
https://doi.org/10.31449/inf.v49i33.8071 Informatica 49 (2025) 163–184 163

Hybrid Multi-layer Perceptron and Metaheuristic Optimizers for

Indoor Localization Error Estimation

Jia Liu1, Jian Sun2, *

1CangZhou Kindergarten Teachers College, Cangzhou 061001, China
2Hebei Software Institute, Baoding 071000, China

E-mail: sunjian8035@163.com
*Corresponding author

Keywords: average localization error, pelican optimizer algorithm, global situational system, gold rush optimizer,

multi-layer perceptron regression

Indoor localization is hindered by GPS signal weakening in indoor environments. This research

formulates machine learning with Multi-layer Perceptron Regression (MLPR) algorithm supported by

two metaheuristic optimizers, namely, Gold Rush Optimizer (GRO) and Pelican Optimizer (POA), to yield

hybrid models MLGR and MLPO to forecast Average Localization Error (ALE). The dataset organized in

a structured form was of size 107 samples with six significant features as follows: anchor ratio,

transmission range, node density, trainings, standard deviation of ALE, and ALE as objective. The dataset

was split into training (70%), validation (15%), and testing (15%) subsets. Experimental analysis in three

prediction layers reveals that MLGR outperformed MLPO and MLPR models in every prediction layer.

MLGR exhibited maximum performance at the third test layer with an RMSE of 0.036 and R² of 0.993,

whereas MLPO and MLPR attained RMSE of 0.059 and 0.080 and values of R² of 0.981 and 0.966,

respectively. The findings establish the validity of the introduced hybrid optimization technique to increase

accuracy and convergence rate of prediction of ALE in wireless sensor networks.

Povzetek: Raziskava uvaja hibrid MLPR z optimizatorjema GRO in POA za napoved ALE v WSN. Model

MLGR doseže najboljšo točnost (RMSE 0.036, R² 0.993), presega MLPO in osnovni MLPR.

1 Introduction
A Wireless Sensor Network (WSN) is designed by several

cheap, tiny sensors located all around an area to gauge

various physical characteristics or monitor environmental

situations [1,2]. Target tracking and precision agriculture

are only two of the many industries where this technology

finds applicable uses [3,4]. These sensors are often

required to make accurate coordinate predictions while

utilizing the minimum resources possible [5,6]. Although

sensors equipped with an incorporated GPS can quickly

determine their situations, cost and size constraints

preclude embedding GPS in each sensor. Employing

localization frameworks is one alternative strategy,

whereby several anchor nodes equipped with incorporated

GPS help the hidden nodes to identify their coordinates

accurately [7,8].

Numerous localization frameworks have been

developed to address diverse problems [9]. These

frameworks should be flexible to operate well in different

indoor and outdoor structures and topologies. These

localization strategies fall into two groups: range-free and

range-based frameworks. When using range-based

strategies, the unfamiliar nodes' situation is identified by

measuring the length between the anchor and unfamiliar

sensor nodes [10,11]. Diverse factors are employed,

including the Received Signal Strength Indication (RSSI),

the angle, and time of arrival [12].

Conversely, range-free methods such as centroid [13] and

ad-hoc situationing systems[14] use simple

connectivity-related operations to locate hidden nodes. All

these frameworks need is for the anchor node's beacon

signal to be present in the medium. Range-based

frameworks are preferred and used more frequently than

range-free frameworks [15–17]. Several bioinspired

frameworks have been recommended for the range-based

method to help design a less complex algorithm [18]. A

node localization technique utilizing Particle Swarm

Optimization (PSO) [19] was first described by

Gopakumar and Jacob [20], mimicking the behavior of a

swarm of fish searching for food. While the framework

first yielded promising results, it often became stuck in

local optima, leading to premature convergence. Goyal

and Patterh [21] showed significant results in reducing

localization errors in 2014 when they used Cuckoo Search

(CS) for node localization in WSNs. The CS algorithm's

tuning settings, which simplified the computation

procedure, are responsible for this result. Researchers

recently recommended a modification to the CS

technique: Cheng and Xia [22], which improved the

traditional CS algorithm's rate of convergence. They

changed the mutation probability and random walk stage

size to improve the search strategy [23,24].

A Bayesian approach for node localization in WSNs

was introduced by Morelande et al. [25]. The suggested

algorithm, known as progressive correction, improved

their previous work [26]. Both strategies are compared

164 Informatica 49 (2025) 163–184 J. Liu et al.

under different situations, with the Cramer-Rao bound

(CRB) as the benchmark. Outperforming its predecessor,

the newly recommended algorithm achieves superior

accuracy. Furthermore, Ghargan et al. [27] recommended

a tactic in which three enhancement frameworks, PSO,

Backtracking Search Algorithm (BSA), and Gravitational

Search Algorithm (GSA), are individually hybridized with

ANN. Outperforming alternative methods, the GSA-ANN

hybrid achieved low mean absolute distance projection

errors: 0.02 meters for outdoor and 0.2 meters for indoor

cases. In a current survey by Ahmadi and Bouallegue [28],

various innovative ML strategies employed in node

localization within WSNs were compiled. The study

included a comparison of cumulative localization error

distribution curves for different strategies such as ANN,

SVM, DT, and Naive Bayes (NB). Analysis of cumulative

localization error distributions revealed NB as the superior

machine learning technique among those evaluated [29–

31].

Bhatti et al. [32] recommended an outlier recognition

framework for indoor localization known as iF_Ensemble.

This technique utilizes supervised ML methods, RF, and

SVM-along with the unsupervised Isolation Forest, and an

ensemble technique called stacking. It significantly

outperforms the model with a very high localization

accuracy of 97.8%.

Wang et al. [33] recommended a new node

localization framework called KELM-HQ, which uses

Kernel Extreme Learning Machines to boost the accuracy

of estimating the situations of hidden nodes. It achieves a

34.6% improvement in localization error compared with

fast-SVM, 19.2% with the GADV-Hop algorithm, and

11.9% with the DV-Hop-ELM algorithm. Table 1

represents the comparative summary of state-of-the-Art

for indoor localization error prediction.

Table 1: Comparative summary of state-of-the-Art for indoor localization error prediction.

Method Reference Technique RMSE MAE R² Limitations and Improvements

PSO-ANN Gharghan et

al. (2016)

[34]

Particle Swarm

Optimization

with ANN

0.2

(indoor)

0.12 N/A Converges to local minima; lacks

robustness under varying topologies.

MLGR offers more stable

convergence and better

generalization.

Cuckoo

Search

Goyal &

Patterh

(2014)

[35]

Cuckoo Search

Metaheuristic

0.42 N/A N/A Requires tuning-sensitive

parameters; slower convergence.

MLGR improves convergence speed

and accuracy.

Bayesian

Correction

Morelande et

al. (2008)

[36]

Progressive

Bayesian

Estimation

0.23 0.15 0.91 Not ML-based; lower adaptability in

dynamic environments. MLGR

leverages adaptive learning for real-

time localization.

KELM-

HQ

Wang et al.

(2020)

[33]

Kernel Extreme

Learning

Machine

0.58 N/A 0.93 No optimizer hybridization; poorer

error margin. MLGR offers up to

38% better RMSE.

MLPR This Study

(Baseline)

Multi-layer

Perceptron

Regression

0.080 0.071 0.966 Strong nonlinear modeling, but

suboptimal without optimization.

MLPO This Study MLPR +

Pelican

Optimization

0.059 0.051 0.981 Improves ALE prediction;

outperformed by MLGR in

convergence and accuracy.

MLGR This Study MLPR + Gold

Rush

Optimization

0.036 0.029 0.993 Best overall accuracy and

generalization. Efficiently addresses

convergence and nonlinearity

weaknesses of prior SOTA methods.

This paper uses machine learning to advance the

scheme for ALE prediction. In this paper, the authors used

MLPR. MLPR was chosen for its known capability to

represent complex, nonlinear relationships between input

values typical in wireless sensor network datasets. In

contrast to linear or tree-based regressors, MLPR supports

complex feature interactions natively and does not require

explicit feature transformation. Its design is highly

flexible and adaptable, reflecting the need to predict ALE

in varied network topologies. Its efficiency in other similar

application areas has been previously proved, providing

both accuracy and computational expense as needed,

making it an appropriate tool to be applied to this case.

The use of MLPR to predict ALE has several advantages.

This framework performs very well in detecting intricate

relationships within data and, hence, is suitable for those

applications where the underlying pattern is complex and

nonlinear. It is believed that MLPR can learn with diverse

traits and complex adjustments of the ALE prediction task.

This is because such a type of neural network is pretty

robust, providing good results on big data and allowing

generalization for unseen examples. GRO and POA were

recommended as additional optimizers in a quest for a

better level of accuracy for ALE prediction. The results

Hybrid Multi-layer Perceptron and Metaheuristic Optimizers for Indoor… Informatica 49 (2025) 163–184 165

and discussion also presented the hybridized framework's

performance against others. Such a comparative study will

go a long way in determining which model achieves better

accuracy and precision in ALE forecasting. Consequently,

the GRO inclusion, POA, and model hybridization in the

present study assist in acquiring an in-depth understanding

of the strengths and shortcomings of the adopted

predictive frameworks.

2 Mathematical frameworks

2.1 MLPR

A concise overview of the single-layer perceptron, the

fundamental building block of Multi-Layer Perceptrons

(MLPs) [37], is presented to foster understanding. This

most straightforward form of a neural network entails a

single output neuron connected to all inputs. Each input

connection has a corresponding weight, denoted as 𝑤𝑖

(where 𝑖 ranges from 0 to 𝑛, with n being the total number

of inputs). These weights influence the output (𝑦),

wrepresentingthe projected binary class. The input values
(𝑥𝑖) correspond to the considered traits or variables [38].

Every input feature value is multiplied by its

corresponding weight, 𝑣𝑖𝑎𝑖 , during the weighting stage.

The second stage then involves adding together these

products (𝑣0𝑎0 + 𝑣1𝑎1 + ⋯+ 𝑣𝑛𝑎𝑛). The third stage is

the transfer stage, where an activation function is applied

to the total. denoted as f (or transfer function). This

process yields an output, y, expressed as:

𝑦 = 𝑓(𝑧) 𝑎𝑛𝑑 𝑧 = ∑𝑣𝑖𝑎𝑖

𝑛

𝑖=0

 (1)

𝑎0 = 1 represents the output 𝑦, where 𝑎0 is the

threshold or bias.

Eq. (1) empowers a perceptron, suited for learning

functions that a straight line can separate. When dealing

with a two-dimensional input featuring two variables, this

function is visually represented by a line [39]. The

representation shifts to a plane in the context of three

dimensions and three traits. However, when dealing with

input in n dimensions, the corresponding function is

symbolized by a hyperplane. The equation governing the

hyperplane is articulated as:

∑𝑣𝑖𝑎𝑖

𝑛

𝑖=0

= 0 (2)

Eq. (2) represents the dot product of weight vector
V and input vector A.
𝑉. 𝐴 = 0 (3)

The subsequent stage, referred to as the learning or

training stage, is initiated upon obtaining the responses

from the input training data. This stage aims to optimize

the weights by minimizing a cost function. This function

typically measures the squared error between the

framework's projected outputs and the real responses.

Analytical methods such as gradient descent can compute

the optimal weight vector. Convergence of the framework

to a solution is imperative for the network to become

operational. It also checks the model's generalization

capability by validating it with new data. An SLP

architecture is created by connecting several perceptrons

in parallel, which is used with multiple outputs.

The perceptron and single-layer perceptron have

limited ability to solve nonlinearly separable problems. To

remove this limitation, multiple layers can be added in

series to develop an MLP network. In a neural network,

the first and last layers are referred to as the input and

output layers, respectively, while all other in-between

layers are called the hidden layers. The output from each

layer acts as the input for the subsequent layer, and this

process goes on iteratively for every additional layer.

As defined in [40], MLP is a feedforward neural

network architecture where information flows only in one

direction from the input layer to the output layer via the

hidden layers. Each link between neurons is weighted, and

all neurons in one layer have the same activation function.

The hidden layers use the sigmoid function for nonlinear

activation, while the output layer could be either sigmoid

or linear, depending on the application.

The performance of the MLP model depends on

different factors, including the count and arrangement of

hidden layers and nodes, the volume of training data, the

selection of variables, etc. On the other hand, training

parameters, such as the number of cycles, learning rate,

momentum governing weight adjustments, and so on, may

hugely impact the model's overall performance.

2.2 GRO

For the challenge of damage recognition in optimization,

researchers implemented GRO. This framework boasts

faster convergence compared to traditional methods.

Unlike other strategies, GRO is inspired by human

reasoning and decision-making. It begins by creating a set

of randomly distributed "operators" within the search

domain, mimicking the initial search stage in human

problem-solving.

During each cycle, these operators move together.

When one detects a significant change in a monitored

parameter (analogous to increased sound), the entire group

pauses to investigate. In addition to their observations,

each operator also considers information from others,

particularly those detecting stronger "signals." This

collaborative approach guides the group towards the area

with the most significant readings, ultimately leading to

precisely identifying the damage location. Refer to Fig. 1

for the GRO algorithm's flowchart.

166 Informatica 49 (2025) 163–184 J. Liu et al.

Figure 1: The flowchart of the GRO algorithm

First stage: initialization

Eq. (4) illustrates the random allocation of a place for

each operator within the search domain. The variable

Rand represents a random number within the interval of

[0...1], and the search domains for the operators are

delineated by 𝑢𝑏𝑖 and 𝑙𝑏𝑖 .

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖
(0)

= 𝑙𝑏𝑖 + (𝑢𝑏𝑖 − 𝑙𝑏𝑖) × 𝑟𝑎𝑛𝑑,

𝑖 = 1,2, … , 𝑛
(4)

Second stage: Monitoring involves choosing the best

places.

The SOP is the identifier used to indicate that the

operator has successfully identified the ideal location. At

the end of every cycle, it is recommended that the top 10%

of operators in the SOP be kept.

Third stage: The link between fitness and distance is

called fitness-distance.

Eq. (5) is used to examine each operator's readings

(rate). This calculation helps determine which operator

possesses the most promising data for locating the

damage.

𝑟𝑎𝑡𝑒(𝑖) =
𝐷𝑖

𝑃𝑖

×
𝑠𝑜𝑢𝑛𝑑 (ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑣𝑜𝑙𝑢𝑚𝑒) − 𝑠𝑜𝑢𝑛𝑑 (𝑖)

(𝑠𝑜𝑢𝑛𝑑 (ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑣𝑜𝑙𝑢𝑚𝑒) − 𝑠𝑜𝑢𝑛𝑑 (𝑙𝑜𝑤𝑒𝑠𝑡𝑣𝑜𝑙𝑢𝑚𝑒) + 𝜀)
 (5)

To reduce mistakes caused by the environment, the

coefficients in Eqs. (6-7) are utilized, represented by

𝐷𝑖and𝑃𝑖 , respectively.

𝐷𝑖 = √(𝑥𝑖 − 𝑥𝑗)
2 + (𝑦𝑖 − 𝑦𝑗)

2 + ⋯ (6)

𝑃𝑖 = 2 −
𝑖𝑡𝑒

𝑚𝑎𝑥𝑖𝑡𝑒

 (7)

During this stage, each operator makes unique

decisions influenced by a combination of sounds, a

process encapsulated by Eq. (8).

𝑓𝑟𝑒𝑠ℎ 𝑝𝑙𝑎𝑐𝑒 (𝑖)
= 𝑝𝑙𝑎𝑐𝑒 (𝑖) + 𝑚𝑑 × [(𝑟𝑎𝑡𝑒(𝑗)
− 𝑟𝑎𝑡𝑒(𝑖)) × (𝑝𝑙𝑎𝑐𝑒 (𝑗)– 𝑝𝑙𝑎𝑐𝑒 (𝑖))
× 𝑟𝑎𝑛𝑑]

(8)

The 𝑚𝑑 coefficients, delineating the path of

movement, are expressed in Eq. (9):

𝑚𝑑 = {
+1 ⟹ 𝑡𝑜𝑤𝑎𝑟𝑑𝑠 𝑎 𝑙𝑜𝑢𝑑𝑒𝑠𝑡 𝑠𝑜𝑢𝑛𝑑 𝑎 > 𝑟𝑎𝑛𝑑
−1 ⟹ 𝑎𝑤𝑎𝑦 𝑓𝑟𝑜𝑚 𝑎 𝑙𝑜𝑢𝑑𝑒𝑠𝑡 𝑠𝑜𝑢𝑛𝑑 𝑎 < 𝑟𝑎𝑛𝑑

 (9)

Fourth stage: location correction

If Eq. (8) is unable to yield a satisfactory location,

then the coefficients 𝛽 and 𝛾 are chosen from the interval

0 < 𝛽 < 𝛾 < 1, and Eq. (10) is employed to produce new

locations.

𝑛𝑒𝑤 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (𝑖) = {

𝑐ℎ𝑜𝑜𝑠𝑒 𝑎 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑛𝑑 < 𝛽
𝑠𝑒𝑙𝑒𝑐𝑡 𝑎 𝑛𝑒𝑤 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝛽 < 𝑟𝑎𝑛𝑑 < 𝛾

𝑑𝑜 𝑛𝑜𝑡 𝑚𝑜𝑣𝑒 𝛾 < 𝑟𝑎𝑛𝑑
 (10)

Fifth stage: termination

Iteratively performing stages 4 through 5 in a loop

until one of the subsequent circumstances is satisfied:

1. There is no longer a peak count of strives permitted.

2. The ideal place doesn't alter.

3. A predefined anticipated threshold is attained

When the disparity between the values of SOP and the

global optimum is smaller than a given value.

4. Less than a certain degree of precision separates the

objective values of the best and worst sites.

GRO is used in this research to tune the internal

parameters of the MLPR model, i.e., the weights and

biases, to minimize prediction error in terms of ALE. This

optimizes convergence rate and model precision by

effectively traversing the search space and escaping local

minima, making the process of learning more robust.

Hybrid Multi-layer Perceptron and Metaheuristic Optimizers for Indoor… Informatica 49 (2025) 163–184 167

2.3 POA

Dehghani and Trojovský initiated the POA in 2022, an

inventive nature-inspired method that draws influence

from pelicans' social behaviors and hunting strategies

[41]. Pelicans are huge birds with strong beaks that use a

wide neck pouch to catch and eat their prey. These birds

comprise the targeted population and typically reside in

large groups. Using the following equation, the population

members are initialized at random:

𝑥𝑖,𝑗 = 𝑙𝑗 + 𝑟𝑎𝑛𝑑. (𝑢𝑗 − 𝑙𝑗),

 𝑖 = 1,2,3, … , 𝑁 , 𝑗 = 1,2,3, … ,𝑚
(11)

The value of the 𝑗𝑡ℎ variable for the 𝑖𝑡ℎ candidate

solution is indicated by the formula 𝑥𝑖,𝑗. The number of

people in the group and the overall count of dilemma

variables are indicated by the parameters 𝑁 and 𝑚,

respectively. In addition, 𝑟𝑎𝑛𝑑 denotes a randomly

generated number within [0.1], and 𝑙𝑗 and 𝑢𝑗 represent the

problem variables' lower and upper restrictions. Eq. (12)

is used to create the population matrix, which represents

the individuals in the set of possible solutions:

𝑋 =

[

𝑋1

⋮
𝑋𝑖

⋮
𝑋𝑁]

𝑁×𝑚

=

[

𝑋1,1 … 𝑋1,𝑗 … 𝑋1,𝑚

⋮ ⋮ ⋮
𝑋𝑖,1 … 𝑋𝑖,𝑗 … 𝑋𝑖,𝑚

⋮ ⋮ ⋮
𝑋𝑁,1 … 𝑋𝑁,𝑗 … 𝑋𝑁,𝑚]

𝑁×𝑚

(12)

The objective function is derived from Eq. (13) as

provided.

𝐹 =

[

𝐹1

⋮
𝐹𝑖

⋮
𝐹𝑁]

𝑁×𝑚

=

[

𝐹(𝑋1)

⋮
𝐹(𝑋𝑖)

⋮
𝐹(𝑋𝑁)]

𝑁×1

 (13)

The objective function vector, 𝐹, is made up of the

objective function values that are allocated to each

candidate solution; for example, 𝐹𝑖 for the 𝑖𝑡ℎ candidate

solution is the objective function vector. There are two

stages to a pelican's hunting process: exploration and

exploitation. Pelicans travel forward searching for their

prey in the exploration stage and glide smoothly across the

water's surface in the exploitation phase. Pelicans locate

the prey by using a randomly generated location to

approach it during the first exploration stage. The 𝑃𝑂𝐴′s

capacity for exploration is enhanced by this random

component in the prey's location [42]. Eq. (14) illustrates

the first stage's mathematical expression:

𝑥𝑖,𝑗
𝑝1

= {
𝑥𝑖,𝑗 + 𝑟𝑎𝑛𝑑. (𝑝𝑗 − 𝐼. 𝑥𝑖,𝑗), 𝐹𝑝 < 𝐹𝑖;

𝑥𝑖,𝑗 + 𝑟𝑎𝑛𝑑. (𝑥𝑖,𝑗 − 𝑝𝑗), 𝑒𝑙𝑠𝑒,

(14)

Here, 𝑥𝑖,𝑗
𝑝1 represent the 𝑖𝑡ℎ pelican's renewed

situation in the 𝑗𝑡ℎ aspect after the primary stage. The

update is dependent on two random variables: 𝐹𝑝, which

represents the prey's objective function value, and 𝑃𝑗,

which indicates the prey's situation in the 𝑗𝑡ℎ aspect. A

pelican's revised location is considered acceptable in the

𝑃𝑂𝐴 algorithm if it increases the value of the objective

function at that specific spot. This process, known as

efficient updating, prevents the framework from

coinciding to suboptimal locations. This is depicted

mathematically as:

𝑥𝑖 = {
𝑋𝑖

𝑝1 , 𝐹𝑖
𝑝1 < 𝐹𝑖

𝑋𝑖 𝑒𝑙𝑠𝑒
 (15)

The hunting action is represented mathematically as:

The renewed situation of the 𝑖𝑡ℎ pelican after the second

stage is denoted by 𝑋𝑖
𝑃1 , and the objective function value

of the pelican obtained from this stage is indicated by 𝐹𝑖
𝑃1 .

In the second stage, pelicans tn the water's surface lift their

wings upward to increase their chances of catching more

fish [43]. As a result, they trap the meal in their throat

pouches. This stage significantly improves the 𝑃𝑂𝐴

algorithm and makes it easier for improved solutions to

converge within the hunting region.

𝑥𝑖,𝑗
𝑝1 = 𝑥𝑖,𝑗 + 𝑅. (1 −

𝑡

𝑇
) . (2. 𝑟𝑎𝑛𝑑 − 1). 𝑥𝑖,𝑗 (16)

In the second stage, many parameters are taken into

consideration to establish the renewed situation of the 𝑖𝑡ℎ

pelican in the 𝑗𝑡ℎ aspect, which is represented as 𝑋𝑖,𝑗
𝑃2 .

Among these is the constant 𝑅, which has been given a

value of 0.2. The phrase (1 − 𝑡/𝑇), where 𝑡 displays the

cycle count and 𝑇 displats the peak count of cycles, affects

the neighborhood radius of 𝑥𝑖,𝑗. At this point, an efficient

updating procedure is also implemented, and Eq. (17) is

used to determine whether to admit or deny the new

pelican situation.

𝑥𝑖 = {
𝑋𝑖

𝑝2 , 𝐹𝑖
𝑝2 < 𝐹𝑖

𝑋𝑖 𝑒𝑙𝑠𝑒
 (17)

The renewed status of the 𝑖𝑡ℎ pelican is represented

by 𝑋𝑖
𝑃2 , and the related objective function value for that

pelican is represented by 𝐹𝑖
𝑃2 . After every population

member has been updated, the next cycle and the

procedures listed in Eqs start. (14)-(17) are repeated until

the execution process is finished [44]. The 𝑃𝑂𝐴 flowchart

displayed in Fig. 2 illustrates the iterative nature of this

procedure.

The parameters of the MLPR model, i.e., weights and

biases, are adjusted using POA to minimize the prediction

error of the ALE. During training, by simulating

cooperative hunting behavior, POA speeds up the search

process. This improves the overall generalization and

stability, and ensures predictions are made with higher

accuracy in varied network environments.

The hybrid optimization strategy improves

localization accuracy by integrating MLPR's potential to

capture nonlinear patterns along with GRO and PO's

capabilities to perform global searching. These optimizers

refine weight tuning as well as convergence, reducing

errors during predictions. The synergy provides more

accurate ALE estimations in different network scenarios.

168 Informatica 49 (2025) 163–184 J. Liu et al.

Figure 2: The flowchart of 𝑃𝑂𝐴

2.4 Performance evaluation metrics

This part organizes diverse gauges to examine the

compound frameworks' productivity by measuring their

correlation and error levels. The metrics covered

encompass RMSE, Index of agreement (IOA), MAE,

Coefficient Correlation (R2), and Mean Relative Absolute

Error (MRAE). These chosen metrics, RMSE, MAE, IOA,

R², and MRAE, provide a complete assessment of

accuracy, consistency, and relative error of predictions.

The absolute errors are measured by RMSE and MAE,

explained variance by R², agreement by IOA, and

proportional deviation by MRAE, balancing evaluation

across model behaviors and sensitivity in errors. The

formulas for each of these metrics are provided below.

𝑀𝑅𝐴𝐸 =
1

𝑛
∑

|𝑚𝑗 − 𝑏𝑗|

|𝑚𝑗 − 𝑚̅|

𝑛

𝑖=1

 (18)

𝐼𝑂𝐴 = 1 −
∑ (𝑥𝑖,𝑎 − 𝑥𝑖,𝑝)

2𝑛
𝑖=1

∑ (|𝑥𝑖,𝑝 − 𝑥𝑎̅̅ ̅| + |𝑥𝑖,𝑎 − 𝑥𝑎̅̅ ̅|)2𝑛
𝑖=1

 (19)

𝑀𝐴𝑅𝐸 =
1

𝑁
∑

|𝑒𝑖 − 𝑚𝑖|

𝑚𝑖

𝑁

𝑖=1

 (20)

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑚𝑖 − 𝑏𝑖)

2

𝑛

𝑖=1

 (21)

𝑅2 =

(

∑ (𝑏𝑖 − 𝑏̅)(𝑚𝑖 − 𝑚̅)𝑛

𝑖=1

√[∑ (𝑏𝑖 − 𝑏̅)
2𝑛

𝑖=1] [∑ (𝑚𝑖 − 𝑚̅)2𝑛
𝑖=1]

)

2

 (22)

The factors are displayed below:

• 𝑛 𝑑𝑖𝑠𝑝𝑙𝑎𝑦 the sample magnitude.
• 𝑏𝑖 𝑑𝑖𝑠𝑝𝑙𝑎𝑦 the projected value.

• 𝑚 and 𝑏 represent the gauged and mean projected

values, respectively.

• 𝑚𝑖 𝑑𝑖𝑠𝑝𝑙𝑎𝑦 the gauged value is.

• The critical value from the t-spread is based on

the intended grade of assurance and the degrees

of freedom displayed by 𝑡.

• The mean of the predictor variable in the

database is represented by 𝑥 .
Metrics of model performance depend heavily on

critical hyper parameters like learning rate, hidden layers,

and cycles of training. In this research, incorrect tuning

resulted in both overfitting or under fitting as evidenced

by increased RMSE or decreased R². Accurate adjustment

enhanced generalization, particularly in MLGR. Optimal

hyper parameters were determined according to validation

performance.

3 Data collection
Any machine learning project is based on robust data. This

work collected data relevant to indoor localization in

WSNs with great care. The data comprised several

network parameters that were presumed to affect ALE. To

ensure generalizability and prevent overfitting of the

Hybrid Multi-layer Perceptron and Metaheuristic Optimizers for Indoor… Informatica 49 (2025) 163–184 169

model, the data was separated into three distinct parts:

training, validation, and testing, in a ratio of 70%, 15%,

and 15%, respectively. The training data and the model

learned from it took the maximum share of this. The

validation data set provided a check, as most hyper

parameter tuning to avoid overfitting during training is

based on the validation database. Lastly, the unseen

testing database verifies the model's generalization to real-

life predictive power. This careful data acquisition and

segmentation strategy provides a firm ground for an

efficient and generalizable ML model in indoor

localization. The runtime of the models differed with

different configurations. For MLPR with the Gold Rush

Optimizer, runtime grew with network depth: 44.3

seconds for 1 layer, 54.7 seconds for 2 layers, and 66.1

seconds for 3 layers. Analogously, the MLPR with the

Pelican Optimizer recorded 33.8 seconds for 1 layer, 41.2

seconds for 2 layers, and 52.6 seconds for 3 layers. In

comparison with the baseline MLPR without any

optimizer, the shortest runtimes were seen at 18.9 seconds

for 1 layer, 22.8 seconds for 2 layers, and 30.2 seconds for

3 layers. These results have shown both the optimizers to

lengthen computational time, with the Gold Rush

Optimizer being the most time-consuming.

3.1 Data description

The database used in this exploration is taken from

published literature [45], including six important input

traits to predict ALE using the recommended machine

learning frameworks. This database is a comprehensive

collection of several parameters relevant to indoor

localization systems, which would be very useful to

explore the relationship between these parameters and

localization accuracy.

3.1.1 Input traits

• Anchor ratio: This feature specifies the number of

anchor nodes per overall node in the network. Indeed,

anchor nodes are vital parts of an indoor localization

environment, in which they always act as reference

nodes against which the situation of goal nodes is

calculated. Enhanced anchor ratios augment location

precision by expanding spatial reference points,

facilitating superior triangulation. A reduced number

of anchors diminishes geometric constraints, resulting

in increased estimating uncertainty and more

inaccuracy in expected locations.

• Transrange: It defines the range of transmitters in

meters in the wireless communication network. The

parameter specifies the maximum possible distance

over which nodes may communicate effectively and

defines the area of coverage of the whole localization

system and its accuracy. The transmission range

affects the extent and distribution of the signal. A

moderate range guarantees dependable connectivity

and constant RSSI readings, hence improving

localization precision. Excessive range may induce

interference, whilst limited range might lead to signal

attenuation and inadequate data transmission.

• Node density: Node density characterizes the spatial

distribution of the nodes in the network area and

quantifies the number of nodes per unit area. It

influences the granularities of the measurement in the

localization. Increased node density augments the

spatial resolution of the network, hence enhancing

ALE by providing more comprehensive

environmental data. Sparse networks jeopardize

adequate coverage, resulting in increased localization

mistakes due to a deficiency of proximate references.

• Cycles: This refers to the number of cycles to execute

the ML framework training process. Cycles are

critical for improving model parameters to ensure

predictive performance. Increased iterations provide

improved model convergence during optimization

and learning, enhancing localization predictions. A

reduced number of cycles may result in underfitting,

causing the model to inadequately generalize and

elevate ALE.

• SDale: The standard deviation of ALE, which reflects

the spread or variability of the localization error in

different instances or cases. This metric provides

insight into the consistency and reliability of the

localization system. The standard deviation of ALE

indicates the stability and consistency of localization

performance. A lower standard deviation indicates

strong and dependable predictions, whereas more

variability implies the model is susceptible to

fluctuations in input properties or environmental

conditions.

• Ale: ALE is the target variable that the machine

learning frameworks should predict. ALE quantifies

the accuracy of localization, which is gauged by the

deviation of the estimated situation from the actual

situation of goal nodes.

3.2 Data preprocessing

Before framework training, the database endured

preprocessing stages to ensure data quality and

compatibility with the machine learning frameworks. This

included managing missing values, regulating statistical

traits, and encoding explicit variables as necessary.

3.3 Database characteristics

The database comprises 107 instances, each characterized

by the input traits above and corresponding ALE values.

The layered pattern facilitates fine-grained evaluation

over various data complexities or network settings. Each

layer has a different scenario or level of abstraction,

allowing model robustness and generalization to be tested.

Such a structure provides insight into where specifically a

model performs well or fails, charting future areas of

improvement in ALE prediction. Table 2 provides a

summary of descriptive statistics, including average,

standard deviation, minimum, and maximum, for each

feature. Additionally, Fig. 3 presents the bar chart of the

input variables.

170 Informatica 49 (2025) 163–184 J. Liu et al.

Table 2: The statistical traits of the input of ALE

Variables
Indicators

Min Max Avg St. Dev.

Anchor_ratio 10.000 30.000 20.523 6.708

Trans_range 12.000 25.000 17.879 3.093

Node_density 100.000 300.000 159.813 70.856

Cycles 14.000 100.000 47.888 24.553

Sd_ale 0.003 1.092 0.266 0.183

Ale 0.394 2.268 0.981 0.396

Figure 3: The bar chart for input and output

4 Outcomes and consultation

4.1 Hyper-parameter tuning

Table 3 depicts the optimum number of neurons obtained

through random search for each hidden layer at three test

stages for MLGR and MLPO models. MLGR and MLPO

represent the Multi-Layer Perceptrons augmented with

Gold Rush and Pelican Optimizers, respectively. Each

model setup (1, 2, 3) represents one different experimental

condition, and each row represents one hidden layer. It is

clear from the results that neuron distribution is different

across different layers and optimizers, highlighting the

adaptivity of the tuning process. MLGR tended to utilize

a greater number of neurons in deeper layers than MLPO,

potentially impacting learning capability and converging

behavior. This layer-by-layer tuning underpins the

differences in performance seen in later tests.

Hybrid Multi-layer Perceptron and Metaheuristic Optimizers for Indoor… Informatica 49 (2025) 163–184 171

Table 3: Optimal number of neurons determined via random search for each hidden layer

Hyperparameters

Models

MLGR (1) MLPO (1)
MLGR

(2)

MLPO

(2)

MLGR

(3)

MLPO

(3)

Neuron 36 28 37 29 30 25

Neuron - - 33 20 20 26

Neuron - - - - 23 12

4.2 Coincidence curvature

Fig. 4 displays a graph that illustrates the time evolution

of a repeating enhancement tactic. It shows how the

objective function value of the framework alters at every

cycle and whether the process is converging toward the

best reaction. Fig. 4 shows the convergence behavior of

optimization algorithms in different layers. The curves of

the objective function evolution in training cycles are

depicted. The steepness and earlier flattening of curves

signify more efficient convergence and optimization. The

MLGR model shows superior convergence properties by

reaching a lower objective in fewer cycles, as is evident in

its superior performance in the following prediction

assessment. When it comes to optimization problems, an

algorithm getting close to convergence exhibits a steady

decrease or rise in the objective function until it attains a

point where more cycles only produce negligible gains.

The chart indicates the excellent productivity of the

MLGR model over MLPO across all three layers. After 50

cycles, the MLGR model achieves a commendable

accuracy of 0.0345, highlighting its excellence in the first

layer. In the second layer, the MLGR model attains a high

accuracy of 0.0315 after 30 cycles, and in the third layer,

it reaches 0.0294 accuracy after 40 cycles. However, even

after 60 cycles, the MLPO model demonstrates noticeable

improvement in precision across all layers, though it may

not have reached the same level of performance as the

MLGR model.

Figure 4: 3D Scatter plot for convergence of compound frameworks

4.3 Frameworks comparison

Table 4 displays the outcomes of the built MLPR

frameworks, comparing three different stages and five

different metrics. The metrics consist of RMSE, R2,

MAE, IOA, and MRAE, and the stages include training,

validation, and testing. When a framework's R2 and IOA

values are close to one, it performs at its best. On the other

hand, values close to zero indicate better model

performance for RMSE, MAE, and MRAE.

For instance, in the first layer during training, the

MLGR model performs better than the MLPR and MLPO

frameworks regarding RMSE, with a value of 0.024.

Moreover, with an R2 value of 0.996, the MLGR model

beats the MLPO and MLPR frameworks in the same layer

and stage. During the training stage, the MLPO model

achieved second place with an IOA value of 0.997.

Among the three frameworks, the MLPR model has the

least promising performance, outperforming the other

two.

With a value of 0.040, the MLGR model displays the

best performance in MAE during the second layer's

validation stage. The MLPO model achieved the second-

best performance and is not far behind. The MLPR model

performs third with a value of 0.347 in terms of MRAE

during the test stage, while the MLPO model comes in

second with a value of 0.306. Furthermore, regarding the

R2 value during validation, MLGR operates better than

MLPO and MLPR, with a value of 0.987.

172 Informatica 49 (2025) 163–184 J. Liu et al.

The test stage's third layer displays that, at 0.991, the

MLPR model performs the least robustly in IOA, while

MLGR, the best-performing model, achieves a superior

value of 0.998. The results for the MAE value in the

training stage indicate that MLGR outperforms the others,

achieving a value of 0.016. The MLPO model, with a

value of 0.030, comes in second place and is followed

closely. With values of 0.046 and 0.064, respectively, the

MLPO model displays the best performance in the

validation stage of RMSE, while MLPR displays the

lowest performance. As presented in Table 4, the MLPR

model's worst performance occurs in the third layer in the

testing phase with an RMSE of 0.080. This suggests a

poorer generalization ability in this case than in MLGR

and MLPO, given the sensitivity of MLPR to differences

in data complexity by layers.

Performance differences between layers are a result of

variations in feature distributions as well as data

complexity levels. Noisy patterns or less informative

patterns in a couple of layers might compromise model

generalization. Also, uneven training dynamics lead to

weaker tuning of parameters in a particular layer, resulting

in increased error rates.

Table 4: The outcome of the created frameworks for the MLPR-based hybrid scheme

Model Stage
Index values

RMSE R2 MAE IOA MRAE

MLPR (1)

Train 0.054 0.981 0.046 0.995 0.361

Validation 0.056 0.981 0.048 0.995 0.409

Test 0.080 0.965 0.074 0.990 0.408

MLPO (1)

Train 0.041 0.989 0.035 0.997 0.378

Validation 0.061 0.983 0.050 0.995 0.447

Test 0.055 0.984 0.047 0.996 0.270

MLGR (1)

Train 0.024 0.996 0.022 0.999 0.300

Validation 0.044 0.988 0.039 0.997 0.339

Test 0.057 0.984 0.051 0.995 0.301

MLPR (2)

Train 0.053 0.982 0.047 0.995 0.562

Validation 0.081 0.983 0.070 0.991 0.490

Test 0.066 0.975 0.056 0.994 0.347

MLPO (2)

Train 0.033 0.993 0.028 0.998 0.353

Validation 0.062 0.983 0.057 0.994 0.492

Test 0.066 0.975 0.060 0.994 0.306

MLGR (2)

Train 0.023 0.996 0.020 0.999 0.154

Validation 0.046 0.987 0.040 0.997 0.366

Test 0.045 0.989 0.042 0.997 0.237

MLPR (3)

Train 0.056 0.981 0.047 0.995 0.630

Validation 0.064 0.978 0.049 0.994 0.312

Test 0.080 0.966 0.071 0.991 0.372

MLPO (3)

Train 0.035 0.992 0.030 0.998 0.380

Validation 0.046 0.988 0.041 0.997 0.363

Test 0.059 0.981 0.051 0.995 0.298

MLGR (3)

Train 0.018 0.998 0.016 0.999 0.176

Validation 0.054 0.984 0.050 0.996 0.393

Test 0.036 0.993 0.029 0.998 0.166

Table 5 presents the statistical significance of

comparisons of model performance using the Mann–

Whitney U test for three MLP setups. In the stat column,

U test statistics are presented, and in the P value column,

the corresponding significance levels are provided. The

baseline MLPR, MLPR-GRO, and MLPR-POA are

compared. With the majority of the p-values lying above

the threshold of 0.05 significance, MLPR-POA is just

short of significance in MLP 1 and MLP 3 (p = 0.051),

demonstrating potentially significant improvement over

the baseline. This finding complements the performance

metrics by providing statistical support for the trends

noted and confirming the validity of optimizer-driven

improvements in MLPR setups.

Table 5: statistical significance results of the model performances across three multi-layer perceptron

Models
MLP 1 MLP 2 MLP 3

stat P value stat P value stat P value

MLGR 2522 0.254 2845 0.890 2522 0.254

MLPO 2261 0.051 2442 0.164 2261 0.051

MLPR 2673 0.607 2457 0.179 2673 0.607

Hybrid Multi-layer Perceptron and Metaheuristic Optimizers for Indoor… Informatica 49 (2025) 163–184 173

Fig. 5 displays the Plotting of the spread of expanded

compound frameworks for the first layer. The expected

value is represented on the Y axis, while the gauge value

is depicted on the X axis. A tight grouping of data points

near the middle diagonal line, corresponding to the ideal

R² value of 1 represents good predictive accuracy. This

grouping indicates little deviation between the actual and

produced ALE values. Whenever a model's scatter plot

resembles clustering near the line in such a way that the

model is likely to be picking up the patterns in the

available data consistently. Thus, the data points' nearness

to the line indicates the model's performance quality and

forecasting accuracy in a straightforward way.

 Different parts are color-coded to enhance clarity, as

illustrated in Fig. 5. When the population falls below the

center line, it signifies underestimation, whereas above the

core line indicates overestimation. Robust model

execution is evident when the linear line closely aligns

with the center line and displays no noticeable angle

between them. The diagrams in Fig. 5 show that the

MLGR model excels, contrasting with the MLPO and

MLPR frameworks. Following the MLGR model, the

MLPR model demonstrates the second-highest level of

performance. The scatter plot verifies model excellence by

illustrating the similarity of the predicted values to actual

values on the diagonal line. A model that has points

closely grouped on that line indicates higher accuracy and

lower residual error levels. MLGR plots demonstrate tight

grouping, which indicates higher prediction consistency

than MLPO and MLPR.

Figure 5: Plotting the spread of expanded compound frameworks

Fig. 6 plots the spread of evolved compound

frameworks for the second layer. The expected value is

represented on the Y axis, while the gauge value is

depicted on the X axis. The population surrounding the

middle line, denoting R2, becomes filled to indicate that

the framework with optimal execution is at the core.

Different portions are color-coded to enhance clarity, as

illustrated in Fig. 6. When the population falls below the

center line, it signifies underestimation, whereas above the

center line indicates overestimation. A strong model

performance is evident when the linear line closely aligns

with the center line and displays no noticeable angle

174 Informatica 49 (2025) 163–184 J. Liu et al.

between them. The diagrams in Fig. 6 show that the

MLGR model excels, contrasting with the MLPO and

MLPR frameworks. Following the MLGR model, the

MLPR model demonstrates the second-highest level of

performance.

Figure 6: Plotting the spread of expanded compound frameworks

Fig. 7 plots the spread of evolved compound

frameworks for the third layer. The expected value is

represented on the Y axis, while the gauge value is

depicted on the X axis. The population surrounding the

middle line, denoting R2, becomes filled to indicate that

the framework with optimal execution is situated at the

center. Different parts are color-coded to enhance clarity,

as illustrated in Fig. 7. When the population falls below

the center line, it signifies underestimation, whereas above

the center line indicates overestimation. Robust model

execution is evident when the linear line closely aligns

with the center line and displays no noticeable angle

between them. The diagrams in Fig. 7 show that the

MLGR model excels, contrasting with the MLPO and

MLPR frameworks. Following the MLGR model, the

MLPR model demonstrates the second-highest level of

performance.

Hybrid Multi-layer Perceptron and Metaheuristic Optimizers for Indoor… Informatica 49 (2025) 163–184 175

Figure 7: Plotting the spread of evolved compound frameworks

Fig. 8 displays the contrast of projected and gauged

values. The alignment between the gauged line and the

projected columns indicates the framework's anticipation

precision. A close correspondence between the gauged

line and the expected column reflects a peak level of

precision, while deviations suggest a lower level of

performance.

In layer one, the MLGR model demonstrated strong

performance in the training stage, with minimal gauged

lines exhibiting distances more significant than the

projected column. The validation segment of this

framework outperforms the test section, showcasing a

close alignment between the MLGR framework's

anticipations and the observed data. MLPO exhibited

poorer performance in the training stage than the MLGR

model, with fewer projected columns with distances from

gauged lines. However, in both the test and validation

parts, MLPO performed excellently.

In the test stage, the MLPR model performs less

effectively than the MLPO and MLGR frameworks, with

a notable gap between the gauged line and the expected

column. Nevertheless, the MLPR model performs

satisfactorily in the validation and training stages. This

pattern persists across all layers.

176 Informatica 49 (2025) 163–184 J. Liu et al.

Hybrid Multi-layer Perceptron and Metaheuristic Optimizers for Indoor… Informatica 49 (2025) 163–184 177

178 Informatica 49 (2025) 163–184 J. Liu et al.

Figure 8: The contrast between projected and gauged values

Fig. 9 illustrates the error percentages of the

frameworks based on the Scatter plot. Optimal model

performance is indicated when the error proportion

approaches zero. For instance, in layer one of MLPR, the

peak error proportion during the training stage is

approximately 14%. Compared to the other two

frameworks, it displays the peak error proportion,

reaching about 16%.

The highest error proportion in MLPO is around 14%,

lower than the error proportion in MLPR. The training

stage of MLPO entails the peak error proportion, and in

this exploration, this framework operates the second-best.

In contrast, the peak error proportion in MLGR is 12%,

the lowest among the three frameworks. The test stage of

this framework displays the highest fault proportion, while

the validation stage exhibits the lowest error proportion.

Moving to layer two in MLPR, the peak error

proportion is approximately 17%, occurring in the training

stage. The validation stage has a lower error proportion

than the training and test stages. The error proportion

varies from -18 to 17 in MLPR. In MLPO, 15% is the

highest error proportion, which takes place in the test stage

and is the second best during this study. At layer three, the

MLGR model has a maximum of about 17% error

proportions in the validation stage, while the MLPO

model here performs the best in the meantime with an

error proportion of 13%. Distributions of error percentage

reflect the stability and consistency of predictive

performance of the models. Tighter distributions with

lower peak error reflect stable performance, whereas

wider spreads reflect variable performance and overfitting

and under fitting risks. In the research conducted here,

MLGR consistently has tighter and lower error

distributions, reiterating its stability over layers against

MLPO and MLPR.

Hybrid Multi-layer Perceptron and Metaheuristic Optimizers for Indoor… Informatica 49 (2025) 163–184 179

180 Informatica 49 (2025) 163–184 J. Liu et al.

Figure 9: The error proportion of the frameworks in the scatter plot

Fig. 10 displays the half-box plot errors for the

recommended frameworks so that their performance

attributes can be visually represented. When the median

line is closer to zero, it indicates a smaller error proportion

in a model. Additionally, the data distribution within the

IQR displays the model's effectiveness; the denser the

population within this range, the better the efficacy.

Looking at the MLGR model in the third layer of the

training stage, one finds that the population is indeed

closely clustered around the range of IQR. This close

grouping around the IQR range represents the model's

performance strength. The validation stage confirms this

by showing that the median line of this framework hovers

nearer to zero.

Conversely, MLPO is widespread in the IQR range,

with the median line keeping a distance from zero,

especially during the test stage. While the training stage

displays a moderately concentrated population around the

IQR range, the wider IQR indicates a potential spread in

the model's performance. In the case of the MLPR model,

the median line approaches zero during the test stage,

which means lower error. However, the data distribution

around the IQR range is less concentrated, with one data

point diverging from this range, implying a nuanced

performance in this stage.

This framework reveals a population at the training

stage so closely clustered around the IQR range in the

second layer of MLGR. In the test stage, the median line

has a distance from zero, which indicates that this

framework performed poorly at this stage.

Conversely, the MLPO model performs weaker in the

validation stage than the MLGR model. The median line's

distance from zero is too great, as in the test stage.

However, this framework's performance is acceptable in

the training stage. The MLPR model performs the weakest

in all stages compared to these two frameworks. The

population around the IQR range is not clustered, and the

median line is too far from the zero point.

Hybrid Multi-layer Perceptron and Metaheuristic Optimizers for Indoor… Informatica 49 (2025) 163–184 181

Figure 10: The half box has symbol plot errors for recommended frameworks

The consistently higher performance of the MLGR

approach over both MLPO and MLPR can be explained

by a number of key benefits inherent in the optimization

strategy of GRO and its harmonization with MLPR. First,

182 Informatica 49 (2025) 163–184 J. Liu et al.

GRO provides a human-inspired optimization technique

that benefits over the biologically inspired strategy of PO

by utilizing group adaptation decision-making and

dynamic movement towards regions of optimality. Such

an ability allows MLGR to evade premature convergence

and avoid being trapped by local optima two typical

drawbacks seen in both MLPR and, to a lesser degree,

MLPO. Second, selective pausing by GRO through

fitness-distance correlation enables a better

exploitation/exploration trade-off. It leads to more

targeted convergence behavior and more rapid

identification of optimal solutions in ALE task prediction,

while PO heavily depends on random exploration,

potentially slowing down convergence. Third,

comparative results in all three layers and evaluation

phases validate MLGR's dominance. When tested using

the third layer, MLGR recorded an RMSE of 0.036, R² of

0.993, and MRAE of 0.166, surpassing MLPO (RMSE:

0.059, R²: 0.981, MRAE: 0.298) and MLPR (RMSE:

0.080, R²: 0.966, MRAE: 0.372) performance. Ultimately,

MLGR benefits from superior generalization to novel data

through GRO's progressive correction mechanism.

Combined, these aspects increased convergence,

enhanced optimization depth, and higher predictive

accuracy render MLGR the best framework to make ALE

predictions in this work. The hybrid strategy does have

increased training time as a result of additional

computational cost from GRO and PO, but this is

counterbalanced by enhanced model accuracy and

convergence. Inference, on the other hand, is still efficient

because optimization happens only at training time, hence

making it appropriate for offline training and real-time

inference applications.

5 Conclusion
This exploration examined the potential of ML to boost

indoor localization in WSNs. The limitations of GPS in

indoor environments were addressed, emphasizing the

need for alternative methods such as reference nodes and

localization frameworks. Existing range-based and range-

free frameworks were reviewed alongside recent

advancements in machine-learning approaches for WSN

localization. In this study, the recommended approach

utilizes MLPR to predict ALE. To potentially enhance

MLPR's performance, the study investigates the use of

optimizers containing GRO and POA. The hybridized

frameworks' performance was compared to identify the

most accurate and precise solution for ALE prediction.

The developed frameworks were evaluated in three layers

and stages: Training, Validation, and Testing. The MLPO

model achieved the best performance in the first laye. with

a low RMSE of 0.055, followed closely by the MLGR

model at 0.057. However, the MLPR model showed the

weakest performance here, reaching an RMSE of 0.080.

In the second layer, the focus shifted to R-squared (R²),

where the MLGR model shone with a value of 0.989.

Interestingly, the MLPO and MLPR frameworks achieved

similar results in this layer, sharing the second-best R² of

0.975. Finally, the third layer assessed with MRAE

cemented the MLGR framework's dominance. It achieved

the lowest MRAE of 0.166, indicating the most accurate

predictions. The MLPO model followed with a value of

0.289, while MLPR revealed the peak MRAE (0.372),

suggesting the least accurate predictions in the final layer.

This analysis highlighted the consistent superiority of the

MLGR model across most metrics, showcasing its

effectiveness in predicting ALE. While the MLPO model

showed promise in the first layer, its performance lagged

in the later stages. The MLPR model consistently had the

weakest performance, underlining the potential benefits

observed in this study when using optimizers contained

GRO with the MLPR model. Even in strong performance,

the suggested approach needs greater computational

power through hybrid optimization, making its

applicability to real-time or resource-limited settings

narrow. The model's reliance upon well-processed input

data might also lessen robustness during uncertain or

incomplete data, as opposed to probabilistic or ensemble

approach methods that are more flexible when dealing

with uncertainty. This approach has demonstrably

enhanced the framework's predictive power for ALE

estimation. Therefore, this research advances ML

strategies for achieving efficient and reliable indoor

localization within WSNs.

Competing Interests

The scholars claim no competing interests.

Authorship Contribution Statement

Jian SUN: Writing-Original draft preparation

Conceptualization, Supervision, Project administration.

Jia LIU: Methodology, Software

Data Availability

The scholars will make the raw data supporting this

article's conclusions available without undue reservation.

Declarations

Not applicable.

Conflicts of Interest

The scholars claimed no conflicts of interest considering

this investigation.

Author Statement

The manuscript has been read and approved by all the

authors, the requirements for authorship, as stated earlier

in this document, have been met, and each author believes

that the manuscript displays honest work.

Funding

Not applicable.

Ethical Approval

All scholars have been personally and actively involved in

substantial work leading to the paper and will take public

responsibility for its content.

Hybrid Multi-layer Perceptron and Metaheuristic Optimizers for Indoor… Informatica 49 (2025) 163–184 183

References
[1] Khan, I., F. Belqasmi, R. Glitho, N. Crespi, M.

Morrow and P. Polakos (2015). Wireless sensor

network virtualization: A survey. IEEE

Communications Surveys & Tutorials, IEEE, 18(1),

pp. 553–576.

https://doi.org/10.1109/COMST.2015.2412971.
[2] Jouhari, M., K. Ibrahimi, H. Tembine and J. Ben-

Othman (2019). Underwater wireless sensor

networks: A survey on enabling technologies,

localization protocols, and internet of underwater

things. IEEE Access, IEEE, 7, pp. 96879–96899.

https://doi.org/10.1109/ACCESS.2019.2928876.

[3] Xiong, H. and M.L. Sichitiu (2019). A lightweight

localization solution for small, low resources WSNs.

Journal of Sensor and Actuator Networks, MDPI,

8(2), pp. 26. https://doi.org/10.3390/jsan8020026.

[4] Zheng, J. and A. Dehghani (2012). Range-free

localization in wireless sensor networks with neural

network ensembles. Journal of Sensor and Actuator

Networks, MDPI, 1(3), pp. 254–271.

https://doi.org/10.3390/jsan1030254.

[5] Wang, Y., Z. Chen, T. Zhu, J. Liu and X. Du (2025).

Intelligent Detection and Localization of Cable

Faults Using Advanced Discharge Analysis

Techniques. Informatica, Slovenian Society

Informatika, 49(9).

https://doi.org/10.31449/inf.v49i9.5468.

[6] Yan, C (2024). Application of a Graphical Image Pre-

retrieval Method Based on Compatible Rough Sets to

the Self-localization Method of Mobile Robots.

Informatica, Slovenian Society Informatika, 48(11).

https://doi.org/10.31449/inf.v48i11.5508.

[7] Singh, A., S. Sharma, J. Singh and R. Kumar (2019).

Mathematical modelling for reducing the sensing of

redundant information in WSNs based on

biologically inspired techniques. Journal of

Intelligent & Fuzzy Systems, Sage Publications,

37(5), pp. 6829–6839. https://doi.org/10.3233/JIFS-

190605.

[8] Amutha, J., S. Sharma and J. Nagar (2020). WSN

strategies based on sensors, deployment, sensing

models, coverage and energy efficiency: Review,

approaches and open issues. Wireless Personal

Communications, Springer Nature, 111, pp. 1089–

1115. https://doi.org/10.1007/s11277-019-06903-z.

[9] Khelifi, M., S. Moussaoui, S. Silmi and I. Benyahia

(2015). Localisation algorithms for wireless sensor

networks: A review. International Journal of Sensor

Networks, Inderscience, 19(2), pp. 114–129.

https://doi.org/10.1504/IJSNET.2015.071632.

[10] Tarrío, P., A.M. Bernardos and J.R. Casar (2011).

Weighted least squares techniques for improved

received signal strength based localization. Sensors,

MDPI, 11(9), pp. 8569–8592.

https://doi.org/10.3390/s110908569.

[11] Whitehouse, K (2002). The design of calamari: an

ad-hoc localization system for sensor networks.

[12] Wen, C.-Y. and F.-K. Chan (2010). Adaptive AOA-

aided TOA self-positioning for mobile wireless

sensor networks. Sensors, MDPI, 10(11), pp. 9742–

9770. https://doi.org/10.3390/s101109742.

[13] Bulusu, N., J. Heidemann and D. Estrin (2000). GPS-

less low-cost outdoor localization for very small

devices. IEEE Personal Communications, IEEE,

7(5), pp. 28–34. https://doi.org/10.1109/98.878533.

[14] Niculescu, D. and B. Nath (2001). Ad hoc positioning

system (APS), In GLOBECOM’01. IEEE Global

Telecommunications Conference (Cat. No.

01CH37270), IEEE, San Antonio, TX, USA, pp.

2926–2931.

https://doi.org/10.1109/GLOCOM.2001.965964.

[15] Waadt, A.E., C. Kocks, S. Wang, G.H. Bruck and P.

Jung (2010). Maximum likelihood localization

estimation based on received signal strength, In 2010

3rd International Symposium on Applied Sciences in

Biomedical and Communication Technologies

(ISABEL 2010), IEEE, Rome, Italy, pp. 1–5.

https://doi.org/10.1109/ISABEL.2010.5702817.

[16] Coluccia, A. and F. Ricciato (2014). RSS-based

localization via Bayesian ranging and iterative least

squares positioning. IEEE Communications Letters,

IEEE, 18(5), pp. 873–876.

https://doi.org/10.1109/LCOMM.2014.040214.1327

81.

[17] Coluccia, A. and A. Fascista (2019). Hybrid

TOA/RSS range-based localization with self-

calibration in asynchronous wireless networks.

Journal of Sensor and Actuator Networks, MDPI,

8(2), p. 31. https://doi.org/10.3390/jsan8020031.

[18] Kulkarni, V.R., V. Desai and R. V Kulkarni (2019).

A comparative investigation of deterministic and

metaheuristic algorithms for node localization in

wireless sensor networks. Wireless Networks,

Springer Nature, 25, pp. 2789–2803.
https://doi.org/10.1007/s11276-019-01994-9.

[19] Kennedy, J. and R. Eberhart (1995). Particle swarm

optimization, In Proceedings of ICNN’95-

International Conference on Neural Networks, IEEE,

Perth, WA, Australia, pp. 1942–1948.

https://doi.org/10.1109/ICNN.1995.488968.

[20] Gopakumar, A. and L. Jacob (2008). Localization in

wireless sensor networks using particle swarm

optimization, In 2008 IET International Conference

on Wireless, Mobile and Multimedia Networks, IET,

Beijing, China, pp. 227–230.

[21] Goyal, S. and M.S. Patterh (2014). Wireless sensor

network localization based on cuckoo search

algorithm. Wireless Personal Communications,

Springer Nature, 79, pp. 223–234.
https://doi.org/10.1007/s11277-014-1850-8.

[22] Cheng, J. and L. Xia (2016). An effective cuckoo

search algorithm for node localization in wireless

sensor network. Sensors, MDPI, 16(9), pp. 1390.

https://doi.org/10.3390/s16091390.

[23] Liu, T. and Z. Zhang (2024). The Application Effect

of Improved CS-RBF Neural Network in Industrial

Internet of Things Node Localization. Informatica,

Slovenian Society Informatika, 48(13).

https://doi.org/10.31449/inf.v48i13.6004.

https://doi.org/10.1109/COMST.2015.2412971
https://doi.org/10.1109/ACCESS.2019.2928876
https://doi.org/10.3390/jsan8020026
https://doi.org/10.3390/jsan1030254
https://doi.org/10.31449/inf.v49i9.5468
https://doi.org/10.31449/inf.v48i11.5508
https://doi.org/10.3233/JIFS-190605
https://doi.org/10.3233/JIFS-190605
https://doi.org/10.1007/s11277-019-06903-z
https://doi.org/10.1504/IJSNET.2015.071632
https://doi.org/10.3390/s110908569
https://doi.org/10.3390/s101109742
https://doi.org/10.1109/98.878533
https://doi.org/10.1109/GLOCOM.2001.965964
https://doi.org/10.1109/ISABEL.2010.5702817
https://doi.org/10.1109/LCOMM.2014.040214.132781
https://doi.org/10.1109/LCOMM.2014.040214.132781
https://doi.org/10.3390/jsan8020031
https://doi.org/10.1007/s11276-019-01994-9
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1007/s11277-014-1850-8
https://doi.org/10.3390/s16091390
https://doi.org/10.31449/inf.v48i13.6004

184 Informatica 49 (2025) 163–184 J. Liu et al.

[24] Tan, C. and P. Li (2025). The Application of

Logistics Robot in the Solution of Locating Route

Problems in Trans CAD. Informatica, Slovenian

Society Informatika, 49(11).

https://doi.org/10.31449/inf.v49i11.6602.

[25] Morelande, M.R., B. Moran and M. Brazil (2008).

Bayesian node localisation in wireless sensor

networks, In 2008 IEEE International Conference on

Acoustics, Speech and Signal Processing, IEEE, Las

Vegas, NV, USA, pp. 2545–2548.

https://doi.org/10.1109/ICASSP.2008.4518167.

[26] Musso, C., N. Oudjane and F. Le Gland (2001).

Improving regularised particle filters, In Sequential

Monte Carlo Methods in Practice, Springer, New

York, NY, USA, pp. 247–271.
https://doi.org/10.1007/978-1-4757-3437-9_12.

[27] Gharghan, S.K., R. Nordin and M. Ismail (2016). A

wireless sensor network with soft computing

localization techniques for track cycling applications.

Sensors, MDPI, 16(8), pp. 1043.

https://doi.org/10.3390/s16081043.

[28] Ahmadi, H. and R. Bouallegue (2017). Exploiting

machine learning strategies and RSSI for localization

in wireless sensor networks: A survey, In 2017 13th

International Wireless Communications and Mobile

Computing Conference (IWCMC), IEEE, Valencia,

Spain, pp. 1150–1154.

https://doi.org/10.1109/IWCMC.2017.7986447.

[29] Makhlouf, A., A. Benmachiche and I. Boutabia

(2024). Enhanced Autonomous Mobile Robot

Navigation Using a Hybrid BFO/PSO Algorithm for

Dynamic Obstacle Avoidance. Informatica,

Slovenian Society Informatika, 48(17).

https://doi.org/10.31449/inf.v48i17.6716.

[30] Zhong, C. and G. Yang (2025). Design and

Application of Improved Genetic Algorithm for

Optimizing the Location of Computer Network

Nodes. Informatica, Slovenian Society Informatika,

49(16). https://doi.org/10.31449/inf.v49i16.7201.

[31] Li, J. and Z. Tian (2024). Construction and

Optimization of a Precise Positioning Model for

Logistics Vehicles Based on Sustainable Operation.

Informatica, Slovenian Society Informatika, 48(17).

https://doi.org/10.31449/inf.v48i17.6393.

[32] Bhatti, M.A., R. Riaz, S.S. Rizvi, S. Shokat, F. Riaz

and S.J. Kwon (2020). Outlier detection in indoor

localization and Internet of Things (IoT) using

machine learning. Journal of Communications and

Networks, IEEE, 22(3), pp. 236–243.

https://doi.org/10.1109/JCN.2020.000018.

[33] Wang, L., M.J. Er and S. Zhang (2020). A kernel

extreme learning machines algorithm for node

localization in wireless sensor networks. IEEE

Communications Letters, IEEE, 24(7), pp. 1433–

1436.

https://doi.org/10.1109/LCOMM.2020.2986676.

[34] Gharghan, S.K., R. Nordin and M. Ismail (2016). A

wireless sensor network with soft computing

localization techniques for track cycling applications.

Sensors, MDPI, 16(8), pp. 1043.

https://doi.org/10.3390/s16081043.

[35] Goyal, S. and M.S. Patterh (2014). Wireless sensor

network localization based on cuckoo search

algorithm. Wireless Personal Communications,

Springer Nature, 79, pp. 223–234.
https://doi.org/10.1007/s11277-014-1850-8.

[36] Morelande, M.R., B. Moran and M. Brazil (2008).

Bayesian node localisation in wireless sensor

networks, In 2008 IEEE International Conference on

Acoustics, Speech and Signal Processing, IEEE, Las

Vegas, NV, USA, pp. 2545–2548.

https://doi.org/10.1109/ICASSP.2008.4518167.

[37] Noriega, L (2005). Multilayer perceptron tutorial.

School of Computing. Staffordshire University, 4, p.

5.

[38] Ramchoun, H., Y. Ghanou, M. Ettaouil and M.A.

Janati Idrissi (2016). Multilayer perceptron:

Architecture optimization and training. International

Journal of Interactive Multimedia and Artificial

Intelligence, Universidad Internacional de La Rioja

(UNIR), http://doi.org/10.9781/ijimai.2016.415.

[39] Murtagh, F (1991). Multilayer perceptrons for

classification and regression. Neurocomputing,

Elsevier, 2(5–6), pp. 183–197.

https://doi.org/10.1016/0925-2312(91)90023-5.

[40] Bishop, C.M (1995). Neural networks for pattern

recognition. Oxford university press.

[41] Trojovský, P. and M. Dehghani (2022). Pelican

optimization algorithm: A novel nature-inspired

algorithm for engineering applications. Sensors,

MDPI, 22(3), pp. 855.

https://doi.org/10.3390/s22030855.

[42] Alamir, N., S. Kamel, T.F. Megahed, M. Hori and

S.M. Abdelkader (2023). Developing hybrid demand

response technique for energy management in

microgrid based on pelican optimization algorithm.

Electric Power Systems Research, Elsevier, 214, pp.

108905. https://doi.org/10.1016/j.epsr.2022.108905.

[43] Tuerxun, W., C. Xu, M. Haderbieke, L. Guo and Z.

Cheng (2022). A wind turbine fault classification

model using broad learning system optimized by

improved pelican optimization algorithm. Machines,

MDPI, 10(5), pp. 407.

https://doi.org/10.3390/machines10050407.

[44] Al-Wesabi, F.N., H.A. Mengash, R. Marzouk, N.

Alruwais, R. Allafi, R. Alabdan, M. Alharbi and D.

Gupta (2023). Pelican Optimization Algorithm with

federated learning driven attack detection model in

Internet of Things environment. Future Generation

Computer Systems, Elsevier.

https://doi.org/10.1016/j.future.2023.05.029.

[45] Singh, A., V. Kotiyal, S. Sharma, J. Nagar and C.-C.

Lee (2020). A machine learning approach to predict

the average localization error with applications to

wireless sensor networks. IEEE Access, IEEE, 8, pp.

208253–208263.

https://doi.org/10.1109/ACCESS.2020.3038645.

https://doi.org/10.31449/inf.v49i11.6602
https://doi.org/10.1109/ICASSP.2008.4518167
https://doi.org/10.1007/978-1-4757-3437-9_12
https://doi.org/10.3390/s16081043
https://doi.org/10.1109/IWCMC.2017.7986447
https://doi.org/10.31449/inf.v48i17.6716
https://doi.org/10.31449/inf.v49i16.7201
https://doi.org/10.31449/inf.v48i17.6393
https://doi.org/10.1109/JCN.2020.000018
https://doi.org/10.1109/LCOMM.2020.2986676
https://doi.org/10.3390/s16081043
https://doi.org/10.1007/s11277-014-1850-8
https://doi.org/10.1109/ICASSP.2008.4518167
http://doi.org/10.9781/ijimai.2016.415
https://doi.org/10.1016/0925-2312(91)90023-5
https://doi.org/10.3390/s22030855
https://doi.org/10.1016/j.epsr.2022.108905
https://doi.org/10.3390/machines10050407
https://doi.org/10.1016/j.future.2023.05.029
https://doi.org/10.1109/ACCESS.2020.3038645

