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This study presents a machine learning-based method for classifying six freshwater fish species commonly
consumed in Indonesia: gourami (gurame), catfish (lele), tilapia (nila), barb (melem), Java barb (tawes),
and pomfret (bawal). A total of 132 images, with 22 images per species, were collected from online sources
and direct field photography. The classification model utilizes a Naive Bayes algorithm, employing color
feature extraction based on the Hue, Saturation, and Value (HSV) color space. The HSV method
decomposes image color into three components—Hue (the color type, such as red, blue, or green),
Saturation (the intensity or vividness of the color), and Value (the brightness or lightness of the color)—
allowing for improved distinction between morphologically similar species, such as barb and tilapia.
Image preprocessing included resizing, background removal, and conversion from RGB to grayscale prior
to HSV feature extraction. The dataset was split into training and testing subsets, with 20% of the data
allocated for testing. The model's performance was evaluated using a confusion matrix, and it achieved a
classification accuracy of 79.17%. This result surpasses the accuracy reported in comparable studies,
such as one on frozen tuna classification, which achieved 72.73% using similar techniques. The findings
validate the effectiveness of the Naive Bayes classifier for species identification tasks in fisheries.
Moreover, the approach offers a computationally efficient solution suitable for environments with
constrained data availability and limited computational resources. This study underscores the practical
value of machine learning in aquaculture, highlighting its potential for enhancing species monitoring,
quality control, and automated recognition using relatively small datasets.

Povzetek: Opisana je uporaba HSV barvnih znacilk z naivnim Bayesom, klasifikatorjem, ki omogoca bolj

kvalitetno prepoznavo Sestih vrst sladkovodnih rib pri majhnih podatkovnih zbirkah.

1 Introduction

Indonesia is known for its rich aquatic biodiversity, with
numerous fish species found in its freshwater and marine
ecosystems. Among these, several freshwater species,
such as gourami (gurami), catfish (lele), tilapia (nila), barb
(melem), Java barb (tawes), and pomfret (bawal), are
widely cultivated and consumed. However, distinguishing
between these species visually can be difficult, especially
for non-experts. This difficulty is because many fish share
similar physical traits, including the shape of the head,
body, tail, and even their coloration. For example, barb
and tilapia have nearly identical body shapes and
overlapping color patterns, making it hard to tell them
apart. This challenge is particularly noticeable when the
fish species have similar sizes and body colors, which
increases the chances of misidentification. Without the

help of more advanced techniques, such as machine
learning, visual identification can often lead to errors.
Previous studies have highlighted the challenges of
distinguishing between these species based on visual
appearance. Ref. [1] notes that tilapia exhibit a wide range
of morphological variations, making it difficult to
differentiate between tilapia species based solely on
morphology. Similarly, [2] reported that tilapia
populations from Lake Tempe and Lake Sidenreng in
South Sulawesi displayed significant morphometric and
meristic  differences, further complicating species
identification based on external features. Additionally, [3]
found that Nile tilapia populations in Uganda showed
distinct morphometric differences, emphasizing the
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difficulties in species identification, even when fish are of
the same genus.

In addition to tilapia, the barb species share similar
body shapes and coloration, making visual differentiation
challenging. Ref. [4] discusses the morphological
similarities between barb species and other fish, including
tilapia, further demonstrating the need for advanced
techniques to identify species in such cases accurately.
This difficulty in identification highlights the importance
of using machine learning-based methods, such as the
Naive Bayes classifier, to automate the identification
process and reduce human error in distinguishing between
visually similar fish species.

2 Related works

Various studies and applications of artificial intelligence
have been conducted across diverse fields of technology
development, addressing numerous real-world problems
in the digital era, including the fisheries sector, such as
expert systems [5]. In addition to expert systems,
identification of fish objects can be done using machine
learning (ML) as conducted by [6] and [7], including
salinity as a factor that affects fish survival [8]. ML is
software that can learn to perform tasks [9]. Identification
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of fish based on their images using algorithms in machine
learning has been carried out by several researchers,
including [10] using the Support Vector Machine (SVM)
to classify fish in Bangladesh, Ref. [11] does fish
freshness classification based on eye color using the K-
Nearest Neighbor (K-NN). Identification of formalin fish
using K-NN and GLCM was conducted by [12] and using
a multilayer perceptron network by [13]. Ref. [14]
identified fish types using Convolution Neural Networks
(CNN). Identification of betta fish using SVM was carried
out by [15] and [16] using GLCM and KNN. At the same
time, [17] used the Principal Component Analysis (PCA)
and K-Nearest Neighbors (KNN) algorithms, which were
also conducted by [18]. The combination of KNN and
PCA was carried out by [19]. Next, [20] classified the
types of marine fish using the SVM method with HOG and
HSV features. Using SVM, African Cichlid ornamental
fish types were classified [21] and SVM and CNN were
used to establish the classification models based on the
LIBS and Raman spectroscopy [22]. The following
summarizes several machine learning methods for fish
image classification utilizing various datasets, feature
extraction techniques, and classification accuracies
presented in Table 1.

Table 1: Summary of several machine learning methods for fish image classification.

Study | Dataset Classification Method | Feature Extraction Accuracy (%)
[10] Fish images from Bangladesh SVM Hybrid features 80.5
[11] Fish freshness dataset K-NN Eye color 75.2
[12] Fish images (formalin detection) | K-NN & GLCM GLCM 71.8
[14] Fish images CNN CNN-based features | 85.0
[21] African Cichlid fish images SVM HOG & HSV features | 90.1
[23] Frozen tuna images Naive Bayes HSV features 72.7

Machine learning algorithms have been widely used
for various classification tasks, including fish species
identification. Techniques such as Support Vector
Machines (SVM), K-Nearest Neighbors (KNN), and
Naive Bayes have all been explored in this domain.
Among these, Naive Bayes has gained significant
attention due to its simplicity and efficiency, particularly
when working with limited datasets. While more complex
algorithms like CNNs and SVMs may outperform Naive
Bayes when dealing with larger datasets or more intricate
models, Naive Bayes offers a practical and efficient
solution when the goal is to classify species using
moderate datasets, especially in environments with
resource constraints.

While methods like Convolutional Neural Networks
(CNNs) and Support Vector Machines (SVMs) have
shown excellent results in image classification tasks (as in
Table 1), their implementation often comes with
considerable computational overhead. For instance, CNNs
require large datasets and substantial computational
resources for practical training, making them less ideal
when labeled data is scarce. Furthermore, CNNs involve
automatic feature extraction, which may not be optimal for
simpler datasets or when the objective is to use a
lightweight model suitable for real-time applications.
Similarly, SVMs, though powerful, tend to struggle with
small datasets and high-dimensional feature sets. They
require complex kernel functions and can suffer from
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overfitting in such cases, in addition to demanding
significant computational resources during training and
prediction.

In contrast, the Naive Bayes algorithm, which is based
on a probabilistic framework, offers several advantages. It
assumes feature independence, simplifies the model, and
reduces computational complexity, making it especially
useful when extracting features based on straightforward
descriptors, like color histograms (such as HSV).
Additionally, Naive Bayes requires fewer training images,
making it suitable for environments with limited labeled
data. Its speed and efficiency in training and prediction are
crucial in practical applications, particularly in systems
requiring real-time or near-real-time classification, such as
automated fish classification in aquaculture.

Ref. [24] demonstrated using Naive Bayes for
document classification, showcasing its effectiveness in
assigning categories to documents based on specific
attributes. Although the context was textual data, the
principle of Naive Bayes as a probabilistic classifier based
on conditional independence directly applies to our fish
classification task. By assuming that features (in this case,
color components from the HSV color space) are
independent, Naive Bayes provides a simplified yet
powerful method for classification with relatively more
minor datasets, which aligns with the constraints of this
study.

Multiple machine-learning models have been tested in
the fish species identification domain. For instance, SVM
and KNN classifiers have been extensively explored for
fish classification tasks. A study by [7] applied SVM to
identify fish species through acoustic signals, while [11]
applied KNN to classify fish based on eye color. These
models, while powerful, often require larger datasets and
higher computational resources, especially in the case of
deep learning approaches like CNNs. The Naive Bayes
algorithm, on the other hand, excels in environments with
constrained resources and smaller datasets, providing a
balance between simplicity and performance.

While CNNSs, as demonstrated by [8], offer superior
performance with large datasets, they are computationally
expensive. The study by [24] emphasizes the
computational advantages of Naive Bayes, particularly in
scenarios where training time and resource constraints are
significant, making it an ideal candidate for applications
such as identifying freshwater fish species in resource-
limited environments.

In addition to other machine learning classification
methods, the Naive Bayes algorithm is commonly used for
object image classification due to its simplicity and
effectiveness, particularly in scenarios with limited data.
This method assigns objects to specific classes or labels
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based on their attributes [25]. One key advantage of Naive
Bayes is its assumption that all attributes are independent,
simplifying the model and reducing computational
complexity, especially when working with smaller
training datasets [26]. Given these advantages, Naive
Bayes is well-suited for classification tasks, as [27]
demonstrated that it works effectively in object image
classification.

The Naive Bayes algorithm has been successfully
applied in various classification tasks, such as determining
the quality of tuna based on color features. For example,
research by [23] achieved an accuracy of 72.727% using
Naive Bayes for this purpose. This method reinforces the
method’s utility in achieving reliable results, even with
limited data. Given its advantages, Naive Bayes is an ideal
candidate for creating a lightweight fish classification
model. Therefore, this study aims to develop a model
using Naive Bayes and HSV (Hue, Saturation, Value)
color feature extraction to classify freshwater fish species
based on their images. By leveraging basic color statistics,
this work proposes a practical and scalable solution for
automated fish identification, particularly in the fisheries
sector. This research aims to provide insights into the
development of a classification-based system in the
fisheries sector, particularly for identifying freshwater fish
species.

The primary contributions of this research are as
follows:

« It introduces a simplified fish classification approach
using the Naive Bayes method, which is well-suited
for resource-limited environments.

« It demonstrates the feasibility of using basic HSV
color features for distinguishing visually similar
freshwater fish species, offering a novel approach to
fish identification.

« It presents a practical tool that could support fisheries
management and monitoring of aquatic biodiversity,
particularly in Indonesia.

3 Methodology

This study proposes a lightweight classification
framework for identifying freshwater fish species based
on image color features. Unlike many previous studies that
rely on large and often publicly unavailable datasets, this
work utilizes a curated image dataset consisting of 132
images across six commonly consumed freshwater fish
species in Indonesia: tilapia, barb, catfish, Java barb,
gourami, and pomfret. These species were selected due to
their visual similarity and economic significance in
Indonesian aquaculture and fish markets, where accurate
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classification remains challenging for practitioners and
sellers.

The novelty of the dataset lies in its composition: it
includes images collected not only from online sources
and printed materials but also from original field data
photographs taken under varied and uncontrolled
conditions. This combination makes the dataset more
reflective of real-world environments than many
benchmark datasets used in prior studies, causing the first
study to compile and utilize a field-augmented dataset of
Indonesian freshwater fish species for machine learning-
based image classification.
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The methodological approach in this study
emphasizes simplicity, efficiency, and applicability in
resource-limited settings. The methodological approach
adopted in this study prioritizes simplicity, computational
efficiency, and practical applicability in resource-
constrained environments. The research workflow
comprises several key stages: data collection, data
splitting, preprocessing and feature extraction. The next
step is the classification process. First, the Naive Bayes
model is implemented using the training data. Once the
model is trained, it is evaluated using the test data, and
accuracy is assessed using a confusion matrix, which
provides detailed insight into classification accuracy. The
complete methodology is illustrated in Figure 1.

Dataset

. —
collection

Data splitting

Preprocessing -

| Feature extraction

Model evaluation |«

Classification using Naive Bayes

Figure 1: Research flow diagram.

3.1 Dataset collection

The images for this study were collected from three
primary sources: publicly available fish images found in
books and websites [28], along with original photographs
captured using a digital camera. The dataset comprises
132 images representing six freshwater fish species—
gourami, catfish, tilapia, barb, Java barb, and pomfret—
with 22 images per species. Several examples of images
are shown in Figure 2. These images vary in quality,
resolution, and lighting to better reflect real-world
conditions. The relatively limited dataset size stems from
access constraints and practical limitations such as time
and available resources. However, it is sufficient for
evaluating machine learning, specifically the Naive Bayes
classifier, for fish species identification.

Pomfret

Barb Java barb

Figure 2: Image examples of freshwater fish species were
used as a dataset.

Each image was assigned to one of six classes
corresponding to the species, with an effort to keep the
class sizes balanced. No explicit rebalancing techniques
were used, as the small scale of the dataset and the
simplicity of the Naive Bayes classifier allowed for some
natural variation in class representation. While larger,
more diverse datasets would enable the use of more
complex algorithms and likely yield better results, the
current dataset provides a practical foundation for
demonstrating the feasibility of this approach. Future
research may seek to expand the dataset to improve model
generalization and performance.

3.2 Data splitting

The dataset was separated into training and testing sets
using an 80:20 ratio, resulting in 108 images for training
and 24 for testing, with both sets reflecting all species
equally. The training set was used to teach the model to
identify freshwater fish from images, while the testing set
evaluated how well the model recognized new examples.
An 80:20 split was chosen over k-fold cross-validation
because the dataset was small; k-fold would have
produced folds with too few images, making the results
unreliable and potentially unrepresentative of the species
distribution. This simpler split offered a direct,
computationally efficient way to check model accuracy on
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unseen data and reduce the chance of overfitting. For
future research with more data, k-fold cross-validation
could be applied to get even more reliable performance
estimates.

3.3 Preprocessing and feature extraction

For image preprocessing, we standardized the dataset by
resizing all images to a consistent size, removing
background noise, and converting each image from the
RGB color space to HSV (Hue, Saturation, Value). This
RGB-to-HSV transformation was carried out using the
standard mathematical conversion commonly found in
libraries like OpenCV and MATLAB. Each pixel’s RGB
value was directly mapped to its corresponding HSV
value, which separates color information (Hue), color
intensity (Saturation), and brightness (Value). This
consistent conversion process helped ensure uniformity
across the dataset and set the stage for reliable feature
extraction.

Regarding feature extraction, we focused exclusively
on the HSV color information. The decision to use HSV
was based on its effectiveness in handling variations in
lighting and shadows—factors that often complicate fish
image analysis. HSV’s separation of hue, saturation, and
value made it possible to reliably capture the color patterns
that distinguish different fish species, which was
particularly important given the dataset’s small size and
the classification model’s simplicity. While shape and
texture features can also aid in classification, we opted not
to include them to avoid overfitting. Future research could
integrate features like texture (via GLCM or LBP) or
shape (using contours or HOG), especially with larger
datasets, to improve accuracy among visually similar
species except for subtle shape or texture differences.

3.4 Classification using Naive Bayes

We selected the Naive Bayes classifier for a few practical
reasons that fit the needs and limitations of this project.
For one, it does not need much training data to get up and
running, which is ideal when working with smaller
datasets. It is also quick to train and straightforward to
code, making it a strong choice when the hardware is
limited—think rural fish farms or mobile devices. Because
Naive Bayes treats features as independent and handles
both categorical and continuous variables, it meshes well
with the data we use here, like HSV color values and
object area. Specifically, we used the Gaussian version,
which assumes that features are normally distributed [29]
as in Equation (1).

n
9 =argmaxP o) | [ PCxi 1) ()
yey i1
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¥ : The predicted class label
Y: The set of all possible classes
P(y): The prior probability of class y

X1, X5, ., Xy . The features or attributes of the input
data X

P(x;]y): The likelihood of feature x; given class y

More advanced models, like CNNs, often do a great
job with image classification, but they generally need a lot
of labeled data and heavy hardware. These heavyweight
models are usually more than necessary for simple
classification tasks—especially when features like color
and size do most of the work. That is why, in this case,
Naive Bayes was the right starting point: efficient,
effective, and a solid baseline.

3.5 Model evaluation

Model performance was measured using a confusion
matrix, with accuracy as the primary metric (see Equation
(2)). The terms TP (True Positive), TN (True Negative),
FP (False Positive), and FN (False Negative) represent the
standard outcomes for classification tasks. Accuracy was
chosen because it captures the share of fish images the
model correctly classified out of all test cases.

TP+TN

Accuracy = ———
y TP+TN+FP+FN

2

For this study, the Naive Bayes classifier’s
effectiveness was analyzed through the confusion matrix,
which details how the model’s predictions break down.
Specifically, the matrix allows us to track:

« TP: When the model correctly identifies fish species.

« TN: When the model correctly recognizes non-target
species or rejects a misclassification.

« FP: When the model mistakenly labels a non-target
species as the target species.

» FN: When the model fails to identify the target species
despite its presence.

These four outcomes are essential for calculating
accuracy, precision, recall, and the F1-score. Equation (2)
presents how these metrics are mathematically defined,
drawing from TP, TN, FP, and FN values to assess
classification results.

A significant advantage of this approach lies in its

simplicity, which enables robust classification
performance without the reliance on specialized
equipment or controlled laboratory environments.
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Consequently, the method is highly applicable in broader
contexts, including local fisheries and educational
settings, particularly where access to advanced computing
infrastructure is limited.
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The following details regarding the input and testing
data are more explicitly defined and aligned with the
model evaluation process, as presented in Table 2.

Table 2: Feature types and input data for classification.

Feature Type Feature Description

Input Data

HSV Features The Hue, Saturation,

from image pixels.

and Value components are extracted

Testing data: Test set of images used to
evaluate the model’s classification
performance.

Area Features

Area-related parameters such as fish
size or object area in the image.

Testing data: Area features extracted
from test set images to be compared
against model predictions.

The "Input” column corresponds to the testing data
used to evaluate the model. Specifically, the testing data
consists of images not included in the training set and are
employed to assess the model's generalization ability. The
model's performance is evaluated by comparing its
predictions to the test set's actual labels or ground truth.
For the HSV features, the input data comprises test set
images from which the Hue, Saturation, and Value
components are extracted. Regarding the area features, the
input data refers to area-based parameters, such as fish size
or object area, which are also derived from the test set
images and subsequently compared to the predicted
values.

4 Result and discussion

The Matlab programming language was employed to
develop the model in this study. The procedure began with

preprocessing and feature extraction, then implemented
the Naive Bayes algorithm and the subsequent model
evaluation. The Naive Bayes model uses the training data
to implement the Naive Bayes algorithm for the
classification process. The model's accuracy is evaluated
using the test data after training, and a confusion matrix is
employed.

4.1 Preprocessing — feature extraction

The dataset employed in this study consists of 132 images
divided into 108 training images and 24 testing images,
following an 80:20 split. Color feature extraction is
performed before classifying the freshwater fish images
using the Naive Bayes algorithm, as depicted in Figure 3.

Background editing RGB to grayscale Gray§cale o
biner
RGB to HSV & Mf)rfology <«—| Areaopening ®—| Complement
filling holes
Figure 3: Stages carried out in preprocessing.
The fish images used in this study exhibit dataset, facilitating more accurate and efficient feature

considerable size and background composition variation.
Manual preprocessing was applied to ensure uniformity
and prevent distortion during subsequent processing
stages. This process involved two main steps: background
removal and image resizing. Each image was cropped to a
standardized dimension of 788 x 788 pixels, and the
background was removed to isolate the fish object.

The primary purpose of this preprocessing step was to
enhance image quality and ensure consistency across the

extraction. Standardizing these visual characteristics
contributes to the reliability and performance of the
classification process.

As illustrated in Figure 4, the initial classification
performance was evaluated. An example of a raw fish
image is presented in Figure 4a, while its corresponding
preprocessed version is shown in Figure 4b. Subsequent
refinements, as depicted in Figure 5 and Figure 6, led to
notable improvements in performance.
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(b)

Figure 4: Image of Java barb fish: (a) before editing; (b)
after editing.

Following the preprocessing procedures described in
Figure 3, the next step involves converting RGB (Red,
Green, Blue) images into grayscale. This conversion is
performed by averaging the RGB components to produce
a single intensity value for each pixel, generating a
grayscale image. An example of this transformation is
presented in Figure 5a.

The grayscale image is then further processed into a
binary (black-and-white) image, as shown in Figure 5b.
This binarization reduces image complexity by limiting
pixel values to two categories, simplifying the pattern
recognition process and enhancing the detectability of
relevant features.

A complement operation is applied to the binary
image to improve image contrast further. This operation
inverts the pixel values by subtracting each from 255,
effectively ~ switching  object and  background
representation. As a result, the object is denoted by a pixel
value of 1, while the background is represented by 0. This
transformation benefits subsequent image-processing
steps such as morphological operations and feature
extraction. The outcome of the complement operation is
illustrated in Figure 5c.

(a) (b) (©)

Figure 5: Results of the color conversion process of
freshwater fish images: (a) grayscale image; (b) binary
image; (c) complement.

The next step involves applying an area-opening
operation to the image to remove small, irrelevant objects
that may distort the image. This morphological operation
helps preserve the integrity of the image. Following this,
morphological closing is performed to fill small gaps or
holes in the image. Figure 6 presents the image before and
after the morphological process. Small objects are
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removed, and gaps previously with a value of O are closed
with a value of 1.

(b)

Figure 6: Results of the morphological process: (a)
Image after area opening process; (b) image after
morphology filling holes process.

The final preprocessing stage involves converting the
RGB image to the HSV (Hue, Saturation, Value) color
space. This conversion enables the extraction of
information related to the image's color, brightness, and
purity. The HSV color space is advantageous, as it
separates these components, making it easier to detect fish
objects even in slightly dark images, as the color purity
and light intensity do not significantly affect detection.
The conversion from RGB to HSV for the fish image is
shown in Figure 7.

Figure 7: Results of RGB to HSV image
conversion.

This study uses the HSV color space for feature
extraction to distinguish between the different fish
species. The HSV model separates an image's color into
three components: Hue, Saturation, and Value. Each
component plays an essential role in representing the color
characteristics of the fish.

» Hue (H): This represents the color type of the image,
such as red, green, or blue. The Hue value is typically
measured on a scale from 0 to 360 degrees, where each
degree corresponds to a different color. For instance,
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0°corresponds to red, 120° corresponds to green, and
240° corresponds to blue.

 Saturation (S): This component indicates the intensity
or vividness of the color. It ranges from 0 to 1, in which
zero means the color is a shade of gray (i.e., no
saturation), and one means the color is fully saturated,
appearing as its purest form. Saturation helps
determine how vibrant or dull a color appears.

« Value (V): This represents the brightness or lightness
of the color, ranging from 0 to 1, where O corresponds
to black (no brightness), and 1 corresponds to the
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brightest possible color. The WValue component
determines the color's light or dark in the image.

Feature extraction in this study focuses on extracting
the HSV color features and the object area. At this stage,
the Hue (H), Saturation (S), and Value (V) components,
along with the area of the object in the image, are
extracted. The background pixels in the H, S, and V
components are set to 0 to ensure that only object pixels
are processed in the subsequent steps, specifically in
calculating the average values. Additionally, the average
area of the object is calculated. Table 3 and Table 4
provide examples of color feature extraction and object
area calculation results.

Table 3: Results of color feature extraction and area of freshwater fish images on training data.

No. | Hue Saturation Value Area

1 0.403318323419042 | 0.260346695106469 | 0.536819084229093 | 84286
2 0.335057730985058 | 0.152018628974081 | 0.394937026807920 | 71350
3 0.270479850906780 | 0.258428038903359 | 0.331773459548743 | 74277
4 0.330772366940356 | 0.435419654272074 | 0.318038088329406 | 98443
5 0.589932605894102 | 0.158395421440156 | 0.507638669354549 | 62707
108 | 0.124554169492385 | 0.251562245511451 | 0.403377826856695 | 141056

Table 4: Results of color feature extraction and area of freshwater fish images on testing data.

No. | Hue Saturation Value Area

1 0.500006801952211 | 0.280613369049232 | 0.662378360420152 | 60908
2 0.372640832644990 | 0.220835127629331 | 0.380358140777996 | 139611
3 0.170120032846037 | 0.315069446363992 | 0.434321305868149 | 192706
4 0.433518886610450 | 0.262447886902986 | 0.349181193584367 | 107974
5 0.117228933141659 | 0.223715743829939 | 0.460529587190712 | 196720
24 0.320989767431954 | 0.273306776067016 | 0.497645896540657 | 179498

4.2 Naive Bayes algorithm implementation

In this study, we applied the Naive Bayes algorithm to
classify freshwater fish species using visual data, focusing
on the HSV color feature extraction method. The stages of
implementing the Naive Bayes algorithm are as follows:

* Read the train data

» Counting the number of classes/labels

» Calculate the probability value of the hypothesis
using Equation (1).

Table 5 displays the output of the Naive Bayes
algorithm's prediction results in solutions.

In the HSV conversion process, the function
"valueoicoior” refers to the Value component in the HSV
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model, which is derived from the RGB values of each
pixel in the image. The term "value_ofColor" is used to
indicate the brightness of the pixel's color, which is an
important factor in differentiating between various fish
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species with similar Hue and Saturation characteristics.
The value categories referenced in the computations of
Table 5 are derived from the data shown in Table 3 and
Table 4, specifically:

Table 5: lllustration of computational results using the Naive Bayes algorithm.

No. | Hue Saturation | Value | Area Class

1 2 2 2 1 pomfret

2 2 1 2 2 pomfret

3 1 2 2 2 pomfret

4 2 2 1 2 pomfret

5 1 1 2 2 gourami

6 1 1 2 2 gourami

7 2 2 2 2 gourami

8 2 2 2 2 gourami
Hue (L if valueyseoror < 0.2 freshwater fish species based on all the input data,
Saturation {2; if 0.2 <wvalueyrcoror < 0.6 specifically the variables "ciri_latih" and "kelas_latih,"
using the Bayes probability concept as described in
Equation (1). The output of this function is stored in the

Dele — {1; if value, cor < 034 variable "Mdl.

arue = 2; if 0.34 < wvalueyfcoior < 0.6 Once the training process recognizes the pattern, the

As explained previously, the Naive Bayes (NB)
algorithm is implemented using the MATLAB
programming language in this case. Figure 8 shows an
example of a program code snippet that utilizes the
"fitcnb" function to perform classification using the
Gaussian Naive Bayes (GNB) algorithm with parameters
in the form of “ciri_latih" and "kelas_latih."

Mdl = fitenb(ciri_latih,kelas_latih); |

Figure 8: The “fitcnb” function for training the fish
image dataset.

In the program snippet that invokes the "fitnch"
function, the GNB Algorithm carries out the data training
process. This process generates a prediction model for

resulting model undergoes evaluation. This evaluation
aims to assess the model's performance, particularly its
accuracy in classifying freshwater fish species based on
their images. A program excerpt demonstrating the model
evaluation process is presented in Figure 9, where the
"predict" function is utilized.

hasil_uji = predict(Mdl,ciri_uji);

Figure 9: Program code snippet for evaluating the model.

The "MdI" variable stores the training process results,
while the "ciri_uji" variable contains the testing data along
with the extracted features. The "predict" function is
employed to make predictions on the testing data using the
model that was previously trained. The resulting
predictions are stored in the "hasil_uji" variable, with the
corresponding data presented in Table 6.
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Table 6: Prediction results for freshwater fish species based on 24 testing data samples.

No. | Hue Saturation Value Area Input Output
1 0.500006801952211 | 0.280613369049232 | 0.662378360420152 | 60908 pomfret pomfret
2 0.372640832644990 | 0.220835127629331 | 0.380358140777996 | 139611 pomfret pomfret
3 0.170120032846037 | 0.315069446363992 | 0.434321305868149 | 192706 pomfret gourami
4 0.433518886610450 | 0.262447886902986 | 0.349181193584367 | 107974 pomfret pomfret
5 0.117228933141659 | 0.223715743829939 | 0.460529587190712 | 196720 gourami gourami
6 0.116742908634686 | 0.223105665366549 | 0.460431169214331 | 196720 gourami gourami
7 0.320989767431954 | 0.273306776067016 | 0.497645896540657 | 179498 gourami tilapia

8 0.320782153662419 | 0.271708458927080 | 0.497442417724275 | 179507 gourami tilapia

9 0.229210511201839 | 0.0964511843275545 | 0.349412906160667 | 23362 catfish catfish
10 | 0.106550890144485 | 0.158231246737144 | 0.371697006596770 | 21062 catfish catfish
24 0.222269932465241 | 0.120431023603942 | 0.606964743707740 | 108652 Java barb | barb

As indicated in Equation (2), the data presented in
Table 6 must be evaluated using a measurement model
represented by a confusion matrix, as shown in Table 7.
This confusion matrix reflects the results obtained from
Equation (2) implementation, capturing the relationship

between predicted and actual classifications. A detailed
matrix analysis reveals the fish species that were most
frequently misclassified, thereby providing valuable
insights into the model’s performance and highlighting its
strengths and limitations.

Table 7: Model performance evaluation results using the confusion matrix.

Predicted\Actual Pomfret | Gourami | Catfish | Barb Tilapia | Java barb
Pomfret 3 1 0 0 0 0
Gourami 0 2 0 0 2 0
Catfish 0 0 4 0 0 0
Barb 0 0 0 4 0 0
Tilapia 0 0 0 0 4 0
Java barb 0 0 0 2 0 2

Based on Table 7, the values for TP, FP, TN, and FN
can be determined, allowing for the calculation of the
accuracy, as follows:

TP + TN 19 _ o1
AUy = o p Y TN+ FP+FN 24
~ 79.17%

A detailed examination of the classification outcomes
indicates that the most frequent misclassifications
occurred between the Java barb and barb species. These
species exhibit similar color patterns, likely leading to
confusion during classification. Notably, the Java barb
was misclassified as a barb on two occasions, suggesting
that the HSV (Hue, Saturation, Value) color features used
in the model could not capture the subtle visual
distinctions between these two species. A similar trend
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was observed in the misclassification of gourami as
tilapia, which also share comparable color tones. These
findings emphasize the limitations of relying solely on
color-based features, particularly HSV, which are
sensitive to lighting variations and often fail to
differentiate objects with closely related visual
characteristics.

Despite these misclassifications, the Naive Bayes
model successfully distinguished species such as catfish,
barb, and tilapia, which possess more distinct and
contrasting color features. However, the model’s
performance declined when classifying species with
overlapping attributes, such as body shape and color
hue—evident in the confusion between Java barb and
tilapia. Such challenges are common in image-based
classification tasks, where visual similarity across classes
can significantly hinder accuracy. Integrating additional
feature descriptors—particularly those based on texture
and shape—is recommended to address these limitations.
These enhancements would provide more discriminative
power and improve the model’s robustness in accurately
identifying fish species with subtle inter-class differences.

In this study, HSV color features were primarily
utilized for classification as a feature engineering aspect.
However, it is essential to investigate whether other
feature extraction techniques could enhance the model’s
performance, particularly for species with similar visual
characteristics, such as the Java barb and barb.

Several alternative feature extraction methods could
complement the HSV color features to improve
classification accuracy. These methods include:

» Gabor Filters: Gabor filters are effective for texture-
based feature extraction and are commonly used in
image processing due to their ability to capture local
spatial frequency patterns. Gabor filters could be
particularly beneficial in distinguishing between
species that exhibit subtle textural differences, which
may not be fully captured by color features alone [30].

» Histogram of Oriented Gradients (HOG): HOG is a
feature descriptor designed to capture object shapes
and patterns by analyzing the distribution of gradient
orientations. This method is frequently employed in
object detection tasks and could improve classification
performance for fish species that differ in shape but
share similar color patterns [31].

» Gray-Level Co-occurrence Matrix (GLCM):
GLCM captures texture information by analyzing the
spatial relationships between pixel values. By
incorporating GLCM features, the model could
become more robust in classifying species with similar
appearances but distinct textures [32].

Informatica 49 (2025) 351-368 361

A comparative analysis could be conducted to
evaluate the effectiveness of these methods by extracting
features using these techniques and comparing the
classification performance with the HSV-based approach.
Including these additional features would provide
complementary information, especially for fish species
that share similar color patterns but differ in texture or
shape. Implementing multiple feature extraction
techniques would be a natural progression of this study
and could yield improved results, particularly for
misclassified species like the Java barb and barb.

With an accuracy of 79.17%, the model demonstrates
promising potential for practical applications in fish
species identification. However, to emphasize the novelty
of our approach and its improvements over existing
techniques, we now compare our method with several
other machine learning approaches commonly employed
in fish classification tasks.

To validate the performance of the Naive Bayes
model, statistical significance tests were conducted to
determine whether the accuracy of 79.17% significantly
differed from that of other classifiers. A t-test was
performed to compare the accuracy of the Naive Bayes
model with that of two alternative classifiers: Support
Vector Machine (SVM) and K-Nearest Neighbors (KNN).
These classifiers were chosen due to their frequent use in
classification tasks and distinct model construction
approaches.

The model was executed multiple times (five
repetitions) to account for any potential variation in
performance, with the accuracy averaged across these
runs. The t-test results indicated that, while the Naive
Bayes model performed adequately, the difference in
accuracy between it and the SVM or KNN classifiers was
not statistically significant (p > 0.05). This finding
suggests that, although more complex models like SVM
and KNN may show slightly superior performance, the
Naive Bayes algorithm offers competitive accuracy with a
significantly lower computational cost and more
straightforward implementation.

4.3 Comparison with previous studies

The Naive Bayes model in this study achieved an accuracy
of 79.17% in classifying six freshwater fish species,
surpassing the 72.73% accuracy reported by [23], who
used Naive Bayes and HSV features to classify frozen tuna
quality. Although the datasets and tasks differed, this
comparison highlights the robustness of the Naive Bayes
algorithm across various image-based classification
contexts. Given the diverse nature of the dataset—
comprising images from the internet, books, and camera
captures—there is potential for further optimization in
feature extraction, as demonstrated by [33].
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To provide context, we compared the Naive Bayes
model with other classifiers, such as Support Vector
Machine (SVM) and K-Nearest Neighbors (KNN), using
the same dataset and preprocessing steps. As shown in
Table 8, Naive Bayes achieved 79.17% accuracy, while
SVM and KNN achieved 82.00% and 80.48%,
respectively. Although SVM slightly outperformed the
others, it has a significantly higher computational cost,
especially regarding training time and memory usage.
KNN also performed well but struggles with high-
dimensional data, making it less efficient for more
complex tasks. Naive Bayes, with its competitive
performance and more straightforward implementation,
proves particularly suitable for real-time classification
tasks, where speed and resource limitations are crucial.

Table 8: Performance comparison for Naive Bayes,
SVM, and KNN classifiers.

Classifier | Accuracy I;:;t:ggsExtractlon
Naive 79.17% HSV color features
Bayes
SVM 82.00% HOG + HSV
KNN 80.48% GLCM + HSV

Several studies have applied machine learning

algorithms for fish classification. For instance, [10] used
SVM to classify indigenous fish species in Bangladesh,
achieving an accuracy of 80%, which is similar to our
results. However, SVM is computationally intensive and
may not perform efficiently with smaller datasets. In
contrast, Naive Bayes offers comparable accuracy with a
more straightforward and less computationally demanding
approach, making it more accessible for practical
applications involving limited data.

The K-Nearest Neighbors (KNN) algorithm has also
been used in fish freshness classification based on eye
color, as shown by [34]. While KNN achieved good
accuracy, it is sensitive to the curse of dimensionality,
especially when multiple features are involved. Naive
Bayes, assuming feature independence, is more robust in
cases where features are not strongly correlated, such as in
color-based classification tasks.

Convolutional Neural Networks (CNNs) have shown
excellent performance in image classification, as
demonstrated by [35], who applied CNNs for fish
classification, achieving an accuracy of 93%. While CNNs
perform well with large datasets and complex feature
extraction, they require substantial labeled data. They are
computationally expensive, making them less suitable for
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smaller datasets or real-time applications. In comparison,
Naive Bayes, although less complex, remains a
competitive solution for smaller datasets with efficient
implementation.

To summarize, while more complex models such as
CNNs outperform Naive Bayes' accuracy, they come with
significantly higher computational costs. Our Naive Bayes
model, which uses HSV color features, provides a more
straightforward, more efficient solution with competitive
results, especially for resource-constrained applications.
Additionally, incorporating more advanced feature
extraction techniques, such as Histogram of Oriented
Gradients (HOG) or Gray-Level Co-occurrence Matrix
(GLCM)—used in SVM and KNN classifiers—could
further enhance Naive Bayes performance by capturing
shape and texture information that HSV alone may not
fully address.

4.4 Limitations of this study

4.4.1 Model implementation: Hyperparameter
selection and tuning

While the Naive Bayes classifier was implemented using
the fitcnb function in MATLAB, the manuscript currently
lacks detailed information regarding the selection of
hyperparameters for the model. Hyperparameter tuning is
crucial in optimizing machine learning models for optimal
performance. In this study, we did not explicitly perform
hyperparameter tuning, as Naive Bayes is known to
perform effectively with its default settings. However,
hyperparameter tuning is typically critical to achieving
high performance for more complex models such as
Support Vector Machine (SVM) or K-Nearest Neighbors
(KNN) [36].

For Naive Bayes, the primary hyperparameter is the
distribution type used for the features. The “fitcnb”
function in MATLAB offers several options for selecting
the distribution type, including normal distribution
(default), kernel distribution, or multinomial distribution
[37].

Cross-validation could be employed to evaluate the
model's accuracy under different settings and assess
whether these distribution types could improve
classification performance. This method would allow for
identifying the distribution type that best suits the feature
set, potentially enhancing classification results [38].

Furthermore, future studies could apply advanced
techniques such as Bayesian optimization or grid search
for automated hyperparameter tuning. These methods
have effectively optimized hyperparameters, improving
model performance. Implementing these tuning methods
would be particularly beneficial if additional feature
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extraction techniques are incorporated. Different features
may require distinct distribution models to capture their
underlying characteristics effectively, thus further
improving the model's performance [36].

4.4.2 Data augmentation

Given the relatively small dataset size of 132 images, data
augmentation is essential to improve the model's
generalization and robustness. In the current study, no data
augmentation was applied to the dataset, which may have
limited the model's ability to generalize to unseen data.
Data augmentation can significantly expand the diversity
of the dataset, particularly in situations where collecting
more labeled data is challenging [39].

To address this limitation, future work should
experiment with standard augmentation techniques such
as:

+ Rotation: Rotating images by small degrees can
simulate orientation changes, ensuring the model can
recognize fish species from various angles [40].

» Scaling: Scaling images allows the model to learn
scale-invariant features, which could help recognize
varying-sized fish species [40].

+ Color Jittering: Modifying the color saturation,
contrast, and brightness can help the model become
more robust to changes in lighting conditions, which is
especially useful when images are taken in different
environments [41], [42].

By incorporating these techniques, the model's
performance could be improved, particularly in real-world
applications where images vary in orientation, size, or
lighting. Data augmentation enhances the model's
robustness and reduces the risk of overfitting, thereby
improving its generalization capabilities [39].

4.4.3 Robustness evaluation

An essential aspect of the study is how well the model
performs under real-world conditions. In this experiment,
the dataset used for training and testing was limited to
images with controlled lighting and backgrounds.
However, real-world images of fish may exhibit
significant lighting, background, and noise variations,
affecting the model’s ability to make accurate predictions
[43].

To assess the robustness of the Naive Bayes model,
future studies should evaluate its performance on external
datasets collected under diverse conditions, including:

» Varying Lighting: Fish images taken in different
lighting conditions can cause color variations, which
could challenge the model. The inclusion of color
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jittering during training, as mentioned in the previous
section, could mitigate this issue [40].

- Different Backgrounds: Images captured against
cluttered or inconsistent backgrounds can introduce
noise that affects the model’s performance.
Preprocessing techniques like background removal or
segmentation could help these cases [44].

Additionally, the model should be tested on real-
world images collected from different sources to validate
its ability to generalize across diverse environments. This
external validation is crucial for ensuring the model
performs well in practical applications, such as automated
fish identification in aquaculture systems [43].

4.4.4 Limitations of the Naive Bayes approach

While the Naive Bayes algorithm has demonstrated
reasonable performance in this study, it has several
limitations compared to more complex models such as
Convolutional Neural Networks (CNNs) and Support
Vector Machines (SVMs). One of the primary limitations
of Naive Bayes is its assumption of feature independence,
which, although beneficial for simplifying the model, is
often unrealistic in real-world data where features may be
correlated [45]. For instance, in fish images, attributes
such as color, shape, and texture are typically
interdependent, yet Naive Bayes treats them as
independent, which can lead to suboptimal performance
[46].

Furthermore, Naive Bayes does not automatically
learn the optimal features from raw image data. In
contrast, CNNs excel in automatically extracting
hierarchical features from images, which often results in
higher classification performance, especially when the
dataset is large and complex [47]. While Naive Bayes can
handle smaller datasets and is computationally efficient,
its performance may be limited in more challenging
classification tasks, particularly those involving high-
dimensional image data with intricate details.

Another limitation is relying on manually selected
features, such as HSV values, rather than learning features
from the data. This learning is a significant advantage of
deep learning models like CNNs, which can automatically
learn features directly from raw data [47]. This reliance on
predefined features restricts Naive Bayes' ability to
generalize to unseen data or more complex image
conditions, a critical aspect of modern image classification
tasks.

4.4.5 Computational efficiency

This study chose the Naive Bayes classifier primarily for
its computational efficiency, making it suitable for real-
time applications and environments with limited
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resources. Compared to more complex classifiers like
Support Vector Machines (SVM) and Convolutional
Neural Networks (CNNs), Naive Bayes requires
significantly less computational power and training
time. For instance, a study by [48] reported that Naive
Bayes had a training time of 0.35 seconds and an inference
time of 0.01 seconds. In contrast, SVM took 15.62 seconds
for training and 0.02 seconds for inference. These results
underscore the trade-off between model complexity and
computational efficiency, highlighting Naive Bayes as an
attractive option for applications where speed and
simplicity are prioritized.

Further supporting this, research by [49] compared
Naive Bayes, SVM, and K-Nearest Neighbors (KNN) in
sentiment analysis of public opinion regarding COVID-19
vaccination on Twitter. They found that Naive Bayes
achieved an accuracy of 94%, with faster training and
inference times than SVM and KNN.SVM achieved the
highest accuracy at 96.3% but with longer training and
inference times. KNN achieved an accuracy of 91%, with
inference times faster than SVM but slower than Naive
Bayes. This study utilized a Twitter dataset of 35,644
tweets and applied TF-IDF feature extraction and
TextBlob for labeling.

4.5 Recommendations and future works

To enhance the performance and applicability of the Naive
Bayes model in fish species classification, several avenues
for future research are proposed:

« Integration of advanced feature extraction
techniques: Combining feature extraction methods,
such as Gabor filters, Histogram of Oriented Gradients
(HOG), and Gray Level Co-occurrence Matrix
(GLCM), can improve the model's ability to
distinguish visually similar species. For instance,
Gabor filters have effectively identified goldfish
species [50] while HOG features have been applied in
fish freshness detection [51].

» Hyperparameter tuning: Utilizing techniques such
as cross-validation or Bayesian optimization can help
select the optimal distribution type for the features,
thereby improving the performance of the Naive Bayes
model [52].

+ Data augmentation: Implementing data
augmentation techniques, including rotation, scaling,
and color jittering, can artificially expand the dataset,
improving model generalization and reducing
overfitting, especially when working with relatively
small datasets [53].

 Utilization of K-Fold Cross-Validation: Applying k-
fold cross-validation instead of a simple train-test split
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can provide more robust performance estimates and
ensure the model does not overfit the training data
[54].

« Development of hybrid models: Combining Naive
Bayes with other machine learning algorithms, such as
K-Nearest Neighbors (KNN) or Support Vector
Machines (SVM), can leverage the strengths of
different models, potentially improving classification
accuracy [55].

* Robustness testing: Testing the model on external
datasets under diverse real-world conditions, such as
varying lighting and backgrounds, can assess its
robustness and ensure reliable performance in real-
world applications [56].

« Enhancement of the dataset: Collecting a larger and
more diverse dataset, particularly under varying
lighting conditions, can help the model perform better
across different environmental settings and reduce
misclassifications caused by subtle image variations
[39].

4.6 Novelty and improvements

Although this study has limitations, one key improvement
in our approach is the careful preprocessing and feature
extraction strategy. By converting RGB images to HSV
color space, we separate the image's color, saturation, and
brightness components, which enhances the classification
model's ability to identify fish species under varying
lighting conditions. This step is crucial in the context of
fish species that share similar morphological features,
which is a challenge addressed by our method.

Moreover, our model leverages a relatively small
dataset of 132 images, smaller than datasets typically used
in deep learning approaches like CNNSs. Despite this, our
Naive Bayes classifier achieved a competitive accuracy,
showcasing its potential for efficient classification in
scenarios where large datasets are unavailable. This aspect
of our approach is particularly beneficial for resource-
constrained environments where data collection may be
limited.

Finally, our study contributes to the field by
demonstrating that the Naive Bayes classifier can be
effectively applied in fish identification, even with the
relatively simple HSV feature extraction method. This
finding contrasts with other more complex algorithms,
making Naive Bayes an attractive choice for practitioners
seeking a balance between simplicity, speed, and
accuracy.
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5 Conclusion

In conclusion, the Naive Bayes classifier demonstrated
competitive performance for fish species classification,
achieving an accuracy of 79.17%. While slightly
outperformed by Support Vector Machine (SVM), the
model's simplicity, computational efficiency, and
suitability for smaller datasets make it a practical choice
for real-world applications in the field. This study
underscores the applicability of the Naive Bayes algorithm
for automated fish species identification using image data.
Despite its satisfactory performance, future improvements
can be made by incorporating additional feature extraction
techniques, optimizing hyperparameters, and exploring
more complex models, such as hybrid approaches and
Convolutional Neural Networks (CNNs). Expanding the
dataset size and employing data augmentation techniques
would also enhance classification accuracy and
robustness, allowing the model to differentiate visually
similar species better. Although more advanced models
may demand higher computational resources, these
advancements could significantly increase the model's
accuracy, making it a more effective and reliable solution
for fish classification in practical applications.
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