
https://doi.org/10.31449/inf.v49i25.8057 Informatica 49 (2025) 27–42 27

A Fog Computing-Based Collaborative Information Resource System

for Smart Cities: TSAS and KLED Algorithms for Data

Transmission and Service Deployment

Ya Xiao1*, Jinyeol Jung2
1Academy of Art and Design, Yancheng Teachers Unversity, Yancheng, 224007, China
2Smart Experience Design Department, TED, Kookmin University, Seoul, 02707, Korea

E-mail: 13401780510@163.com, 18862009559@163.com
*Corresponding author

Keywords: collaborative prediction mechanism, data transmission volume compression, fog computing, smart cities,

service edge deployment

Received: Januar 15, 2025

Effective integration and scheduling of information resources play a pivotal role in realizing intelligent

management within the framework of smart city development. This research endeavors to overcome two

significant hurdles: the redundancy in data transmission during the acquisition phase at the network's

edge and the inefficiencies encountered when deploying analytical services across diverse edge devices.

To address these challenges, a collaborative system architecture rooted in fog computing is introduced.

A prediction mechanism, driven by spatiotemporal correlations, is incorporated to dynamically

modulate data transmission intervals. This adjustment effectively curtails unnecessary synchronization,

thereby enhancing the efficiency of data acquisition. Moreover, a deployment strategy based on

multi-objective optimization is devised to allocate analytical tasks among edge devices constrained by

limited resources, aiming to minimize the overall execution time. Experimental evaluations carried out

on a real-world dataset encompassing 54 sensing terminals reveal that the proposed synchronization

mechanism outperforms two traditional methods, reducing the false alarm rate by 58.90% and 31.35%,

respectively, with a minimum mean absolute error of 2.6×10-5. Additionally, the deployment strategy

achieves an average reduction of 13.12% in service completion time across four standard scientific

workflow structures. The system adeptly alleviates bandwidth constraints and computational limitations

inherent in edge networks, providing a practical and effective solution for efficient data transmission

and task scheduling in extensive smart city environments.

Povzetek: Opisan je nov sistem pametnih mest, ki z algoritmoma TSAS in KLED na osnovi megličnega

računalništva zmanjša prenose podatkov in optimira razmestitev storitev znotraj robnega omrežja.

1 Introduction
Smart cities leverage information technologies and

intelligent methodologies to facilitate real-time awareness

of urban operations, seamless data integration, and

informed decision-making, thereby enhancing urban

governance and the delivery of public services [1]. In

practical implementations, a vast array of intelligent

devices is extensively deployed in public infrastructure

scenarios, such as transportation, energy, and

environmental monitoring, culminating in a

comprehensive urban sensing network [2]. These devices

continuously produce multi-source, heterogeneous

inspection data, offering abundant informational

resources for urban management. However, the sensing

data in smart city environments is marked by its

widespread distribution, substantial volume, and high

diversity, presenting challenges for existing systems in

data collection, synchronized transmission, and unified

management. On one hand, various types of terminal

devices display discrepancies in data formats, upload

frequencies, and interface protocols, leading to

inefficiencies in data integration [3-4]. On the other hand,

the conventional cloud-centric architecture is plagued by

issues like centralized computational burdens and

elevated response latencies, potentially impeding its

capacity to satisfy the real-time and region-specific

processing requirements of city-level applications [5-6].

In recent years, edge computing has surfaced as an

extension of cloud computing, offloading a portion of the

computational workload to devices situated closer to the

data source, thereby effectively diminishing latency [7].

Nevertheless, edge computing typically conducts data

processing locally at individual terminal nodes, lacking

coordination mechanisms and intermediate-layer

management among nodes. Conversely, fog computing

introduces an intermediary "fog node" layer between the

cloud and the edge, enabling regional collaboration, task

offloading, and resource-aware scheduling among

https://doi.org/10.31449/inf.v49i25.
mailto:13401780510@163.com
mailto:18862009559@163.com

28 Informatica 49 (2025) 27-42 Y. Xiao et al.

distributed nodes. This architecture is more adeptly suited

for smart city scenarios characterized by heterogeneous

sensor distributions, diverse services, and region-based

collaborative prerequisites [8]. Consequently, this study

introduces a collaborative information resource system

tailored for smart cities, grounded in fog computing,

which decentralizes computing power from centralized

cloud centers to fog edge devices. An innovative

approach is proposed, integrating the K-Means clustering

algorithm with Gaussian distribution, to be incorporated

into the system's sensing devices. This integration aims to

minimize errors in the cooperative prediction mechanism.

Furthermore, the enhanced algorithm and system generate

increased broadband capacity, thereby expanding both the

number of fog end edge devices and network broadband

within smart city environments. The objective of this

study is to tackle challenges including data redundancy,

inefficient synchronization, and prolonged response

latency in service deployment within fog-edge

environments, with the ultimate goal of improving the

real-time performance and deployment efficiency of

information resource systems in smart cities. To achieve

this, the research zeroes in on two primary issues: (1)

devising effective methods for synchronizing and

compressing multi-source sensing data in edge networks,

and (2) developing strategies for optimal service

deployment and scheduling on fog computing nodes with

limited resources.

2 Related works
The collaborative information resource system designed

for smart cities centers on two key challenges: the

collection of perceptual data and the deployment strategy

for edge networks. The temporal data collection process

of sensing terminals is marked by data redundancy and

the transmission of large volumes of data. Fei and Ma

introduced the throughput rate constraint and sensing

strategy in fog computing to the fog access point, and

established a prediction model using multi-information

sensing to infer the degree distribution of fog nodes in the

network, and obtained a network transmission efficiency

and environmental sensing accuracy close to 90% [9]. Ali

et al. targeted at smart public safety and traffic

management in cities, proposed a dynamic deep hybrid

spatio-temporal neural network for high-precision traffic

flow prediction, and introduced an exaggerated method of

attention mechanism for city-wide short-time crowd flow

prediction. The latter improved the accuracy by about

20.8% and 8.8% over the former on two traffic datasets

[10]. Zhang and Li addressed the existence of data

transmission mechanism in vehicular network Real-time,

efficient computational tasks, and vehicle data privacy

problems, and designed a data transmission mechanism

for Telematics in fog computing environment. The

mechanism proposed privacy-preserving task assignment

and data aggregation mechanisms in a fog node-assisted

crowd-sensing model for hilarious and secure data

transmission [11]. Qiao et al. proposed a tool wear

monitoring and prediction system based on a deep

learning model and fog computing. The architecture

included edge computing layer, fog computing layer and

cloud computing layer, and the accuracy, response time

and bandwidth consumption performance of the system

were verified by prediction experiments [12]. Yang et al.

used a numerical gradient-based approach to process raw

data collected from marine survey work and designed an

improved algorithm for multi-sensor information fusion,

which effectively improved the quality of marine data

and information utilization efficiency [13].

Rational deployment of analytic services in the fog edge

network is the key to provide high performance and low

latency computing services. Núñez-Gómez et al.

proposed an architecture based on the Ethernet

blockchain to address the resource coordination problem

due to the distributed nature of fog computing. The

experimental results verified its low overhead and

efficient resource coordination when introduced into the

system [14]. Huang et al. designed a multi-objective

model including deployment cost and service latency for

the deployment of services among nodes in fog

computing, and proposed a multi-copy ant colony

optimization algorithm for model solving to obtain a

solution strategy with qualified diversity and accuracy

[15]. Ayoubi et al. designed an autonomous IoT service

placement method including four phases: monitoring,

analysis, decision making and execution, which

prioritizes requested services based on service deadlines

and the state of available resources [16]. Ning et al.

constructed a three-layer in-vehicle fog computing model

to experiment distributed traffic management for the

real-time traffic management problem in smart cities and

validated the model based on performance analysis of

real skid trajectories [17]. A decentralized optimization

strategy for service layout in fog computing was

proposed by Guerrero et al. The core idea of the strategy

was to place the most popular services close to the users.

The experimental results showed that this decentralized

algorithm improved the net clusters usage and service

latency. To facilitate a structured comparison, Table 1

summarizes the key techniques, outcomes, and

limitations of recent fog computing-based approaches for

smart city applications.

Table 1: Work comparison table

Author(s)
Method /

Application area
Key techniques Results Limitations

Fei & Ma [9]

Fog-based

network

prediction

Throughput constraint;

multi-source sensing; degree

distribution inference

Achieved ~90%

network

transmission

efficiency and

environmental

Did not address

adaptive

synchronization or

real-time transmission

optimization

A Fog Computing-Based Collaborative Information Resource System… Informatica 49 (2025) 27–42 29

sensing accuracy

Ali et al. [10]

Urban traffic &

crowd flow

prediction

Hybrid spatio-temporal neural

network; attention mechanism

Accuracy

improved by

20.8% and 8.8%

on two datasets

Focused only on

prediction, lacks

deployment or

transmission

considerations

Zhang & Li

[11]

Telematics data

privacy in

vehicular fog

networks

Privacy-preserving task

assignment; fog-assisted

crowdsensing

Secure and

efficient data

transmission

mechanism

No dynamic scheduling

or real-time model

adaptation

Qiao et al.

[12]

Tool wear

monitoring with

deep learning

and fog layers

Layered architecture

(edge–fog–cloud); deep

prediction model

Improved

accuracy,

reduced latency

and bandwidth

use

Application-specific;

lacks general

deployment strategy

Yang et al.

[13]

Marine survey

data processing

Numerical gradient; multi-sensor

data fusion algorithm

Enhanced marine

data quality and

utilization

Not designed for

dynamic or scalable

urban edge scenarios

Núñez-Gómez

et al. [14]

Fog resource

coordination via

blockchain

Ethernet-based blockchain;

resource negotiation model

Low system

overhead,

efficient resource

coordination

High complexity of

blockchain

deployment; lacks

scheduling

optimization

Huang et al.

[15]

Multi-objective

fog service

deployment

Ant colony optimization;

latency-cost tradeoff model

Balanced service

diversity and

accuracy

No integration of

prediction-based edge

traffic regulation

Ayoubi et al.

[16]

Autonomous IoT

service

placement

Monitor-analyze-decide-execute

model; resource-aware

prioritization

Adaptive task

allocation based

on service

deadlines

Static scheduling

model; lacks

time-sensitive

transmission modeling

Ning et al.

[17]

Vehicular fog

computing for

traffic

management

Three-layer fog structure; real

trajectory-based validation

Verified

effective for

distributed

real-time traffic

control

Focused on traffic

domain; lacks general

resource service

framework

In summary, although existing studies have explored

aspects of data compression, prediction modeling, and

service deployment in fog computing environments, there

remains a lack of unified solutions addressing the

combined challenges of data redundancy and large-scale

transmission, particularly under heterogeneous resource

constraints. Furthermore, while some works consider the

distribution of sensing and computing tasks, few

explicitly address the synchronization and coordination

between them. These overlapping challenges constitute

the primary focus of this study. To address these

limitations, this study proposes a collaborative

information resource system tailored to fog computing

environments. It introduces a spatiotemporal

synchronization mechanism to reduce redundant data

transmission and a multi-objective deployment strategy to

optimize task scheduling across edge nodes. Together,

these innovations enable dynamic, efficient, and scalable

service coordination for smart city scenarios.

3 Materials and methods

3.1 Fog-end collaborative prediction

mechanism for transmission volume

compression

The relocation of system services from centralized cloud

computing centers to decentralized fog computing edge

networks, with the aim of delivering high-quality services

with minimal latency, has emerged as a prominent

research focus and formidable challenge [18-19]. In this

context, the study proposes a collaborative

prediction-based transmission compression scheme

tailored for fog computing environments, and introduces

a spatiotemporal-aware adaptive synchronization

algorithm (TSAS). Rather than only adjusting

synchronization waiting time, TSAS jointly utilizes

residual modeling and trend prediction to dynamically

determine the optimal synchronization interval and

prediction window, thereby improving the timeliness and

accuracy of data uploads under bandwidth-constrained

conditions. In addition, a service edge deployment

algorithm based on improved Kernighan-Lin algorithm

(KLED) is proposed to further optimize the system

performance. KLED is designed to deploy

30 Informatica 49 (2025) 27-42 Y. Xiao et al.

computationally intensive services such as traffic flow

prediction and anomaly detection in environmental data

—key analytical tasks in smart city applications—onto

resource-constrained edge devices. These services

typically require low-latency response and distributed

coordination, which KLED optimizes through adaptive

resource-aware placement strategies. In the collaborative

prediction mechanism, the set of n data continuously

collected by the sensing terminal at a specific sampling

frequency is defined as shown in Equation (1).

() () () () 1 1 2 2, , , , , , , ,i i n nD t x t x t x t x= (1)

In Equation (1),
it represents the data acquisition time

and
ix represents the data measurement value at that

moment. Assuming that the predicted value of the data at

that moment is ˆ
tx , then the fitting error ˆ

f t tE x x= − at

the moment of t can be calculated, and the size of the

fitting error is compared with the error threshold set by

the system to determine whether to synchronize the actual

measured data to the fog node [20]. It should be noted

that the fitting error here refers to the instantaneous

residual at each time point, used solely to describe the

pointwise prediction deviation, and should not be

interpreted as a measure of the overall model fitting

performance.

The data acquired through continuous sampling utilizing

the sensing terminal is organized in chronological

sequence, signifying that it constitutes a time series.

Consequently, this collected data can be leveraged to

forecast the measured values for an upcoming timeframe.

Considering the limited computational resources of edge

nodes, an autoregressive model is adopted in this study

for short-term sensing data prediction. The model offers a

simple structure and fast inference, enabling stable

predictions without the need for large-scale training or

complex prior assumptions, making it well-suited for

heterogeneous and low-power fog-edge environments. In

contrast, models such as LSTMs require extensive

training and high memory usage, while Kalman filters

depend on accurate prior modeling of system dynamics

and noise, which are difficult to define in heterogeneous

edge environments.

To characterize the linear correlation between the current

data and its historical states, this study adopts an

autoregressive model to predict the sensing data, as

shown in Equation (2).

1 1 2 2
ˆ

t t t i t i n t n tx x x x x − − − −= + + + + + +
 (2)

In Equation (2)， 1 2, , , n is the sequence of model

parameters to be calculated. Considering that there are

often some difficult-to-observe errors in the actual

measurement process, the study also introduces white

noise ()20,t N ,
i refers to the i th

autoregressive parameter. Based on the idea of multiple

regression theory, least squares estimation is used to

calculate the parameters of the prediction model [21-22].

After substituting the sequence of the collected data, the

matrix expression of the time-series linear relationship

between the measured and predicted values of the data is

y x = + , and the estimation of the parameter can

be obtained as shown in Equation (3).

()
-1

ˆ T Tx x x y = (3)

When the fog edge device finishes model modeling, it

synchronizes the latest model parameters to the

corresponding sensing terminal, and then the sensing

terminal completes data collection, and the detailed

interaction between the two is shown in Figure 1.

Begin

Is there a forecast

model?

Is prediction error

below dynamic threshold?

Synchronous measured data

Dynamic update error threshold

1t t= +

Collect data i tx

Calculate predicted

value I and errorˆ
tx

Build collaborative

forecasting model

Wait for measured data

Wait time<Sync wait time?

Is measured data

received from terminal?

Fill Forecast

Is the model valid?

Dynamically updating collaborative

forecasting model

1t t= +

Synchronize model

parameters

Synchronous

measured value

Dynamic update

synchronization

wait time

Statistical fitting error rate

Begin

Yes

Yes

Yes

Yes

No

No

No

No

No

Yes

Perception terminal

Fog edge equipment

Figure 1: Flow chart of data acquisition by fog terminal synchronous prediction mechanism

A Fog Computing-Based Collaborative Information Resource System… Informatica 49 (2025) 27–42 31

In Figure 1, "synchronization wait time" refers to the

minimum interval required after the last synchronization

during which the sensing terminal refrains from

uploading data unless the prediction error exceeds the

threshold. This mechanism helps reduce data

transmission frequency when prediction accuracy remains

acceptable. "Synchronous measured value" denotes the

original data point identified for upload, triggered either

by the prediction error exceeding the threshold or the wait

time reaching its upper limit. Figure 1 illustrates the

collaborative synchronization process between the

perception terminal and the fog computing node. The

orange elements indicate three key parameters that are

dynamically updated: the maximum allowable error

threshold, the prediction model parameters, and the

synchronization wait time. The error threshold is

adaptively adjusted based on trends in the measured data

to enhance the responsiveness of the synchronization

trigger; the prediction model is optimized using residual

statistics within a sliding window to improve adaptability

to data pattern changes; and the synchronization wait

time is updated according to data validity and response

frequency to reduce unnecessary transmissions. These

three mechanisms work collaboratively to significantly

improve the system’s performance in terms of data

compression and transmission efficiency.

3.2 Fog-end adaptive synchronization

algorithm based on spatio-temporal

correlation

To address the real-time demands of the collaborative

prediction mechanism, an analysis of the adaptive

synchronization algorithm for fog-end edge devices is

conducted. Additionally, in order to overcome spatial

limitations, the deployment of a communication

transmission scheme for fog-end devices within the edge

network is investigated. Consequently, this study

introduces the TSAS algorithm. TSAS is well-suited for

high-frequency urban sensing scenarios, such as traffic

flow monitoring or environmental noise detection, where

sensing terminals are densely distributed. Given the

temporal and spatial continuity of such data, TSAS

leverages historical measurements to predict the next

value and only triggers data synchronization when the

prediction error exceeds a predefined threshold or the

waiting time reaches a limit. This mechanism

significantly reduces network transmission load and

extends the operational life of sensing devices.

Assuming that a fog edge device is responsible for

maintaining the data collection process of the prediction

mechanism of sensing terminals, the N N terminals

are divided into multiple clusters, the set of nodes of the

m th cluster is defined as 1 2, , , , ,m

i kG p p p p= ,

and a cluster contains k sensing devices. The

synchronization waits time threshold and the

communication link transmission delay of a sensing

terminal
ip at t are defined as ()i t and ()is t ,

respectively [23]. The synchronization wait time needs to

be greater than the transmission delay to correctly trigger

the subsequent data processing process, i.e., if

() ()i it s t at time t is defined as a false alarm.

Therefore, the value (),i t represents the deviation

between the expected synchronization waiting time and

the observed transmission delay for sensing device
ip at

time t as defined in Equation (4).

() () (), i ii t t s t = − (4)

Also, (),i t
M

 is defined as whether a miscue occurs

when (),
0

i t
M

= then () () 0i it s t − , indicating that

the synchronization wait time at moment t predicts that

no miscue occurs [24-25]. Thus, the miscalculation rate is

calculated as shown in Equation (5).

()
(),i tt

i

M
ER i

s

=

 (5)

In Eq. (5), ()ER i denotes the false positive rate during

the observed time period, which is the ratio of the

synchronization wait time not larger than the actual link

transmission delay. () 0,1ER i . The smaller its value,

the more accurate the prediction of the synchronous wait

time threshold. the flow of the TSAS algorithm is shown

in Figure 2.

32 Informatica 49 (2025) 27-42 Y. Xiao et al.

Begin

Cluster of sensing nodes

Calculate the average delay and

initialize it to the waiting time

Wait for input signal

Is there a miscarriage

 of justice?

Success_count += 1

Dynamically adjust

smoothing parameters

Update Wait

Duration Forecast

End

Calculate node

delay similarity

Update duration of other

nodes in the same cluster

t += 1

tranCount += 1

initialization

Spatial

association

Time based

correlation

Figure 2: Adaptive synchronization algorithm of fog terminal based on spatio-temporal correlation

In the initial stage of the fog-end collaborative prediction

model, each sensing terminal needs to send k real

sensing data to the fog edge device as the data base for

model training. Therefore, the transmission delay

sequence of message sensing devices is defined as shown

in Equation (6).

() () () () 1 2, , , , m

i i i i k is t s t s t s t p G= (6)

Based on Equation (6), the message transmission delay

sequences of all sensing devices in the cluster can be

further obtained, and the average value of all transmission

delay sequences is employed as the initial value of the

waiting time threshold. Based on the assumption that

synchronization wait time exhibits temporal continuity,

this study employs the Exponential Smoothing Model

(ESM) to fit its variation trend during the data acquisition

process in the fog-edge network. The synchronization

wait time prediction model is defined in Equation (7) [26

–27].

() () () ()() ()1 1i i i i it a t t a t s t + = + − (7)

In Equation (7), 1t + represents the next prediction

moment, and ()1i t + denotes the predicted

synchronization wait time for sensing terminal ip at the

moment of 1t + . ()ia t is the adaptive smoothing factor

computed based on the ratio between the cumulative

smoothing error and the cumulative absolute error. This

adaptive update enables the system to dynamically adjust

scheduling intervals in response to varying data

transmission conditions [28-29]. The expressions of the

cumulative smoothing error and the cumulative

smoothing absolute error are shown in Equation (8).

() () () ()

() () () ()

, , 1 1 ,

, , 1 1 ,

s s

as as

E i t E i t ER i t

E i t E i t ER i t

 = − + −

= − + −

 (8)

In Eq. (8), is a weighting factor with a value between

0 and 1, which generally takes the value of 0.1,0.2 .

The magnitude and frequency of change of the prediction

error of the sensing device (),ER i t can reflect the

fluctuation of the network state, so the smoothing

coefficient of the delay prediction model is implemented

by (),ER i t . Based on the assumption that

synchronization wait times among neighboring terminals

exhibit spatial correlation, the study introduces a

similarity function (), iSS j t
 to quantify the temporal

alignment between two sensing terminals
i and

j
within the same spatial cluster. The definition is

provided in Equation (9) [30].

()
() ()

()
, 1 , ,

i j m m

i

j

v t v t
SS j t i G j G

v t

−
= − (9)

In Equation (9), iv and jv represent the

synchronization wait times of nodes i and j
,

respectively. A higher value of (), iSS j t
 indicates a

stronger spatial similarity in synchronization behavior.

Instead of relying on physical distance or transmission

delay, this method uses temporal similarity to

approximate the overlap in communication conditions

between terminals and fog nodes. When a false alarm or

abnormal update occurs at node
j

, the spatial

A Fog Computing-Based Collaborative Information Resource System… Informatica 49 (2025) 27–42 33

correlation is leveraged to adjust the synchronization wait

time prediction of node
i ， as defined in Equation (10).

() () () ()() () () ()1 , ,j j j j iv t a t v t a t SS j t i s t j N i= + − (10)

In Eq. (10), ()ja t is the ESM parameter of the sensing

terminal
jv , and ()N i represents the set of sensing

terminals in the cluster excluding
iv . This collaborative

update mechanism enhances robustness in

synchronization within the fog-edge network by enabling

terminals to modify their behavior in accordance with

spatially correlated neighbors, thereby mitigating the risk

of misclassification.

The core computational operation of TSAS lies in the

autoregressive prediction based on a sliding window,

where the window length is n. This results in both time

and space complexity of O(n). The dynamic error

threshold is determined by fitting historical residuals,

which incurs negligible computational cost compared to

the prediction process and can be considered constant

time. Therefore, TSAS maintains low resource

consumption while ensuring synchronization accuracy,

making it suitable for real-time prediction tasks on edge

devices.

To enhance the real-time performance of the

synchronization mechanism, the TSAS algorithm

incorporates sliding window error statistics and dynamic

threshold adjustment. The sliding window mechanism

dynamically captures data fluctuations and adjusts model

parameters in real-time. Simultaneously, the error

threshold is calibrated—either tightened or relaxed—

based on historical residual trends, to preclude excessive

synchronization triggered by localized anomalies. This

approach effectively balances the frequency of

synchronization with the precision of predictions. In

addition, to address external factors such as network

latency and data fluctuations, TSAS employs an

exponential smoothing model to dynamically estimate the

waiting time, and integrates a spatial correlation

mechanism that adapts local strategies based on the

synchronization results of neighboring nodes, effectively

improving system stability and robustness in complex

environments.

3.3 Collaborative analysis service edge

deployment and system design for

smart city information resources

In the fog computing network scenario, the adjustment of

the edge network deployment scheme mainly focuses on

the real-time performance of computational operations

and the robustness of business operations. In the

communication delay between the sensor terminal and the

fog edge device, the TSAS algorithm improves the spatial

otemporal continuity and correlation of communication.

The study improves the service deployment algorithm

KLED for smart city information resource collaboration

system in order to achieve high performance and low

latency information resource analysis service. KLED

targets distributed intelligent service deployment

scenarios in fog computing environments, such as urban

video surveillance analysis or emergency response

coordination. In cases where services exhibit dependency

relationships and edge nodes possess heterogeneous

resource capabilities, KLED utilizes K-means clustering

to group nodes based on their capacities and deploys

services by considering both task dependencies and

communication costs. This approach effectively shortens

service makespan and enhances parallel execution

efficiency, making it suitable for dynamic multi-task

scheduling in smart city applications. The flowchart of

the KLED algorithm is shown in Figure 3.

Start

Node Feature Extraction and Clustering

DAG Task Parsing and Service Modeling

Multi-objective Scoring and Migration

Evaluation

Migration Execution and Local Adjustment

End

Figure 3: Flowchart of the KLED algorithm

The KLED algorithm consists of four stages: node

clustering, DAG-based task modeling, heuristic scoring

for migration evaluation, and iterative deployment

adjustment. It enables efficient service placement by

balancing latency, resource load, and execution time in

fog computing environments.

The algorithm abstracts the analysis service modeling of

the system into a Direct Acyclic Graph (DAG), where

each vertex represents a discrete service component or

task. Each vertex is associated with a set of attributes

including resource requirements (e.g., CPU, memory),

estimated execution time, and service type (e.g., sensing,

processing, aggregation). The directed edges in the DAG

represent strict dependency constraints between tasks,

indicating that the source node must complete before the

target node begins. This structure allows the system to

capture execution order, support parallelism where

applicable, and optimize service placement under

resource constraints.

The DAG is represented as ,kG F E= , where

represents the set of 1 2, , , ,i NF f f f f= N

subservices, and E (,) | ,i j i jh f f f f F= represents

the set of directed edges in the DAG. (),i jh f f

represents the size of the amount of data transmitted by

the service if to jf , and if (), 0i jh f f represents a

dependency between two subservices. The existence of

34 Informatica 49 (2025) 27-42 Y. Xiao et al.

M heterogeneous machines in the fog computing edge

network is defined, denoted as 1 2, , , , ,p MR r r r r= .

Also define () , ,p q p qG g r r r r R= as the link

communication relationship between different devices.

The data transfer time of two services is determined by

both the inter-device transfer bandwidth and the amount

of data transferred. Assuming that the service is deployed

on the machine
if

pr and the service
jf is deployed

on the machine
qr , the data transfer time between the

two services is calculated as shown in Equation (11).

()
()
()

()
,

, , , 0
,

i j

i j p q p q

p q

h f f
TT f f r r g r r

g r r
= (11)

In equation (11), (),p qg r r indicates the bandwidth of

the transmission link between machines
pr and

qr , and

if (), 0p qg r r = indicates that there is no available

communication link between the two devices. Due to the

DAG data flow constraint, the service
if must wait for

the execution of the higher priority service on the

machine
pr to complete before it can start execution.

The study focuses on two improvements to the original

Kernighan-Lin algorithm: service division policy change

and multi-objective heuristic-based implementation of the

node movement policy function. The service partitioning

strategy uses "self-service migration" instead of the

traditional graph 2 partitioning algorithm. The heuristic

multi-objective movement decision refers to the

movement of nodes based on four heuristic rules:

distance gain, additional communication gain

(), ,i p qcG f r r , parallelism gain (), ,i p qpG f r r and

execution time gain (), ,i p qeG f r r . The node movement

decision function is shown in Equation (12).

() () () () (), , , , , , , , ,i p q p q i p q i p q i p qMD f r r dG r r cG f r r pG f r r eG f r r= (12)

In Eq. (12), (),p qdG r r represents the distance gain.

Among the four heuristic metrics in the scoring function,

distance gain evaluates the proximity of the migrated

service to the data source and the receiving endpoint,

prioritizing deployment closer to user-side edge nodes.

Communication gain assesses the expected reduction in

data transmission delay after migration. Parallelism gain

reflects the availability of the target node, facilitating

concurrent task execution. Execution time saving

indicates the anticipated decrease in task runtime on the

new node. These metrics are combined with assigned

weights to guide the optimal service migration path

selection.

In fog computing environments, both the input and output

data for services originate from sensing endpoints.

Therefore, deploying services in close proximity to

user-side edge devices can significantly reduce service

feedback latency. The distance gain and execution time

gain are defined as shown in Equation (13).

()
()
()

()
()
()

, ,
,

, ,

,
, ,

,

src des q

p q

src des p

i q

i p q

i p

dC r r r
dG r r

dC r r r

EF f r
eG f r r

EF f r

 =

=

 (13)

In Equation (13), (), ,src des qdC r r r represents the sum of

the distance of the computing device
qr from the data

source device
srcr and the final output receiving device.

desr (),i qEF f r denotes the execution time of the

subservice on the device f
qr . The additional

communication gain and parallelism gain are defined as

shown in Equation (14).

()
()
()

()
()
()

,
, ,

,

,
, ,

,

i q

i p q

i p

i q

i p q

i p

cC f r
cG f r r

cC f r

wC f r
pG f r r

wC f r

 =

=

 (14)

In Equation (14), (),i qcC f r represents the sum of the

transmission time required to compute the data exchange

of the subservice if with all the previous services and

the successor services when it is deployed on the device

qr , while (),i qwC f r represents the sum of the running

time of the sibling services of the subservice if when

the subservice if is deployed on the device
qr . The

overall architecture of the smart city information resource

collaboration system based on the fog-end collaborative

prediction mechanism and the improved KLED algorithm

is shown in Figure 4.

A Fog Computing-Based Collaborative Information Resource System… Informatica 49 (2025) 27–42 35

User view layer

L
o

g
 m

an
ag

em
en

t
m

o
d

u
le

Information service Technical service

Function service Directory services

Service

management

module

Service Migration Service deployment
Deployment

Management Module

N
et

w
o

rk
 c

o
m

m
u

n
ic

at
io

n

m
o

d
u

le

E
x

ce
p

ti
o

n
 h

an
d

li
n

g
 m

o
d

u
le

Data distribution

management Basic data management

Data Management Module

Data acquisition and compression

Network status

monitoring

Device

management

Information

resource

management

module
Data security and

privacy protection

Equipment status

monitoring

Data generation Data import Data storage Data fetch

Data access layer

Business logic layer

Figure 4: The overall architecture of smart city information resources collaboration system based on fog computing

As illustrated in Figure 4, the internal architecture of the

smart city information resource collaboration system,

which is based on fog computing, is primarily structured

into three tiers: user interface, system logic, and database.

Users engage with the backend system through the user

interface, where the frontend is tasked with receiving user

operation commands and translating them into backend

operational logic. Following computation by the backend

system logic, the outcome of the user's operation is

rendered and presented back to the user via the user

interface. Consequently, this demonstrates that the

collaborative information resource system, designed on

the foundation of fog computing, not only addresses

issues related to data acquisition redundancy and

transmission but also significantly enhances the

operational efficiency and management capabilities of the

system's analytical services.

The primary computational load of KLED is concentrated

in the K-means clustering process, where N sensing

nodes are partitioned into k clusters based on

d-dimensional features over t iterations, resulting in a

time complexity of O(Ndkt). The subsequent bandwidth

estimation and service deployment scoring processes

exhibit linear or logarithmic complexity. Overall, the

algorithm balances deployment efficiency and scalability,

making it well-suited for fog computing environments.

3.4 Parameter settings and tuning

To ensure the robustness and practicality of the proposed

system, key parameters in both the TSAS and KLED

algorithms were carefully tuned based on statistical

principles and experimental validation: For the TSAS

algorithm, the order of the autoregressive model was

selected using the Akaike Information Criterion (AIC) to

achieve optimal model parsimony. The prediction error

threshold and waiting time limits were determined

through preliminary experiments, aiming to minimize

unnecessary synchronization while preserving data

accuracy.

For the KLED algorithm, the number of clusters k was

chosen using the elbow method based on node capability

distribution. The weights of the deployment cost function

were fine-tuned via grid search across a range of

workloads, ensuring adaptability across heterogeneous

fog environments. All parameters were validated through

repeated trials under varying task loads and network

conditions to confirm generalizability.

4 Results

4.1 Results of the fog-end collaborative

prediction mechanism for transmission

volume compression

In order to verify the operational performance of the

smart city information resource collaboration system

under fog computing, the effectiveness and accuracy of

the proposed algorithms are verified respectively. The

experiments were conducted on a representative fog-edge

computing platform with the following hardware

specifications: Intel Core i5-8265U processor (4 cores, 8

threads, 1.6GHz), 8GB DDR4 RAM, 256GB SSD

storage, and Ubuntu 20.04 LTS operating system. No

dedicated GPU was used, and all computations were

performed on the CPU. This setup closely reflects the

capabilities of typical low-power IoT gateways and fog

nodes used in real-world deployments under constrained

resource conditions. The hyperparameters in the

experiments were determined through preliminary

testing. The order of the autoregressive model was

selected based on the Akaike Information Criterion

(AIC), the number of clusters k in K-means was chosen

36 Informatica 49 (2025) 27-42 Y. Xiao et al.

using the elbow method, and the cost function weights in

the KLED algorithm were fine-tuned through multiple

trial experiments. All parameters were validated on

separate test sets to ensure the robustness of the results.

The study first used K-means clustering algorithm to

divide the sensing terminals into 7 clusters, and generated

bandwidth capacity based on Gaussian distribution

()2,iWb N = , where

 is the mean value of link i

bandwidth capacity and represents the variance of link

bandwidth variance. To reduce the chance error, the mean

value of five independent replicate experiments was used

as the experimental result for each experiment. The

experimental results of the data fit validity of the

prediction mechanism are shown in Figure 5.

06

:1
0:

05

18.5

18.0

18.5

19.0

19.5

20.0

18.0

17.5

17.0

06
:1

2:
11

06
:0

4:
05

06
:0

9:
10

06
:1

0:
12

06
:1

3:
02

06
:1

3:
11

06
:1

1:
04

06
:1

0:
20

06
:1

1:
08

06
:1

0:
05

06
:0

8:
13

06
:0

8:
03

T
em

p
er

at
u
re

(°
C

)

Time(hh:mm:ss)

Predicted value of terminal 1

Predicted value of terminal 43

Predicted value of terminal 33

Measured value of terminal 1

Measured value of terminal 43

Measured value of terminal 33

Figure 5: Fitting of measured value and predicted value in prediction mechanism

From the experimental results of fitting the temperature

data in Figure 5, the predicted values obtained from the

autoregressive model were highly fitted to the measured

values in terms of variation trends and values. That is, the

fog-end prediction mechanism could effectively compress

the redundant data transmission volume under the edge

network, which helped to reduce the pressure on the edge

bandwidth. The validation results of the effectiveness of

data transmission volume compression are shown in

Figure 6.

0

200

400

600

800

1000

1200

1400

1600

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

D
at

a
tr

an
sm

is
si

o
n
 t

im
es

/n

Error tolerance threshold

TN1 TN33 TN43

(a) Data transmission times under different

error tolerance thresholds

0

50

100

150

200

250

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

N
u
m

b
er

 o
f

m
o
d
el

 u
p
d
at

es
/n

Error tolerance threshold

UN1 UN33 UN43

(b) Number of model updates under different

error tolerance thresholds
Figure 6: Experimental results of the effectiveness of

fog-end collaborative prediction mechanism to compress

data transmission

As shown in Figure 6, a test range of 0.01 to 0.10 was

selected based on preliminary experiments. When the

threshold was set below 0.01, excessive synchronization

requests were triggered, increasing communication

overhead; when it exceeded 0.10, prediction accuracy

dropped significantly. The selected range provided a

well-balanced trade-off between transmission cost and

prediction performance, making it suitable for edge

computing environments. In the experiments on the

effectiveness of data transmission volume compression,

the reduction rate of data traffic within the edge network

was used to focus on the reduction of data compression

A Fog Computing-Based Collaborative Information Resource System… Informatica 49 (2025) 27–42 37

rate. Experiments with different error tolerance thresholds

on the number of data transmissions and the number of

model updates were designed to verify the effect of the

maximum error tolerance threshold on the number of

communication interactions. From Figure 6(a), as the

threshold value increased, the number of data

transmissions decreased for all three terminals, especially

in the interval from 0.01 to 0.04, while the trend was

more stable in the interval from 0.04 to 0.10. Therefore,

the higher the fitting accuracy of the prediction model,

the less sensitive the fog-end collaborative prediction

mechanism was to the error tolerance threshold. Figure

6(b) shows that as the threshold value decreased, the

number of model updates gradually increased, i.e., the

requirement for higher data accuracy, and thus the

prediction model was required to provide more accurate

data fit and prediction accuracy.

4.2 Performance of fog-end synchronization

duration adaptive algorithm based on

spatio-temporal correlation

Under the fog-end collaborative prediction mechanism,

an effective and accurate synchronization wait time is

required not only to reduce the chance of false positives,

but also to shorten the waiting time of the device as much

as possible without false positives, thus improving the

efficiency of data acquisition. Therefore, the study used

two metrics, namely, the misjudgment rate and mean

absolute error (MAE), to verify the performance of the

adaptive algorithm, and the experimental results are

shown in Table 2.

Table 2: Misjudgment rate and MAE of different algorithms

Algorithm

Misjudgment rate (%) MAE (*e-5)

Maximum

value

Average

value

Minimum

value

Maximum

value

Average

value

Minimum

value

STATIC 52.0 30.9 13.7 5.52 3.62 1.53

ESM 39.9 18.5 15.8 5.06 3.04 1.39

TSAS 18.8 12.7 4.6 4.19 2.60 1.34

In Table 2, two static threshold schemes, STATIC

algorithm and ESM, were selected experimentally as a

comparison to verify the effectiveness of the TSAS

algorithm. In terms of the average false alarm rate, the

TSAS algorithm reduced the false alarm rate by 31.35%

and 58.90% compared to the ESM and STATIC

algorithms. Considering that the fog edge network had

the characteristics of narrow bandwidth and weak

connection, the study further analyzed the effect of

bandwidth fluctuation of the fog edge network link on the

false positive rate and MAE, and the experimental results

are shown in Figure 7.

100806040200

60

50

40

30

20

10

0

Bandwidth fluctuation variance

E
rr

o
r

ra
te

(%
)

STATIC
ESM
TSAS

(a) Influence of bandwidth fluctuation

misjudgment rate

100806040200

60

50

40

30

20

10

0

Bandwidth fluctuation variance

M
A

E
(*

e-
5

)

STATIC
ESM
TSAS

(b) Impact of bandwidth fluctuation on MAE
Figure 7: The impact of bandwidth fluctuation of fog

edge network link on the error rate and MAE

As shown in Fig. 7(a) and Fig. 7(b), with the increase of

the fluctuation variance of the link bandwidth, the false

positive rate and MAE of the synchronous waiting time

both increased. The comparison of the three algorithms

showed that the false alarm rate and MAE of the TSAS

algorithm were significantly lower than those of the

STATIC algorithm and ESM. At the wave variance of

100, the false positive rate and MAE of TSAS algorithm

were 30.5% and 31*e-5, indicating that making full use of

the spatial association information of the sensing terminal

could effectively reduce the false alarm rate in the

cooperative prediction mechanism. The results of further

analysis of the influence of the distance between the

terminal and the fog edge device on the false positive rate

38 Informatica 49 (2025) 27-42 Y. Xiao et al.

based on the STAS algorithm and the ESM algorithm are

shown in Figure 8.

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.04
4 3 2 5 7 6 0 1

Perception node cluster

M
is

ju
d

g
m

en
t

ra
te

(a) Error rate statistics of different sensing

clusters based on STAS algorithm

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.04
4 3 2 5 7 6 0 1

Perception node cluster

M
is

ju
d
g
m

en
t

ra
te

(b) Error rate statistics of different sensing

clusters based on ESM algorithm
Figure 8: Experimental results of the influence of the

distance between the terminal and the fog edge

equipment on the error rate

The fluctuation variance of each link was set to 10 in the

experiment, and the horizontal coordinates were the

different clusters ranked by the distance between the

cluster center and the data aggregation node from

smallest to largest. From Figure 8, both the mean and

variance of the false positive rate increased with the

increase of data transmission distance. When the

transmission link was longer, the highest false positive

rate of STAS algorithm and ESM algorithm was 16% and

17%, respectively. That is, the longer the transmission

link is and the more complex the bandwidth variance is,

the greater the impact on the false positive rate of the

fog-end synchronization prediction mechanism.

4.3 Performance of collaborative

information resource system for smart

cities under fog computing

To verify the effectiveness of the KLED algorithm

proposed in the study and the performance of the

information resource collaboration system, the scientific

workflow in Workflow Generator was selected as the

service flow structure for the benchmark test. The

workflow included four service structures, Montage,

CyberShake, SIPHT, and LIGO Inspiral Analysis. Three

comparative deployment strategies were used as

baselines: Random Mapping, the Multi-Index Task-aware

Edge scheduling algorithm (MITE), and the Key-Link

algorithm (KL) implemented in this study. The KL

algorithm followed a critical-chain-first placement

strategy, assigning services along the shortest computing

paths in the DAG while ignoring real-time

communication or bandwidth dynamics. The experiments

were repeated five times independently for each test, and

the average value was taken as the final experimental

result. The comparison of the overall service completion

time of different algorithms under the four service

structures is shown in Figure 9.

0.4

0.3

0.2

0.1

25
M

ak
es

p
an

(s
)

50 100

Random

Service(n)

MITE KL KLED

0.245

0.089

0.076
0.068

0.276

0.167

0.143
0.115

0.348

0.196
0.177

0.142

0.0

(a) Overall completion time under different

scales of Montage service workflow
3.0

2.0

1.0

30

M
ak

es
p
an

(s
)

50 100

Random

Service(n)

MITE KL KLED

1.467
1.352

1.315
1.301

1.5821.536
1.498

1.375

2.814 2.188

1.742

1.613

0.0

(b) Overall completion time under different

scales of CyberShake service workflow

(c) Overall completion time under different

scales of SIPHT service workflow

9

6

2

30

M
ak

es
p

an
(s

)

60 100

Random

Service(n)

MITE KL KLED

4.632

2.435
2.742

2.364

5.236 4.678
4.125

3.741

7.922
4.789

4.695
4.363

0
1

5
4

3

7
8

(d) Overall completion time under different

scales of LIGO Inspiral Analysis service

workflow

5

3

1

30

M
ak

es
p

an
(s

)

50 100

Random

Service(n)

MITE KL KLED

2.135

1.856
2.064

1.743

2.767
2.138

2.232
1.886

4.661 3.898
3.667

2.998

0

2

4

Figure 9: Comparison of overall service completion time

of different algorithms under four service structures

A Fog Computing-Based Collaborative Information Resource System… Informatica 49 (2025) 27–42 39

Makespan refers to the total time required to complete all

tasks within a workflow, measured from the start of the

first task to the completion of the last one. It serves as a

key metric to evaluate the overall scheduling efficiency

and system responsiveness of service deployment

strategies. In Figure 9, the makespan of the KLED

algorithm proposed in the study substantially

outperformed the Random deployment algorithm under

four different service structures, and both outperformed

the MITE algorithm and the KL algorithm. In the setting

of service size of 100, the KLED algorithm reduced

makespan by 19.77%, 7.41%, 7.07%, and 18.24%,

respectively, compared to the KL algorithm for the four

service structures of Montage, CyberShake, SIPHT, and

LIGO Inspiral Analysis, i.e., the KLED algorithm

outperformed the the other three algorithms. As the

service size increased from 25 to 50 and 50 to 100, the

makespan of KLED in the Montage structure increased

by 40.87% and 19.01%, respectively. That is, the more

complex the service process is, the operational

performance requirements of the system increase as the

communication relationships between subservices in the

DAG increase. The study conducted impact proportional

analysis experiments on the computation time, queuing

waiting time and communication time that affect

makespan, and the results are shown in Table 3.

Table 3: Proportion of influence of calculation time, queue waiting time and communication time on makespan

Service size Time type Random MITE KL KLED

25

Waiting time 0.08 0.42 0.39 0.14

Communication time 0.73 0.38 0.35 0.43

Calculated time 0.21 0.22 0.27 0.42

50

Waiting time 0.12 0.47 0.41 0.22

Communication time 0.66 0.32 0.34 0.34

Calculated time 0.24 0.23 0.25 0.43

100

Waiting time 0.19 0.45 0.40 0.18

Communication time 0.63 0.38 0.40 0.40

Calculated time 0.18 0.26 0.19 0.41

1000

Waiting time 0.75 0.78 0.77 0.73

Communication time 0.20 0.14 0.15 0.11

Calculated time 0.04 0.07 0.06 0.15

Table 3 presents the proportion of three-time components

contributing to the overall makespan. Calculated time

reflected the actual execution duration of tasks,

communication time indicated the delay caused by data

transmission between services, and waiting time

represented the efficiency of resource scheduling. The

results showed that when the service size was small, the

Random algorithm exhibited the highest proportion of

communication time, suggesting that its deployment

strategy failed to minimize the transmission distance

between services. MITE and KL showed a higher

proportion of waiting time, indicating bottlenecks in task

scheduling. In contrast, the KLED algorithm significantly

increased the proportion of calculated time across

different service sizes, demonstrating that system

resources were more effectively utilized for execution

after optimizing scheduling and transmission. As the

service size grew to 1000, all four algorithms exhibited a

sharp increase in waiting time proportion, primarily due

to the limited parallelism, making queue delays the

dominant factor in the overall makespan. The results of

the KLED algorithm, MITE algorithm, and KL algorithm

on the number of fog edge devices and network

bandwidth on system performance for the Montage

service with a service size of 100 are shown in Figure 10.

5 5040302010

1

2

3

4

M
ak

es
p
an

(s
)

Number of edge nodes(n)

0
15 25 35 45

KLED

KL

MITE

(a) Influence of the number of edge nodes

on service completion time

40 130907050

M
ak

es
p

an
(s

)

60 80

0.3

0.0

0.6

0.9

1.2

1.5

1.8

2.1

120110100
Average bandwidth of fog edge

network(Mbps)

KLED

KL

MITE

(b) Impact of network bandwidth on

service completion time
Figure 10: Effects of the number of fog edge devices and

network bandwidth on system performance

40 Informatica 49 (2025) 27-42 Y. Xiao et al.

In Fig. 10(a), the makespan of all three algorithms

decreased gradually as the number of fog edge devices

increased from 5 to 50, and the KLED algorithm

outperformed the KL algorithm and the KL algorithm

outperformed the MITE algorithm. The decrease of

makespan was more obvious when the number of fog

edge devices was increased from 5 to 15 than when the

number of devices was increased from 15 to 50. Fig.

10(b) shows that as the available bandwidth increased

from 10 Mbps to 150 Mbps, overall system performance

improved accordingly. The most significant reduction in

makespan was observed in the range of 40 to 100 Mbps.

However, when the bandwidth exceeded 100 Mbps, the

performance gains became marginal and the curve began

to flatten, indicating that the communication bottleneck

was largely eliminated. At this stage, computational and

scheduling capacities became the primary limiting

factors. Therefore, it is important to balance resource

investment and performance improvement to avoid

unnecessary resource overprovisioning.

To further validate the effectiveness of the proposed

method, several representative approaches were selected

as baseline methods, and their core mechanisms were

reimplemented under the same experimental platform and

dataset for quantitative comparison. The selected methods

included: the sensing prediction mechanism based on

throughput constraints proposed by J. Fei et al. [9], the

data transmission optimization mechanism for vehicular

networks proposed by W. Zhang et al. [11], and the

multi-objective ant colony optimization–based service

deployment strategy proposed by T. Huang et al. [15].

The evaluation metrics included false alarm rate, mean

absolute error, and service completion time. The

comparison results are presented in Table 4.

Table 4: Results of comparison with the existing methods

Method Source False Alarm Rate (%) MAE (×10-5) Service Completion Time (s)

Ref. [9] (Reproduced) 30.9 3.62 26.7

Ref. [11] (Reproduced) 27.4 3.20 26.5

Ref. [15] (Reproduced) 26.8 3.10 25.1

Proposed Method 12.7 2.60 21.8

In the table, the proposed method outperformed the three

baseline methods in terms of false alarm rate, mean

absolute error, and service completion time. Compared to

Ref. [9] and Ref. [11], it demonstrated significantly better

performance in prediction accuracy and synchronization.

Compared to Ref. [15], it also achieved shorter

completion time, indicating superior overall efficiency in

both data transmission and task scheduling.

5 Discussion
To enhance the real-time processing of sensing data and

improve service deployment efficiency in smart city

scenarios, this study constructed a fog computing-based

collaborative information resource system. It integrated

sensing data, computational resources, and service

dependency structures, and achieved intelligent

scheduling and adaptive optimization at the edge layer

through two core algorithms: TSAS and KLED.

Specifically, the TSAS algorithm introduced a

spatiotemporal correlation mechanism to dynamically

adjust synchronization waiting times and prediction

errors, thereby optimizing data compression and

synchronization in high-frequency acquisition

environments. The KLED algorithm combined K-means

clustering with an improved scheduling strategy, taking

into account resource heterogeneity and task

dependencies among edge nodes, which effectively

improved task parallelism and overall service execution

efficiency.

Experimental results demonstrated that the TSAS

algorithm reduced the false alarm rate to 18.8% and

maintained the mean absolute error at 2.6×10-5, thereby

reducing unnecessary communication overhead while

ensuring prediction accuracy. Meanwhile, the KLED

algorithm achieved reductions in makespan of 18.24%

and 7.41% compared to traditional KL and MITE

deployment strategies across multiple workflow

structures, and showed better scheduling stability and

resource utilization under high-concurrency conditions.

Building on the above experimental results, the proposed

TSAS and KLED algorithms also demonstrated clear

advantages in terms of computational efficiency and

deployment feasibility. The TSAS synchronization

mechanism was based on an autoregressive model

combined with exponential smoothing, involving only

low-order matrix operations and sliding window updates.

This resulted in significantly lower computational

complexity compared to traditional deep learning-based

prediction methods, making it more suitable for

resource-constrained edge nodes. The KLED deployment

strategy required maintaining only local service

dependencies and scheduling states, with low memory

overhead and structural stability, enabling efficient

execution in heterogeneous devices and

bandwidth-limited environments. The overall system

adopted a modular design that facilitated integration into

existing smart city edge infrastructures and supports good

scalability. Therefore, TSAS and KLED not only

outperformed traditional methods in terms of prediction

accuracy and service latency, but also offered

comprehensive advantages in computational efficiency

and practical deployment adaptability.

While the experiments in this study focused on

moderate-scale scenarios, the proposed system was

A Fog Computing-Based Collaborative Information Resource System… Informatica 49 (2025) 27–42 41

designed to support scalability in real-world deployments.

TSAS executed independently on each edge device,

requiring no global coordination, which enabled linear

scalability as the number of devices increased. KLED,

although involving clustering across multiple nodes,

could be extended using hierarchical or region-based

clustering frameworks to accommodate large-scale smart

city environments with thousands of sensing points.

Moreover, the modular architecture of both algorithms

allowed parallel deployment and distributed processing,

reducing the risk of performance bottlenecks. These

design features made the system adaptable to future

urban-scale deployments. Although security was not the

primary focus of this study, data transmission was

assumed to be protected by standard encryption, and

basic access control could be applied to prevent

unauthorized synchronization. The modular design of

TSAS and KLED also allowed future integration of

security mechanisms such as authentication and anomaly

detection.

6 Conclusion
The convergence and development of scientific

technologies such as artificial intelligence, the Internet of

Things, and big data provide the basis for developing

many intelligent analytical services, such as smart cities

and intelligent transportation. The study combined fog

computing, proposed a fog-end collaborative prediction

mechanism to compress the amount of data transmission

with high information redundancy in the edge network,

and designed a KLED algorithm to reduce the overall

computing time of the service and the corresponding

delay of the service. The experimental results showed that

the autoregressive model's prediction mechanism could

effectively fit the changes of the temporal sensing data,

and the TSAS algorithm could reduce the

misclassification rate by about 31.35% and 58.90%

compared with the STATIC algorithm and the ESM

algorithm. The experimental performance results of the

KLED algorithm showed that the highest waiting time

sharing rate reached 73% when the service scale was

1000, and reduced the total calculation time of the service

by approximately 13.12%, which effectively improved

the service performance of the information. The service

performance of the resource collaboration system was

effectively improved. It is worth noting that the current

experiments were conducted using a real-world dataset

collected from 54 sensing devices in a specific urban

scenario to verify the feasibility and effectiveness of the

proposed approach. Although multiple datasets were not

tested in this study, the core design of the TSAS and

KLED algorithms was modular and adaptable to other

fog computing environments. Future work will focus on

validating the method across diverse datasets and

deployment settings.

References
[1] A. Camero, and E. Alba, “Smart city and

information technology: a review,” Cities, vol. 93, pp.

84-94, 2019.

https://doi.org/10.1016/j.cities.2019.04.014

[2] A. Kirimtat, O. Krejcar, A. Kertesz, and M. F.

Tasgetiren, “Future trends and current state of smart

city concepts: a survey,” IEEE Access, vol. 8, pp.

86448-86467, 2020.

https://doi.org/10.1109/ACCESS.2020.2992441

[3] Y. Shen, “Integration of IoT and Digital Twin for

Intelligent Management of Urban Underground Pipe

Galleries in Smart Cities,” Informatica, vol. 49, no.

15, 2025. https://doi.org/10.31449/inf.v49i15.7903

[4] B. P. L. Lau, S. H. Marakkalage, Y. Zhou, N. U. I.

Hassan, C. Yuen, M. Zhang, and U. Tan, “A survey

of data fusion in smart city applications,”

Information Fusion, vol. 52, pp. 357-374, 2019.

https://doi.org/10.1016/j.inffus.2019.05.004

[5] M. Cetin, “Using GIS analysis to assess urban green

space in terms of accessibility: case study in

Kutahya,” International Journal of Sustainable

Development & World Ecology, vol. 22, no. 5, pp.

1-5, 2015.

https://doi.org/10.1080/13504509.2015.1061066

[6] E. Kaya, M. Agca, F. Adiguzel, and M. Cetin,

“Spatial data analysis with R programming for

environment,” Taylor & Francis, vol. 25, no. 6, pp.

1521-1530, 2019.

https://doi.org/10.1080/10807039.2018.1470896

[7] M. Cetin, T. Aksoy, S. N. Cabuk, M. A. S.

Kurkcuoglu, and A. Cabuk, “Employing remote

sensing technique to monitor the influence of newly

established universities in creating an urban

development process on the respective cities,” Land

Use Policy, vol. 109, pp. 109, 2021.

https://doi.org/10.1016/j.landusepol.2021.105705

[8] J. Zhou, P. Wang, and L. Xie, “Research on

resource allocation optimization of smart city based

on big data,” IEEE Access, vol. 8, pp.

158852-158861, 2020.

https://doi.org/10.1109/ACCESS.2020.3017765

[9] J. Fei, and X. Ma, “Fog computing perception

mechanism based on throughput rate constraint in

intelligent Internet of Things,” Personal and

Ubiquitous Computing, vol. 23, no. 3, pp. 563-571,

2019. https://doi.org/10.1007/s00779-019-01200-9

[10] A. Ali, Y. Zhu, and M. Zakarya, “A data

aggregation-based approach to exploit dynamic

spatio-temporal correlations for citywide crowd

flows prediction in fog computing,” Multimedia

Tools and Applications, vol. 80, no. 20, pp.

31401-31433, 2021.

https://doi.org/10.1007/s11042-020-10486-4

[11] W. Zhang, and G. Li, “An efficient and secure data

transmission mechanism for Internet of vehicles

considering privacy protection in fog computing

environment,” IEEE Access, vol. 8, pp. 64461-64474,

2020.

https://doi.org/10.1109/ACCESS.2020.2983994

[12] H. Qiao, T. Wang, and P. Wang, “A tool wear

monitoring and prediction system based on

multiscale deep learning models and fog computing,”

42 Informatica 49 (2025) 27-42 Y. Xiao et al.

The International Journal of Advanced

Manufacturing Technology, vol. 108, no. 7, pp.

2367-2384, 2020.

https://doi.org/10.1007/s00170-020-05548-8

[13] J. Yang, J. Wen, Y. Wang, B. Jiang, H. Wang, and

H. Song, “Fog-based marine environmental

information monitoring toward ocean of things,”

IEEE Internet of Things Journal, vol. 7, no. 5, pp.

4238-4247, 2019.

https://doi.org/10.1109/JIOT.2019.2946269

[14] C. Núñez-Gómez, B. Caminero, and C. Carrión,

“HIDRA: a distributed blockchain-based architecture

for Fog/Edge computing environments,” IEEE

Access, vol. 9, pp. 75231-75251, 2021.

https://doi.org/10.1109/ACCESS.2021.3082197

[15] T. Huang, W. Lin, C. Xiong, R. Pan, and J. Huang,

“An ant colony optimization-based multiobjective

service replicas placement strategy for fog

computing,” IEEE Transactions on Cybernetics, vol.

51, no. 11, pp. 5595-5608, 2020.

https://doi.org/10.1109/TCYB.2020.2989309

[16] M. Ayoubi, M. Ramezanpour, and R. Khorsand,

“An autonomous IoT service placement

methodology in fog computing,” Software: Practice

and Experience, vol. 51, no. 5, pp. 1097-1120, 2021.

https://doi.org/10.1002/spe.2939

[17] Z. Ning, J. Huang, and X. Wang, “Vehicular fog

computing: enabling real-time traffic management

for smart cities,” IEEE Wireless Communications,

vol. 26, no. 1, pp. 87-93, 2019.

https://doi.org/10.1109/MWC.2019.1700441

[18] I. Afzal, N. ul Amin, Z. Ahmad, and A. Algarni, “A

latency-aware and fault-tolerant framework for

resource scheduling and data management in

fog-enabled smart city transportation systems, ”

Computers, Materials & Continua, vol. 82, no. 1, pp.

1377 – 1399, 2025.

https://doi.org/10.32604/cmc.2024.057755

[19] K. D. Singh, P. D. Singh, R. Verma, and S. Maurya,

“Optimizing urban resource management through

cloud and fog computing in smart cities, ” AIP

Conference Proceedings, vol. 3121, no. 1, 030002,

2024. https://doi.org/10.1063/5.0222009

[20] T. P. da Silva, T. V. Batista, F. Lopes, and A. Rocha

Neto, “ Fog computing platforms for smart city

applications: a survey, ” ACM Transactions on

Internet Technology, vol. 22, no. 4, Article 1, 2022.

https://doi.org/10.1145/3488585

[21] S. Rajagopal, P. K. Tripathi, M. Deshmukh, S.

Choudari, and A. Kumar, “Edge computing–smart

cities: optimizing data processing & resource

management in urban environments, ” Journal of

Information Systems Engineering and Management,

vol. 10, no. 5s, 2025.

https://doi.org/10.52783/jisem.v10i5s.667

[22] A. Elsayed, K. Mohamed, and H. Harb, “Enhanced

traffic congestion management with fog computing:

a simulation-based investigation using

iFog-Simulator,” arXiv preprint, arXiv:2311.01181,

2023. https://arxiv.org/abs/2311.01181

[23] M. Fahimullah, S. Ahvar, and M. Trocan, “A

review of resource management in fog computing:

machine learning perspective, ” arXiv preprint,

arXiv:2209.03066, 2022.

https://arxiv.org/abs/2209.03066

[24] Z. Wang, M. Goudarzi, J. Aryal, and R. Buyya,

“Container orchestration in edge and fog computing

environments for real-time IoT applications,” arXiv

preprint, arXiv:2203.05161, 2022.

https://arxiv.org/abs/2203.05161

[25] S. Iftikhar, S. S. Gill, C. Song, M. Xu, M. S.

Aslanpour, and A. N. Toosi, “AI-based fog and edge

computing: a systematic review, taxonomy and

future directions,” arXiv preprint, arXiv:2212.04645,

2022. https://arxiv.org/abs/2212.04645

[26] A. M. Alsmadi, et al., “Fog computing scheduling

algorithm for smart city,” International Journal of

Electrical and Computer Engineering, vol. 11, no. 3,

pp. 2219 – 2228, 2021.

https://doi.org/10.11591/ijece.v11i3.pp2219-2228

[27] B. Tang, Z. Chen, G. Hefferman, S. Pei, W. Tao, H.

He, and Q. Yang, “Incorporating intelligence in fog

computing for big data analysis in smart cities, ”

IEEE Transactions on Industrial Informatics, vol. 13,

no. 5, pp. 2140 – 2150, 2017.

https://doi.org/10.1109/TII.2017.2679740

[28] P. S. Rathore, R. Kharel, D. Choi, and J. H. Park, “

Energy-efficient cluster head selection through relay

approach for WSN, ” The Journal of

Supercomputing, vol. 77, pp. 7649 – 7675, 2021.

https://doi.org/10.1007/s11227-021-03835-0

[29] A. Hazra, P. Rana, M. Adhikari, and T. Amgoth, “

Fog computing for next-generation Internet of

Things: fundamentals, applications and research

challenges,” Journal of Cloud Computing, vol. 11,

no. 1, Article 17, 2022.

https://doi.org/10.1186/s13677-022-00301-7

[30] C. Guerrero, I. Lera, and C. Juiz, “A lightweight

decentralized service placement policy for

performance optimization in fog computing,” Journal

of Ambient Intelligence and Humanized Computing,

vol. 10, no. 6, pp. 2435-2452, 2019.

https://doi.org/10.1007/s12652-018-0914-0

