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Indoor localization is hindered by GPS signal weakening in indoor environments. This research 

formulates machine learning with Multi-layer Perceptron Regression (MLPR) algorithm supported by 

two metaheuristic optimizers, namely, Gold Rush Optimizer (GRO) and Pelican Optimizer (POA), to yield 

hybrid models MLGR and MLPO to forecast Average Localization Error (ALE). The dataset organized in 

a structured form was of size 107 samples with six significant features as follows: anchor ratio, 

transmission range, node density, trainings, standard deviation of ALE, and ALE as objective. The dataset 

was split into training (70%), validation (15%), and testing (15%) subsets. Experimental analysis in three 

prediction layers reveals that MLGR outperformed MLPO and MLPR models in every prediction layer. 

MLGR exhibited maximum performance at the third test layer with an RMSE of 0.036 and R² of 0.993, 

whereas MLPO and MLPR attained RMSE of 0.059 and 0.080 and values of R² of 0.981 and 0.966, 

respectively. The findings establish the validity of the introduced hybrid optimization technique to increase 

accuracy and convergence rate of prediction of ALE in wireless sensor networks. 

Povzetek: Raziskava uvaja hibrid MLPR z optimizatorjema GRO in POA za napoved ALE v WSN. Model 

MLGR doseže najboljšo točnost (RMSE 0.036, R² 0.993), presega MLPO in osnovni MLPR. 

 

1 Introduction 
A Wireless Sensor Network (WSN) is designed by several 

cheap, tiny sensors located all around an area to gauge 

various physical characteristics or monitor environmental 

situations [1,2]. Target tracking and precision agriculture 

are only two of the many industries where this technology 

finds applicable uses [3,4]. These sensors are often 

required to make accurate coordinate predictions while 

utilizing the minimum resources possible [5,6]. Although 

sensors equipped with an incorporated GPS can quickly 

determine their situations, cost and size constraints 

preclude embedding GPS in each sensor. Employing 

localization frameworks is one alternative strategy, 

whereby several anchor nodes equipped with incorporated 

GPS help the hidden nodes to identify their coordinates 

accurately [7,8]. 

Numerous localization frameworks have been 

developed to address diverse problems [9]. These 

frameworks should be flexible to operate well in different 

indoor and outdoor structures and topologies. These 

localization strategies fall into two groups: range-free and 

range-based frameworks. When using range-based 

strategies, the unfamiliar nodes' situation is identified by 

measuring the length between the anchor and unfamiliar 

sensor nodes [10,11]. Diverse factors are employed, 

including the Received Signal Strength Indication (RSSI), 

the angle, and time of arrival [12].  

 

Conversely, range-free methods such as centroid [13] and 

ad-hoc situationing systems[14] use simple  

connectivity-related operations to locate hidden nodes. All 

these frameworks need is for the anchor node's beacon 

signal to be present in the medium. Range-based 

frameworks are preferred and used more frequently than 

range-free frameworks [15–17]. Several bioinspired 

frameworks have been recommended for the range-based 

method to help design a less complex algorithm [18]. A 

node localization technique utilizing Particle Swarm 

Optimization (PSO) [19] was first described by 

Gopakumar and Jacob [20], mimicking the behavior of a 

swarm of fish searching for food. While the framework 

first yielded promising results, it often became stuck in 

local optima, leading to premature convergence. Goyal 

and Patterh [21] showed significant results in reducing 

localization errors in 2014 when they used Cuckoo Search 

(CS) for node localization in WSNs. The CS algorithm's 

tuning settings, which simplified the computation 

procedure, are responsible for this result. Researchers 

recently recommended a modification to the CS 

technique: Cheng and Xia [22], which improved the 

traditional CS algorithm's rate of convergence. They 

changed the mutation probability and random walk stage 

size to improve the search strategy [23,24]. 

A Bayesian approach for node localization in WSNs 

was introduced by Morelande et al. [25]. The suggested 

algorithm, known as progressive correction, improved 

their previous work [26]. Both strategies are compared 
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under different situations, with the Cramer-Rao bound 

(CRB) as the benchmark. Outperforming its predecessor, 

the newly recommended algorithm achieves superior 

accuracy. Furthermore, Ghargan et al. [27] recommended 

a tactic in which three enhancement frameworks, PSO, 

Backtracking Search Algorithm (BSA), and Gravitational 

Search Algorithm (GSA), are individually hybridized with 

ANN. Outperforming alternative methods, the GSA-ANN 

hybrid achieved low mean absolute distance projection 

errors: 0.02 meters for outdoor and 0.2 meters for indoor 

cases. In a current survey by Ahmadi and Bouallegue [28], 

various innovative ML strategies employed in node 

localization within WSNs were compiled. The study 

included a comparison of cumulative localization error 

distribution curves for different strategies such as ANN, 

SVM, DT, and Naive Bayes (NB). Analysis of cumulative 

localization error distributions revealed NB as the superior 

machine learning technique among those evaluated [29–

31]. 

Bhatti et al. [32] recommended an outlier recognition 

framework for indoor localization known as iF_Ensemble. 

This technique utilizes supervised ML methods, RF, and 

SVM-along with the unsupervised Isolation Forest, and an 

ensemble technique called stacking. It significantly 

outperforms the model with a very high localization 

accuracy of 97.8%. 

Wang et al. [33] recommended a new node 

localization framework called KELM-HQ, which uses 

Kernel Extreme Learning Machines to boost the accuracy 

of estimating the situations of hidden nodes. It achieves a 

34.6% improvement in localization error compared with 

fast-SVM, 19.2% with the GADV-Hop algorithm, and 

11.9% with the DV-Hop-ELM algorithm. Table 1 

represents the comparative summary of state-of-the-Art 

for indoor localization error prediction. 

Table 1: Comparative summary of state-of-the-Art for indoor localization error prediction. 

Method Reference Technique RMSE MAE R² Limitations and Improvements 

PSO-ANN Gharghan et 

al. (2016) 

[34] 

Particle Swarm 

Optimization 

with ANN 

0.2 

(indoor) 

0.12 N/A Converges to local minima; lacks 

robustness under varying topologies. 

MLGR offers more stable 

convergence and better 

generalization. 

Cuckoo 

Search 

Goyal & 

Patterh 

(2014) 

[35] 

Cuckoo Search 

Metaheuristic 

0.42 N/A N/A Requires tuning-sensitive 

parameters; slower convergence. 

MLGR improves convergence speed 

and accuracy. 

Bayesian 

Correction 

Morelande et 

al. (2008) 

[36] 

Progressive 

Bayesian 

Estimation 

0.23 0.15 0.91 Not ML-based; lower adaptability in 

dynamic environments. MLGR 

leverages adaptive learning for real-

time localization. 

KELM-

HQ 

Wang et al. 

(2020) 

[33] 

Kernel Extreme 

Learning 

Machine 

0.58 N/A 0.93 No optimizer hybridization; poorer 

error margin. MLGR offers up to 

38% better RMSE. 

MLPR This Study 

(Baseline) 

Multi-layer 

Perceptron 

Regression 

0.080 0.071 0.966 Strong nonlinear modeling, but 

suboptimal without optimization. 

MLPO This Study MLPR + 

Pelican 

Optimization 

0.059 0.051 0.981 Improves ALE prediction; 

outperformed by MLGR in 

convergence and accuracy. 

MLGR This Study MLPR + Gold 

Rush 

Optimization 

0.036 0.029 0.993 Best overall accuracy and 

generalization. Efficiently addresses 

convergence and nonlinearity 

weaknesses of prior SOTA methods. 

 

This paper uses machine learning to advance the 

scheme for ALE prediction. In this paper, the authors used 

MLPR. MLPR was chosen for its known capability to 

represent complex, nonlinear relationships between input 

values typical in wireless sensor network datasets. In 

contrast to linear or tree-based regressors, MLPR supports 

complex feature interactions natively and does not require 

explicit feature transformation. Its design is highly 

flexible and adaptable, reflecting the need to predict ALE 

in varied network topologies. Its efficiency in other similar 

application areas has been previously proved, providing 

both accuracy and computational expense as needed, 

making it an appropriate tool to be applied to this case. 

The use of MLPR to predict ALE has several advantages. 

This framework performs very well in detecting intricate 

relationships within data and, hence, is suitable for those 

applications where the underlying pattern is complex and 

nonlinear. It is believed that MLPR can learn with diverse 

traits and complex adjustments of the ALE prediction task. 

This is because such a type of neural network is pretty 

robust, providing good results on big data and allowing 

generalization for unseen examples. GRO and POA were 

recommended as additional optimizers in a quest for a 

better level of accuracy for ALE prediction. The results 
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and discussion also presented the hybridized framework's 

performance against others. Such a comparative study will 

go a long way in determining which model achieves better 

accuracy and precision in ALE forecasting. Consequently, 

the GRO inclusion, POA, and model hybridization in the 

present study assist in acquiring an in-depth understanding 

of the strengths and shortcomings of the adopted 

predictive frameworks. 

2 Mathematical frameworks 

2.1 MLPR 

A concise overview of the single-layer perceptron, the 

fundamental building block of Multi-Layer Perceptrons 

(MLPs) [37], is presented to foster understanding. This 

most straightforward form of a neural network entails a 

single output neuron connected to all inputs. Each input 

connection has a corresponding weight, denoted as 𝑤𝑖  

(where 𝑖 ranges from 0 to 𝑛, with n being the total number 

of inputs). These weights influence the output (𝑦), 

wrepresentingthe projected binary class. The input values 
(𝑥𝑖) correspond to the considered traits or variables [38]. 

Every input feature value is multiplied by its 

corresponding weight, 𝑣𝑖𝑎𝑖 , during the weighting stage. 

The second stage then involves adding together these 

products (𝑣0𝑎0 + 𝑣1𝑎1 + ⋯+ 𝑣𝑛𝑎𝑛). The third stage is 

the transfer stage, where an activation function is applied 

to the total. denoted as f (or transfer function). This 

process yields an output, y, expressed as: 

𝑦 = 𝑓(𝑧) 𝑎𝑛𝑑 𝑧 = ∑𝑣𝑖𝑎𝑖

𝑛

𝑖=0

 (1) 

𝑎0 = 1 represents the output 𝑦, where 𝑎0 is the 

threshold or bias. 

Eq. (1) empowers a perceptron, suited for learning 

functions that a straight line can separate. When dealing 

with a two-dimensional input featuring two variables, this 

function is visually represented by a line [39]. The 

representation shifts to a plane in the context of three 

dimensions and three traits. However, when dealing with 

input in n dimensions, the corresponding function is 

symbolized by a hyperplane. The equation governing the 

hyperplane is articulated as: 

∑𝑣𝑖𝑎𝑖

𝑛

𝑖=0

= 0 (2) 

Eq. (2) represents the dot product of weight vector 
V and input vector A. 
𝑉. 𝐴 = 0 (3) 

The subsequent stage, referred to as the learning or 

training stage, is initiated upon obtaining the responses 

from the input training data. This stage aims to optimize 

the weights by minimizing a cost function. This function 

typically measures the squared error between the 

framework's projected outputs and the real responses. 

Analytical methods such as gradient descent can compute 

the optimal weight vector. Convergence of the framework 

to a solution is imperative for the network to become 

operational. It also checks the model's generalization 

capability by validating it with new data. An SLP 

architecture is created by connecting several perceptrons 

in parallel, which is used with multiple outputs. 

The perceptron and single-layer perceptron have 

limited ability to solve nonlinearly separable problems. To 

remove this limitation, multiple layers can be added in 

series to develop an MLP network. In a neural network, 

the first and last layers are referred to as the input and 

output layers, respectively, while all other in-between 

layers are called the hidden layers. The output from each 

layer acts as the input for the subsequent layer, and this 

process goes on iteratively for every additional layer. 

As defined in [40], MLP is a feedforward neural 

network architecture where information flows only in one 

direction from the input layer to the output layer via the 

hidden layers. Each link between neurons is weighted, and 

all neurons in one layer have the same activation function. 

The hidden layers use the sigmoid function for nonlinear 

activation, while the output layer could be either sigmoid 

or linear, depending on the application. 

The performance of the MLP model depends on 

different factors, including the count and arrangement of 

hidden layers and nodes, the volume of training data, the 

selection of variables, etc. On the other hand, training 

parameters, such as the number of cycles, learning rate, 

momentum governing weight adjustments, and so on, may 

hugely impact the model's overall performance. 

2.2 GRO 

For the challenge of damage recognition in optimization, 

researchers implemented GRO. This framework boasts 

faster convergence compared to traditional methods. 

Unlike other strategies, GRO is inspired by human 

reasoning and decision-making. It begins by creating a set 

of randomly distributed "operators" within the search 

domain, mimicking the initial search stage in human 

problem-solving. 

During each cycle, these operators move together. 

When one detects a significant change in a monitored 

parameter (analogous to increased sound), the entire group 

pauses to investigate. In addition to their observations, 

each operator also considers information from others, 

particularly those detecting stronger "signals." This 

collaborative approach guides the group towards the area 

with the most significant readings, ultimately leading to 

precisely identifying the damage location. Refer to Fig. 1 

for the GRO algorithm's flowchart. 
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Figure 1: The flowchart of the GRO algorithm 

First stage: initialization 

Eq. (4) illustrates the random allocation of a place for 

each operator within the search domain. The variable 

Rand represents a random number within the interval of 

[0...1], and the search domains for the operators are 

delineated by 𝑢𝑏𝑖 and 𝑙𝑏𝑖 . 

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖
(0)

= 𝑙𝑏𝑖 + (𝑢𝑏𝑖 − 𝑙𝑏𝑖) × 𝑟𝑎𝑛𝑑,

𝑖 = 1,2, … , 𝑛 
(4) 

Second stage: Monitoring involves choosing the best 

places. 

The SOP is the identifier used to indicate that the 

operator has successfully identified the ideal location. At 

the end of every cycle, it is recommended that the top 10% 

of operators in the SOP be kept. 

Third stage: The link between fitness and distance is 

called  fitness-distance. 

Eq. (5) is used to examine each operator's readings 

(rate). This calculation helps determine which operator 

possesses the most promising data for locating the 

damage.

𝑟𝑎𝑡𝑒(𝑖) =
𝐷𝑖

𝑃𝑖

×
𝑠𝑜𝑢𝑛𝑑 (ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑣𝑜𝑙𝑢𝑚𝑒) −  𝑠𝑜𝑢𝑛𝑑 (𝑖)

(𝑠𝑜𝑢𝑛𝑑 (ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑣𝑜𝑙𝑢𝑚𝑒) −  𝑠𝑜𝑢𝑛𝑑 (𝑙𝑜𝑤𝑒𝑠𝑡𝑣𝑜𝑙𝑢𝑚𝑒) + 𝜀)
 (5) 

 

To reduce mistakes caused by the environment, the 

coefficients in Eqs. (6-7) are utilized, represented by 

𝐷𝑖and𝑃𝑖  , respectively. 

𝐷𝑖 = √(𝑥𝑖 − 𝑥𝑗)
2 + (𝑦𝑖 − 𝑦𝑗)

2 + ⋯ (6) 

𝑃𝑖 = 2 −
𝑖𝑡𝑒

𝑚𝑎𝑥𝑖𝑡𝑒

 (7) 

During this stage, each operator makes unique 

decisions influenced by a combination of sounds, a 

process encapsulated by Eq. (8). 

𝑓𝑟𝑒𝑠ℎ 𝑝𝑙𝑎𝑐𝑒 (𝑖)
=   𝑝𝑙𝑎𝑐𝑒 (𝑖) + 𝑚𝑑 × [(𝑟𝑎𝑡𝑒( 𝑗 )
− 𝑟𝑎𝑡𝑒(𝑖))  × ( 𝑝𝑙𝑎𝑐𝑒 ( 𝑗 )– 𝑝𝑙𝑎𝑐𝑒 (𝑖 ))
× 𝑟𝑎𝑛𝑑 ] 

(8) 

The 𝑚𝑑 coefficients, delineating the path of 

movement, are expressed in Eq. (9):

𝑚𝑑 = {
+1 ⟹ 𝑡𝑜𝑤𝑎𝑟𝑑𝑠 𝑎 𝑙𝑜𝑢𝑑𝑒𝑠𝑡 𝑠𝑜𝑢𝑛𝑑        𝑎 > 𝑟𝑎𝑛𝑑
−1 ⟹ 𝑎𝑤𝑎𝑦 𝑓𝑟𝑜𝑚 𝑎 𝑙𝑜𝑢𝑑𝑒𝑠𝑡 𝑠𝑜𝑢𝑛𝑑   𝑎 < 𝑟𝑎𝑛𝑑

 (9) 

 

Fourth stage: location correction    

If Eq. (8) is unable to yield a satisfactory location, 

then the coefficients 𝛽 and 𝛾 are chosen from the interval 

0 < 𝛽 < 𝛾 < 1, and Eq. (10) is employed to produce new 

locations.

𝑛𝑒𝑤 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (𝑖) = {

𝑐ℎ𝑜𝑜𝑠𝑒 𝑎 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛                𝑟𝑎𝑛𝑑 < 𝛽 
𝑠𝑒𝑙𝑒𝑐𝑡 𝑎 𝑛𝑒𝑤 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦    𝛽 < 𝑟𝑎𝑛𝑑 < 𝛾

𝑑𝑜 𝑛𝑜𝑡 𝑚𝑜𝑣𝑒                                     𝛾 < 𝑟𝑎𝑛𝑑
 (10) 

 

Fifth stage: termination 

Iteratively performing stages 4 through 5 in a loop 

until one of the subsequent circumstances is satisfied: 

1. There is no longer a peak count of strives permitted. 

2. The ideal place doesn't alter. 

3. A predefined anticipated threshold is attained 

When the disparity between the values of SOP and the 

global optimum is smaller than a given value. 

4. Less than a certain degree of precision separates the 

objective values of the best and worst sites. 

GRO is used in this research to tune the internal 

parameters of the MLPR model, i.e., the weights and 

biases, to minimize prediction error in terms of ALE. This 

optimizes convergence rate and model precision by 

effectively traversing the search space and escaping local 

minima, making the process of learning more robust. 
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2.3 POA 

Dehghani and Trojovský initiated the POA in 2022, an 

inventive nature-inspired method that draws influence 

from pelicans' social behaviors and hunting strategies 

[41]. Pelicans are huge birds with strong beaks that use a 

wide neck pouch to catch and eat their prey. These birds 

comprise the targeted population and typically reside in 

large groups. Using the following equation, the population 

members are initialized at random: 

𝑥𝑖,𝑗 = 𝑙𝑗 + 𝑟𝑎𝑛𝑑. (𝑢𝑗 − 𝑙𝑗),                         

    𝑖 = 1,2,3, … , 𝑁 , 𝑗 = 1,2,3, … ,𝑚  
(11) 

The value of the 𝑗𝑡ℎ variable for the 𝑖𝑡ℎ candidate 

solution is indicated by the formula 𝑥𝑖,𝑗. The number of 

people in the group and the overall count of dilemma 

variables are indicated by the parameters 𝑁 and 𝑚, 

respectively. In addition, 𝑟𝑎𝑛𝑑 denotes a randomly 

generated number within [0.1], and 𝑙𝑗 and 𝑢𝑗 represent the 

problem variables' lower and upper restrictions. Eq. (12) 

is used to create the population matrix, which represents 

the individuals in the set of possible solutions: 

𝑋 =

[
 
 
 
 
𝑋1

⋮
𝑋𝑖

⋮
𝑋𝑁]

 
 
 
 

𝑁×𝑚

=     

[
 
 
 
 
𝑋1,1  …  𝑋1,𝑗   …  𝑋1,𝑚

⋮                ⋮                ⋮
𝑋𝑖,1  …  𝑋𝑖,𝑗   …  𝑋𝑖,𝑚

⋮                ⋮                ⋮
𝑋𝑁,1  …  𝑋𝑁,𝑗   …  𝑋𝑁,𝑚]

 
 
 
 

𝑁×𝑚

 

(12) 

The objective function is derived from Eq. (13) as 

provided. 

𝐹 =

[
 
 
 
 
𝐹1

⋮
𝐹𝑖

⋮
𝐹𝑁]

 
 
 
 

𝑁×𝑚

=     

[
 
 
 
 
𝐹(𝑋1)

⋮
𝐹(𝑋𝑖)

⋮
𝐹(𝑋𝑁)]

 
 
 
 

𝑁×1

 (13) 

The objective function vector, 𝐹, is made up of the 

objective function values that are allocated to each 

candidate solution; for example, 𝐹𝑖 for the 𝑖𝑡ℎ candidate 

solution is the objective function vector. There are two 

stages to a pelican's hunting process: exploration and 

exploitation. Pelicans travel forward searching for their 

prey in the exploration stage and glide smoothly across the 

water's surface in the exploitation phase. Pelicans locate 

the prey by using a randomly generated location to 

approach it during the first exploration stage. The 𝑃𝑂𝐴′s 

capacity for exploration is enhanced by this random 

component in the prey's location [42]. Eq. (14) illustrates 

the first stage's mathematical expression: 

𝑥𝑖,𝑗
𝑝1

= {
𝑥𝑖,𝑗 + 𝑟𝑎𝑛𝑑. (𝑝𝑗 − 𝐼. 𝑥𝑖,𝑗),       𝐹𝑝 < 𝐹𝑖;

𝑥𝑖,𝑗 + 𝑟𝑎𝑛𝑑. (𝑥𝑖,𝑗 − 𝑝𝑗),                 𝑒𝑙𝑠𝑒,
 

(14) 

Here, 𝑥𝑖,𝑗
𝑝1  represent the 𝑖𝑡ℎ pelican's renewed 

situation in the 𝑗𝑡ℎ aspect after the primary stage. The 

update is dependent on two random variables: 𝐹𝑝, which 

represents the prey's objective function value, and 𝑃𝑗, 

which indicates the prey's situation in the 𝑗𝑡ℎ aspect. A 

pelican's revised location is considered acceptable in the 

𝑃𝑂𝐴 algorithm if it increases the value of the objective 

function at that specific spot. This process, known as 

efficient updating, prevents the framework from 

coinciding to suboptimal locations. This is depicted 

mathematically as: 

𝑥𝑖 = {
𝑋𝑖

𝑝1 , 𝐹𝑖
𝑝1 < 𝐹𝑖

𝑋𝑖             𝑒𝑙𝑠𝑒
 (15) 

The hunting action is represented mathematically as: 

The renewed situation of the 𝑖𝑡ℎ pelican after the second 

stage is denoted by 𝑋𝑖
𝑃1 , and the objective function value 

of the pelican obtained from this stage is indicated by 𝐹𝑖
𝑃1 . 

In the second stage, pelicans tn the water's surface lift their 

wings upward to increase their chances of catching more 

fish [43]. As a result, they trap the meal in their throat 

pouches. This stage significantly improves the 𝑃𝑂𝐴 

algorithm and makes it easier for improved solutions to 

converge within the hunting region. 

𝑥𝑖,𝑗
𝑝1 = 𝑥𝑖,𝑗 + 𝑅. (1 −

𝑡

𝑇
) . (2. 𝑟𝑎𝑛𝑑 − 1). 𝑥𝑖,𝑗 (16) 

In the second stage, many parameters are taken into 

consideration to establish the renewed situation of the 𝑖𝑡ℎ 

pelican in the 𝑗𝑡ℎ aspect, which is represented as 𝑋𝑖,𝑗
𝑃2 . 

Among these is the constant 𝑅, which has been given a 

value of 0.2. The phrase (1 −  𝑡/𝑇), where 𝑡 displays the 

cycle count and 𝑇 displats the peak count of cycles, affects 

the neighborhood radius of 𝑥𝑖,𝑗. At this point, an efficient 

updating procedure is also implemented, and Eq. (17) is 

used to determine whether to admit or deny the new 

pelican situation. 

𝑥𝑖 = {
𝑋𝑖

𝑝2 , 𝐹𝑖
𝑝2 < 𝐹𝑖

𝑋𝑖             𝑒𝑙𝑠𝑒
 (17) 

The renewed status of the 𝑖𝑡ℎ pelican is represented 

by 𝑋𝑖
𝑃2 , and the related objective function value for that 

pelican is represented by 𝐹𝑖
𝑃2 . After every population 

member has been updated, the next cycle and the 

procedures listed in Eqs start. (14)-(17) are repeated until 

the execution process is finished [44]. The 𝑃𝑂𝐴 flowchart 

displayed in Fig. 2 illustrates the iterative nature of this 

procedure. 

The parameters of the MLPR model, i.e., weights and 

biases, are adjusted using POA to minimize the prediction 

error of the ALE. During training, by simulating 

cooperative hunting behavior, POA speeds up the search 

process. This improves the overall generalization and 

stability, and ensures predictions are made with higher 

accuracy in varied network environments. 

The hybrid optimization strategy improves 

localization accuracy by integrating MLPR's potential to 

capture nonlinear patterns along with GRO and PO's 

capabilities to perform global searching. These optimizers 

refine weight tuning as well as convergence, reducing 

errors during predictions. The synergy provides more 

accurate ALE estimations in different network scenarios.
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Figure 2: The flowchart of 𝑃𝑂𝐴 

2.4 Performance evaluation metrics  

This part organizes diverse gauges to examine the 

compound frameworks' productivity by measuring their 

correlation and error levels. The metrics covered 

encompass RMSE, Index of agreement (IOA), MAE, 

Coefficient Correlation (R2), and Mean Relative Absolute 

Error (MRAE). These chosen metrics, RMSE, MAE, IOA, 

R², and MRAE, provide a complete assessment of 

accuracy, consistency, and relative error of predictions. 

The absolute errors are measured by RMSE and MAE, 

explained variance by R², agreement by IOA, and 

proportional deviation by MRAE, balancing evaluation 

across model behaviors and sensitivity in errors. The 

formulas for each of these metrics are provided below. 

𝑀𝑅𝐴𝐸 =
1

𝑛
∑

|𝑚𝑗 − 𝑏𝑗|

|𝑚𝑗 − 𝑚̅|

𝑛

𝑖=1

 (18) 

𝐼𝑂𝐴 = 1 −
∑ (𝑥𝑖,𝑎 − 𝑥𝑖,𝑝)

2𝑛
𝑖=1

∑ (|𝑥𝑖,𝑝 − 𝑥𝑎̅̅ ̅| + |𝑥𝑖,𝑎 − 𝑥𝑎̅̅ ̅|)2𝑛
𝑖=1

 (19) 

𝑀𝐴𝑅𝐸 =
1

𝑁
∑

|𝑒𝑖 − 𝑚𝑖|

𝑚𝑖

𝑁

𝑖=1

 (20) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑚𝑖 − 𝑏𝑖)

2

𝑛

𝑖=1

 (21) 

𝑅2 =

(

 
∑ (𝑏𝑖 − 𝑏̅)(𝑚𝑖 − 𝑚̅)𝑛

𝑖=1

√[∑ (𝑏𝑖 − 𝑏̅)
2𝑛

𝑖=1 ] [∑ (𝑚𝑖 − 𝑚̅)2𝑛
𝑖=1 ]

)

 

2

 (22) 

The factors are displayed below: 

• 𝑛 𝑑𝑖𝑠𝑝𝑙𝑎𝑦 the sample magnitude. 
• 𝑏𝑖  𝑑𝑖𝑠𝑝𝑙𝑎𝑦 the projected value. 

• 𝑚  and 𝑏  represent the gauged and mean projected 

values, respectively. 

• 𝑚𝑖  𝑑𝑖𝑠𝑝𝑙𝑎𝑦 the gauged value is. 

• The critical value from the t-spread is based on 

the intended grade of assurance and the degrees 

of freedom displayed by 𝑡. 

• The mean of the predictor variable in the 

database is represented by 𝑥 . 
Metrics of model performance depend heavily on 

critical hyper parameters like learning rate, hidden layers, 

and cycles of training. In this research, incorrect tuning 

resulted in both overfitting or under fitting as evidenced 

by increased RMSE or decreased R². Accurate adjustment 

enhanced generalization, particularly in MLGR. Optimal 

hyper parameters were determined according to validation 

performance. 

3 Data collection 
Any machine learning project is based on robust data. This 

work collected data relevant to indoor localization in 

WSNs with great care. The data comprised several 

network parameters that were presumed to affect ALE. To 

ensure generalizability and prevent overfitting of the 
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model, the data was separated into three distinct parts: 

training, validation, and testing, in a ratio of 70%, 15%, 

and 15%, respectively. The training data and the model 

learned from it took the maximum share of this. The 

validation data set provided a check, as most hyper 

parameter tuning to avoid overfitting during training is 

based on the validation database. Lastly, the unseen 

testing database verifies the model's generalization to real-

life predictive power. This careful data acquisition and 

segmentation strategy provides a firm ground for an 

efficient and generalizable ML model in indoor 

localization. The runtime of the models differed with 

different configurations. For MLPR with the Gold Rush 

Optimizer, runtime grew with network depth: 44.3 

seconds for 1 layer, 54.7 seconds for 2 layers, and 66.1 

seconds for 3 layers. Analogously, the MLPR with the 

Pelican Optimizer recorded 33.8 seconds for 1 layer, 41.2 

seconds for 2 layers, and 52.6 seconds for 3 layers. In 

comparison with the baseline MLPR without any 

optimizer, the shortest runtimes were seen at 18.9 seconds 

for 1 layer, 22.8 seconds for 2 layers, and 30.2 seconds for 

3 layers. These results have shown both the optimizers to 

lengthen computational time, with the Gold Rush 

Optimizer being the most time-consuming. 

3.1 Data description 

The database used in this exploration is taken from 

published literature [45], including six important input 

traits to predict ALE using the recommended machine 

learning frameworks. This database is a comprehensive 

collection of several parameters relevant to indoor 

localization systems, which would be very useful to 

explore the relationship between these parameters and 

localization accuracy. 

3.1.1 Input traits 

• Anchor ratio: This feature specifies the number of 

anchor nodes per overall node in the network. Indeed, 

anchor nodes are vital parts of an indoor localization 

environment, in which they always act as reference 

nodes against which the situation of goal nodes is 

calculated. Enhanced anchor ratios augment location 

precision by expanding spatial reference points, 

facilitating superior triangulation. A reduced number 

of anchors diminishes geometric constraints, resulting 

in increased estimating uncertainty and more 

inaccuracy in expected locations.   

• Transrange: It defines the range of transmitters in 

meters in the wireless communication network. The 

parameter specifies the maximum possible distance 

over which nodes may communicate effectively and 

defines the area of coverage of the whole localization 

system and its accuracy. The transmission range 

affects the extent and distribution of the signal. A 

moderate range guarantees dependable connectivity 

and constant RSSI readings, hence improving 

localization precision. Excessive range may induce 

interference, whilst limited range might lead to signal 

attenuation and inadequate data transmission. 

• Node density: Node density characterizes the spatial 

distribution of the nodes in the network area and 

quantifies the number of nodes per unit area. It 

influences the granularities of the measurement in the 

localization. Increased node density augments the 

spatial resolution of the network, hence enhancing 

ALE by providing more comprehensive 

environmental data. Sparse networks jeopardize 

adequate coverage, resulting in increased localization 

mistakes due to a deficiency of proximate references. 

• Cycles: This refers to the number of cycles to execute 

the ML framework training process. Cycles are 

critical for improving model parameters to ensure 

predictive performance. Increased iterations provide 

improved model convergence during optimization 

and learning, enhancing localization predictions. A 

reduced number of cycles may result in underfitting, 

causing the model to inadequately generalize and 

elevate ALE. 

• SDale: The standard deviation of ALE, which reflects 

the spread or variability of the localization error in 

different instances or cases. This metric provides 

insight into the consistency and reliability of the 

localization system. The standard deviation of ALE 

indicates the stability and consistency of localization 

performance. A lower standard deviation indicates 

strong and dependable predictions, whereas more 

variability implies the model is susceptible to 

fluctuations in input properties or environmental 

conditions. 

• Ale: ALE is the target variable that the machine 

learning frameworks should predict. ALE quantifies 

the accuracy of localization, which is gauged by the 

deviation of the estimated situation from the actual 

situation of goal nodes. 

3.2 Data preprocessing 

Before framework training, the database endured 

preprocessing stages to ensure data quality and 

compatibility with the machine learning frameworks. This 

included managing missing values, regulating statistical 

traits, and encoding explicit variables as necessary. 

3.3 Database characteristics 

The database comprises 107 instances, each characterized 

by the input traits above and corresponding ALE values. 

The layered pattern facilitates fine-grained evaluation 

over various data complexities or network settings. Each 

layer has a different scenario or level of abstraction, 

allowing model robustness and generalization to be tested. 

Such a structure provides insight into where specifically a 

model performs well or fails, charting future areas of 

improvement in ALE prediction. Table 2 provides a 

summary of descriptive statistics, including average, 

standard deviation, minimum, and maximum, for each 

feature. Additionally, Fig. 3 presents the bar chart of the 

input variables.  
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Table 2: The statistical traits of the input of ALE 

Variables 
Indicators 

Min Max Avg St. Dev. 

Anchor_ratio 10.000 30.000 20.523 6.708 

Trans_range 12.000 25.000 17.879 3.093 

Node_density 100.000 300.000 159.813 70.856 

Cycles 14.000 100.000 47.888 24.553 

Sd_ale 0.003 1.092 0.266 0.183 

Ale 0.394 2.268 0.981 0.396 

 

  

  

  

Figure 3: The bar chart for input and output 

4 Outcomes and consultation 

4.1 Hyper-parameter tuning 

Table 3 depicts the optimum number of neurons obtained 

through random search for each hidden layer at three test 

stages for MLGR and MLPO models. MLGR and MLPO 

represent the Multi-Layer Perceptrons augmented with 

Gold Rush and Pelican Optimizers, respectively. Each 

model setup (1, 2, 3) represents one different experimental 

condition, and each row represents one hidden layer. It is 

clear from the results that neuron distribution is different 

across different layers and optimizers, highlighting the 

adaptivity of the tuning process. MLGR tended to utilize 

a greater number of neurons in deeper layers than MLPO, 

potentially impacting learning capability and converging 

behavior. This layer-by-layer tuning underpins the 

differences in performance seen in later tests.
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Table 3: Optimal number of neurons determined via random search for each hidden layer 

Hyperparameters 

Models 

MLGR (1) MLPO (1) 
MLGR 

(2) 

MLPO 

(2) 

MLGR 

(3) 

MLPO 

(3) 

Neuron 36 28 37 29 30 25 

Neuron - - 33 20 20 26 

Neuron - - - - 23 12 

 

4.2 Coincidence curvature 

Fig. 4 displays a graph that illustrates the time evolution 

of a repeating enhancement tactic. It shows how the 

objective function value of the framework alters at every 

cycle and whether the process is converging toward the 

best reaction. Fig. 4 shows the convergence behavior of 

optimization algorithms in different layers. The curves of 

the objective function evolution in training cycles are 

depicted. The steepness and earlier flattening of curves 

signify more efficient convergence and optimization. The 

MLGR model shows superior convergence properties by 

reaching a lower objective in fewer cycles, as is evident in 

its superior performance in the following prediction 

assessment. When it comes to optimization problems, an 

algorithm getting close to convergence exhibits a steady 

decrease or rise in the objective function until it attains a 

point where more cycles only produce negligible gains. 

The chart indicates the excellent productivity of the 

MLGR model over MLPO across all three layers. After 50 

cycles, the MLGR model achieves a commendable 

accuracy of 0.0345, highlighting its excellence in the first 

layer. In the second layer, the MLGR model attains a high 

accuracy of 0.0315 after 30 cycles, and in the third layer, 

it reaches 0.0294 accuracy after 40 cycles. However, even 

after 60 cycles, the MLPO model demonstrates noticeable 

improvement in precision across all layers, though it may 

not have reached the same level of performance as the 

MLGR model. 

  

Figure 4: 3D Scatter plot for convergence of compound frameworks 

4.3 Frameworks comparison 

Table 4 displays the outcomes of the built MLPR 

frameworks, comparing three different stages and five 

different metrics. The metrics consist of RMSE, R2, 

MAE, IOA, and MRAE, and the stages include training, 

validation, and testing. When a framework's R2 and IOA 

values are close to one, it performs at its best. On the other 

hand, values close to zero indicate better model 

performance for RMSE, MAE, and MRAE. 

For instance, in the first layer during training, the 

MLGR model performs better than the MLPR and MLPO 

frameworks regarding RMSE, with a value of 0.024. 

Moreover, with an R2 value of 0.996, the MLGR model 

beats the MLPO and MLPR frameworks in the same layer 

and stage. During the training stage, the MLPO model 

achieved second place with an IOA value of 0.997. 

Among the three frameworks, the MLPR model has the 

least promising performance, outperforming the other 

two. 

With a value of 0.040, the MLGR model displays the 

best performance in MAE during the second layer's 

validation stage. The MLPO model achieved the second-

best performance and is not far behind. The MLPR model 

performs third with a value of 0.347 in terms of MRAE 

during the test stage, while the MLPO model comes in 

second with a value of 0.306. Furthermore, regarding the 

R2 value during validation, MLGR operates better than 

MLPO and MLPR, with a value of 0.987. 
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The test stage's third layer displays that, at 0.991, the 

MLPR model performs the least robustly in IOA, while 

MLGR, the best-performing model, achieves a superior 

value of 0.998. The results for the MAE value in the 

training stage indicate that MLGR outperforms the others, 

achieving a value of 0.016. The MLPO model, with a 

value of 0.030, comes in second place and is followed 

closely. With values of 0.046 and 0.064, respectively, the 

MLPO model displays the best performance in the 

validation stage of RMSE, while MLPR displays the 

lowest performance. As presented in Table 4, the MLPR 

model's worst performance occurs in the third layer in the 

testing phase with an RMSE of 0.080. This suggests a 

poorer generalization ability in this case than in MLGR 

and MLPO, given the sensitivity of MLPR to differences 

in data complexity by layers. 

Performance differences between layers are a result of 

variations in feature distributions as well as data 

complexity levels. Noisy patterns or less informative 

patterns in a couple of layers might compromise model 

generalization. Also, uneven training dynamics lead to 

weaker tuning of parameters in a particular layer, resulting 

in increased error rates.

Table 4: The outcome of the created frameworks for the MLPR-based hybrid scheme 

Model Stage 
Index values 

RMSE R2 MAE IOA MRAE 

MLPR (1) 

Train 0.054 0.981 0.046 0.995 0.361 

Validation 0.056 0.981 0.048 0.995 0.409 

Test 0.080 0.965 0.074 0.990 0.408 

MLPO (1) 

Train 0.041 0.989 0.035 0.997 0.378 

Validation 0.061 0.983 0.050 0.995 0.447 

Test 0.055 0.984 0.047 0.996 0.270 

MLGR (1) 

Train 0.024 0.996 0.022 0.999 0.300 

Validation 0.044 0.988 0.039 0.997 0.339 

Test 0.057 0.984 0.051 0.995 0.301 

MLPR (2) 

Train 0.053 0.982 0.047 0.995 0.562 

Validation 0.081 0.983 0.070 0.991 0.490 

Test 0.066 0.975 0.056 0.994 0.347 

MLPO (2) 

Train 0.033 0.993 0.028 0.998 0.353 

Validation 0.062 0.983 0.057 0.994 0.492 

Test 0.066 0.975 0.060 0.994 0.306 

MLGR (2) 

Train 0.023 0.996 0.020 0.999 0.154 

Validation 0.046 0.987 0.040 0.997 0.366 

Test 0.045 0.989 0.042 0.997 0.237 

MLPR (3) 

Train 0.056 0.981 0.047 0.995 0.630 

Validation 0.064 0.978 0.049 0.994 0.312 

Test 0.080 0.966 0.071 0.991 0.372 

MLPO (3) 

Train 0.035 0.992 0.030 0.998 0.380 

Validation 0.046 0.988 0.041 0.997 0.363 

Test 0.059 0.981 0.051 0.995 0.298 

MLGR (3) 

Train 0.018 0.998 0.016 0.999 0.176 

Validation 0.054 0.984 0.050 0.996 0.393 

Test 0.036 0.993 0.029 0.998 0.166 

Table 5 presents the statistical significance of 

comparisons of model performance using the Mann–

Whitney U test for three MLP setups. In the stat column, 

U test statistics are presented, and in the P value column, 

the corresponding significance levels are provided. The 

baseline MLPR, MLPR-GRO, and MLPR-POA are 

compared. With the majority of the p-values lying above 

the threshold of 0.05 significance, MLPR-POA is just 

short of significance in MLP 1 and MLP 3 (p = 0.051), 

demonstrating potentially significant improvement over 

the baseline. This finding complements the performance 

metrics by providing statistical support for the trends 

noted and confirming the validity of optimizer-driven 

improvements in MLPR setups.

Table 5: statistical significance results of the model performances across three multi-layer perceptron 

Models 
MLP 1 MLP 2 MLP 3 

stat P value stat P value stat P value 

MLGR 2522 0.254 2845 0.890 2522 0.254 

MLPO 2261 0.051 2442 0.164 2261 0.051 

MLPR 2673 0.607 2457 0.179 2673 0.607 

 



Hybrid Multi-layer Perceptron and Metaheuristic Optimizers for Indoor…                                Informatica 49 (2025) 163–184    173                                                                                                                                 

Fig. 5 displays the Plotting of the spread of expanded 

compound frameworks for the first layer. The expected 

value is represented on the Y axis, while the gauge value 

is depicted on the X axis. A tight grouping of data points 

near the middle diagonal line, corresponding to the ideal 

R² value of 1 represents good predictive accuracy. This 

grouping indicates little deviation between the actual and 

produced ALE values. Whenever a model's scatter plot 

resembles clustering near the line in such a way that the 

model is likely to be picking up the patterns in the 

available data consistently. Thus, the data points' nearness 

to the line indicates the model's performance quality and 

forecasting accuracy in a straightforward way. 

 Different parts are color-coded to enhance clarity, as 

illustrated in Fig. 5. When the population falls below the 

center line, it signifies underestimation, whereas above the 

core line indicates overestimation. Robust model 

execution is evident when the linear line closely aligns 

with the center line and displays no noticeable angle 

between them. The diagrams in Fig. 5 show that the 

MLGR model excels, contrasting with the MLPO and 

MLPR frameworks. Following the MLGR model, the 

MLPR model demonstrates the second-highest level of 

performance. The scatter plot verifies model excellence by 

illustrating the similarity of the predicted values to actual 

values on the diagonal line. A model that has points 

closely grouped on that line indicates higher accuracy and 

lower residual error levels. MLGR plots demonstrate tight 

grouping, which indicates higher prediction consistency 

than MLPO and MLPR.

  

 

Figure 5: Plotting the spread of expanded compound frameworks 

Fig. 6 plots the spread of evolved compound 

frameworks for the second layer. The expected value is 

represented on the Y axis, while the gauge value is 

depicted on the X axis. The population surrounding the 

middle line, denoting R2, becomes filled to indicate that 

the framework with optimal execution is at the core. 

Different portions are color-coded to enhance clarity, as 

illustrated in Fig. 6. When the population falls below the 

center line, it signifies underestimation, whereas above the 

center line indicates overestimation. A strong model 

performance is evident when the linear line closely aligns 

with the center line and displays no noticeable angle 
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between them. The diagrams in Fig. 6 show that the 

MLGR model excels, contrasting with the MLPO and 

MLPR frameworks. Following the MLGR model, the 

MLPR model demonstrates the second-highest level of 

performance. 

  

 

Figure 6: Plotting the spread of expanded compound frameworks 

Fig. 7 plots the spread of evolved compound 

frameworks for the third layer. The expected value is 

represented on the Y axis, while the gauge value is 

depicted on the X axis. The population surrounding the 

middle line, denoting R2, becomes filled to indicate that 

the framework with optimal execution is situated at the 

center. Different parts are color-coded to enhance clarity, 

as illustrated in Fig. 7. When the population falls below 

the center line, it signifies underestimation, whereas above 

the center line indicates overestimation. Robust model 

execution is evident when the linear line closely aligns 

with the center line and displays no noticeable angle 

between them. The diagrams in Fig. 7 show that the 

MLGR model excels, contrasting with the MLPO and 

MLPR frameworks. Following the MLGR model, the 

MLPR model demonstrates the second-highest level of 

performance. 
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Figure 7: Plotting the spread of evolved compound frameworks 

Fig. 8 displays the contrast of projected and gauged 

values. The alignment between the gauged line and the 

projected columns indicates the framework's anticipation 

precision. A close correspondence between the gauged 

line and the expected column reflects a peak level of 

precision, while deviations suggest a lower level of 

performance. 

In layer one, the MLGR model demonstrated strong 

performance in the training stage, with minimal gauged 

lines exhibiting distances more significant than the 

projected column. The validation segment of this 

framework outperforms the test section, showcasing a 

close alignment between the MLGR framework's 

anticipations and the observed data. MLPO exhibited 

poorer performance in the training stage than the MLGR 

model, with fewer projected columns with distances from 

gauged lines. However, in both the test and validation 

parts, MLPO performed excellently. 

In the test stage, the MLPR model performs less 

effectively than the MLPO and MLGR frameworks, with 

a notable gap between the gauged line and the expected 

column. Nevertheless, the MLPR model performs 

satisfactorily in the validation and training stages. This 

pattern persists across all layers. 
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Figure 8: The contrast between projected and gauged values 

Fig. 9 illustrates the error percentages of the 

frameworks based on the Scatter plot. Optimal model 

performance is indicated when the error proportion 

approaches zero. For instance, in layer one of MLPR, the 

peak error proportion during the training stage is 

approximately 14%. Compared to the other two 

frameworks, it displays the peak error proportion, 

reaching about 16%. 

The highest error proportion in MLPO is around 14%, 

lower than the error proportion in MLPR. The training 

stage of MLPO entails the peak error proportion, and in 

this exploration, this framework operates the second-best. 

In contrast, the peak error proportion in MLGR is 12%, 

the lowest among the three frameworks. The test stage of 

this framework displays the highest fault proportion, while 

the validation stage exhibits the lowest error proportion. 

Moving to layer two in MLPR, the peak error 

proportion is approximately 17%, occurring in the training 

stage. The validation stage has a lower error proportion 

than the training and test stages. The error proportion 

varies from -18 to 17 in MLPR. In MLPO, 15% is the 

highest error proportion, which takes place in the test stage 

and is the second best during this study. At layer three, the 

MLGR model has a maximum of about 17% error 

proportions in the validation stage, while the MLPO 

model here performs the best in the meantime with an 

error proportion of 13%. Distributions of error percentage 

reflect the stability and consistency of predictive 

performance of the models. Tighter distributions with 

lower peak error reflect stable performance, whereas 

wider spreads reflect variable performance and overfitting 

and under fitting risks. In the research conducted here, 

MLGR consistently has tighter and lower error 

distributions, reiterating its stability over layers against 

MLPO and MLPR.
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Figure 9: The error proportion of the frameworks in the scatter plot 

Fig. 10 displays the half-box plot errors for the 

recommended frameworks so that their performance 

attributes can be visually represented. When the median 

line is closer to zero, it indicates a smaller error proportion 

in a model. Additionally, the data distribution within the 

IQR displays the model's effectiveness; the denser the 

population within this range, the better the efficacy. 

Looking at the MLGR model in the third layer of the 

training stage, one finds that the population is indeed 

closely clustered around the range of IQR. This close 

grouping around the IQR range represents the model's 

performance strength. The validation stage confirms this 

by showing that the median line of this framework hovers 

nearer to zero. 

Conversely, MLPO is widespread in the IQR range, 

with the median line keeping a distance from zero, 

especially during the test stage. While the training stage 

displays a moderately concentrated population around the 

IQR range, the wider IQR indicates a potential spread in 

the model's performance. In the case of the MLPR model, 

the median line approaches zero during the test stage, 

which means lower error. However, the data distribution 

around the IQR range is less concentrated, with one data 

point diverging from this range, implying a nuanced 

performance in this stage. 

This framework reveals a population at the training 

stage so closely clustered around the IQR range in the 

second layer of MLGR. In the test stage, the median line 

has a distance from zero, which indicates that this 

framework performed poorly at this stage.  

Conversely, the MLPO model performs weaker in the 

validation stage than the MLGR model. The median line's 

distance from zero is too great, as in the test stage. 

However, this framework's performance is acceptable in 

the training stage. The MLPR model performs the weakest 

in all stages compared to these two frameworks. The 

population around the IQR range is not clustered, and the 

median line is too far from the zero point.  
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Figure 10: The half box has symbol plot errors for recommended frameworks 

The consistently higher performance of the MLGR 

approach over both MLPO and MLPR can be explained 

by a number of key benefits inherent in the optimization 

strategy of GRO and its harmonization with MLPR. First, 
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GRO provides a human-inspired optimization technique 

that benefits over the biologically inspired strategy of PO 

by utilizing group adaptation decision-making and 

dynamic movement towards regions of optimality. Such 

an ability allows MLGR to evade premature convergence 

and avoid being trapped by local optima two typical 

drawbacks seen in both MLPR and, to a lesser degree, 

MLPO. Second, selective pausing by GRO through 

fitness-distance correlation enables a better 

exploitation/exploration trade-off. It leads to more 

targeted convergence behavior and more rapid 

identification of optimal solutions in ALE task prediction, 

while PO heavily depends on random exploration, 

potentially slowing down convergence. Third, 

comparative results in all three layers and evaluation 

phases validate MLGR's dominance. When tested using 

the third layer, MLGR recorded an RMSE of 0.036, R² of 

0.993, and MRAE of 0.166, surpassing MLPO (RMSE: 

0.059, R²: 0.981, MRAE: 0.298) and MLPR (RMSE: 

0.080, R²: 0.966, MRAE: 0.372) performance. Ultimately, 

MLGR benefits from superior generalization to novel data 

through GRO's progressive correction mechanism. 

Combined, these aspects increased convergence, 

enhanced optimization depth, and higher predictive 

accuracy render MLGR the best framework to make ALE 

predictions in this work. The hybrid strategy does have 

increased training time as a result of additional 

computational cost from GRO and PO, but this is 

counterbalanced by enhanced model accuracy and 

convergence. Inference, on the other hand, is still efficient 

because optimization happens only at training time, hence 

making it appropriate for offline training and real-time 

inference applications. 

5 Conclusion 
This exploration examined the potential of ML to boost 

indoor localization in WSNs. The limitations of GPS in 

indoor environments were addressed, emphasizing the 

need for alternative methods such as reference nodes and 

localization frameworks. Existing range-based and range-

free frameworks were reviewed alongside recent 

advancements in machine-learning approaches for WSN 

localization. In this study, the recommended approach 

utilizes MLPR to predict ALE. To potentially enhance 

MLPR's performance, the study investigates the use of 

optimizers containing GRO and POA. The hybridized 

frameworks' performance was compared to identify the 

most accurate and precise solution for ALE prediction. 

The developed frameworks were evaluated in three layers 

and stages: Training, Validation, and Testing. The MLPO 

model achieved the best performance in the first laye. with 

a low RMSE of 0.055, followed closely by the MLGR 

model at 0.057. However, the MLPR model showed the 

weakest performance here, reaching an RMSE of 0.080. 

In the second layer, the focus shifted to R-squared (R²), 

where the MLGR model shone with a value of 0.989. 

Interestingly, the MLPO and MLPR frameworks achieved 

similar results in this layer, sharing the second-best R² of 

0.975. Finally, the third layer assessed with MRAE 

cemented the MLGR framework's dominance. It achieved 

the lowest MRAE of 0.166, indicating the most accurate 

predictions. The MLPO model followed with a value of 

0.289, while MLPR revealed the peak MRAE (0.372), 

suggesting the least accurate predictions in the final layer. 

This analysis highlighted the consistent superiority of the 

MLGR model across most metrics, showcasing its 

effectiveness in predicting ALE. While the MLPO model 

showed promise in the first layer, its performance lagged 

in the later stages. The MLPR model consistently had the 

weakest performance, underlining the potential benefits 

observed in this study when using optimizers contained 

GRO with the MLPR model. Even in strong performance, 

the suggested approach needs greater computational 

power through hybrid optimization, making its 

applicability to real-time or resource-limited settings 

narrow. The model's reliance upon well-processed input 

data might also lessen robustness during uncertain or 

incomplete data, as opposed to probabilistic or ensemble 

approach methods that are more flexible when dealing 

with uncertainty. This approach has demonstrably 

enhanced the framework's predictive power for ALE 

estimation. Therefore, this research advances ML 

strategies for achieving efficient and reliable indoor 

localization within WSNs. 
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