimization, leading to more precise 

predictions. However, a comparative analysis with 

CatBoost-AOA in Table 5 reveals that while CatBoost-

HGS excels in CO and AQI prediction, it slightly 

underperforms in O₃ and PM₁₀ forecasting. Specifically, 

CatBoost-HGS achieves an RMSE of 0.250533 for CO 

and 16.88679 for AQI, whereas CatBoost-AOA records 

slightly higher errors (0.25353 and 17.2221, respectively). 

However, for O₃ and PM₁₀, CatBoost-AOA performs 

better with an R² of 0.911033 for O₃ compared to 0.896567 

in HGS. This can be attributed to AOA’s stronger global 

search capability, which is more suited for pollutants with 

complex temporal and chemical interactions. Conversely, 

HGS excels in local optimization, making it more 

effective for pollutants with clearer short-term patterns 

like CO. 

The analysis also confirms that classification-based 

models yield superior AQI predictions compared to 

regression-based approaches. Given AQI’s discrete 

categorization (e.g., Good, Moderate, Unhealthy), 

classification models like CatBoost-HGS (R² = 0.9756 for 

AQI) better capture these structured thresholds than 

regression models, which may misinterpret transitions 

between AQI classes. This highlights the advantage of 
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classification in enhancing interpretability and aligning 

with air quality management needs. 

However, this observation is dataset-dependent, and 

while classification demonstrated superior performance in 

this study, its generalizability to different datasets should 

be further explored. Incorporating additional air quality 

datasets from different regions could help validate the 

robustness of classification models over regression in AQI 

forecasting. 

Furthermore, the sensitivity analysis (Figure 2) 

confirms that PM₁₀ has the highest impact on AQI 

prediction, aligning with environmental studies 

highlighting its prolonged atmospheric presence and 

regulatory significance in AQI computation. PM₁₀ is 

known to have significant adverse health effects and is a 

primary component in air quality standards worldwide. 

The dominance of PM₁₀ in the feature importance rankings 

supports the model’s reliability in identifying key air 

quality indicators. Future studies should examine whether 

this trend holds across diverse geographic regions and 

pollution sources. 

One concern with the proposed models is the higher 

computational cost of CatBoost-AOA, which exhibits a 

longer runtime due to its more exhaustive optimization 

process. While CatBoost-AOA slightly improves 

accuracy in O₃ and PM₁₀, the added computational burden 

must be justified. To balance efficiency and accuracy, 

future work should explore feature selection to reduce 

dimensionality, parallelized processing (GPU 

acceleration) to speed up training, and dynamic hybrid 

approaches where AOA is selectively applied to pollutants 

that require extensive optimization. 

Overall, the findings highlight that CatBoost-HGS is 

highly effective for AQI and CO prediction, offering a 

balance between accuracy and efficiency, while CatBoost-

AOA is preferable for pollutants with complex 

atmospheric behaviors. Future research should focus on 

hybrid frameworks that dynamically switch between 

optimization techniques to further enhance predictive 

performance and improve computational efficiency for 

large-scale applications. 

7 Conclusion 
Environmental pollution is one of the major problems of 

developing countries, which has been increased by the 

expansion of urbanization and excessive consumption of 

fossil fuels. One of the biggest and most dangerous issues 

facing modern society is air pollution, which is made 

worse by the growing number of automobiles on the road. 

Every day, the quality of the air varies. The series of data 

related to air quality has random, irregular, and unstable 

characteristics, and this has made it difficult to anticipate 

pollutants and air quality . Considering the adverse 

consequences of air pollution on the health of persons and 

the environment, it is vital to lessen and address this 

problem based on the precise knowledge of pollutants and 

the factors affecting them and identifying the polluted 

areas; therefore, using mathematical frameworks in the 

form of ML is an optimal and cost-effective approach for 

modeling air pollution. Therefore, in this investigation, 

using the capabilities of hybrid frameworks based on ML, 

hybrid frameworks were presented to anticipate air quality 

pollutants and classify air quality. The recommended 

hybrid frameworks were created by combining the 

CatBoost algorithm with the AOA and HGS algorithms. 

The study's database includes daily time series data on 

China's air pollution from 2018 to 2021. Choosing the 

right inputs for intelligent frameworks is very important 

because it reduces costs, saves time, and increases the 

accuracy and efficiency of frameworks. To select input 

combinations for each pollutant, ACF and PACF 

approaches were used. Additionally, the SVR algorithm 

was employed to choose the optimal input combination for 

every pollutant. The accuracy of hybrid frameworks in the 

following data prediction and classification was compared 

using different evaluation indices. The results showed that 

both CatBoost-HGS and CatBoost-AOA hybrid 

frameworks have good accuracy in predicting pollutants. 

The outcomes demonstrated that the CatBoost-HGS 

hybrid framework for predicting AQI and CO pollutants 

and the CatBoost-AOA hybrid framework for predicting 

O3 and PM10 pollutants are more accurate. Regarding 

NO2 and PM2.5 pollutants, both hybrid frameworks have 

the same and close evaluation index values. Therefore, 

both recommended hybrid frameworks have appropriate 

and acceptable accuracy in predicting these 2 pollutants. 

Additionally, the evaluation indicators demonstrated that 

the CatBoost-HGS hybrid framework outperforms the 

CatBoost-AOA in accurately classifying and identifying 

the air quality class. 

Nomenclature 

ACF Autocorrelation Function PACF Partial Autocorrelation Function 

AI Artificial Intelligence PCA principal component analysis 

ANN Artificial neural network RBF radial basis function 

AOA Arithmetic Optimization Algorithm RF random forest 

AQI Air quality index SARIMA Seasonal Autoregressive Integrated 

Moving Average 

CatBoost Categorical boosting SVM Support vector machine 

DL deep learning SVR Support Vector Regression 

FN False Negative TN True Negative 

FP False Positive TP True Positive 
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HGS Hunger Games Search WHO World Health Organization 

HYSPLIT Hybrid Single-Particle Lagrangian 

Integrated Trajectory 

XGBoost Extreme Gradient Boosting 

𝐽𝑆𝐷(𝑃 || 𝑄) Jensen-Shannon divergence between P 

and Q 

�̂�𝑖 ith estimated value 

LSTM Long Short-Term Memory �̅� mean of data points 

ML ML 𝑦𝑖  ith real value 

N number of observations   
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