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This study presents a machine learning-based method for classifying six freshwater fish species commonly 

consumed in Indonesia: gourami (gurame), catfish (lele), tilapia (nila), barb (melem), Java barb (tawes), 

and pomfret (bawal). A total of 132 images, with 22 images per species, were collected from online sources 

and direct field photography. The classification model utilizes a Naïve Bayes algorithm, employing color 

feature extraction based on the Hue, Saturation, and Value (HSV) color space. The HSV method 

decomposes image color into three components—Hue (the color type, such as red, blue, or green), 

Saturation (the intensity or vividness of the color), and Value (the brightness or lightness of the color)—

allowing for improved distinction between morphologically similar species, such as barb and tilapia. 

Image preprocessing included resizing, background removal, and conversion from RGB to grayscale prior 

to HSV feature extraction. The dataset was split into training and testing subsets, with 20% of the data 

allocated for testing. The model's performance was evaluated using a confusion matrix, and it achieved a 

classification accuracy of 79.17%. This result surpasses the accuracy reported in comparable studies, 

such as one on frozen tuna classification, which achieved 72.73% using similar techniques. The findings 

validate the effectiveness of the Naïve Bayes classifier for species identification tasks in fisheries. 

Moreover, the approach offers a computationally efficient solution suitable for environments with 

constrained data availability and limited computational resources. This study underscores the practical 

value of machine learning in aquaculture, highlighting its potential for enhancing species monitoring, 

quality control, and automated recognition using relatively small datasets. 

Povzetek: Opisana je uporaba HSV barvnih značilk z naivnim Bayesom, klasifikatorjem, ki omogoča bolj 

kvalitetno prepoznavo šestih vrst sladkovodnih rib pri majhnih podatkovnih zbirkah.

 

1 Introduction 

Indonesia is known for its rich aquatic biodiversity, with 

numerous fish species found in its freshwater and marine 

ecosystems. Among these, several freshwater species, 

such as gourami (gurami), catfish (lele), tilapia (nila), barb 

(melem), Java barb (tawes), and pomfret (bawal), are 

widely cultivated and consumed. However, distinguishing 

between these species visually can be difficult, especially 

for non-experts. This difficulty is because many fish share 

similar physical traits, including the shape of the head, 

body, tail, and even their coloration. For example, barb 

and tilapia have nearly identical body shapes and 

overlapping color patterns, making it hard to tell them 

apart. This challenge is particularly noticeable when the 

fish species have similar sizes and body colors, which 

increases the chances of misidentification. Without the  

 

 

 

help of more advanced techniques, such as machine 

learning, visual identification can often lead to errors. 

Previous studies have highlighted the challenges of 

distinguishing between these species based on visual 

appearance. Ref. [1] notes that tilapia exhibit a wide range 

of morphological variations, making it difficult to 

differentiate between tilapia species based solely on 

morphology. Similarly, [2] reported that tilapia 

populations from Lake Tempe and Lake Sidenreng in 

South Sulawesi displayed significant morphometric and 

meristic differences, further complicating species 

identification based on external features. Additionally, [3] 

found that Nile tilapia populations in Uganda showed 

distinct morphometric differences, emphasizing the 
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difficulties in species identification, even when fish are of 

the same genus. 

In addition to tilapia, the barb species share similar 

body shapes and coloration, making visual differentiation 

challenging. Ref. [4] discusses the morphological 

similarities between barb species and other fish, including 

tilapia, further demonstrating the need for advanced 

techniques to identify species in such cases accurately. 

This difficulty in identification highlights the importance 

of using machine learning-based methods, such as the 

Naïve Bayes classifier, to automate the identification 

process and reduce human error in distinguishing between 

visually similar fish species. 

2 Related works 

Various studies and applications of artificial intelligence 

have been conducted across diverse fields of technology 

development, addressing numerous real-world problems 

in the digital era, including the fisheries sector, such as 

expert systems [5]. In addition to expert systems, 

identification of fish objects can be done using machine 

learning (ML) as conducted by [6] and [7], including 

salinity as a factor that affects fish survival [8]. ML is 

software that can learn to perform tasks [9]. Identification 

of fish based on their images using algorithms in machine 

learning has been carried out by several researchers, 

including [10] using the Support Vector Machine (SVM) 

to classify fish in Bangladesh, Ref. [11] does fish 

freshness classification based on eye color using the K-

Nearest Neighbor (K-NN). Identification of formalin fish 

using K-NN and GLCM was conducted by [12] and using 

a multilayer perceptron network by [13]. Ref. [14] 

identified fish types using Convolution Neural Networks 

(CNN). Identification of betta fish using SVM was carried 

out by [15] and [16] using GLCM and KNN. At the same 

time, [17] used the Principal Component Analysis (PCA) 

and K-Nearest Neighbors (KNN) algorithms, which were 

also conducted by [18]. The combination of KNN and 

PCA was carried out by [19]. Next, [20] classified the 

types of marine fish using the SVM method with HOG and 

HSV features. Using SVM, African Cichlid ornamental 

fish types were classified [21] and SVM and CNN were 

used to establish the classification models based on the 

LIBS and Raman spectroscopy [22]. The following 

summarizes several machine learning methods for fish 

image classification utilizing various datasets, feature 

extraction techniques, and classification accuracies 

presented in Table 1.

 

Table 1: Summary of several machine learning methods for fish image classification. 

Study Dataset Classification Method Feature Extraction Accuracy (%) 

[10] Fish images from Bangladesh SVM Hybrid features 80.5 

[11] Fish freshness dataset K-NN Eye color 75.2 

[12] Fish images (formalin detection) K-NN & GLCM GLCM 71.8 

[14] Fish images CNN CNN-based features 85.0 

[21] African Cichlid fish images SVM HOG & HSV features 90.1 

[23] Frozen tuna images Naïve Bayes HSV features 72.7 

 

Machine learning algorithms have been widely used 

for various classification tasks, including fish species 

identification. Techniques such as Support Vector 

Machines (SVM), K-Nearest Neighbors (KNN), and 

Naïve Bayes have all been explored in this domain. 

Among these, Naïve Bayes has gained significant 

attention due to its simplicity and efficiency, particularly 

when working with limited datasets. While more complex 

algorithms like CNNs and SVMs may outperform Naïve 

Bayes when dealing with larger datasets or more intricate 

models, Naïve Bayes offers a practical and efficient 

solution when the goal is to classify species using 

moderate datasets, especially in environments with 

resource constraints. 

While methods like Convolutional Neural Networks 

(CNNs) and Support Vector Machines (SVMs) have 

shown excellent results in image classification tasks (as in 

Table 1), their implementation often comes with 

considerable computational overhead. For instance, CNNs 

require large datasets and substantial computational 

resources for practical training, making them less ideal 

when labeled data is scarce. Furthermore, CNNs involve 

automatic feature extraction, which may not be optimal for 

simpler datasets or when the objective is to use a 

lightweight model suitable for real-time applications. 

Similarly, SVMs, though powerful, tend to struggle with 

small datasets and high-dimensional feature sets. They 

require complex kernel functions and can suffer from 
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overfitting in such cases, in addition to demanding 

significant computational resources during training and 

prediction. 

In contrast, the Naïve Bayes algorithm, which is based 

on a probabilistic framework, offers several advantages. It 

assumes feature independence, simplifies the model, and 

reduces computational complexity, making it especially 

useful when extracting features based on straightforward 

descriptors, like color histograms (such as HSV). 

Additionally, Naïve Bayes requires fewer training images, 

making it suitable for environments with limited labeled 

data. Its speed and efficiency in training and prediction are 

crucial in practical applications, particularly in systems 

requiring real-time or near-real-time classification, such as 

automated fish classification in aquaculture. 

Ref. [24] demonstrated using Naïve Bayes for 

document classification, showcasing its effectiveness in 

assigning categories to documents based on specific 

attributes. Although the context was textual data, the 

principle of Naïve Bayes as a probabilistic classifier based 

on conditional independence directly applies to our fish 

classification task. By assuming that features (in this case, 

color components from the HSV color space) are 

independent, Naïve Bayes provides a simplified yet 

powerful method for classification with relatively more 

minor datasets, which aligns with the constraints of this 

study. 

Multiple machine-learning models have been tested in 

the fish species identification domain. For instance, SVM 

and KNN classifiers have been extensively explored for 

fish classification tasks. A study by [7] applied SVM to 

identify fish species through acoustic signals, while [11] 

applied KNN to classify fish based on eye color. These 

models, while powerful, often require larger datasets and 

higher computational resources, especially in the case of 

deep learning approaches like CNNs. The Naïve Bayes 

algorithm, on the other hand, excels in environments with 

constrained resources and smaller datasets, providing a 

balance between simplicity and performance. 

While CNNs, as demonstrated by [8], offer superior 

performance with large datasets, they are computationally 

expensive. The study by [24] emphasizes the 

computational advantages of Naïve Bayes, particularly in 

scenarios where training time and resource constraints are 

significant, making it an ideal candidate for applications 

such as identifying freshwater fish species in resource-

limited environments. 

In addition to other machine learning classification 

methods, the Naïve Bayes algorithm is commonly used for 

object image classification due to its simplicity and 

effectiveness, particularly in scenarios with limited data. 

This method assigns objects to specific classes or labels 

based on their attributes [25]. One key advantage of Naïve 

Bayes is its assumption that all attributes are independent, 

simplifying the model and reducing computational 

complexity, especially when working with smaller 

training datasets [26]. Given these advantages, Naïve 

Bayes is well-suited for classification tasks, as [27] 

demonstrated that it works effectively in object image 

classification. 

The Naïve Bayes algorithm has been successfully 

applied in various classification tasks, such as determining 

the quality of tuna based on color features. For example, 

research by [23] achieved an accuracy of 72.727% using 

Naïve Bayes for this purpose. This method reinforces the 

method’s utility in achieving reliable results, even with 

limited data. Given its advantages, Naïve Bayes is an ideal 

candidate for creating a lightweight fish classification 

model. Therefore, this study aims to develop a model 

using Naïve Bayes and HSV (Hue, Saturation, Value) 

color feature extraction to classify freshwater fish species 

based on their images. By leveraging basic color statistics, 

this work proposes a practical and scalable solution for 

automated fish identification, particularly in the fisheries 

sector. This research aims to provide insights into the 

development of a classification-based system in the 

fisheries sector, particularly for identifying freshwater fish 

species. 

The primary contributions of this research are as 

follows: 

• It introduces a simplified fish classification approach 

using the Naïve Bayes method, which is well-suited 

for resource-limited environments. 

• It demonstrates the feasibility of using basic HSV 

color features for distinguishing visually similar 

freshwater fish species, offering a novel approach to 

fish identification. 

• It presents a practical tool that could support fisheries 

management and monitoring of aquatic biodiversity, 

particularly in Indonesia. 

3 Methodology 

This study proposes a lightweight classification 

framework for identifying freshwater fish species based 

on image color features. Unlike many previous studies that 

rely on large and often publicly unavailable datasets, this 

work utilizes a curated image dataset consisting of 132 

images across six commonly consumed freshwater fish 

species in Indonesia: tilapia, barb, catfish, Java barb, 

gourami, and pomfret. These species were selected due to 

their visual similarity and economic significance in 

Indonesian aquaculture and fish markets, where accurate 
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classification remains challenging for practitioners and 

sellers. 

The novelty of the dataset lies in its composition: it 

includes images collected not only from online sources 

and printed materials but also from original field data 

photographs taken under varied and uncontrolled 

conditions. This combination makes the dataset more 

reflective of real-world environments than many 

benchmark datasets used in prior studies, causing the first 

study to compile and utilize a field-augmented dataset of 

Indonesian freshwater fish species for machine learning-

based image classification. 

The methodological approach in this study 

emphasizes simplicity, efficiency, and applicability in 

resource-limited settings. The methodological approach 

adopted in this study prioritizes simplicity, computational 

efficiency, and practical applicability in resource-

constrained environments. The research workflow 

comprises several key stages: data collection, data 

splitting, preprocessing and feature extraction. The next 

step is the classification process. First, the Naïve Bayes 

model is implemented using the training data. Once the 

model is trained, it is evaluated using the test data, and 

accuracy is assessed using a confusion matrix, which 

provides detailed insight into classification accuracy. The 

complete methodology is illustrated in Figure 1.

 

 

Figure 1: Research flow diagram. 

 

3.1 Dataset collection 

The images for this study were collected from three 

primary sources: publicly available fish images found in 

books and websites [28], along with original photographs 

captured using a digital camera. The dataset comprises 

132 images representing six freshwater fish species—

gourami, catfish, tilapia, barb, Java barb, and pomfret—

with 22 images per species. Several examples of images 

are shown in Figure 2. These images vary in quality, 

resolution, and lighting to better reflect real-world 

conditions. The relatively limited dataset size stems from 

access constraints and practical limitations such as time 

and available resources. However, it is sufficient for 

evaluating machine learning, specifically the Naïve Bayes 

classifier, for fish species identification. 

 

Figure 2: Image examples of freshwater fish species were 

used as a dataset. 

Each image was assigned to one of six classes 

corresponding to the species, with an effort to keep the 

class sizes balanced. No explicit rebalancing techniques 

were used, as the small scale of the dataset and the 

simplicity of the Naïve Bayes classifier allowed for some 

natural variation in class representation. While larger, 

more diverse datasets would enable the use of more 

complex algorithms and likely yield better results, the 

current dataset provides a practical foundation for 

demonstrating the feasibility of this approach. Future 

research may seek to expand the dataset to improve model 

generalization and performance. 

3.2 Data splitting 

The dataset was separated into training and testing sets 

using an 80:20 ratio, resulting in 108 images for training 

and 24 for testing, with both sets reflecting all species 

equally. The training set was used to teach the model to 

identify freshwater fish from images, while the testing set 

evaluated how well the model recognized new examples. 

An 80:20 split was chosen over k-fold cross-validation 

because the dataset was small; k-fold would have 

produced folds with too few images, making the results 

unreliable and potentially unrepresentative of the species 

distribution. This simpler split offered a direct, 

computationally efficient way to check model accuracy on 
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unseen data and reduce the chance of overfitting. For 

future research with more data, k-fold cross-validation 

could be applied to get even more reliable performance 

estimates. 

3.3 Preprocessing and feature extraction  

For image preprocessing, we standardized the dataset by 

resizing all images to a consistent size, removing 

background noise, and converting each image from the 

RGB color space to HSV (Hue, Saturation, Value). This 

RGB-to-HSV transformation was carried out using the 

standard mathematical conversion commonly found in 

libraries like OpenCV and MATLAB. Each pixel’s RGB 

value was directly mapped to its corresponding HSV 

value, which separates color information (Hue), color 

intensity (Saturation), and brightness (Value). This 

consistent conversion process helped ensure uniformity 

across the dataset and set the stage for reliable feature 

extraction. 

Regarding feature extraction, we focused exclusively 

on the HSV color information. The decision to use HSV 

was based on its effectiveness in handling variations in 

lighting and shadows—factors that often complicate fish 

image analysis. HSV’s separation of hue, saturation, and 

value made it possible to reliably capture the color patterns 

that distinguish different fish species, which was 

particularly important given the dataset’s small size and 

the classification model’s simplicity. While shape and 

texture features can also aid in classification, we opted not 

to include them to avoid overfitting. Future research could 

integrate features like texture (via GLCM or LBP) or 

shape (using contours or HOG), especially with larger 

datasets, to improve accuracy among visually similar 

species except for subtle shape or texture differences. 

3.4 Classification using Naïve Bayes  

We selected the Naïve Bayes classifier for a few practical 

reasons that fit the needs and limitations of this project. 

For one, it does not need much training data to get up and 

running, which is ideal when working with smaller 

datasets. It is also quick to train and straightforward to 

code, making it a strong choice when the hardware is 

limited—think rural fish farms or mobile devices. Because 

Naïve Bayes treats features as independent and handles 

both categorical and continuous variables, it meshes well 

with the data we use here, like HSV color values and 

object area. Specifically, we used the Gaussian version, 

which assumes that features are normally distributed [29] 

as in Equation (1). 

𝑦̂ = arg max
𝑦∈𝒴

𝑃 (𝑦) ∏ 𝑃( 𝑥𝑖 ∣∣ 𝑦 )

𝑛

𝑖=1

                 (1) 

 

𝑦̂ : The predicted class label 

𝑌: The set of all possible classes 

𝑃(𝑦): The prior probability of class 𝑦 

𝑥1, 𝑥2, … , 𝑥𝑛 : The features or attributes of the input 

data 𝑋 

𝑃(𝑥𝑖|𝑦): The likelihood of feature 𝑥𝑖 given class 𝑦 

More advanced models, like CNNs, often do a great 

job with image classification, but they generally need a lot 

of labeled data and heavy hardware. These heavyweight 

models are usually more than necessary for simple 

classification tasks—especially when features like color 

and size do most of the work. That is why, in this case, 

Naïve Bayes was the right starting point: efficient, 

effective, and a solid baseline. 

3.5 Model evaluation  

Model performance was measured using a confusion 

matrix, with accuracy as the primary metric (see Equation 

(2)). The terms TP (True Positive), TN (True Negative), 

FP (False Positive), and FN (False Negative) represent the 

standard outcomes for classification tasks. Accuracy was 

chosen because it captures the share of fish images the 

model correctly classified out of all test cases. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                     (2)                        

 

For this study, the Naïve Bayes classifier’s 

effectiveness was analyzed through the confusion matrix, 

which details how the model’s predictions break down. 

Specifically, the matrix allows us to track: 

• TP: When the model correctly identifies fish species. 

• TN: When the model correctly recognizes non-target 

species or rejects a misclassification. 

• FP: When the model mistakenly labels a non-target 

species as the target species. 

• FN: When the model fails to identify the target species 

despite its presence. 

These four outcomes are essential for calculating 

accuracy, precision, recall, and the F1-score. Equation (2) 

presents how these metrics are mathematically defined, 

drawing from TP, TN, FP, and FN values to assess 

classification results. 

A significant advantage of this approach lies in its 

simplicity, which enables robust classification 

performance without the reliance on specialized 

equipment or controlled laboratory environments. 
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Consequently, the method is highly applicable in broader 

contexts, including local fisheries and educational 

settings, particularly where access to advanced computing 

infrastructure is limited. 

The following details regarding the input and testing 

data are more explicitly defined and aligned with the 

model evaluation process, as presented in Table 2.

Table 2: Feature types and input data for classification. 

Feature Type Feature Description Input Data 

HSV Features The Hue, Saturation, 

and Value components are extracted 

from image pixels. 

Testing data: Test set of images used to 

evaluate the model’s classification 

performance. 

Area Features Area-related parameters such as fish 

size or object area in the image. 

Testing data: Area features extracted 

from test set images to be compared 

against model predictions. 

 

The "Input" column corresponds to the testing data 

used to evaluate the model. Specifically, the testing data 

consists of images not included in the training set and are 

employed to assess the model's generalization ability. The 

model's performance is evaluated by comparing its 

predictions to the test set's actual labels or ground truth. 

For the HSV features, the input data comprises test set 

images from which the Hue, Saturation, and Value 

components are extracted. Regarding the area features, the 

input data refers to area-based parameters, such as fish size 

or object area, which are also derived from the test set 

images and subsequently compared to the predicted 

values. 

4 Result and discussion 

The Matlab programming language was employed to 

develop the model in this study. The procedure began with 

preprocessing and feature extraction, then implemented 

the Naïve Bayes algorithm and the subsequent model 

evaluation. The Naïve Bayes model uses the training data 

to implement the Naïve Bayes algorithm for the 

classification process. The model's accuracy is evaluated 

using the test data after training, and a confusion matrix is 

employed. 

4.1 Preprocessing – feature extraction 

The dataset employed in this study consists of 132 images 

divided into 108 training images and 24 testing images, 

following an 80:20 split. Color feature extraction is 

performed before classifying the freshwater fish images 

using the Naïve Bayes algorithm, as depicted in Figure 3.

 

 

Figure 3: Stages carried out in preprocessing. 

The fish images used in this study exhibit 

considerable size and background composition variation. 

Manual preprocessing was applied to ensure uniformity 

and prevent distortion during subsequent processing 

stages. This process involved two main steps: background 

removal and image resizing. Each image was cropped to a 

standardized dimension of 788 × 788 pixels, and the 

background was removed to isolate the fish object. 

The primary purpose of this preprocessing step was to 

enhance image quality and ensure consistency across the 

dataset, facilitating more accurate and efficient feature 

extraction. Standardizing these visual characteristics 

contributes to the reliability and performance of the 

classification process. 

As illustrated in Figure 4, the initial classification 

performance was evaluated. An example of a raw fish 

image is presented in Figure 4a, while its corresponding 

preprocessed version is shown in Figure 4b. Subsequent 

refinements, as depicted in Figure 5 and Figure 6, led to 

notable improvements in performance. 

Background editing

RGB to HSV

Grayscale to 
biner

Complement

RGB to grayscale

Area openingMorfology 
filling holes
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Figure 4: Image of Java barb fish: (a) before editing; (b) 

after editing. 

Following the preprocessing procedures described in 

Figure 3, the next step involves converting RGB (Red, 

Green, Blue) images into grayscale. This conversion is 

performed by averaging the RGB components to produce 

a single intensity value for each pixel, generating a 

grayscale image. An example of this transformation is 

presented in Figure 5a. 

The grayscale image is then further processed into a 

binary (black-and-white) image, as shown in Figure 5b. 

This binarization reduces image complexity by limiting 

pixel values to two categories, simplifying the pattern 

recognition process and enhancing the detectability of 

relevant features. 

A complement operation is applied to the binary 

image to improve image contrast further. This operation 

inverts the pixel values by subtracting each from 255, 

effectively switching object and background 

representation. As a result, the object is denoted by a pixel 

value of 1, while the background is represented by 0. This 

transformation benefits subsequent image-processing 

steps such as morphological operations and feature 

extraction. The outcome of the complement operation is 

illustrated in Figure 5c. 

 

 

Figure 5: Results of the color conversion process of 

freshwater fish images: (a) grayscale image; (b) binary 

image; (c) complement. 

The next step involves applying an area-opening 

operation to the image to remove small, irrelevant objects 

that may distort the image. This morphological operation 

helps preserve the integrity of the image. Following this, 

morphological closing is performed to fill small gaps or 

holes in the image. Figure 6 presents the image before and 

after the morphological process. Small objects are 

removed, and gaps previously with a value of 0 are closed 

with a value of 1. 

 

 

Figure 6: Results of the morphological process: (a) 

Image after area opening process;  (b) image after 

morphology filling holes process. 

The final preprocessing stage involves converting the 

RGB image to the HSV (Hue, Saturation, Value) color 

space. This conversion enables the extraction of 

information related to the image's color, brightness, and 

purity. The HSV color space is advantageous, as it 

separates these components, making it easier to detect fish 

objects even in slightly dark images, as the color purity 

and light intensity do not significantly affect detection. 

The conversion from RGB to HSV for the fish image is 

shown in Figure 7. 

 

 

Figure 7: Results of RGB to HSV image 

conversion. 

This study uses the HSV color space for feature 

extraction to distinguish between the different fish 

species. The HSV model separates an image's color into 

three components: Hue, Saturation, and Value. Each 

component plays an essential role in representing the color 

characteristics of the fish. 

• Hue (H): This represents the color type of the image, 

such as red, green, or blue. The Hue value is typically 

measured on a scale from 0 to 360 degrees, where each 

degree corresponds to a different color. For instance, 
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0°corresponds to red, 120° corresponds to green, and 

240° corresponds to blue. 

• Saturation (S): This component indicates the intensity 

or vividness of the color. It ranges from 0 to 1, in which 

zero means the color is a shade of gray (i.e., no 

saturation), and one means the color is fully saturated, 

appearing as its purest form. Saturation helps 

determine how vibrant or dull a color appears. 

• Value (V): This represents the brightness or lightness 

of the color, ranging from 0 to 1, where 0 corresponds 

to black (no brightness), and 1 corresponds to the 

brightest possible color. The Value component 

determines the color's light or dark in the image. 

Feature extraction in this study focuses on extracting 

the HSV color features and the object area. At this stage, 

the Hue (H), Saturation (S), and Value (V) components, 

along with the area of the object in the image, are 

extracted. The background pixels in the H, S, and V 

components are set to 0 to ensure that only object pixels 

are processed in the subsequent steps, specifically in 

calculating the average values. Additionally, the average 

area of the object is calculated. Table 3 and Table 4 

provide examples of color feature extraction and object 

area calculation results.

Table 3: Results of color feature extraction and area of freshwater fish images on training data. 

No. Hue Saturation Value Area 

1 0.403318323419042 0.260346695106469 0.536819084229093 84286 

2 0.335057730985058 0.152018628974081 0.394937026807920 71350 

3 0.270479850906780 0.258428038903359 0.331773459548743 74277 

4 0.330772366940356 0.435419654272074 0.318038088329406 98443 

5 0.589932605894102 0.158395421440156 0.507638669354549 62707 

...     

108 0.124554169492385 0.251562245511451 0.403377826856695 141056 

Table 4: Results of color feature extraction and area of freshwater fish images on testing data. 

No. Hue Saturation Value Area 

1 0.500006801952211 0.280613369049232 0.662378360420152 60908 

2 0.372640832644990 0.220835127629331 0.380358140777996 139611 

3 0.170120032846037 0.315069446363992 0.434321305868149 192706 

4 0.433518886610450 0.262447886902986 0.349181193584367 107974 

5 0.117228933141659 0.223715743829939 0.460529587190712 196720 

...     

24 0.320989767431954 0.273306776067016 0.497645896540657 179498 

 

4.2 Naïve Bayes algorithm implementation 

In this study, we applied the Naïve Bayes algorithm to 

classify freshwater fish species using visual data, focusing 

on the HSV color feature extraction method. The stages of 

implementing the Naïve Bayes algorithm are as follows: 

• Read the train data 

• Counting the number of classes/labels 

• Calculate the probability value of the hypothesis 

using Equation (1).  

 

Table 5 displays the output of the Naïve Bayes 

algorithm's prediction results in solutions. 

In the HSV conversion process, the function 

"valueofColor" refers to the Value component in the HSV 
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model, which is derived from the RGB values of each 

pixel in the image. The term "value_ofColor" is used to 

indicate the brightness of the pixel's color, which is an 

important factor in differentiating between various fish 

species with similar Hue and Saturation characteristics. 

The value categories referenced in the computations of 

Table 5 are derived from the data shown in Table 3 and 

Table 4, specifically:

 

Table 5: Illustration of computational results using the Naïve Bayes algorithm. 

No. Hue Saturation Value Area Class 

1 2 2 2 1 pomfret 

2 2 1 2 2 pomfret 

3 1 2 2 2 pomfret 

4 2 2 1 2 pomfret 

5 1 1 2 2 gourami 

6 1 1 2 2 gourami 

7 2 2 2 2 gourami 

8 2 2 2 2 gourami 

 

𝐻𝑢𝑒

𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛
= {

1;  𝑖𝑓 𝑣𝑎𝑙𝑢𝑒𝑜𝑓𝐶𝑜𝑙𝑜𝑟 ≤ 0.2             

2;  𝑖𝑓 0.2 < 𝑣𝑎𝑙𝑢𝑒𝑜𝑓𝐶𝑜𝑙𝑜𝑟 ≤ 0.6 
 

 

𝑉𝑎𝑙𝑢𝑒 = {
1;  𝑖𝑓 𝑣𝑎𝑙𝑢𝑒𝑜𝑓𝐶𝑜𝑙𝑜𝑟 ≤ 0.34             

2;  𝑖𝑓 0.34 < 𝑣𝑎𝑙𝑢𝑒𝑜𝑓𝐶𝑜𝑙𝑜𝑟 ≤ 0.6 
 

 

As explained previously, the Naïve Bayes (NB) 

algorithm is implemented using the MATLAB 

programming language in this case. Figure 8 shows an 

example of a program code snippet that utilizes the 

"fitcnb" function to perform classification using the 

Gaussian Naïve Bayes (GNB) algorithm with parameters 

in the form of "ciri_latih" and "kelas_latih." 

 

 

Figure 8: The “fitcnb” function for training the fish 

image dataset. 

In the program snippet that invokes the "fitncb" 

function, the GNB Algorithm carries out the data training 

process. This process generates a prediction model for 

freshwater fish species based on all the input data, 

specifically the variables "ciri_latih" and "kelas_latih," 

using the Bayes probability concept as described in 

Equation (1). The output of this function is stored in the 

variable "Mdl." 

Once the training process recognizes the pattern, the 

resulting model undergoes evaluation. This evaluation 

aims to assess the model's performance, particularly its 

accuracy in classifying freshwater fish species based on 

their images. A program excerpt demonstrating the model 

evaluation process is presented in Figure 9, where the 

"predict" function is utilized. 

 

 

Figure 9: Program code snippet for evaluating the model. 

The "Mdl" variable stores the training process results, 

while the "ciri_uji" variable contains the testing data along 

with the extracted features. The "predict" function is 

employed to make predictions on the testing data using the 

model that was previously trained. The resulting 

predictions are stored in the "hasil_uji" variable, with the 

corresponding data presented in Table 6. 
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Table 6: Prediction results for freshwater fish species based on 24 testing data samples.  

No. Hue Saturation Value Area Input Output 

1 0.500006801952211 0.280613369049232 0.662378360420152 60908 pomfret pomfret 

2 0.372640832644990 0.220835127629331 0.380358140777996 139611 pomfret pomfret 

3 0.170120032846037 0.315069446363992 0.434321305868149 192706 pomfret gourami 

4 0.433518886610450 0.262447886902986 0.349181193584367 107974 pomfret pomfret 

5 0.117228933141659 0.223715743829939 0.460529587190712 196720 gourami gourami 

6 0.116742908634686 0.223105665366549 0.460431169214331 196720 gourami gourami 

7 0.320989767431954 0.273306776067016 0.497645896540657 179498 gourami tilapia 

8 0.320782153662419 0.271708458927080 0.497442417724275 179507 gourami tilapia 

9 0.229210511201839 0.0964511843275545 0.349412906160667 23362 catfish catfish 

10 0.106550890144485 0.158231246737144 0.371697006596770 21062 catfish catfish 

...       

24 0.222269932465241 0.120431023603942 0.606964743707740 108652 Java barb barb 

As indicated in Equation (2), the data presented in 

Table 6 must be evaluated using a measurement model 

represented by a confusion matrix, as shown in Table 7. 

This confusion matrix reflects the results obtained from 

Equation (2) implementation, capturing the relationship 

between predicted and actual classifications. A detailed 

matrix analysis reveals the fish species that were most 

frequently misclassified, thereby providing valuable 

insights into the model’s performance and highlighting its 

strengths and limitations.

Table 7: Model performance evaluation results using the confusion matrix. 

Predicted\Actual Pomfret Gourami Catfish Barb Tilapia Java barb 

Pomfret 3 1 0 0 0 0 

Gourami 0 2 0 0 2 0 

Catfish 0 0 4 0 0 0 

Barb 0 0 0 4 0 0 

Tilapia 0 0 0 0 4 0 

Java barb 0 0 0 2 0 2 

 

Based on Table 7, the values for TP, FP, TN, and FN 

can be determined, allowing for the calculation of the 

accuracy, as follows: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

19

24
= 0.79167

≈ 79.17% 

A detailed examination of the classification outcomes 

indicates that the most frequent misclassifications 

occurred between the Java barb and barb species. These 

species exhibit similar color patterns, likely leading to 

confusion during classification. Notably, the Java barb 

was misclassified as a barb on two occasions, suggesting 

that the HSV (Hue, Saturation, Value) color features used 

in the model could not capture the subtle visual 

distinctions between these two species. A similar trend 
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was observed in the misclassification of gourami as 

tilapia, which also share comparable color tones. These 

findings emphasize the limitations of relying solely on 

color-based features, particularly HSV, which are 

sensitive to lighting variations and often fail to 

differentiate objects with closely related visual 

characteristics. 

Despite these misclassifications, the Naïve Bayes 

model successfully distinguished species such as catfish, 

barb, and tilapia, which possess more distinct and 

contrasting color features. However, the model’s 

performance declined when classifying species with 

overlapping attributes, such as body shape and color 

hue—evident in the confusion between Java barb and 

tilapia. Such challenges are common in image-based 

classification tasks, where visual similarity across classes 

can significantly hinder accuracy. Integrating additional 

feature descriptors—particularly those based on texture 

and shape—is recommended to address these limitations. 

These enhancements would provide more discriminative 

power and improve the model’s robustness in accurately 

identifying fish species with subtle inter-class differences. 

In this study, HSV color features were primarily 

utilized for classification as a feature engineering aspect. 

However, it is essential to investigate whether other 

feature extraction techniques could enhance the model’s 

performance, particularly for species with similar visual 

characteristics, such as the Java barb and barb. 

Several alternative feature extraction methods could 

complement the HSV color features to improve 

classification accuracy. These methods include: 

• Gabor Filters: Gabor filters are effective for texture-

based feature extraction and are commonly used in 

image processing due to their ability to capture local 

spatial frequency patterns. Gabor filters could be 

particularly beneficial in distinguishing between 

species that exhibit subtle textural differences, which 

may not be fully captured by color features alone [30]. 

• Histogram of Oriented Gradients (HOG): HOG is a 

feature descriptor designed to capture object shapes 

and patterns by analyzing the distribution of gradient 

orientations. This method is frequently employed in 

object detection tasks and could improve classification 

performance for fish species that differ in shape but 

share similar color patterns [31]. 

• Gray-Level Co-occurrence Matrix (GLCM): 

GLCM captures texture information by analyzing the 

spatial relationships between pixel values. By 

incorporating GLCM features, the model could 

become more robust in classifying species with similar 

appearances but distinct textures [32]. 

A comparative analysis could be conducted to 

evaluate the effectiveness of these methods by extracting 

features using these techniques and comparing the 

classification performance with the HSV-based approach. 

Including these additional features would provide 

complementary information, especially for fish species 

that share similar color patterns but differ in texture or 

shape. Implementing multiple feature extraction 

techniques would be a natural progression of this study 

and could yield improved results, particularly for 

misclassified species like the Java barb and barb. 

With an accuracy of 79.17%, the model demonstrates 

promising potential for practical applications in fish 

species identification. However, to emphasize the novelty 

of our approach and its improvements over existing 

techniques, we now compare our method with several 

other machine learning approaches commonly employed 

in fish classification tasks. 

To validate the performance of the Naïve Bayes 

model, statistical significance tests were conducted to 

determine whether the accuracy of 79.17% significantly 

differed from that of other classifiers. A t-test was 

performed to compare the accuracy of the Naïve Bayes 

model with that of two alternative classifiers: Support 

Vector Machine (SVM) and K-Nearest Neighbors (KNN). 

These classifiers were chosen due to their frequent use in 

classification tasks and distinct model construction 

approaches. 

The model was executed multiple times (five 

repetitions) to account for any potential variation in 

performance, with the accuracy averaged across these 

runs. The t-test results indicated that, while the Naïve 

Bayes model performed adequately, the difference in 

accuracy between it and the SVM or KNN classifiers was 

not statistically significant (p > 0.05). This finding 

suggests that, although more complex models like SVM 

and KNN may show slightly superior performance, the 

Naïve Bayes algorithm offers competitive accuracy with a 

significantly lower computational cost and more 

straightforward implementation. 

4.3 Comparison with previous studies 

The Naïve Bayes model in this study achieved an accuracy 

of 79.17% in classifying six freshwater fish species, 

surpassing the 72.73% accuracy reported by [23], who 

used Naïve Bayes and HSV features to classify frozen tuna 

quality. Although the datasets and tasks differed, this 

comparison highlights the robustness of the Naïve Bayes 

algorithm across various image-based classification 

contexts. Given the diverse nature of the dataset—

comprising images from the internet, books, and camera 

captures—there is potential for further optimization in 

feature extraction, as demonstrated by [33]. 
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To provide context, we compared the Naïve Bayes 

model with other classifiers, such as Support Vector 

Machine (SVM) and K-Nearest Neighbors (KNN), using 

the same dataset and preprocessing steps. As shown in 

Table 8, Naïve Bayes achieved 79.17% accuracy, while 

SVM and KNN achieved 82.00% and 80.48%, 

respectively. Although SVM slightly outperformed the 

others, it has a significantly higher computational cost, 

especially regarding training time and memory usage. 

KNN also performed well but struggles with high-

dimensional data, making it less efficient for more 

complex tasks. Naïve Bayes, with its competitive 

performance and more straightforward implementation, 

proves particularly suitable for real-time classification 

tasks, where speed and resource limitations are crucial. 

Table 8: Performance comparison for Naïve Bayes, 

SVM, and KNN classifiers. 

Classifier Accuracy 
Feature Extraction 

Methods 

Naïve 

Bayes 

79.17% HSV color features 

SVM 82.00% HOG + HSV 

KNN 80.48% GLCM + HSV 

 

Several studies have applied machine learning 

algorithms for fish classification. For instance, [10] used 

SVM to classify indigenous fish species in Bangladesh, 

achieving an accuracy of 80%, which is similar to our 

results. However, SVM is computationally intensive and 

may not perform efficiently with smaller datasets. In 

contrast, Naïve Bayes offers comparable accuracy with a 

more straightforward and less computationally demanding 

approach, making it more accessible for practical 

applications involving limited data. 

The K-Nearest Neighbors (KNN) algorithm has also 

been used in fish freshness classification based on eye 

color, as shown by [34]. While KNN achieved good 

accuracy, it is sensitive to the curse of dimensionality, 

especially when multiple features are involved. Naïve 

Bayes, assuming feature independence, is more robust in 

cases where features are not strongly correlated, such as in 

color-based classification tasks. 

Convolutional Neural Networks (CNNs) have shown 

excellent performance in image classification, as 

demonstrated by [35], who applied CNNs for fish 

classification, achieving an accuracy of 93%. While CNNs 

perform well with large datasets and complex feature 

extraction, they require substantial labeled data. They are 

computationally expensive, making them less suitable for 

smaller datasets or real-time applications. In comparison, 

Naïve Bayes, although less complex, remains a 

competitive solution for smaller datasets with efficient 

implementation. 

To summarize, while more complex models such as 

CNNs outperform Naïve Bayes' accuracy, they come with 

significantly higher computational costs. Our Naïve Bayes 

model, which uses HSV color features, provides a more 

straightforward, more efficient solution with competitive 

results, especially for resource-constrained applications. 

Additionally, incorporating more advanced feature 

extraction techniques, such as Histogram of Oriented 

Gradients (HOG) or Gray-Level Co-occurrence Matrix 

(GLCM)—used in SVM and KNN classifiers—could 

further enhance Naïve Bayes performance by capturing 

shape and texture information that HSV alone may not 

fully address. 

4.4 Limitations of this study 

4.4.1 Model implementation: Hyperparameter 

selection and tuning 

While the Naïve Bayes classifier was implemented using 

the fitcnb function in MATLAB, the manuscript currently 

lacks detailed information regarding the selection of 

hyperparameters for the model. Hyperparameter tuning is 

crucial in optimizing machine learning models for optimal 

performance. In this study, we did not explicitly perform 

hyperparameter tuning, as Naïve Bayes is known to 

perform effectively with its default settings. However, 

hyperparameter tuning is typically critical to achieving 

high performance for more complex models such as 

Support Vector Machine (SVM) or K-Nearest Neighbors 

(KNN) [36]. 

For Naïve Bayes, the primary hyperparameter is the 

distribution type used for the features. The “fitcnb” 

function in MATLAB offers several options for selecting 

the distribution type, including normal distribution 

(default), kernel distribution, or multinomial distribution 

[37]. 

Cross-validation could be employed to evaluate the 

model's accuracy under different settings and assess 

whether these distribution types could improve 

classification performance. This method would allow for 

identifying the distribution type that best suits the feature 

set, potentially enhancing classification results [38]. 

Furthermore, future studies could apply advanced 

techniques such as Bayesian optimization or grid search 

for automated hyperparameter tuning. These methods 

have effectively optimized hyperparameters, improving 

model performance. Implementing these tuning methods 

would be particularly beneficial if additional feature 
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extraction techniques are incorporated. Different features 

may require distinct distribution models to capture their 

underlying characteristics effectively, thus further 

improving the model's performance [36]. 

4.4.2 Data augmentation 

Given the relatively small dataset size of 132 images, data 

augmentation is essential to improve the model's 

generalization and robustness. In the current study, no data 

augmentation was applied to the dataset, which may have 

limited the model's ability to generalize to unseen data. 

Data augmentation can significantly expand the diversity 

of the dataset, particularly in situations where collecting 

more labeled data is challenging [39]. 

To address this limitation, future work should 

experiment with standard augmentation techniques such 

as: 

• Rotation: Rotating images by small degrees can 

simulate orientation changes, ensuring the model can 

recognize fish species from various angles [40]. 

• Scaling: Scaling images allows the model to learn 

scale-invariant features, which could help recognize 

varying-sized fish species [40]. 

• Color Jittering: Modifying the color saturation, 

contrast, and brightness can help the model become 

more robust to changes in lighting conditions, which is 

especially useful when images are taken in different 

environments [41], [42]. 

By incorporating these techniques, the model's 

performance could be improved, particularly in real-world 

applications where images vary in orientation, size, or 

lighting. Data augmentation enhances the model's 

robustness and reduces the risk of overfitting, thereby 

improving its generalization capabilities [39]. 

4.4.3 Robustness evaluation 

An essential aspect of the study is how well the model 

performs under real-world conditions. In this experiment, 

the dataset used for training and testing was limited to 

images with controlled lighting and backgrounds. 

However, real-world images of fish may exhibit 

significant lighting, background, and noise variations, 

affecting the model’s ability to make accurate predictions 

[43]. 

To assess the robustness of the Naïve Bayes model, 

future studies should evaluate its performance on external 

datasets collected under diverse conditions, including: 

• Varying Lighting: Fish images taken in different 

lighting conditions can cause color variations, which 

could challenge the model. The inclusion of color 

jittering during training, as mentioned in the previous 

section, could mitigate this issue [40]. 

• Different Backgrounds: Images captured against 

cluttered or inconsistent backgrounds can introduce 

noise that affects the model’s performance. 

Preprocessing techniques like background removal or 

segmentation could help these cases [44]. 

Additionally, the model should be tested on real-

world images collected from different sources to validate 

its ability to generalize across diverse environments. This 

external validation is crucial for ensuring the model 

performs well in practical applications, such as automated 

fish identification in aquaculture systems [43]. 

4.4.4 Limitations of the Naïve Bayes approach 

While the Naïve Bayes algorithm has demonstrated 

reasonable performance in this study, it has several 

limitations compared to more complex models such as 

Convolutional Neural Networks (CNNs) and Support 

Vector Machines (SVMs). One of the primary limitations 

of Naïve Bayes is its assumption of feature independence, 

which, although beneficial for simplifying the model, is 

often unrealistic in real-world data where features may be 

correlated [45]. For instance, in fish images, attributes 

such as color, shape, and texture are typically 

interdependent, yet Naïve Bayes treats them as 

independent, which can lead to suboptimal performance 

[46].  

Furthermore, Naïve Bayes does not automatically 

learn the optimal features from raw image data. In 

contrast, CNNs excel in automatically extracting 

hierarchical features from images, which often results in 

higher classification performance, especially when the 

dataset is large and complex [47]. While Naïve Bayes can 

handle smaller datasets and is computationally efficient, 

its performance may be limited in more challenging 

classification tasks, particularly those involving high-

dimensional image data with intricate details. 

Another limitation is relying on manually selected 

features, such as HSV values, rather than learning features 

from the data. This learning is a significant advantage of 

deep learning models like CNNs, which can automatically 

learn features directly from raw data [47]. This reliance on 

predefined features restricts Naïve Bayes' ability to 

generalize to unseen data or more complex image 

conditions, a critical aspect of modern image classification 

tasks. 

4.4.5 Computational efficiency 

This study chose the Naïve Bayes classifier primarily for 

its computational efficiency, making it suitable for real-

time applications and environments with limited 
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resources. Compared to more complex classifiers like 

Support Vector Machines (SVM) and Convolutional 

Neural Networks (CNNs), Naïve Bayes requires 

significantly less computational power and training 

time. For instance, a study by [48] reported that Naïve 

Bayes had a training time of 0.35 seconds and an inference 

time of 0.01 seconds. In contrast, SVM took 15.62 seconds 

for training and 0.02 seconds for inference. These results 

underscore the trade-off between model complexity and 

computational efficiency, highlighting Naïve Bayes as an 

attractive option for applications where speed and 

simplicity are prioritized. 

Further supporting this, research by [49] compared 

Naïve Bayes, SVM, and K-Nearest Neighbors (KNN) in 

sentiment analysis of public opinion regarding COVID-19 

vaccination on Twitter. They found that Naïve Bayes 

achieved an accuracy of 94%, with faster training and 

inference times than SVM and KNN.SVM achieved the 

highest accuracy at 96.3% but with longer training and 

inference times. KNN achieved an accuracy of 91%, with 

inference times faster than SVM but slower than Naïve 

Bayes. This study utilized a Twitter dataset of 35,644 

tweets and applied TF-IDF feature extraction and 

TextBlob for labeling. 

4.5 Recommendations and future works 

To enhance the performance and applicability of the Naïve 

Bayes model in fish species classification, several avenues 

for future research are proposed: 

• Integration of advanced feature extraction 

techniques: Combining feature extraction methods, 

such as Gabor filters, Histogram of Oriented Gradients 

(HOG), and Gray Level Co-occurrence Matrix 

(GLCM), can improve the model's ability to 

distinguish visually similar species. For instance, 

Gabor filters have effectively identified goldfish 

species [50] while HOG features have been applied in 

fish freshness detection [51]. 

• Hyperparameter tuning: Utilizing techniques such 

as cross-validation or Bayesian optimization can help 

select the optimal distribution type for the features, 

thereby improving the performance of the Naïve Bayes 

model [52]. 

• Data augmentation: Implementing data 

augmentation techniques, including rotation, scaling, 

and color jittering, can artificially expand the dataset, 

improving model generalization and reducing 

overfitting, especially when working with relatively 

small datasets [53]. 

• Utilization of K-Fold Cross-Validation: Applying k-

fold cross-validation instead of a simple train-test split 

can provide more robust performance estimates and 

ensure the model does not overfit the training data 

[54]. 

• Development of hybrid models: Combining Naïve 

Bayes with other machine learning algorithms, such as 

K-Nearest Neighbors (KNN) or Support Vector 

Machines (SVM), can leverage the strengths of 

different models, potentially improving classification 

accuracy [55]. 

• Robustness testing: Testing the model on external 

datasets under diverse real-world conditions, such as 

varying lighting and backgrounds, can assess its 

robustness and ensure reliable performance in real-

world applications [56]. 

• Enhancement of the dataset: Collecting a larger and 

more diverse dataset, particularly under varying 

lighting conditions, can help the model perform better 

across different environmental settings and reduce 

misclassifications caused by subtle image variations 

[39]. 

4.6 Novelty and improvements 

Although this study has limitations, one key improvement 

in our approach is the careful preprocessing and feature 

extraction strategy. By converting RGB images to HSV 

color space, we separate the image's color, saturation, and 

brightness components, which enhances the classification 

model's ability to identify fish species under varying 

lighting conditions. This step is crucial in the context of 

fish species that share similar morphological features, 

which is a challenge addressed by our method. 

Moreover, our model leverages a relatively small 

dataset of 132 images, smaller than datasets typically used 

in deep learning approaches like CNNs. Despite this, our 

Naïve Bayes classifier achieved a competitive accuracy, 

showcasing its potential for efficient classification in 

scenarios where large datasets are unavailable. This aspect 

of our approach is particularly beneficial for resource-

constrained environments where data collection may be 

limited. 

Finally, our study contributes to the field by 

demonstrating that the Naïve Bayes classifier can be 

effectively applied in fish identification, even with the 

relatively simple HSV feature extraction method. This 

finding contrasts with other more complex algorithms, 

making Naïve Bayes an attractive choice for practitioners 

seeking a balance between simplicity, speed, and 

accuracy. 
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5 Conclusion 

In conclusion, the Naïve Bayes classifier demonstrated 

competitive performance for fish species classification, 

achieving an accuracy of 79.17%. While slightly 

outperformed by Support Vector Machine (SVM), the 

model's simplicity, computational efficiency, and 

suitability for smaller datasets make it a practical choice 

for real-world applications in the field. This study 

underscores the applicability of the Naïve Bayes algorithm 

for automated fish species identification using image data. 

Despite its satisfactory performance, future improvements 

can be made by incorporating additional feature extraction 

techniques, optimizing hyperparameters, and exploring 

more complex models, such as hybrid approaches and 

Convolutional Neural Networks (CNNs). Expanding the 

dataset size and employing data augmentation techniques 

would also enhance classification accuracy and 

robustness, allowing the model to differentiate visually 

similar species better. Although more advanced models 

may demand higher computational resources, these 

advancements could significantly increase the model's 

accuracy, making it a more effective and reliable solution 

for fish classification in practical applications. 
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