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Effective integration and scheduling of information resources play a pivotal role in realizing intelligent 

management within the framework of smart city development. This research endeavors to overcome two 

significant hurdles: the redundancy in data transmission during the acquisition phase at the network's 

edge and the inefficiencies encountered when deploying analytical services across diverse edge devices. 

To address these challenges, a collaborative system architecture rooted in fog computing is introduced. 

A prediction mechanism, driven by spatiotemporal correlations, is incorporated to dynamically 

modulate data transmission intervals. This adjustment effectively curtails unnecessary synchronization, 

thereby enhancing the efficiency of data acquisition. Moreover, a deployment strategy based on 

multi-objective optimization is devised to allocate analytical tasks among edge devices constrained by 

limited resources, aiming to minimize the overall execution time. Experimental evaluations carried out 

on a real-world dataset encompassing 54 sensing terminals reveal that the proposed synchronization 

mechanism outperforms two traditional methods, reducing the false alarm rate by 58.90% and 31.35%, 

respectively, with a minimum mean absolute error of 2.6×10-5. Additionally, the deployment strategy 

achieves an average reduction of 13.12% in service completion time across four standard scientific 

workflow structures. The system adeptly alleviates bandwidth constraints and computational limitations 

inherent in edge networks, providing a practical and effective solution for efficient data transmission 

and task scheduling in extensive smart city environments. 

Povzetek: Opisan je nov sistem pametnih mest, ki z algoritmoma TSAS in KLED na osnovi megličnega 

računalništva zmanjša prenose podatkov in optimira razmestitev storitev znotraj robnega omrežja. 

 

1 Introduction 
Smart cities leverage information technologies and 

intelligent methodologies to facilitate real-time awareness 

of urban operations, seamless data integration, and 

informed decision-making, thereby enhancing urban 

governance and the delivery of public services [1]. In 

practical implementations, a vast array of intelligent 

devices is extensively deployed in public infrastructure 

scenarios, such as transportation, energy, and 

environmental monitoring, culminating in a 

comprehensive urban sensing network [2]. These devices 

continuously produce multi-source, heterogeneous 

inspection data, offering abundant informational 

resources for urban management. However, the sensing 

data in smart city environments is marked by its 

widespread distribution, substantial volume, and high 

diversity, presenting challenges for existing systems in 

data collection, synchronized transmission, and unified  

 

 

management. On one hand, various types of terminal  

devices display discrepancies in data formats, upload  

frequencies, and interface protocols, leading to 

inefficiencies in data integration [3-4]. On the other hand, 

the conventional cloud-centric architecture is plagued by 

issues like centralized computational burdens and 

elevated response latencies, potentially impeding its 

capacity to satisfy the real-time and region-specific 

processing requirements of city-level applications [5-6]. 

In recent years, edge computing has surfaced as an 

extension of cloud computing, offloading a portion of the 

computational workload to devices situated closer to the 

data source, thereby effectively diminishing latency [7]. 

Nevertheless, edge computing typically conducts data 

processing locally at individual terminal nodes, lacking 

coordination mechanisms and intermediate-layer 

management among nodes. Conversely, fog computing 

introduces an intermediary "fog node" layer between the 

cloud and the edge, enabling regional collaboration, task 

offloading, and resource-aware scheduling among 
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distributed nodes. This architecture is more adeptly suited 

for smart city scenarios characterized by heterogeneous 

sensor distributions, diverse services, and region-based 

collaborative prerequisites [8]. Consequently, this study 

introduces a collaborative information resource system 

tailored for smart cities, grounded in fog computing, 

which decentralizes computing power from centralized 

cloud centers to fog edge devices. An innovative 

approach is proposed, integrating the K-Means clustering 

algorithm with Gaussian distribution, to be incorporated 

into the system's sensing devices. This integration aims to 

minimize errors in the cooperative prediction mechanism. 

Furthermore, the enhanced algorithm and system generate 

increased broadband capacity, thereby expanding both the 

number of fog end edge devices and network broadband 

within smart city environments. The objective of this 

study is to tackle challenges including data redundancy, 

inefficient synchronization, and prolonged response 

latency in service deployment within fog-edge 

environments, with the ultimate goal of improving the 

real-time performance and deployment efficiency of 

information resource systems in smart cities. To achieve 

this, the research zeroes in on two primary issues: (1) 

devising effective methods for synchronizing and 

compressing multi-source sensing data in edge networks, 

and (2) developing strategies for optimal service 

deployment and scheduling on fog computing nodes with 

limited resources. 

2 Related works 
The collaborative information resource system designed 

for smart cities centers on two key challenges: the 

collection of perceptual data and the deployment strategy 

for edge networks. The temporal data collection process 

of sensing terminals is marked by data redundancy and 

the transmission of large volumes of data. Fei and Ma 

introduced the throughput rate constraint and sensing 

strategy in fog computing to the fog access point, and 

established a prediction model using multi-information 

sensing to infer the degree distribution of fog nodes in the 

network, and obtained a network transmission efficiency 

and environmental sensing accuracy close to 90% [9]. Ali 

et al. targeted at smart public safety and traffic 

management in cities, proposed a dynamic deep hybrid 

spatio-temporal neural network for high-precision traffic 

flow prediction, and introduced an exaggerated method of 

attention mechanism for city-wide short-time crowd flow 

prediction. The latter improved the accuracy by about 

20.8% and 8.8% over the former on two traffic datasets 

[10]. Zhang and Li addressed the existence of data 

transmission mechanism in vehicular network Real-time, 

efficient computational tasks, and vehicle data privacy 

problems, and designed a data transmission mechanism 

for Telematics in fog computing environment. The 

mechanism proposed privacy-preserving task assignment 

and data aggregation mechanisms in a fog node-assisted 

crowd-sensing model for hilarious and secure data 

transmission [11]. Qiao et al. proposed a tool wear 

monitoring and prediction system based on a deep 

learning model and fog computing. The architecture 

included edge computing layer, fog computing layer and 

cloud computing layer, and the accuracy, response time 

and bandwidth consumption performance of the system 

were verified by prediction experiments [12]. Yang et al. 

used a numerical gradient-based approach to process raw 

data collected from marine survey work and designed an 

improved algorithm for multi-sensor information fusion, 

which effectively improved the quality of marine data 

and information utilization efficiency [13]. 

Rational deployment of analytic services in the fog edge 

network is the key to provide high performance and low 

latency computing services. Núñez-Gómez et al. 

proposed an architecture based on the Ethernet 

blockchain to address the resource coordination problem 

due to the distributed nature of fog computing. The 

experimental results verified its low overhead and 

efficient resource coordination when introduced into the 

system [14]. Huang et al. designed a multi-objective 

model including deployment cost and service latency for 

the deployment of services among nodes in fog 

computing, and proposed a multi-copy ant colony 

optimization algorithm for model solving to obtain a 

solution strategy with qualified diversity and accuracy 

[15]. Ayoubi et al. designed an autonomous IoT service 

placement method including four phases: monitoring, 

analysis, decision making and execution, which 

prioritizes requested services based on service deadlines 

and the state of available resources [16]. Ning et al. 

constructed a three-layer in-vehicle fog computing model 

to experiment distributed traffic management for the 

real-time traffic management problem in smart cities and 

validated the model based on performance analysis of 

real skid trajectories [17]. A decentralized optimization 

strategy for service layout in fog computing was 

proposed by Guerrero et al. The core idea of the strategy 

was to place the most popular services close to the users. 

The experimental results showed that this decentralized 

algorithm improved the net clusters usage and service 

latency. To facilitate a structured comparison, Table 1 

summarizes the key techniques, outcomes, and 

limitations of recent fog computing-based approaches for 

smart city applications.

 

Table 1: Work comparison table 

Author(s) 
Method / 

Application area 
Key techniques Results Limitations 

Fei & Ma [9] 

Fog-based 

network 

prediction 

Throughput constraint; 

multi-source sensing; degree 

distribution inference 

Achieved ~90% 

network 

transmission 

efficiency and 

environmental 

Did not address 

adaptive 

synchronization or 

real-time transmission 

optimization 
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sensing accuracy 

Ali et al. [10] 

Urban traffic & 

crowd flow 

prediction 

Hybrid spatio-temporal neural 

network; attention mechanism 

Accuracy 

improved by 

20.8% and 8.8% 

on two datasets 

Focused only on 

prediction, lacks 

deployment or 

transmission 

considerations 

Zhang & Li 

[11] 

Telematics data 

privacy in 

vehicular fog 

networks 

Privacy-preserving task 

assignment; fog-assisted 

crowdsensing 

Secure and 

efficient data 

transmission 

mechanism 

No dynamic scheduling 

or real-time model 

adaptation 

Qiao et al. 

[12] 

Tool wear 

monitoring with 

deep learning 

and fog layers 

Layered architecture 

(edge–fog–cloud); deep 

prediction model 

Improved 

accuracy, 

reduced latency 

and bandwidth 

use 

Application-specific; 

lacks general 

deployment strategy 

Yang et al. 

[13] 

Marine survey 

data processing 

Numerical gradient; multi-sensor 

data fusion algorithm 

Enhanced marine 

data quality and 

utilization 

Not designed for 

dynamic or scalable 

urban edge scenarios 

Núñez-Gómez 

et al. [14] 

Fog resource 

coordination via 

blockchain 

Ethernet-based blockchain; 

resource negotiation model 

Low system 

overhead, 

efficient resource 

coordination 

High complexity of 

blockchain 

deployment; lacks 

scheduling 

optimization 

Huang et al. 

[15] 

Multi-objective 

fog service 

deployment 

Ant colony optimization; 

latency-cost tradeoff model 

Balanced service 

diversity and 

accuracy 

No integration of 

prediction-based edge 

traffic regulation 

Ayoubi et al. 

[16] 

Autonomous IoT 

service 

placement 

Monitor-analyze-decide-execute 

model; resource-aware 

prioritization 

Adaptive task 

allocation based 

on service 

deadlines 

Static scheduling 

model; lacks 

time-sensitive 

transmission modeling 

Ning et al. 

[17] 

Vehicular fog 

computing for 

traffic 

management 

Three-layer fog structure; real 

trajectory-based validation 

Verified 

effective for 

distributed 

real-time traffic 

control 

Focused on traffic 

domain; lacks general 

resource service 

framework 

 

In summary, although existing studies have explored 

aspects of data compression, prediction modeling, and 

service deployment in fog computing environments, there 

remains a lack of unified solutions addressing the 

combined challenges of data redundancy and large-scale 

transmission, particularly under heterogeneous resource 

constraints. Furthermore, while some works consider the 

distribution of sensing and computing tasks, few 

explicitly address the synchronization and coordination 

between them. These overlapping challenges constitute 

the primary focus of this study. To address these 

limitations, this study proposes a collaborative 

information resource system tailored to fog computing 

environments. It introduces a spatiotemporal 

synchronization mechanism to reduce redundant data 

transmission and a multi-objective deployment strategy to 

optimize task scheduling across edge nodes. Together, 

these innovations enable dynamic, efficient, and scalable 

service coordination for smart city scenarios. 

3 Materials and methods 

3.1 Fog-end collaborative prediction 

mechanism for transmission volume 

compression 

The relocation of system services from centralized cloud 

computing centers to decentralized fog computing edge 

networks, with the aim of delivering high-quality services 

with minimal latency, has emerged as a prominent 

research focus and formidable challenge [18-19]. In this 

context, the study proposes a collaborative 

prediction-based transmission compression scheme 

tailored for fog computing environments, and introduces 

a spatiotemporal-aware adaptive synchronization 

algorithm (TSAS). Rather than only adjusting 

synchronization waiting time, TSAS jointly utilizes 

residual modeling and trend prediction to dynamically 

determine the optimal synchronization interval and 

prediction window, thereby improving the timeliness and 

accuracy of data uploads under bandwidth-constrained 

conditions. In addition, a service edge deployment 

algorithm based on improved Kernighan-Lin algorithm 

(KLED) is proposed to further optimize the system 

performance. KLED is designed to deploy 
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computationally intensive services such as traffic flow 

prediction and anomaly detection in environmental data

—key analytical tasks in smart city applications—onto 

resource-constrained edge devices. These services 

typically require low-latency response and distributed 

coordination, which KLED optimizes through adaptive 

resource-aware placement strategies. In the collaborative 

prediction mechanism, the set of n  data continuously 

collected by the sensing terminal at a specific sampling 

frequency is defined as shown in Equation (1). 

( ) ( ) ( ) ( ) 1 1 2 2, , , , , , , ,i i n nD t x t x t x t x=  (1) 

In Equation (1), 
it  represents the data acquisition time 

and 
ix  represents the data measurement value at that 

moment. Assuming that the predicted value of the data at 

that moment is ˆ
tx , then the fitting error ˆ

f t tE x x= −  at 

the moment of t  can be calculated, and the size of the 

fitting error is compared with the error threshold set by 

the system to determine whether to synchronize the actual 

measured data to the fog node [20]. It should be noted 

that the fitting error here refers to the instantaneous 

residual at each time point, used solely to describe the 

pointwise prediction deviation, and should not be 

interpreted as a measure of the overall model fitting 

performance. 

The data acquired through continuous sampling utilizing 

the sensing terminal is organized in chronological 

sequence, signifying that it constitutes a time series. 

Consequently, this collected data can be leveraged to 

forecast the measured values for an upcoming timeframe. 

Considering the limited computational resources of edge 

nodes, an autoregressive model is adopted in this study 

for short-term sensing data prediction. The model offers a 

simple structure and fast inference, enabling stable 

predictions without the need for large-scale training or 

complex prior assumptions, making it well-suited for 

heterogeneous and low-power fog-edge environments. In 

contrast, models such as LSTMs require extensive 

training and high memory usage, while Kalman filters 

depend on accurate prior modeling of system dynamics 

and noise, which are difficult to define in heterogeneous 

edge environments. 

To characterize the linear correlation between the current 

data and its historical states, this study adopts an 

autoregressive model to predict the sensing data, as 

shown in Equation (2). 

1 1 2 2
ˆ

t t t i t i n t n tx x x x x    − − − −= + + + + + +
   (2) 

In Equation (2)， 1 2, , , n    is the sequence of model 

parameters to be calculated. Considering that there are 

often some difficult-to-observe errors in the actual 

measurement process, the study also introduces white 

noise ( )20,t N  , 
i  refers to the i  th 

autoregressive parameter. Based on the idea of multiple 

regression theory, least squares estimation is used to 

calculate the parameters of the prediction model [21-22]. 

After substituting the sequence of the collected data, the 

matrix expression of the time-series linear relationship 

between the measured and predicted values of the data is 

y x = + , and the estimation of the parameter   can 

be obtained as shown in Equation (3). 

( )
-1

ˆ T Tx x x y =                       (3) 

When the fog edge device finishes model modeling, it 

synchronizes the latest model parameters to the 

corresponding sensing terminal, and then the sensing 

terminal completes data collection, and the detailed 

interaction between the two is shown in Figure 1. 
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Figure 1: Flow chart of data acquisition by fog terminal synchronous prediction mechanism 
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In Figure 1, "synchronization wait time" refers to the 

minimum interval required after the last synchronization 

during which the sensing terminal refrains from 

uploading data unless the prediction error exceeds the 

threshold. This mechanism helps reduce data 

transmission frequency when prediction accuracy remains 

acceptable. "Synchronous measured value" denotes the 

original data point identified for upload, triggered either 

by the prediction error exceeding the threshold or the wait 

time reaching its upper limit. Figure 1 illustrates the 

collaborative synchronization process between the 

perception terminal and the fog computing node. The 

orange elements indicate three key parameters that are 

dynamically updated: the maximum allowable error 

threshold, the prediction model parameters, and the 

synchronization wait time. The error threshold is 

adaptively adjusted based on trends in the measured data 

to enhance the responsiveness of the synchronization 

trigger; the prediction model is optimized using residual 

statistics within a sliding window to improve adaptability 

to data pattern changes; and the synchronization wait 

time is updated according to data validity and response 

frequency to reduce unnecessary transmissions. These 

three mechanisms work collaboratively to significantly 

improve the system’s performance in terms of data 

compression and transmission efficiency. 

3.2 Fog-end adaptive synchronization 

algorithm based on spatio-temporal 

correlation 

To address the real-time demands of the collaborative 

prediction mechanism, an analysis of the adaptive 

synchronization algorithm for fog-end edge devices is 

conducted. Additionally, in order to overcome spatial 

limitations, the deployment of a communication 

transmission scheme for fog-end devices within the edge 

network is investigated. Consequently, this study 

introduces the TSAS algorithm. TSAS is well-suited for 

high-frequency urban sensing scenarios, such as traffic 

flow monitoring or environmental noise detection, where 

sensing terminals are densely distributed. Given the 

temporal and spatial continuity of such data, TSAS 

leverages historical measurements to predict the next 

value and only triggers data synchronization when the 

prediction error exceeds a predefined threshold or the 

waiting time reaches a limit. This mechanism 

significantly reduces network transmission load and 

extends the operational life of sensing devices. 

Assuming that a fog edge device is responsible for 

maintaining the data collection process of the prediction 

mechanism of sensing terminals, the N  N  terminals 

are divided into multiple clusters, the set of nodes of the 

m th cluster is defined as  1 2, , , , ,m

i kG p p p p= , 

and a cluster contains k  sensing devices. The 

synchronization waits time threshold and the 

communication link transmission delay of a sensing 

terminal 
ip  at t  are defined as ( )i t  and ( )is t , 

respectively [23]. The synchronization wait time needs to 

be greater than the transmission delay to correctly trigger 

the subsequent data processing process, i.e., if 

( ) ( )i it s t   at time t is defined as a false alarm. 

Therefore, the value ( ),i t  represents the deviation 

between the expected synchronization waiting time and 

the observed transmission delay for sensing device 
ip  at 

time t  as defined in Equation (4). 

( ) ( ) ( ), i ii t t s t = −                   (4) 

Also, ( ),i t
M


 is defined as whether a miscue occurs 

when ( ),
0

i t
M


=  then ( ) ( ) 0i it s t −  , indicating that 

the synchronization wait time at moment t predicts that 

no miscue occurs [24-25]. Thus, the miscalculation rate is 

calculated as shown in Equation (5). 

( )
( ),i tt

i

M
ER i

s


=


                   (5) 

In Eq. (5), ( )ER i  denotes the false positive rate during 

the observed time period, which is the ratio of the 

synchronization wait time not larger than the actual link 

transmission delay. ( )  0,1ER i  . The smaller its value, 

the more accurate the prediction of the synchronous wait 

time threshold. the flow of the TSAS algorithm is shown 

in Figure 2. 
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Figure 2: Adaptive synchronization algorithm of fog terminal based on spatio-temporal correlation 

 

In the initial stage of the fog-end collaborative prediction 

model, each sensing terminal needs to send k  real 

sensing data to the fog edge device as the data base for 

model training. Therefore, the transmission delay 

sequence of message sensing devices is defined as shown 

in Equation (6). 

( ) ( ) ( ) ( ) 1 2, , , , m

i i i i k is t s t s t s t p G=    (6) 

Based on Equation (6), the message transmission delay 

sequences of all sensing devices in the cluster can be 

further obtained, and the average value of all transmission 

delay sequences is employed as the initial value of the 

waiting time threshold. Based on the assumption that 

synchronization wait time exhibits temporal continuity, 

this study employs the Exponential Smoothing Model 

(ESM) to fit its variation trend during the data acquisition 

process in the fog-edge network. The synchronization 

wait time prediction model is defined in Equation (7) [26

–27]. 

( ) ( ) ( ) ( )( ) ( )1 1i i i i it a t t a t s t + =  + −   (7) 

In Equation (7), 1t +  represents the next prediction 

moment, and ( )1i t +  denotes the predicted 

synchronization wait time for sensing terminal ip  at the 

moment of 1t + . ( )ia t  is the adaptive smoothing factor 

computed based on the ratio between the cumulative 

smoothing error and the cumulative absolute error. This 

adaptive update enables the system to dynamically adjust 

scheduling intervals in response to varying data 

transmission conditions [28-29]. The expressions of the 

cumulative smoothing error and the cumulative 

smoothing absolute error are shown in Equation (8). 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, , 1 1 ,

, , 1 1 ,

s s

as as

E i t E i t ER i t

E i t E i t ER i t

 

 

 =  − + − 


=  − + − 

 (8) 

In Eq. (8),   is a weighting factor with a value between 

0 and 1, which generally takes the value of  0.1,0.2 . 

The magnitude and frequency of change of the prediction 

error of the sensing device ( ),ER i t  can reflect the 

fluctuation of the network state, so the smoothing 

coefficient of the delay prediction model is implemented 

by ( ),ER i t . Based on the assumption that 

synchronization wait times among neighboring terminals 

exhibit spatial correlation, the study introduces a 

similarity function ( ), iSS j t
 to quantify the temporal 

alignment between two sensing terminals 
i  and 

j
within the same spatial cluster. The definition is 

provided in Equation (9) [30].
 

( )
( ) ( )

( )
, 1 , ,

i j m m

i

j

v t v t
SS j t i G j G

v t

−
= −     (9) 

In Equation (9), iv  and jv  represent the 

synchronization wait times of nodes i  and j
, 

respectively. A higher value of ( ), iSS j t
 indicates a 

stronger spatial similarity in synchronization behavior. 

Instead of relying on physical distance or transmission 

delay, this method uses temporal similarity to 

approximate the overlap in communication conditions 

between terminals and fog nodes. When a false alarm or 

abnormal update occurs at node 
j

, the spatial 
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correlation is leveraged to adjust the synchronization wait 

time prediction of node 
i ， as defined in Equation (10). 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )1 , ,j j j j iv t a t v t a t SS j t i s t j N i=  + −    (10) 

In Eq. (10), ( )ja t  is the ESM parameter of the sensing 

terminal 
jv , and ( )N i  represents the set of sensing 

terminals in the cluster excluding 
iv . This collaborative 

update mechanism enhances robustness in 

synchronization within the fog-edge network by enabling 

terminals to modify their behavior in accordance with 

spatially correlated neighbors, thereby mitigating the risk 

of misclassification. 

The core computational operation of TSAS lies in the 

autoregressive prediction based on a sliding window, 

where the window length is n. This results in both time 

and space complexity of O(n). The dynamic error 

threshold is determined by fitting historical residuals, 

which incurs negligible computational cost compared to 

the prediction process and can be considered constant 

time. Therefore, TSAS maintains low resource 

consumption while ensuring synchronization accuracy, 

making it suitable for real-time prediction tasks on edge 

devices. 

To enhance the real-time performance of the 

synchronization mechanism, the TSAS algorithm 

incorporates sliding window error statistics and dynamic 

threshold adjustment. The sliding window mechanism 

dynamically captures data fluctuations and adjusts model 

parameters in real-time. Simultaneously, the error 

threshold is calibrated—either tightened or relaxed—

based on historical residual trends, to preclude excessive 

synchronization triggered by localized anomalies. This 

approach effectively balances the frequency of 

synchronization with the precision of predictions. In 

addition, to address external factors such as network 

latency and data fluctuations, TSAS employs an 

exponential smoothing model to dynamically estimate the 

waiting time, and integrates a spatial correlation 

mechanism that adapts local strategies based on the 

synchronization results of neighboring nodes, effectively 

improving system stability and robustness in complex 

environments. 

3.3 Collaborative analysis service edge 

deployment and system design for 

smart city information resources 

In the fog computing network scenario, the adjustment of 

the edge network deployment scheme mainly focuses on 

the real-time performance of computational operations 

and the robustness of business operations. In the 

communication delay between the sensor terminal and the 

fog edge device, the TSAS algorithm improves the spatial 

otemporal continuity and correlation of communication. 

The study improves the service deployment algorithm 

KLED for smart city information resource collaboration 

system in order to achieve high performance and low 

latency information resource analysis service. KLED 

targets distributed intelligent service deployment 

scenarios in fog computing environments, such as urban 

video surveillance analysis or emergency response 

coordination. In cases where services exhibit dependency 

relationships and edge nodes possess heterogeneous 

resource capabilities, KLED utilizes K-means clustering 

to group nodes based on their capacities and deploys 

services by considering both task dependencies and 

communication costs. This approach effectively shortens 

service makespan and enhances parallel execution 

efficiency, making it suitable for dynamic multi-task 

scheduling in smart city applications. The flowchart of 

the KLED algorithm is shown in Figure 3. 

Start

Node Feature Extraction and Clustering

DAG Task Parsing and Service Modeling

Multi-objective Scoring and Migration 

Evaluation

Migration Execution and Local Adjustment

End

 
Figure 3: Flowchart of the KLED algorithm 

 

The KLED algorithm consists of four stages: node 

clustering, DAG-based task modeling, heuristic scoring 

for migration evaluation, and iterative deployment 

adjustment. It enables efficient service placement by 

balancing latency, resource load, and execution time in 

fog computing environments. 

The algorithm abstracts the analysis service modeling of 

the system into a Direct Acyclic Graph (DAG), where 

each vertex represents a discrete service component or 

task. Each vertex is associated with a set of attributes 

including resource requirements (e.g., CPU, memory), 

estimated execution time, and service type (e.g., sensing, 

processing, aggregation). The directed edges in the DAG 

represent strict dependency constraints between tasks, 

indicating that the source node must complete before the 

target node begins. This structure allows the system to 

capture execution order, support parallelism where 

applicable, and optimize service placement under 

resource constraints. 

The DAG is represented as ,kG F E= , where 

represents the set of  1 2, , , ,i NF f f f f=  N  

subservices, and  E ( , ) | ,i j i jh f f f f F=   represents 

the set of directed edges in the DAG. ( ),i jh f f  

represents the size of the amount of data transmitted by 

the service if  to jf , and if ( ), 0i jh f f   represents a 

dependency between two subservices. The existence of 
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M  heterogeneous machines in the fog computing edge 

network is defined, denoted as  1 2, , , , ,p MR r r r r= . 

Also define ( ) , ,p q p qG g r r r r R=   as the link 

communication relationship between different devices. 

The data transfer time of two services is determined by 

both the inter-device transfer bandwidth and the amount 

of data transferred. Assuming that the service is deployed 

on the machine 
if  

pr  and the service 
jf  is deployed 

on the machine 
qr , the data transfer time between the 

two services is calculated as shown in Equation (11). 

( )
( )
( )

( )
,

, , , 0
,

i j

i j p q p q

p q

h f f
TT f f r r g r r

g r r
=     (11) 

In equation (11), ( ),p qg r r  indicates the bandwidth of 

the transmission link between machines 
pr  and 

qr , and 

if ( ), 0p qg r r =  indicates that there is no available 

communication link between the two devices. Due to the 

DAG data flow constraint, the service 
if  must wait for 

the execution of the higher priority service on the 

machine 
pr  to complete before it can start execution. 

The study focuses on two improvements to the original 

Kernighan-Lin algorithm: service division policy change 

and multi-objective heuristic-based implementation of the 

node movement policy function. The service partitioning 

strategy uses "self-service migration" instead of the 

traditional graph 2 partitioning algorithm. The heuristic 

multi-objective movement decision refers to the 

movement of nodes based on four heuristic rules: 

distance gain, additional communication gain 

( ), ,i p qcG f r r , parallelism gain ( ), ,i p qpG f r r  and 

execution time gain ( ), ,i p qeG f r r . The node movement 

decision function is shown in Equation (12). 

( ) ( ) ( ) ( ) ( ), , , , , , , , ,i p q p q i p q i p q i p qMD f r r dG r r cG f r r pG f r r eG f r r=    (12) 

In Eq. (12), ( ),p qdG r r  represents the distance gain. 

Among the four heuristic metrics in the scoring function, 

distance gain evaluates the proximity of the migrated 

service to the data source and the receiving endpoint, 

prioritizing deployment closer to user-side edge nodes. 

Communication gain assesses the expected reduction in 

data transmission delay after migration. Parallelism gain 

reflects the availability of the target node, facilitating 

concurrent task execution. Execution time saving 

indicates the anticipated decrease in task runtime on the 

new node. These metrics are combined with assigned 

weights to guide the optimal service migration path 

selection. 

In fog computing environments, both the input and output 

data for services originate from sensing endpoints. 

Therefore, deploying services in close proximity to 

user-side edge devices can significantly reduce service 

feedback latency. The distance gain and execution time 

gain are defined as shown in Equation (13). 
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EF f r
eG f r r

EF f r


 =




=


          (13) 

In Equation (13), ( ), ,src des qdC r r r  represents the sum of 

the distance of the computing device 
qr  from the data 

source device 
srcr  and the final output receiving device. 

desr  ( ),i qEF f r  denotes the execution time of the 

subservice on the device f  
qr . The additional 

communication gain and parallelism gain are defined as 

shown in Equation (14). 
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=


          (14) 

In Equation (14), ( ),i qcC f r  represents the sum of the 

transmission time required to compute the data exchange 

of the subservice if  with all the previous services and 

the successor services when it is deployed on the device 

qr , while ( ),i qwC f r  represents the sum of the running 

time of the sibling services of the subservice if  when 

the subservice if  is deployed on the device 
qr . The 

overall architecture of the smart city information resource 

collaboration system based on the fog-end collaborative 

prediction mechanism and the improved KLED algorithm 

is shown in Figure 4. 
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Figure 4: The overall architecture of smart city information resources collaboration system based on fog computing 

 

As illustrated in Figure 4, the internal architecture of the 

smart city information resource collaboration system, 

which is based on fog computing, is primarily structured 

into three tiers: user interface, system logic, and database. 

Users engage with the backend system through the user 

interface, where the frontend is tasked with receiving user 

operation commands and translating them into backend 

operational logic. Following computation by the backend 

system logic, the outcome of the user's operation is 

rendered and presented back to the user via the user 

interface. Consequently, this demonstrates that the 

collaborative information resource system, designed on 

the foundation of fog computing, not only addresses 

issues related to data acquisition redundancy and 

transmission but also significantly enhances the 

operational efficiency and management capabilities of the 

system's analytical services. 

The primary computational load of KLED is concentrated 

in the K-means clustering process, where N sensing 

nodes are partitioned into k clusters based on 

d-dimensional features over t iterations, resulting in a 

time complexity of O(Ndkt). The subsequent bandwidth 

estimation and service deployment scoring processes 

exhibit linear or logarithmic complexity. Overall, the 

algorithm balances deployment efficiency and scalability, 

making it well-suited for fog computing environments. 

3.4 Parameter settings and tuning 

To ensure the robustness and practicality of the proposed 

system, key parameters in both the TSAS and KLED 

algorithms were carefully tuned based on statistical 

principles and experimental validation: For the TSAS 

algorithm, the order of the autoregressive model was 

selected using the Akaike Information Criterion (AIC) to 

achieve optimal model parsimony. The prediction error 

threshold and waiting time limits were determined 

through preliminary experiments, aiming to minimize 

unnecessary synchronization while preserving data 

accuracy. 

For the KLED algorithm, the number of clusters k was 

chosen using the elbow method based on node capability 

distribution. The weights of the deployment cost function 

were fine-tuned via grid search across a range of 

workloads, ensuring adaptability across heterogeneous 

fog environments. All parameters were validated through 

repeated trials under varying task loads and network 

conditions to confirm generalizability. 

 

4 Results 

4.1 Results of the fog-end collaborative 

prediction mechanism for transmission 

volume compression 

In order to verify the operational performance of the 

smart city information resource collaboration system 

under fog computing, the effectiveness and accuracy of 

the proposed algorithms are verified respectively. The 

experiments were conducted on a representative fog-edge 

computing platform with the following hardware 

specifications: Intel Core i5-8265U processor (4 cores, 8 

threads, 1.6GHz), 8GB DDR4 RAM, 256GB SSD 

storage, and Ubuntu 20.04 LTS operating system. No 

dedicated GPU was used, and all computations were 

performed on the CPU. This setup closely reflects the 

capabilities of typical low-power IoT gateways and fog 

nodes used in real-world deployments under constrained 

resource conditions. The hyperparameters in the 

experiments were determined through preliminary 

testing. The order of the autoregressive model was 

selected based on the Akaike Information Criterion 

(AIC), the number of clusters k in K-means was chosen 
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using the elbow method, and the cost function weights in 

the KLED algorithm were fine-tuned through multiple 

trial experiments. All parameters were validated on 

separate test sets to ensure the robustness of the results. 

The study first used K-means clustering algorithm to 

divide the sensing terminals into 7 clusters, and generated 

bandwidth capacity based on Gaussian distribution 

( )2,iWb N  =  , where


 is the mean value of link i  

bandwidth capacity and  represents the variance of link 

bandwidth variance. To reduce the chance error, the mean 

value of five independent replicate experiments was used 

as the experimental result for each experiment. The 

experimental results of the data fit validity of the 

prediction mechanism are shown in Figure 5. 
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Figure 5: Fitting of measured value and predicted value in prediction mechanism 

 

From the experimental results of fitting the temperature 

data in Figure 5, the predicted values obtained from the 

autoregressive model were highly fitted to the measured 

values in terms of variation trends and values. That is, the 

fog-end prediction mechanism could effectively compress 

the redundant data transmission volume under the edge 

network, which helped to reduce the pressure on the edge 

bandwidth. The validation results of the effectiveness of 

data transmission volume compression are shown in 

Figure 6. 
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Figure 6: Experimental results of the effectiveness of 

fog-end collaborative prediction mechanism to compress 

data transmission 

 

As shown in Figure 6, a test range of 0.01 to 0.10 was 

selected based on preliminary experiments. When the 

threshold was set below 0.01, excessive synchronization 

requests were triggered, increasing communication 

overhead; when it exceeded 0.10, prediction accuracy 

dropped significantly. The selected range provided a 

well-balanced trade-off between transmission cost and 

prediction performance, making it suitable for edge 

computing environments. In the experiments on the 

effectiveness of data transmission volume compression, 

the reduction rate of data traffic within the edge network 

was used to focus on the reduction of data compression  
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rate. Experiments with different error tolerance thresholds 

on the number of data transmissions and the number of 

model updates were designed to verify the effect of the 

maximum error tolerance threshold on the number of 

communication interactions. From Figure 6(a), as the 

threshold value increased, the number of data 

transmissions decreased for all three terminals, especially 

in the interval from 0.01 to 0.04, while the trend was 

more stable in the interval from 0.04 to 0.10. Therefore, 

the higher the fitting accuracy of the prediction model, 

the less sensitive the fog-end collaborative prediction 

mechanism was to the error tolerance threshold. Figure 

6(b) shows that as the threshold value decreased, the 

number of model updates gradually increased, i.e., the 

requirement for higher data accuracy, and thus the 

prediction model was required to provide more accurate 

data fit and prediction accuracy. 

4.2 Performance of fog-end synchronization 

duration adaptive algorithm based on 

spatio-temporal correlation 

Under the fog-end collaborative prediction mechanism, 

an effective and accurate synchronization wait time is 

required not only to reduce the chance of false positives, 

but also to shorten the waiting time of the device as much 

as possible without false positives, thus improving the 

efficiency of data acquisition. Therefore, the study used 

two metrics, namely, the misjudgment rate and mean 

absolute error (MAE), to verify the performance of the 

adaptive algorithm, and the experimental results are 

shown in Table 2. 

 

Table 2: Misjudgment rate and MAE of different algorithms 

Algorithm 

Misjudgment rate (%) MAE (*e-5) 

Maximum 

value 

Average 

value 

Minimum 

value 

Maximum 

value 

Average 

value 

Minimum 

value 

STATIC 52.0 30.9 13.7 5.52 3.62 1.53 

ESM 39.9 18.5 15.8 5.06 3.04 1.39 

TSAS 18.8 12.7 4.6 4.19 2.60 1.34 

 

In Table 2, two static threshold schemes, STATIC 

algorithm and ESM, were selected experimentally as a 

comparison to verify the effectiveness of the TSAS 

algorithm. In terms of the average false alarm rate, the 

TSAS algorithm reduced the false alarm rate by 31.35% 

and 58.90% compared to the ESM and STATIC 

algorithms. Considering that the fog edge network had 

the characteristics of narrow bandwidth and weak 

connection, the study further analyzed the effect of 

bandwidth fluctuation of the fog edge network link on the 

false positive rate and MAE, and the experimental results 

are shown in Figure 7. 
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Figure 7: The impact of bandwidth fluctuation of fog 

edge network link on the error rate and MAE 

 

As shown in Fig. 7(a) and Fig. 7(b), with the increase of 

the fluctuation variance of the link bandwidth, the false 

positive rate and MAE of the synchronous waiting time 

both increased. The comparison of the three algorithms 

showed that the false alarm rate and MAE of the TSAS 

algorithm were significantly lower than those of the 

STATIC algorithm and ESM. At the wave variance of 

100, the false positive rate and MAE of TSAS algorithm 

were 30.5% and 31*e-5, indicating that making full use of 

the spatial association information of the sensing terminal 

could effectively reduce the false alarm rate in the 

cooperative prediction mechanism. The results of further 

analysis of the influence of the distance between the 

terminal and the fog edge device on the false positive rate 
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based on the STAS algorithm and the ESM algorithm are 

shown in Figure 8. 
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Figure 8: Experimental results of the influence of the 

distance between the terminal and the fog edge 

equipment on the error rate 

 

The fluctuation variance of each link was set to 10 in the 

experiment, and the horizontal coordinates were the 

different clusters ranked by the distance between the 

cluster center and the data aggregation node from 

smallest to largest. From Figure 8, both the mean and 

variance of the false positive rate increased with the 

increase of data transmission distance. When the 

transmission link was longer, the highest false positive 

rate of STAS algorithm and ESM algorithm was 16% and 

17%, respectively. That is, the longer the transmission 

link is and the more complex the bandwidth variance is, 

the greater the impact on the false positive rate of the 

fog-end synchronization prediction mechanism. 

 

4.3 Performance of collaborative 

information resource system for smart 

cities under fog computing 

To verify the effectiveness of the KLED algorithm 

proposed in the study and the performance of the 

information resource collaboration system, the scientific 

workflow in Workflow Generator was selected as the 

service flow structure for the benchmark test. The 

workflow included four service structures, Montage, 

CyberShake, SIPHT, and LIGO Inspiral Analysis. Three 

comparative deployment strategies were used as 

baselines: Random Mapping, the Multi-Index Task-aware 

Edge scheduling algorithm (MITE), and the Key-Link 

algorithm (KL) implemented in this study. The KL 

algorithm followed a critical-chain-first placement 

strategy, assigning services along the shortest computing 

paths in the DAG while ignoring real-time 

communication or bandwidth dynamics. The experiments 

were repeated five times independently for each test, and 

the average value was taken as the final experimental 

result. The comparison of the overall service completion 

time of different algorithms under the four service 

structures is shown in Figure 9. 
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Figure 9: Comparison of overall service completion time 

of different algorithms under four service structures 
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Makespan refers to the total time required to complete all 

tasks within a workflow, measured from the start of the 

first task to the completion of the last one. It serves as a 

key metric to evaluate the overall scheduling efficiency 

and system responsiveness of service deployment 

strategies. In Figure 9, the makespan of the KLED 

algorithm proposed in the study substantially 

outperformed the Random deployment algorithm under 

four different service structures, and both outperformed 

the MITE algorithm and the KL algorithm. In the setting 

of service size of 100, the KLED algorithm reduced 

makespan by 19.77%, 7.41%, 7.07%, and 18.24%, 

respectively, compared to the KL algorithm for the four 

service structures of Montage, CyberShake, SIPHT, and 

LIGO Inspiral Analysis, i.e., the KLED algorithm 

outperformed the the other three algorithms. As the 

service size increased from 25 to 50 and 50 to 100, the 

makespan of KLED in the Montage structure increased 

by 40.87% and 19.01%, respectively. That is, the more 

complex the service process is, the operational 

performance requirements of the system increase as the 

communication relationships between subservices in the 

DAG increase. The study conducted impact proportional 

analysis experiments on the computation time, queuing 

waiting time and communication time that affect 

makespan, and the results are shown in Table 3. 

 

Table 3: Proportion of influence of calculation time, queue waiting time and communication time on makespan 

Service size Time type Random MITE KL KLED 

25 

Waiting time 0.08 0.42 0.39 0.14 

Communication time 0.73 0.38 0.35 0.43 

Calculated time 0.21 0.22 0.27 0.42 

50 

Waiting time 0.12 0.47 0.41 0.22 

Communication time 0.66 0.32 0.34 0.34 

Calculated time 0.24 0.23 0.25 0.43 

100 

Waiting time 0.19 0.45 0.40 0.18 

Communication time 0.63 0.38 0.40 0.40 

Calculated time 0.18 0.26 0.19 0.41 

1000 

Waiting time 0.75 0.78 0.77 0.73 

Communication time 0.20 0.14 0.15 0.11 

Calculated time 0.04 0.07 0.06 0.15 

 

Table 3 presents the proportion of three-time components 

contributing to the overall makespan. Calculated time 

reflected the actual execution duration of tasks, 

communication time indicated the delay caused by data 

transmission between services, and waiting time 

represented the efficiency of resource scheduling. The 

results showed that when the service size was small, the 

Random algorithm exhibited the highest proportion of 

communication time, suggesting that its deployment 

strategy failed to minimize the transmission distance 

between services. MITE and KL showed a higher 

proportion of waiting time, indicating bottlenecks in task 

scheduling. In contrast, the KLED algorithm significantly 

increased the proportion of calculated time across 

different service sizes, demonstrating that system 

resources were more effectively utilized for execution 

after optimizing scheduling and transmission. As the 

service size grew to 1000, all four algorithms exhibited a 

sharp increase in waiting time proportion, primarily due 

to the limited parallelism, making queue delays the 

dominant factor in the overall makespan. The results of 

the KLED algorithm, MITE algorithm, and KL algorithm 

on the number of fog edge devices and network 

bandwidth on system performance for the Montage 

service with a service size of 100 are shown in Figure 10. 
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Figure 10: Effects of the number of fog edge devices and 

network bandwidth on system performance 
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In Fig. 10(a), the makespan of all three algorithms 

decreased gradually as the number of fog edge devices 

increased from 5 to 50, and the KLED algorithm 

outperformed the KL algorithm and the KL algorithm 

outperformed the MITE algorithm. The decrease of 

makespan was more obvious when the number of fog 

edge devices was increased from 5 to 15 than when the 

number of devices was increased from 15 to 50. Fig. 

10(b) shows that as the available bandwidth increased 

from 10 Mbps to 150 Mbps, overall system performance 

improved accordingly. The most significant reduction in 

makespan was observed in the range of 40 to 100 Mbps. 

However, when the bandwidth exceeded 100 Mbps, the 

performance gains became marginal and the curve began 

to flatten, indicating that the communication bottleneck 

was largely eliminated. At this stage, computational and 

scheduling capacities became the primary limiting 

factors. Therefore, it is important to balance resource 

investment and performance improvement to avoid 

unnecessary resource overprovisioning. 

To further validate the effectiveness of the proposed 

method, several representative approaches were selected 

as baseline methods, and their core mechanisms were 

reimplemented under the same experimental platform and 

dataset for quantitative comparison. The selected methods 

included: the sensing prediction mechanism based on 

throughput constraints proposed by J. Fei et al. [9], the 

data transmission optimization mechanism for vehicular 

networks proposed by W. Zhang et al. [11], and the 

multi-objective ant colony optimization–based service 

deployment strategy proposed by T. Huang et al. [15]. 

The evaluation metrics included false alarm rate, mean 

absolute error, and service completion time. The 

comparison results are presented in Table 4.

 

Table 4: Results of comparison with the existing methods 

Method Source False Alarm Rate (%) MAE (×10-5) Service Completion Time (s) 

Ref. [9] (Reproduced) 30.9 3.62 26.7 

Ref. [11] (Reproduced) 27.4 3.20 26.5 

Ref. [15] (Reproduced) 26.8 3.10 25.1 

Proposed Method 12.7 2.60 21.8 

 

 

In the table, the proposed method outperformed the three 

baseline methods in terms of false alarm rate, mean 

absolute error, and service completion time. Compared to 

Ref. [9] and Ref. [11], it demonstrated significantly better 

performance in prediction accuracy and synchronization. 

Compared to Ref. [15], it also achieved shorter 

completion time, indicating superior overall efficiency in 

both data transmission and task scheduling. 

5 Discussion 
To enhance the real-time processing of sensing data and 

improve service deployment efficiency in smart city 

scenarios, this study constructed a fog computing-based 

collaborative information resource system. It integrated 

sensing data, computational resources, and service 

dependency structures, and achieved intelligent 

scheduling and adaptive optimization at the edge layer 

through two core algorithms: TSAS and KLED. 

Specifically, the TSAS algorithm introduced a 

spatiotemporal correlation mechanism to dynamically 

adjust synchronization waiting times and prediction 

errors, thereby optimizing data compression and 

synchronization in high-frequency acquisition 

environments. The KLED algorithm combined K-means 

clustering with an improved scheduling strategy, taking 

into account resource heterogeneity and task 

dependencies among edge nodes, which effectively 

improved task parallelism and overall service execution 

efficiency. 

Experimental results demonstrated that the TSAS 

algorithm reduced the false alarm rate to 18.8% and  

 

 

maintained the mean absolute error at 2.6×10-5, thereby 

reducing unnecessary communication overhead while 

ensuring prediction accuracy. Meanwhile, the KLED 

algorithm achieved reductions in makespan of 18.24% 

and 7.41% compared to traditional KL and MITE 

deployment strategies across multiple workflow 

structures, and showed better scheduling stability and 

resource utilization under high-concurrency conditions. 

Building on the above experimental results, the proposed 

TSAS and KLED algorithms also demonstrated clear 

advantages in terms of computational efficiency and 

deployment feasibility. The TSAS synchronization 

mechanism was based on an autoregressive model 

combined with exponential smoothing, involving only 

low-order matrix operations and sliding window updates. 

This resulted in significantly lower computational 

complexity compared to traditional deep learning-based 

prediction methods, making it more suitable for 

resource-constrained edge nodes. The KLED deployment 

strategy required maintaining only local service 

dependencies and scheduling states, with low memory 

overhead and structural stability, enabling efficient 

execution in heterogeneous devices and 

bandwidth-limited environments. The overall system 

adopted a modular design that facilitated integration into 

existing smart city edge infrastructures and supports good 

scalability. Therefore, TSAS and KLED not only 

outperformed traditional methods in terms of prediction 

accuracy and service latency, but also offered 

comprehensive advantages in computational efficiency 

and practical deployment adaptability. 

While the experiments in this study focused on 

moderate-scale scenarios, the proposed system was 
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designed to support scalability in real-world deployments. 

TSAS executed independently on each edge device, 

requiring no global coordination, which enabled linear 

scalability as the number of devices increased. KLED, 

although involving clustering across multiple nodes, 

could be extended using hierarchical or region-based 

clustering frameworks to accommodate large-scale smart 

city environments with thousands of sensing points. 

Moreover, the modular architecture of both algorithms 

allowed parallel deployment and distributed processing, 

reducing the risk of performance bottlenecks. These 

design features made the system adaptable to future 

urban-scale deployments. Although security was not the 

primary focus of this study, data transmission was 

assumed to be protected by standard encryption, and 

basic access control could be applied to prevent 

unauthorized synchronization. The modular design of 

TSAS and KLED also allowed future integration of 

security mechanisms such as authentication and anomaly 

detection. 

6 Conclusion 
The convergence and development of scientific 

technologies such as artificial intelligence, the Internet of 

Things, and big data provide the basis for developing 

many intelligent analytical services, such as smart cities 

and intelligent transportation. The study combined fog 

computing, proposed a fog-end collaborative prediction 

mechanism to compress the amount of data transmission 

with high information redundancy in the edge network, 

and designed a KLED algorithm to reduce the overall 

computing time of the service and the corresponding 

delay of the service. The experimental results showed that 

the autoregressive model's prediction mechanism could 

effectively fit the changes of the temporal sensing data, 

and the TSAS algorithm could reduce the 

misclassification rate by about 31.35% and 58.90% 

compared with the STATIC algorithm and the ESM 

algorithm. The experimental performance results of the 

KLED algorithm showed that the highest waiting time 

sharing rate reached 73% when the service scale was 

1000, and reduced the total calculation time of the service 

by approximately 13.12%, which effectively improved 

the service performance of the information. The service 

performance of the resource collaboration system was 

effectively improved. It is worth noting that the current 

experiments were conducted using a real-world dataset 

collected from 54 sensing devices in a specific urban 

scenario to verify the feasibility and effectiveness of the 

proposed approach. Although multiple datasets were not 

tested in this study, the core design of the TSAS and 

KLED algorithms was modular and adaptable to other 

fog computing environments. Future work will focus on 

validating the method across diverse datasets and 

deployment settings. 
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