
https://doi.org/10.31449/inf.v49i24.8039 Informatica 49 (2025) 85–110 85 

A Fuzzy Logic-Driven Semantic and Binary Tree-Based Indexing 

Framework for Scalable IoT Data Storage and Retrieval 

Khaled Halimi 1*, Abelhalim Hadjadj 2, Zineddine Kouahla1, Brahim Farou1 

1Department of Computer Science, LabSTIC Laboratory, University of Guelma 08 May 1945, Guelma, Algeria 
2Abdelhafid Boussouf University Center, Mila, Algeria 

E-mail: halimi.khaled@univ-guelma.dz, a.hadjadj@centre-univ-mila.dz, kouahla.zineddine@univ-guelma.dz, 

farou.brahim@univ-guelma.dz  

*Corresponding Author 

Keywords: internet of things, semantic web, fuzzy logic, indexing, data storage & retrieval, healthcare  

Received: January 12, 2025 

The rapid growth of Internet of Things (IoT) devices presents significant data management challenges 

due to heterogeneity, interoperability issues, and massive data volumes, which hinder seamless data 

exchange and limit the IoT's potential. While the Semantic Internet of Things (SIoT) offers improvements 

through semantic web technologies, existing approaches often struggle with scalable data storage and 

efficient retrieval. To address this, the paper proposes a comprehensive, multi-layered architecture for 

efficient, scalable semantic IoT data handling. The architecture comprises: (1) an Edge Layer that utilizes 

the SAREF ontology to standardize heterogeneous device data into RDF format; (2) a Fog Layer 

performing fuzzy logic-based classification for enhanced data organization under uncertainty and binary 

tree-based indexing for efficient retrieval; and (3) a Cloud Layer for centralized storage. This approach 

integrates fuzzy logic for improved data categorization, particularly demonstrated through enhanced 

MEWS classification in healthcare, and a novel binary tree indexing method optimized for RDF file 

retrieval based on semantic content and fuzzy scores. Three dedicated algorithms govern the 

classification, indexing, and retrieval phases. Experimental validation using healthcare datasets 

demonstrates the framework's effectiveness. Specifically, the binary tree indexing reduces average 

retrieval times by orders of magnitude compared to non-indexed. Furthermore, the complete framework 

maintains stable and low query execution times (<0.01 s) even with 100,000 RDF files, significantly 

outperforming traditional RDF triple stores, which exhibit substantial performance degradation at scale. 

By significantly improving RDF data organization and retrieval efficiency, this work offers a scalable and 

innovative solution for managing Big IoT data, paving the way for advancements across various sectors. 

Povzetek: Članek opisuje večplastno arhitekturo za SIoT, ki z uporabo semantike, mehke logike in 

binarnega indeksiranja omogoča učinkovito in razširljivo shranjevanje ter iskanje velikega RDF-

podatkovja.

1 Introduction 
The growth of Internet of Things (IoT) devices is 

accelerating at an unprecedented rate. According to 

estimates from CISCO and Statista, by 2025, the number 

of connected devices will exceed 60 billion [1]. This surge 

in device connectivity has led to increasing challenges 

related to data heterogeneity and interoperability. 

Different sectors within the IoT ecosystem are producing 

their own devices, defining proprietary protocols, and 

developing isolated platforms. As a result, large amounts 

of heterogeneous data cannot be exchanged with different 

IoT platforms and applications. This lack of 

interoperability has led to the IoT domain losing more than 

40% of its potential value [2]. 

To address these challenges, the Semantic Internet of 

Things (SIoT) has emerged as an effective approach by 

combining the Semantic Web with the Internet of Things. 

The SIoT framework is well-suited to managing the 

heterogeneity of data and enabling fluid communication 

between devices, making IoT data understandable and  

 

usable by machines. Using tools such as RDF, RDF 

Schema, OWL and Sparql, the SIoT standardizes the  

representation, processing and recovery of IoT data. This 

simplifies not only the exchange of information between 

different IoT-based systems, but also harnesses the full 

potential of IoT by transforming complex and 

heterogeneous data into meaningful and interconnected 

resources [3]. 

The Semantic Internet of Things is built on the basis 

of the Resource Description Framework (RDF) [4], which 

serves as its foundation for representing and generating 

output data. RDF is the standard format for semantically 

representing information on the Web, offering a structured 

and universally understandable framework. It relies on a 

static model composed of assertions and typically uses 

XML syntax to encode content. The essence of RDF lies 

in its use of triples—statements that describe relationships 

between resources. Each triple consists of a subject, 

predicate, and object, forming a simple yet powerful 

mechanism for connecting data meaningfully. 

The SIoT primarily relies on RDF for data 

representation due to its flexible and adaptive structure. 

mailto:halimi.khaled@univ-guelma.dz
mailto:kouahla.zineddine@univ-guelma.dz
mailto:farou.brahim@univ-guelma.dz


86 Informatica 49 (2025) 85–110 K. Halimi et al. 

Storing data in RDF format ensures that it remains 

preserved and accessible for future reference or use. 

However, the rapid increase in data generation has 

resulted in the exponential growth of RDF datasets, 

presenting significant challenges in storage and retrieval. 

For instance, the Linked Open Data (LOD) cloud now 

hosts 1,344 datasets with 16,308 interlinks [5]. Managing 

such vast amounts of RDF data poses critical issues, 

including efficient storage space allocation, real-time data 

processing, and the fragmentation of datasets. These 

challenges complicate retrieval processes and often result 

in irrelevant or inaccurate outcomes. While the SIoT holds 

significant promise, existing frameworks face some 

challenges, particularly in addressing the complexities of 

storing and retrieving RDF datasets [6]. To overcome 

these challenges, this paper proposes a comprehensive 

SIoT framework built on a multi-layered architecture 

grounded in core IoT principles. This architecture, 

designed to tackle the inherent ecosystem issues, consists 

of: an Edge Layer, designed to process data near the data 

sources. This layer incorporates a semantic model 

enhanced by the SAREF1 ontology, resolving the issue of 

heterogeneity of data originating from various IoT devices 

by standardizing data generation and representation in 

RDF format. The framework also features a sophisticated 

fog layer that integrates advanced mechanisms such as 

fuzzy logic [7], clustering optimization [8], and binary tree 

[9] data indexing. These elements work together to 

improve data organization, retrieval efficiency, and 

overall system performance. This approach represents a 

significant step forward in addressing the storage and 

retrieval challenges of RDF datasets, paving the way for 

more efficient and scalable SIoT implementations. 

The rest of the paper is organized as follows: Section 

2 presents the research motivation. Section 3 reviews 

related work. Section 4 introduces the proposed 

framework. Section 5 presents a healthcare application 

scenario, while Section 6 describes the experimental setup 

and evaluation. Finally, Section 7 concludes the paper. 

2 Research motivation 
The rapid expansion of the Internet of Things (IoT) is 

transforming numerous sectors by enabling continuous 

connectivity among devices, sensors, and systems. 

However, the exponential growth in connected devices 

introduces pressing data management challenges—

particularly in domains such as healthcare, smart cities, 

and industry—where vast, heterogeneous data streams are 

generated in real time. Traditional storage and retrieval 

systems often struggle to keep pace with this scale, leading 

to inefficiencies and poor interoperability across 

platforms. These challenges are rooted in both the 

diversity of data formats—ranging from simple numerical 

values to unstructured content—and the need for timely, 

accurate decision-making based on these data streams. 

Addressing these limitations requires robust frameworks 

 

 
1 SAREF ontology https://saref.etsi.org/  

capable of semantic integration, efficient classification, 

and scalable indexing. 

This research is motivated by the need to develop a 

robust, scalable, and efficient framework to enhance IoT-

based solutions by addressing their limitations in handling 

large-scale IoT data. Specifically, we investigate the 

incorporation of semantic technologies, fuzzy logic, and 

indexing techniques to improve the classification, storage, 

and retrieval of IoT data, thereby enabling more accurate 

and reliable decision-making in real-time applications. 

To guide this investigation, we formulate the 

following primary research question (PRQ): 

PRQ: To what extent does the proposed multi-layered 

SIoT architecture—integrating semantic representation 

(SAREF/RDF), fuzzy logic clustering, and binary tree 

indexing—improve the efficiency, scalability, and 

accuracy of managing and retrieving large-scale IoT data, 

compared to existing SIoT approaches and traditional 

RDF storage methods? This primary question leads to 

several specific inquiries: 

• RQ1: How effectively can semantic technologies be 

leveraged within the Edge Layer to standardize 

heterogeneous IoT data representation and support 

scalable data management? 

• RQ2: To what extent does the integration of fuzzy 

logic enhance the accuracy of classifying and 

organizing large volumes of RDF-represented IoT 

data within the Fog Layer, compared to methods 

based on crisp thresholds? 

• RQ3: What level of performance improvement—

measured in terms of speed and scalability—is 

achieved by using a binary tree-based indexing 

method for retrieving specific RDF files, compared to 

non-indexed search and conventional triple-store 

query mechanisms? 

• RQ4: Does the proposed framework provide a viable 

and high-performing solution for managing real-

world, large-scale IoT data, as demonstrated in a 

healthcare context? 

Based on these research questions, we propose and 

aim to validate the following hypotheses: 

• H1: The proposed multi-layered SIoT architecture 

will demonstrate significantly lower query execution 

times and improved scalability for RDF data retrieval, 

compared to baseline RDF management systems. 

• H2: Incorporating fuzzy logic into the data 

classification process will lead to measurable 

improvements in classification accuracy and enable a 

more nuanced representation of data, compared to 

using standard crisp thresholds alone. 

• H3: The binary tree-based indexing method will yield 

significantly faster data retrieval times for specific 

RDF files, compared to a linear search approach 

across the datasets. 

By addressing these research questions and testing the 

associated hypotheses, this study aims to deliver a 

validated, efficient, scalable, and reliable solution for 

https://saref.etsi.org/


A Fuzzy Logic-Driven Semantic and Binary Tree-Based Indexing… Informatica 49 (2025) 85–110 87 

managing the growing volume of IoT data—particularly 

in critical sectors such as healthcare—while supporting 

real-time decision-making and ensuring semantic 

consistency and accuracy. 

3 Related works 
The Internet of Things (IoT) has revolutionized how 

physical objects connect and interact, becoming 

indispensable across various domains. Connectivity 

between IoT devices is enabled by a network of sensors 

and actuators that work collaboratively to collect and 

exchange data seamlessly. To handle the vast amounts of 

data generated by these devices, various computational 

infrastructures are employed. Cloud computing provides 

the backbone for large-scale data storage and processing, 

while fog computing brings processing closer to the edge, 

reducing latency. In contrast, edge computing takes this a 

step further by enabling real-time data processing directly 

at the device level, thereby supporting faster and more 

efficient decision-making [10]. Despite its potential, IoT 

faces significant challenges—particularly in managing the 

large volume of data it generates and overcoming the 

complexity introduced by the diversity of devices and 

communication protocols. This heterogeneity hinders 

seamless communication and knowledge exchange across 

IoT systems, necessitating solutions that enhance both 

system efficiency and cross-platform interoperability [11]. 

To address these challenges, researchers have 

introduced the Semantic Internet of Things (SIoT)—a 

promising framework built on the principles of the 

Semantic Web to address data heterogeneity and enable 

semantic interoperability. SIoT enriches IoT data by 

assigning meaning through standardized semantic 

structures. These structures describe IoT data, its context, 

and its relationships, facilitating integration and usability 

across diverse IoT applications [12]. At the core of SIoT 

lies ontology, which serves as the backbone for organizing 

and representing knowledge in a machine-readable 

format. Ontologies enable the consistent representation 

and sharing of IoT data. However, SIoT faces significant 

challenges related to ontology management. A key issue 

is the reliance of many existing solutions on specific, often 

rigid ontologies. This has led to a proliferation of 

conflicting or redundant definitions, making it difficult to 

ensure interoperability and scalability across diverse 

systems. The lack of a unified or standardized approach to 

ontology development and integration further exacerbates 

these challenges, hindering the seamless exchange of data 

and knowledge in the SIoT ecosystem. For instance, 

according to Linked Open Vocabularies for IoT 

(LOV4IoT), over 400 ontology-based vocabularies have 

been created [13]. 

To overcome these limitations, SIoT systems must 

prioritize the reuse of standardized ontologies. By 

adopting consistent and widely accepted frameworks, 

these systems can ensure a more accurate representation 

of the IoT domain, thereby enhancing data integration and 

interoperability across diverse platforms. Researchers 

have proposed several standard ontologies to address 

interoperability challenges and provide a unified structure 

for IoT data. However, lot of them have emphasized that 

these ontologies must be carefully evaluated and adapted 

to the specific requirements of different IoT applications 

to ensure their effectiveness and scalability. For example, 

the SSN ontology [14] was designed with a broad scope 

encompassing IoT and sensor applications. It provides 

detailed models of sensors, their characteristics, and 

measurements, but includes only basic actuator 

descriptions. It offers medium modularity and can be 

integrated with other ontologies. Similarly, the oneM2M 

ontology [15] focuses on M2M (Machine-to-Machine) 

IoT environments. It provides sensor and device 

constructs adapted to that context, includes actuator 

modelling suited to M2M infrastructures, and offers 

medium modularity with alignment capabilities toward 

SAREF and other ontologies. Finally, the SAREF 

ontology, proposed by ETSI [16], targets the IoT and 

smart building domains. It models both sensors and 

devices (including actuators) and stands out for its high 

modularity and explicit alignment with oneM2M and 

other frameworks. Together, these ontologies offer 

complementary strengths in domain coverage, modelling 

depth, alignment potential, and modular design, providing 

SIoT with a unified yet adaptable semantic foundation for 

enhanced interoperability and data integration.   

While standardized ontologies such as SAREF, SSN, 

and oneM2M are fundamental for achieving semantic 

interoperability through consistent data models, their 

widespread adoption in unifying heterogeneous IoT data 

also contributes to the volume and scalability challenges. 

As devices generate vast amounts of data structured 

according to these ontologies, the resulting RDF datasets 

grow exponentially. This huge scale poses significant 

problems for traditional data management techniques. 

Specifically, the prevailing approach to storing and 

querying this semantic data relies on RDF triple stores 

alongside the SPARQL query language. However, as 

documented in literature and confirmed by our own 

baseline experiments, these triple store solutions often 

struggle to maintain acceptable query performance when 

dealing with the billions of triples characteristic of large-

scale IoT deployments. The overhead associated with 

complex SPARQL query processing and indexing 

limitations within these stores creates critical bottlenecks, 

hindering real-time analysis and efficient data retrieval. 

These limitations necessitate the exploration of alternative 

architectures and indexing mechanisms beyond standard 

triple stores, prompting a closer inspection of specific 

RDF storage approaches and broader SIoT frameworks, as 

depicted in Table 1 and Table 2.  

The Resource Description Framework (RDF) is a key 

component of SIoT, enabling the representation, querying, 

and retrieval of data within the ecosystem. Due to its 

simplicity, adaptability, and reusability, RDF has become 

a widely adopted standard across various sectors. 

Consequently, large RDF datasets have emerged, 

spanning diverse domains such as DBpedia  [17], DBLP 

[18], Bio2RDF [19], and others [20]. These datasets 

contain billions of RDF triples, with some distributed 

across multiple files to enhance querying efficiency, as 

seen with Lehigh University Benchmark (LUBM  )[21]. 



88 Informatica 49 (2025) 85–110 K. Halimi et al. 

However, managing these massive RDF datasets presents 

significant challenges related to both storage and retrieval. 

To address these issues, researchers have proposed several 

RDF storage solutions, including triple tables [22], binary 

tables [23] and property tables [24]. These approaches are 

implemented in platforms such as Apache Jena [25], 

Blazegraph [26] and GraphDB [27], all of which utilize a 

triple store model and support SPARQL for querying RDF 

data across diverse sources.  

While these established RDF storage solutions and 

platforms provide foundational support for semantic data, 

their architectural choices—particularly their reliance on 

the triple store model and SPARQL querying—directly 

impact the scalability and retrieval performance of SIoT 

systems built upon them. As discussed in the following 

section, many existing SIoT frameworks—such as M3, 

SEDIA, and SSNT —adopt these conventional triple store 

backends. Consequently, despite their advances in 

semantic interoperability, they often inherit the inherent 

limitations of these storage mechanisms. Specifically, the 

overhead associated with processing complex SPARQL 

queries across potentially billions of triples—combined 

with indexing strategies optimized for graph patterns 

rather than the vector-based similarity searches—leads to 

significant performance degradation at scale (as detailed 

for triple stores in Table 2 and demonstrated in our 

baseline comparisons in Section 6). This widespread 

reliance on architectures that are suboptimal for large-

scale, high-speed retrieval serves as a key motivation for 

exploring alternative approaches which decouples from 

the traditional triple store model to achieve improved 

performance. 

Data storage plays a critical role in enabling informed 

decision-making, preserving historical records and 

collective memory, and facilitating analysis and 

prediction. In the IoT domain, where vast numbers of 

devices generate continuous streams of data, effective 

storage becomes even more essential. This need drives the 

adoption of various technologies, including cloud 

computing, edge computing, and hybrid approaches that 

combine both [28]. SIoT extends IoT by providing a 

framework for processing data from a wide range of 

devices and organizing the results into RDF datasets. 

Several frameworks have been proposed to leverage 

semantic technologies within IoT. While these 

frameworks enhance interoperability and semantic 

understanding, they often face limitations—particularly in 

efficiently managing large-scale RDF data and addressing 

inherent data uncertainty. Table 1 presents a comparative 

summary of representative SIoT frameworks, outlining 

their methodologies, the limitations addressed by our 

work, and the improvements introduced by our proposed 

framework. Beyond individual frameworks, the choice of 

underlying technologies for storage, classification, and 

indexing significantly affects performance and suitability 

in SIoT applications. Table 2 compares common 

alternatives in these areas. 

Table 1: Comparative analysis of representative SIoT frameworks 

Framework Methodology Key 

Aspects 

Key Limitations Addressed by 

Our Work 

How Proposed Framework 

Addresses Limitations 

VICINITY 

[29] 

Focus on 

interoperability (Web 

of Things), Semantic 

descriptions, Cloud-

centric 

Less explicit focus on massive 

RDF storage/retrieval 

optimization; Doesn't inherently 

handle data uncertainty. 

Explicitly targets RDF retrieval 

scalability via custom indexing; 

Integrates fuzzy logic for nuanced 

data classification under 

uncertainty. 

BIG-IoT 

[30] 

Semantic API for 

interoperability, Uses 

schema.org, Cloud-

based platform 

Primarily targets API-level 

interoperability; Potential 

scalability bottlenecks if 

underlying storage isn't optimized 

for massive RDF query load. 

Multi-layered architecture 

distributes load; Fog layer with 

custom indexing bypasses typical 

triple-store query overhead for 

specific retrieval tasks. 

M3 

Framework 

[31] 

Fog/Cloud 

architecture, M3 

Ontology, Uses Jena 

(Triple Store) for RDF 

storage 

Reliance on standard triple stores 

(Jena) may lead to known 

scalability issues and SPARQL 

query overhead at large scale. 

Avoids triple store bottlenecks by 

using a file-based RDF 

representation coupled with highly 

efficient, category-specific binary 

tree indexing for retrieval. 

WooD [32] Web Objects concept, 

Knowledge base 

storage (details sparse), 

Aimed at 

interoperability 

Lack of implementation details; 

Likely relies on traditional 

knowledge base/triple store 

querying, risking retrieval delays. 

Provides a concrete, implemented 

architecture with optimized 

indexing (binary tree) demonstrated 

to significantly outperform triple 

store retrieval times. 

SEDIA [33]  Smart City focus, 

Reuses SSN, IoT-Lite, 

GeoSPARQL 

ontologies, Relies on 

RDF triple stores 

Continued dependency on triple 

stores may pose scalability 

/retrieval time challenges; Less 

emphasis on fuzzy classification 

for nuanced states. 

Implements custom binary tree 

indexing tailored for fast retrieval, 

bypassing SPARQL overhead; 

Integrates fuzzy logic for improved 

classification before indexing. 

SSNT [34] Lightweight ontologies 

(IoT-Lite, SSN), Uses 

Relies on triple store (GraphDB), 

facing potential retrieval delays at 

Provides experimental validation 

showing superior scalability and 



A Fuzzy Logic-Driven Semantic and Binary Tree-Based Indexing… Informatica 49 (2025) 85–110 89 

GraphDB (Triple 

Store) for cloud storage 

scale; Lacks real-world 

evaluation/deployment details. 

retrieval speed compared to triple 

stores; Evaluated with real-world 

derived data. 

NoSQL 

databases 

[35] 

Stores RDF data using 

NoSQL models (e.g., 

document, key-value, 

column-family). 

Leverages inherent 

NoSQL scalability and 

schema flexibility. 

Potential loss of semantic 

expressiveness compared to 

native RDF stores. SPARQL 

querying often inefficient or 

requires complex mapping. 

Standard NoSQL indexes not 

typically optimized for 

semantic/vector similarity search.  

Maintains RDF semantics via file 

representation & SAREF. Uses 

optimized binary tree indexing 

tailored for vector similarity (score 

+ measurements), bypassing 

SPARQL overhead for targeted 

retrieval.  

Proposed 

Framework 

Edge (SAREF/RDF 

standardization) -> Fog 

(Fuzzy Classification + 

Binary Tree Indexing) 

-> Cloud (Storage); 

Focus on RDF 

scalability & retrieval 

speed 

Addresses: Scalability limits of 

triple stores, SPARQL overhead, 

rigid classification of uncertain 

data. 

Method: Multi-layer processing, 

Fuzzy logic for nuanced 

classification, Custom binary tree 

indexing optimized for categorized 

RDF file retrieval based on feature 

vectors (score + measurements). 

Table 2: Comparison of technologies for SIoT data management components 

C
a

teg
o

ry
 

T
ec

h
n

o
lo

g
y

 O
p

tio
n

 

S
u

ita
b

ility
 fo

r  

S
Io

T
 D

a
ta

 

(H
eter

o
g

en
eity

, 

V
o

lu
m

e, V
elo

city
) 

S
ca

la
b

ility
 

Q
u

ery
 P

er
fo

rm
a

n
ce 

(T
y

p
e) 

H
a

n
d

lin
g

 

U
n

cer
ta

in
ty

 

S
em

a
n

tic S
u

p
p

o
rt 

S
tr

en
g

th
s 

W
ea

k
n

esses 

S
to

ra
g

e A
rc

h
itectu

re 

Centralized 

Cloud 

High 

Volume, 

Moderate 

Velocity 

High Depends on 

DB; Can be 

bottleneck 

Indirect High 

(via 

DB) 

Flexibility, 

Central 

management 

Latency, 

Bandwidth costs, 

Single point of 

failure 

Edge/Fog 

Hybrid (Our 

Approach) 

High 

Heterogenei

ty, Volume, 

Velocity 

High  Optimized at 

Fog (Fast 

Retrieval) 

Direct 

(Fog 

Logic) 

High 

(Edge/ 

Fog) 

Low latency 

(Edge), 

Reduced 

network load, 

Distributed 

processing/ 

storage 

Architectural 

complexity, 

Synchronization 

challenges 

Triple Stores 

(Jena, 

Blazegraph) 

High 

Heterogenei

ty, Volume 

Medium 

Low 

Good 

(SPARQL - 

pattern 

matching), 

Poor 

(Massive 

scale) 

Low Very 

High 

Native RDF 

support, 

SPARQL 

standard 

Scalability limits, 

Complex query 

overhead, Poor 

for vector 

similarity search 

Graph 

Databases 

(Neo4j) 

Moderate 

Heterogenei

ty, High 

Volume 

High Excellent 

(Traversal), 

Moderate 

(Pattern), 

Poor (RDF 

Native) 

Low Mode-

rate 

Relationship 

focus, 

Scalability 

Non-native RDF, 

Different query 

language 

(Cypher), Less 

ideal for pure 

semantic web 

integration 

NoSQL 

(Document/K

V) 

High 

Heterogenei

ty, Volume, 

Velocity 

Very 

High 

Varies (Key 

lookup fast, 

Complex 

queries slow) 

Low Low 

Mode-

rate 

Scalability, 

Flexibility 

Reduced semantic 

expressiveness, 

Inconsistent 

query 

performance 



90 Informatica 49 (2025) 85–110 K. Halimi et al. 

C
lu

ster
in

g
/ C

la
ssifica

tio
n

 

Crisp 

Thresholds 

(e.g., Std 

MEWS) 

Simple Data N/A N/A Poor N/A Simple, Fast Prone to 

misclassification 

at boundaries, 

doesn’t model 

vagueness 

K-Means, 

DBSCAN 

Moderate 

Volume 

Mode-

rate 

N/A Poor N/A Unsupervised 

discovery, 

Handles 

certain cluster 

shapes 

Needs parameters 

(k, eps), Sensitive 

to noise/shape, 

not ideal for 

predefined 

categories or 

fuzzy boundaries 

Fuzzy Logic 

(Our Choice) 

Heterogene

ous, 

Uncertain 

Data 

N/A N/A Very 

High 

N/A Handles 

vagueness/un

certainty, 

Interpretable 

rules, 

Nuanced 

output 

Needs domain 

knowledge 

(rules/MFs), Can 

be 

computationally 

intensive 

In
d

ex
in

g
 M

ec
h

a
n

ism
 

No Index 

(Linear Scan) 

Low 

Volume 

Poor Poor (O(n)) N/A N/A Simple Inefficient for 

large datasets 

Triple Store 

Indexes (SPO, 

etc.) 

High 

Volume (but 

struggles at 

massive 

scale) 

Medium 

Low 

Good 

(Specific 

SPARQL 

patterns), 

Poor 

(General/Simi

larity) 

N/A High Optimized for 

SPARQL 

Tied to triple 

store limitations, 

not for vector 

similarity 

B-Trees / B+ 

Trees 

Structured 

Data 

High Excellent (1D 

Range), Poor 

(Multi-dim 

Similarity) 

N/A Low Standard, 

Efficient for 

range queries 

Not directly 

suited for multi-

dimensional 

similarity search 

R-Trees / 

QuadTrees 

Spatial / 

Multi-

dimensional 

Data 

High Good (Spatial 

Range/Proxim

ity), Moderate 

(Similarity) 

N/A Low Efficient 

multi-

dimensional 

spatial queries 

Can be complex, 

overhead for non-

spatial similarity, 

Potential overkill 

Graph DB 

Indexes 

Graph Data High Excellent 

(Node/Relatio

nship lookup) 

N/A Mode-

rate 

Optimized for 

graph 

traversal 

Not for RDF 

vector similarity 

Custom 

Binary Tree 

(Our Choice) 

Categorized 

Vector Data 

High  

(per tree) 

Good (Avg 

O(log n) 

Similarity 

Search) 

N/A Mode-

rate  

(via 

vector) 

Tailored for 

vector 

similarity, 

Synergizes 

with 

classification 

Needs balancing 

consideration, 

Worst-case O(n) 

if unbalanced 

4 Proposed framework 
Despite significant advancements in the Semantic 

Internet of Things (SIoT), critical challenges persist—

particularly in efficiently managing the exponential 

growth of RDF data generated by the rapidly increasing 

number of IoT devices. Addressing this challenge requires 

a more innovative and scalable approach to data storage, 

organization, and retrieval to meet the growing demands 

of modern, data-driven applications. A promising solution 

lies in a layered architectural framework that seamlessly 

integrates edge, fog, and cloud computing components. 

This approach addresses critical challenges such as real-

time data processing, efficient clustering, robust indexing,  

 

 

and scalable storage—ensuring optimized performance 

and resource utilization across all system layers.  

Clustering is an effective technique for grouping 

similar data while maintaining clear separation between 

different elements. When addressing overlapping or 

ambiguous data, integrating fuzzy logic into the clustering 

process significantly enhances its effectiveness—

improving categorization accuracy and enabling better 

handling of complex datasets. Furthermore, indexing 

techniques can significantly improve search efficiency by 

organizing data into hierarchical structures [36]. This 



A Fuzzy Logic-Driven Semantic and Binary Tree-Based Indexing… Informatica 49 (2025) 85–110 91 

approach reduces the search space and accelerates query-

based searches, enabling faster and more precise data 

retrieval. The practical deployment of such SIoT 

frameworks in real-world domains is essential for 

evaluating their effectiveness, identifying tangible 

benefits, and fostering broader adoption and innovation. 

These objectives form the focus of the following sections, 

where we demonstrate and discuss the capabilities of our 

proposed framework. 

4.1 System architecture overview 

Timely processing of IoT data, along with efficient storage 

and RDF retrieval, is critical. Cloud computing, with its 

bandwidth constraints, struggles to meet these real-time 

requirements. To address this limitation, an architecture 

that ensures low-latency processing and fast data access is 

essential for delivering responsive and efficient services. 

To meet these demands, we propose a robust edge-fog-

cloud architecture, as illustrated in Figure 1. This 

architecture is structured into four layers: 

1. Device Layer: Responsible for generating IoT data. 

2. Edge Layer: Processes data near the devices to reduce 

latency and alleviate network congestion. 

3. Fog Layer: Distributes storage and computation tasks 

across intermediate nodes. 

4. Cloud Layer: Provides centralized storage and long-

term data management. 

This multi-layered design optimizes data handling 

across the IoT ecosystem by balancing speed, efficiency, 

and scalability to accommodate the growing demands of 

modern IoT applications—including those involving a 

large number of connected devices. The first layer, the IoT 

Device Layer, encompasses all devices with data 

collection capabilities —such as sensors, wearables, and 

 

Figure 1: Edge-Fog-Cloud layer architecture for efficient 

IoT data processing and management 

smart devices—and communication technologies like Wi-

Fi, Bluetooth, and others used for data transmission. The 

Edge Layer includes resources located near these devices, 

such as gateways, routers, and local servers. Devices like 

smartwatches and desktops can also function as edge 

nodes. This layer is crucial for ensuring scalability across 

multiple devices, as it distributes initial processing load. 

The Edge Layer processes data received from sensors 

and performs initial semantic enrichment. It incorporates 

a semantic engine that performs reasoning over the data, 

enabling more insightful analysis at this early stage. By 

leveraging the ontology, the semantic engine annotates the 

sensors' measurement values and generates results in RDF 

format. This enables more accurate interpretation and 

categorization of sensor data, laying the foundation for 

decision-making and further processing in subsequent 

layers of the system. However, due to the limited storage 

capacity for RDF files at the edge, the data must be 

transferred to the next layer—the Fog Layer. The Fog 

Layer acts as an intermediary, comprising more powerful 

fog nodes (e.g., servers, routers) located regionally or 

within specific facilities such as hospitals. It bridges edge 

devices and the central cloud, further alleviating network 

load and enhancing security. This layer aggregates data 

from multiple edge nodes within its domain. The Fog 

Layer operates through two key phases that are central to 

the efficiency of our framework: 

1. Clustering Phase: Utilizes a fuzzy logic algorithm 

(Algorithm 1) to classify incoming RDF files from the 

Edge Layer into meaningful categories based on 

content. 

2. Indexing Phase: Constructs category-specific binary 

trees (Algorithm 2) to organize and index the 

classified RDF data vectors, enabling highly efficient 

similarity-based retrieval (Algorithm 3). 

By combining these phases, the Fog Layer efficiently 

manages data while minimizing network overhead—

ensuring faster and more secure data handling within the 

IoT ecosystem. Figure 2 presents a visual representation 

of the complete data processing pipeline. This flowchart 

illustrates how the core algorithmic components, detailed 

in subsequent sections, interact within the layered 

architecture.  



92 Informatica 49 (2025) 85–110 K. Halimi et al. 

 

Figure 2: Data Processing and retrieval workflow 

The proposed architecture is designed to support 

dynamic environments in which devices frequently join 

and leave the network. Device discovery, authentication, 

and connection management are primarily handled at the 

Edge Layer, utilizing standard IoT protocols and, 

potentially, an IoT platform’s management plane. When a 

new device joins, the Edge Layer registers it and 

incorporates its data into the processing pipeline. 

Subsequent fuzzy classification and binary tree indexing 

in the Fog Layer operate on the data’s characteristics (i.e., 

the feature vector derived from RDF), rather than relying 

on persistent device connections. If a device disconnects, 

the Edge Layer simply stops receiving its data, while 

previously generated and indexed information remains 

available. While optimizing specific protocols for high-

frequency join/leave scenarios remains an area for future 

work, the decoupled nature of the data flow ensures that 

core data processing and indexing mechanisms remain 

robust and scalable in dynamic environments. 

4.2 Framework modules: core components 

of the architecture 

Internet of Things (IoT) devices typically generate 

and transmit raw data over the Internet. The inconsistency 

between devices makes processing and exchanging this 

data highly challenging. Semantic Web technologies help 

bridge the gap between heterogeneous devices and enable 

semantic interoperability. The Semantic Web is widely 

used for representing data; it supports advanced reasoning 

and decision-making and facilitates the integration of data 

from multiple sources. RDF serves as the foundational 

data model for the Semantic Web, allowing seamless 

integration and sharing of data across diverse applications 

and domains. It also provides a suitable model for storing 

any semantic web data. From IoT devices that collect data, 

to its processing and storage in RDF format, and finally to 

timely data retrieval, we propose an approach that 

combines Semantic Web technologies with data 

structuring mechanisms to enhance data organization and 

processing. 

The proposed framework, depicted in Figure 3, is 

designed for IoT environments. It supports the 

management of data heterogeneity and stores the resulting 

data in RDF format. The framework relies on clustering 

and indexing of RDF files to enable rapid data retrieval. 

The approach consists of four main components: 

4.2.1 Semantic representation 

The first layer of the proposed approach addresses the 

challenge of IoT data heterogeneity. It leverages Semantic 

Web technologies and comprises a set of integrated 

modules. At its core lies the knowledge base module, 

which provides a formal structure to facilitate the sharing 

and reuse of knowledge. This module includes both an 

ontology and additional domain knowledge. The ontology 

defines a vocabulary for representing data collected from 

sensors by specifying relevant concepts and the 

relationships between them. It serves as the backbone of 

the Semantic Web, enabling semantic consistency and 

meaning-sharing across different IoT applications. While 

many existing methods support the creation of custom 

ontologies tailored to the IoT domain, reusing well-

established ontologies significantly enhances 

collaboration and data exchange across heterogeneous 

systems.  

 



A Fuzzy Logic-Driven Semantic and Binary Tree-Based Indexing… Informatica 49 (2025) 85–110 93 

Figure 3: Core elements and structural components of the 

architecture 

In particular, the adoption of the standardized SAREF 

ontology streamlines the alignment and sharing of 

ontologies, promotes interoperability, and ensures 

cohesive integration across diverse IoT platforms. Beyond 

the ontology itself, the knowledge base incorporates 

essential supplementary information about the IoT 

domain, including domain objectives, contextual 

information, historical measurement data, and more. This 

additional layer of knowledge enriches the ontology, 

offering a more holistic and accurate representation of the 

domain, thereby enabling deeper insights and improving 

decision-making and interoperability. The knowledge 

base module also integrates SWRL (Semantic Web Rule 

Language), which allows the expression of complex logic 

in the form of rules. These rules can be used to infer new, 

hidden knowledge from data stored in RDF format. This 

capability enables the discovery of implicit relationships 

and insights that are not explicitly stated in the original 

dataset. In addition to the knowledge base, the architecture 

includes an inference engine and a SPARQL engine. The 

inference engine reasons over existing data to infer new 

facts, while the SPARQL engine enables querying and 

retrieval of source data. To facilitate the use of this 

knowledge, preserve its semantic meaning, and enable 

interoperability across different applications, the 

information is stored in RDF file format. An RDF file is a 

machine-readable document that uses the RDF language 

to structure IoT data semantically. 

For example, in the IoT domain, RDF files may 

contain historical sensor measurements, environmental 

information, and other contextual data. Since tracking the 

history of IoT data is highly beneficial, storing this 

information in RDF format simplifies its processing, 

analysis, and prediction. However, as the semantic 

component processes increasing volumes of data, the size 

of RDF files grows substantially, leading to challenges 

related to storage capacity and retrieval efficiency. To 

mitigate these issues, it is essential to introduce a module 

that structures and optimizes the data effectively. 

Clustering offers a promising solution by organizing data 

into manageable groups before the indexing process. This 

approach reduces the volume of data to be indexed, 

improving system efficiency and scalability. 

While the current implementation leverages SAREF 

for standardization, the framework’s modular architecture 

allows for adaptation to environments that already utilize 

other standard ontologies such as SSN or oneM2M. The 

semantic representation module, which operates primarily 

at the Edge Layer, is conceptually decoupled from the Fog 

Layer’s fuzzy classification and indexing logic—both of 

which operate on feature vectors extracted from RDF data. 

Integration can be achieved either by developing ontology 

mapping layers (using OWL, RDFS, or SKOS) to translate 

SSN or oneM2M data into the SAREF structure expected 

downstream, or by directly adapting or replacing the 

semantic module to generate RDF based on the target 

ontology (e.g., SSN or oneM2M). While the latter 

approach would require reimplementing the RDF 

generation logic, it could offer tighter integration with 

existing systems.  

Crucially, as long as the necessary numerical features 

can be reliably extracted from the resulting RDF—

regardless of the specific ontology vocabulary used—for 

input into the fuzzy classifier and indexing vector, the core 

logic of the Fog Layer modules (Algorithms 1, 2, and 3) 

remains applicable with minimal modification. Therefore, 

adapting the framework primarily involves adjustments to 

the semantic representation layer and does not require a 

complete repair of the multi-layered architecture or its 

core data processing techniques. 

Fragmentation often arises from heterogeneous data 

sources employing different data models. By using the 

SAREF ontology for semantic annotation directly at the 

Edge Layer, the framework establishes a consistent RDF 

structure for all incoming data before it is distributed. Each 

generated RDF file represents a coherent snapshot of 

related measurements, logically linked via the ontology as 

illustrated in Figure 3. This early standardization 

minimizes structural fragmentation from the outset. The 

Clustering Module groups these semantically coherent 

RDF files into categories based on their content. As a 

result, files representing similar states or events are 

logically grouped together, facilitating more targeted and 

efficient querying. Although data may still reside in 

numerous individual files, the Binary Tree Indexing 

approach enables efficient retrieval based on the content 

vector. A query for a specific state retrieves the most 

similar file(s) directly via the index, eliminating the need 

to manually reconstruct fragmented information across 

unrelated files or perform complex SPARQL joins in a 

potentially fragmented triple store.  While the framework 

does not physically merge files, the combination of logical 

categorization and content-based indexing effectively 

addresses the retrieval challenges associated with 

fragmentation. 

4.2.2 Clustering module 

Operating primarily within the Fog Layer, as 

described in Section 4.1, the Clustering Module processes 

the RDF files produced by the semantic layer at the Edge. 

Following the semantic representation phase detailed in 

Section 4.2.1—where heterogeneous IoT data is 

standardized into a consistent RDF format using the 

ontology—the framework encounters the subsequent 

challenge of efficiently managing and retrieving 

information from the potentially vast volume of generated 

RDF files. While semantic standardization addresses 

issues of interoperability and shared meaning, it does not 

inherently resolve the scalability challenges associated 

with searching through large numbers of individual files, 

particularly when rapid access is required. Therefore, the 

next critical step involves organizing these semantically 

enriched RDF files based on their content to facilitate 

optimized access. This task is performed by the Clustering 

Module, which classifies the RDF files into meaningful 

categories based on extracted features and computed 

scores. By doing so, the module effectively structures the 

data, significantly reduces the search space, and lays the 



94 Informatica 49 (2025) 85–110 K. Halimi et al. 

foundation for the efficient indexing and retrieval 

mechanisms described in subsequent sections. 

To address the challenges posed by massive data 

volumes and to improve retrieval efficiency, this module 

groups RDF files representing similar states into distinct 

categories. This categorization structures the data, reduces 

the search space for subsequent retrieval, and accelerates 

query performance by ensuring that related data is indexed 

together. The approach involves constructing a separate 

index—specifically, a binary tree—for each category. 

This significantly speeds up the search process, as each 

index contains only RDF files belonging to its respective 

group. Moreover, by employing fuzzy logic, the module 

enhances the framework’s adaptability to dynamic 

environments characterized by uncertainty or gradually 

evolving data, ultimately supporting more robust and 

responsive data-driven decision-making.  

Given that IoT data is often imprecise and vague, 

attempting to classify it using rigid thresholds can result in 

inaccurate outcomes. Fuzzy logic emerges as a highly 

suitable solution, specifically designed to handle the 

uncertainty and ambiguity inherent in such data. It enables 

reasoning under uncertainty by using degrees of 

membership rather than absolute categorizations. By 

mirroring human decision-making, fuzzy logic effectively 

models overlapping concepts and gradual transitions 

between data states. The decision to employ fuzzy logic is 

fundamentally driven by its superior capability to manage 

the vagueness and imprecision characteristic of real-world 

IoT data. Unlike traditional methods based on crisp 

thresholds which struggle with ambiguity at category 

boundaries and risk misclassifying borderline cases, fuzzy 

logic explicitly accounts for this imprecision. Through the 

use of membership functions, fuzzy logic allows a data 

point to possess partial membership in multiple linguistic 

categories. 

The ability to represent partial truths produces a more 

nuanced output score (S), which facilitates more accurate 

and relevant classification into predefined categories. This 

enhanced level of precision is especially valuable in high-

stakes domains such as healthcare and was qualitatively 

supported by expert review in our study. Furthermore, the 

rule-based structure inherent to many fuzzy systems offers 

a level of interpretability often lacking in complex black-

box models. Alternative approaches were considered less 

appropriate for this task: crisp thresholds are inherently 

limited in their ability to represent ambiguity, while 

standard unsupervised clustering algorithms (e.g., K-

Means, DBSCAN) are primarily intended for discovering 

unknown data groupings rather than performing fine-

grained classification into predefined, semantically 

meaningful categories with inherently fuzzy boundaries. 

It is important to note that within the context of our 

target healthcare application, this module performs fuzzy 

classification rather than unsupervised clustering. The 

objective is to assign each RDF file to one of the 

predefined categories, using fuzzy logic to enable a more 

nuanced and robust classification than that achieved 

through standard classification methods. The fuzzy system 

employs several standard components to perform this 

classification. The process begins by extracting relevant 

features—termed Attributes—from each RDF file f. As 

these files represent IoT measurements structured 

according to the SAREF ontology, the Attributes typically 

consist of specific numerical values such as pulse rate or 

temperature in health context.  

Following extraction, the fuzzifier module converts 

these numerical attributes into fuzzy sets. It applies 

predefined membership functions, such as triangular or 

trapezoidal shapes, with boundaries derived from 

established guidelines. Each numerical value is assigned a 

degree of membership between 0 and 1 for the 

corresponding linguistic terms, such as "Normal" or 

"High1" in the case of heart rate. These terms and their 

associated membership functions are domain-specific and 

grounded in medical standards such as the MEWS system 

for vital signs. The output of this stage is a fuzzy 

representation of the input data. (e.g.: A heart rate of 115 

may fuzzify to {Normal: 0.0, High1: 0.4, High2: 0.8}). 

The core fuzzy inference component then utilizes a set 

of fuzzy rules—defined by domain experts—to evaluate 

the fuzzified inputs. These rules map combinations of 

fuzzy input values to output fuzzy sets that represent the 

target classification categories, such as risk levels. A 

representative rule might be: IF Pulse is High1 AND 

OxygenSaturation is Low1 THEN Risk is Moderate. The 

inference engine evaluates all applicable rules for the 

given input, aggregates the results, and produces a final 

fuzzy output set that indicates the file’s degree of 

compatibility with each risk category. Finally, to convert 

the fuzzy output into a single crisp score, the 

defuzzification module applies the Centroid method, 

defined as:  𝑆 =
∑ 𝑥𝑖

𝑛
𝑖=1 ⋅𝜇(𝑥𝑖)

∑ 𝜇𝑛
𝑖=1 (𝑥𝑖)

     (1)  

Where: 

• 𝑆 is the crisp output score (denoted as Score𝑖), 

𝑥𝑖 represents a point in the output domain (e.g., a    

specific risk level or severity index), 

• 𝜇(𝑥𝑖) is the membership degree of the aggregated 

fuzzy output set at point 𝑥𝑖, 

• 𝑛 is the total number of discrete points considered 

within the output domain. 

This resulting score 𝑆 quantifies the degree of 

compatibility or relevance of a given RDF file 𝑓 to a 

specific target class 𝐶ℓ𝑖
. It is this crisp value that is then 

passed forward to the classification and indexing modules 

within the SIoT architecture. 

Algorithm 1 outlines the process for classifying RDF 

files into categories using the fuzzy logic engine. This 

algorithm leverages the computed fuzzy scores to assign 

each data point (i.e., RDF file) to the most appropriate 

predefined category. By calculating the compatibility 

score of each data point with all available categories, the 

algorithm effectively handles ambiguity and overlapping 

concepts—particularly useful in scenarios where clear 

boundaries between states are not well-defined. Based on 

these scores, each file is assigned to the single best-fitting 

category, thereby facilitating optimized data organization 

for subsequent indexing and retrieval. 

 
Algorithm 1: Clustering with Fuzzy Logic Engine 

Input: 



A Fuzzy Logic-Driven Semantic and Binary Tree-Based Indexing… Informatica 49 (2025) 85–110 95 

• F = {f₁, f₂, ..., fₘ}  // Dataset of RDF files 

• Cl = {Cl₁, Cl₂, ..., Clₙ}  // Initial set of clusters 

• FuzzyLogicEngine // Module to compute membership scores 

• ε  // Convergence threshold for early stopping 

Output: 

• Clusters with assigned RDF files 

Steps: 

1. Initialize Cl ← DefineInitialClusters(F)  // Use domain-

specific rules 

2. T ← CalculateInitialThreshold(F, Cl)  // Compute initial 

threshold based on average membership scores 

3. Repeat: 

4.     AssignmentsChanged ← False  // Track changes in cluster 

assignments 

5.   For each file f ∈ F: 

6.    Attributes ← ExtractAttributes(f)// Extract features from f 

7.    Scores ← []  // Initialize empty list for scores 

8.    For each cluster Clᵢ ∈ Cl: 

9.     Scoreᵢ ← FuzzyLogicEngine.CalculateScore(Attributes, Clᵢ) 

10.            Append (Clᵢ, Scoreᵢ) to Scores 

11.        BestCluster, BestScore ← max(Scores)  // Find cluster  

with highest score 

12.        If BestScore > T: 

13.            Assign f to BestCluster 

14.            If f was previously assigned to a different cluster: 

15.                AssignmentsChanged ← True 

16.        Else: 

17. createNewCluster(f)// Initialize new cluster with f as centroid 

               Append new cluster to Cl 

18.            AssignmentsChanged ← True 

19.    UpdateClusters(Cl)  // Adjust centroids using weighted  

averages of assigned files 

20.    T ← AdjustThreshold(F, Cl)  // Recalculate threshold based  

on updated clusters 

21.   Convergence ← CheckConvergence(AssignmentsChanged, 

ε)  // Stop if changes are below ε 

22. Until Convergence = True or AssignmentsChanged = False 

23. Return Cl  // Output clusters with assigned RDF files 

 

In the initialization phase of Algorithm 1, the set of 

classification categories Cl is defined. Although generic 

clustering techniques can be employed, the proposed 

framework favours a domain-specific approach in which 

these categories are predefined based on context-relevant 

semantic criteria. This ensures alignment with real-world 

conditions and facilitates the interpretation of results. The 

classification process requires the calculation of a 

threshold T, which represents the minimum score of 

confidence required to assign a given data file to a 

particular category. When a file's highest fuzzy 

compatibility score falls below this threshold, the system 

interprets it as indicative of uncertainty or weak 

association. In such situations, instead of generating a new 

category, the file may be allocated to a designated 

"uncertain" group or flagged for manual review, 

particularly in domains where categories are fixed and 

semantically meaningful. 

The computed fuzzy score is the primary determinant 

for identifying the most appropriate classification. Unlike 

soft clustering methods such as Fuzzy C-Means, which 

assign partial membership values across multiple clusters 

and refine them iteratively, the approach adopted here 

aims for a crisp categorization. Each file is ultimately 

assigned to the most compatible predefined category, 

based on its highest fuzzy score. This strategy is especially 

advantageous in scenarios that require clear organizational 

structure and efficient retrieval, while still accommodating 

uncertainty and overlapping semantic boundaries through 

the use of fuzzy logic. 

A complexity analysis of Algorithm 1 reveals its 

computational cost as follows: Let 𝑚 represent the number 

of RDF files, 𝑛 the number of predefined categories, 𝐼 the 

number of iterations (potentially just one for simple 

classification), and 𝑑 the feature dimensionality. Let 

𝐶extract be the cost of attribute extraction per file, and 𝐶fuzzy 

the cost of fuzzy scoring per file per category (dependent 

on fuzzy rule complexity). The initialization step, based 

on domain-specific rules, typically has a complexity of 

𝑂(𝑛). The overall time complexity is dominated by the 

loop that processes each file against every category, 

resulting in a total complexity of approximately: 

𝑂 (𝐼 ⋅ 𝑚 ⋅ (𝐶extract + 𝑛 ⋅ 𝐶fuzzy))          (2) 

This expression highlights the algorithm’s dependence on 

the dataset size 𝑚, the number of target categories 𝑛, and 

the computational costs associated with RDF feature 

extraction and fuzzy rule evaluation. 

4.2.3 Indexation layer 

Following the classification step—also performed 

within the Fog Layer—the Indexation Layer, operating in 

the same environment, employs indexing as a powerful 

and widely adopted technique to enable rapid access to 

large datasets. In this work, we utilize a binary tree 

structure to index RDF files within each category 

determined by the fuzzy classification module described 

in Section 4.2.2. A separate binary tree is constructed for 

each category; for example, one tree per MEWS risk level 

in the healthcare scenario. This strategy partitions the data 

based on its classified state prior to indexing. Each node 

𝑁 within these binary trees may contain references to up 

to two child nodes (leftChild, rightChild) and is designed 

to hold up to two pivot points (Pivot1, Pivot2). The basic 

structure of a node is defined as follows: Node { leftChild: 

Node | null; rightChild: Node | null; Pivot1: Vector | null; 

Pivot2: Vector | null; }, where Vector represents the 

feature vector associated with an RDF file. 

The choice of this custom binary tree structure is 

motivated by the need for efficient retrieval from 

potentially massive collections of categorized RDF files—

a critical requirement in which standard SIoT approaches, 

relying on triple stores and SPARQL queries, often 

struggle due to scalability.  

In our framework, RDF data is transformed into 

categorized files, each represented by a multi-dimensional 

feature vector comprising the fuzzy score and relevant 

sensor measurements. The binary tree index is specifically 

optimized for fast similarity-based retrieval of these 

vectors within their assigned categories. Its primary 

advantage lies in the hierarchical partitioning of the vector 

space using Euclidean distance relative to the pivot 

vectors stored in each node. This structure enables an 

average-case retrieval complexity potentially approaching 

𝑂(log𝑛), where 𝑛 is the number of files in a category’s 

tree.  



96 Informatica 49 (2025) 85–110 K. Halimi et al. 

This logarithmic complexity represents a significant 

improvement over linear search methods and avoids the 

overhead associated with complex SPARQL pattern 

matching over large triple stores. Moreover, the indexing 

approach synergizes directly with the preceding fuzzy 

classification step: building separate trees per category 

drastically reduces the search space (𝑛) for any given 

query, as the query’s fuzzy score immediately directs the 

search to the appropriate tree.  

While alternative multi-dimensional indexing 

structures exist (e.g., R-trees, QuadTrees), the chosen 

binary tree—empirically designed with two pivots per 

node for effective branching—offers a tailored solution 

for vector similarity comparison with lower 

implementation complexity for this specific use case. In 

contrast, traditional B-trees are not suitable for multi-

dimensional similarity tasks, and graph databases 

introduce non-native RDF handling and alternative query 

paradigms that are not optimized for this type of vector-

based retrieval.  

The connection between the clustering phase (fuzzy 

classification) and the indexing phase is critical to the 

efficiency of the overall framework. The process begins 

once an RDF file 𝑓 has been assigned to a specific 

category 𝐶𝑙
𝑖, and its corresponding fuzzy compatibility 

score 𝑆 has been computed. This fuzzy score 𝑆 is primarily 

used to determine which category-specific binary tree the 

RDF file should be inserted into. After the appropriate tree 

is selected, an input feature vector is constructed to 

represent the RDF file for insertion. To clarify the vector 

formation process, this multi-dimensional vector 

explicitly combines the fuzzy score 𝑆 with the relevant 

numerical measurement attributes (e.g., vital signs) 

extracted from the RDF file. A typical structure is: 
vector = [𝑆, measurement1, measurement2, . . . , measurement𝑑] 

This complete vector interacts with the binary tree 

structure during both insertion and retrieval operations. 

The binary tree structure is specifically designed to 

optimize data retrieval efficiency. Queries navigate the 

tree by comparing a query vector to the pivot vectors 

stored at each node. At each internal node, the algorithm 

calculates the distance to both pivots and proceeds down 

the branch associated with the closer pivot. This 

hierarchical search, guided by vector similarity, 

dramatically reduces the search space compared to 

conventional linear scans. The insertion of a new RDF 

file’s feature vector into its designated category-specific 

binary tree is handled by Algorithm 2. This algorithm 

preserves the organization of the tree by placing new 

vectors based on their similarity to existing pivot vectors, 

ensuring both balance and retrieval efficiency.  

 
Algorithm 2: Inserting RDF Files into Binary Tree 

Input: 

    vector: The feature vector for an RDF file, including fuzzy    

                 score and measurement values. 

    N: The root node of the specific binary tree corresponding to  

          the vector's category. 

Output: 

    Updated binary tree root node. 

Steps: 

1. Function InsertVector(N, vector): 

2.  If N is null: // Tree/subtree is empty 

3.      Return Creationofnode(vector) // Create root or new leaf 

4.  // --- Pivot Assignment --- 

5.  If N.Pivot1 is null: 

6.      N.Pivot1 = vector // Assign vector as the first pivot 

7.      Return N 

8.  Else if N.Pivot2 is null: 

9.      N.Pivot2 = vector // Assign vector as the second pivot 

10.     Return N 

11. // --- Distance Computation & Child Node Direction --- 

12. Else: // Both pivots exist, decide which subtree to traverse 

13.     D1 = EuclideanDistance(vector, N.Pivot1) // Use Eq. 3 

14.     D2 = EuclideanDistance(vector, N.Pivot2) // Use Eq. 3 

15.     If D1 < D2: // Closer to Pivot1 

16.         If N.leftChild is null: 

17.             N.leftChild = Creationofnode(vector) 

18.         Else: 

19.    N.leftChild=InsertVector(N.leftChild, vector) //Recurse left 

20.     Else: // Closer to Pivot2 (or equal) 

21.         If N.rightChild is null: 

22.             N.rightChild = Creationofnode(vector) 

23.         Else: 

24.  N.rightChild=InsertVector(N.rightChild, vector)//Recurse   

        right 

25.  Return N // Return the (potentially updated) current node N 

26.Function Creationofnode(vector): 

27. // Creates a new node instance based on the defined structure 

28. N_new = new Node() 

29. N_new.Pivot1 = vector // The input vector becomes the first  

pivot of the new node 

30. N_new.Pivot2 = null 

31. N_new.leftChild = null 

32. N_new.rightChild = null 

33. Return N_new. 

 

Expanding on the insertion logic, the process begins 

at the root node 𝑁 of the relevant binary tree. If node 𝑁 is 

null—indicating either an empty tree or an uninitialized 

subtree—the CreationOfNode function is invoked. This 

function instantiates a new Node object based on the 

structure previously defined, assigns the entire input 

vector as Pivot1 for the newly created node, and initializes 

all other fields to null. If the current node 𝑁 is not null but 

contains fewer than two pivots, the input vector is assigned 

to the next available pivot slot (Pivot1 or Pivot2). It is 

important to clarify that the entire multi-dimensional input 

vector is used as the pivot; no aggregation or selection of 

specific values from the vector is performed. When both 

pivots are already present in node 𝑁, the algorithm 

proceeds to calculate the distance between the input vector 

and each of the node’s existing pivot vectors. To ensure 

clarity on the distance computation involving multi-

dimensional vectors, the algorithm employs the standard 

Euclidean distance metric in a multi-dimensional space. 

𝑑(v, p) = √∑ (𝑣𝑖 − 𝑝𝑖)2𝑛
𝑖=1    (3) 

Here, 𝑑(𝑣, 𝑝) denotes the Euclidean distance between 

the input vector 𝑣 and a pivot vector 𝑝, with the sum 

computed across all 𝑖 dimensions of the vectors—

including the fuzzy score and all associated measurement 

values. Based on which pivot (Pivot1 or Pivot2) yields the 

smaller distance (denoted as 𝐷1 or 𝐷2), the algorithm 

recursively calls the InsertVector function on the 

corresponding child node (leftChild or rightChild). This 



A Fuzzy Logic-Driven Semantic and Binary Tree-Based Indexing… Informatica 49 (2025) 85–110 97 

recursive process ensures that similar vectors are grouped 

within the same subtrees, continuing until the input vector 

is either inserted as a pivot in an existing node or assigned 

as Pivot1 in a newly created leaf node. The structural 

integrity and efficiency of the binary tree are maintained 

through this recursive insertion strategy, which is guided 

by Euclidean similarity within the multi-dimensional 

feature space. 

4.2.4 Data search and retrieval  

The data retrieval process leverages the indexes 

created and maintained within the Fog Layer. While a user 

query may originate from an application interfacing with 

the Cloud Layer or other external systems, the core search 

mechanism—detailed in Algorithm 3—executes primarily 

within the Fog Layer, utilizing the locally held binary tree 

indexes. Efficient data retrieval is essential for extracting 

value from large-scale IoT datasets. Our approach uses the 

structured binary trees built in the Indexation Layer 

(Section 4.2.3) to perform rapid similarity searches for 

RDF files based on their feature vectors, aiming to 

optimize both speed and accuracy in retrieving relevant 

data.  

The search process begins with the formulation of a 

query, typically represented by a set of target 

measurement values. This input is first processed through 

the same fuzzy logic engine used during the 

clustering/classification phase (Section 4.2.2) to compute 

a query fuzzy score (𝑆query). This score determines which 

category-specific binary tree should be queried. A query 

vector (vectorquery) is then constructed—analogous to the 

vectors used for insertion—by combining the query score 

with the target measurement values: 
vectorquery = [𝑆query, query_measure

1
, . . . , query_measure

𝑑
] 

The search within the selected tree begins at the root 

node 𝑁. If 𝑁 is null, the search terminates with no relevant 

data found. If 𝑁 is not null, the algorithm compares the 

query vector to the pivot vectors stored in the node using 

standard multi-dimensional Euclidean distance. 

Regarding mixed value types, both the fuzzy score and the 

numerical measurements are treated as numerical 

dimensions within the vector space. The Euclidean 

distance calculation inherently handles this multi-

dimensional comparison: 

𝑑(𝑣query, 𝑝) = √(𝑆query − 𝑆pivot)
2

+ ∑(query_measure𝑖 − pivot_measure𝑖)
2

 (4) 

Here, 𝑣query is the query vector, 𝑝 is a pivot vector, 𝑆 

denotes the fuzzy score component, and measure𝑖 

represents the 𝑖-th measurement value. Each dimension—

both score and measurements—is treated equally in the 

distance computation. No explicit weighting is applied in 

the standard Euclidean distance formula; however, the 

relative influence of the fuzzy score versus the 

measurement values can be implicitly adjusted during the 

feature scaling phase if desired. In our implementation, 

standard feature scaling was used. 

Algorithm 3 outlines the recursive traversal logic used 

during data retrieval. At each node 𝑁, the algorithm 

calculates the distance distance1 between the query vector 

and 𝑁.Pivot1. If 𝑁.Pivot2 is present, a second distance 

distance2 is also computed relative to that pivot. The 

algorithm first checks for an exact match—that is, whether 

either distance equals zero. If no exact match is found, 

traversal is guided entirely by the Euclidean distances: if 

distance1 < distance2, the algorithm proceeds recursively 

down the left subtree (closer to Pivot1); otherwise, it 

traverses the right subtree (closer to Pivot2). It is important 

to note that the fuzzy score serves primarily to select the 

appropriate binary tree during query initialization. Within 

the selected tree, the search is based solely on geometric 

proximity in the multi-dimensional feature space, as 

determined by Euclidean distance. This ensures that the 

search path consistently moves toward the vectors most 

similar to the query vector, considering all included 

features—both the fuzzy score and the measurement 

values. The recursive process continues until an exact 

match is identified or a null node (indicating a leaf or end 

of branch) is reached. This hierarchical search 

significantly reduces the number of comparisons required, 

offering a clear performance advantage over traditional 

linear scanning. 

 

Algorithm 3: Data Search & Retrieval 
Input: 

N: A node in the binary tree (currently visited). 

    vector_query: The input query vector (score + measurements). 

Output: 

The retrieved RDF file's representative vector (Pivot) or null. 

Procedure SearchRDFFiles(N, vector_query): 

1.  If N is null: 

2.      Return null  // Reached end of branch, no match found 

3.  distance1 ← EuclideanDistance(vector_query, N.Pivot1) 

4.  If distance1 == 0: 

5.      Return N.Pivot1  // Exact match with Pivot1 

6.  If N.Pivot2 is not null: 

7.      distance2 ← EuclideanDistance(vector_query, N.Pivot2) 

8.      If distance2 == 0: 

9.          Return N.Pivot2  // Exact match with Pivot2 

10.     If distance1 < distance2: 

11.         Return SearchRDFFiles(N.leftChild, vector_query)  //  

Recurse left 

12.     Else: 

13.         Return SearchRDFFiles(N.rightChild, vector_query)  //  

Recurse right 

14. Else: 

15.     Return SearchRDFFiles(N.leftChild, vector_query)   

 

The efficiency of the proposed binary tree indexing 

approach (Algorithm 3) merits comparison with 

alternative retrieval methods. In the best-case scenario, the 

query complexity of our method is approximately 

𝑂(𝑑 ⋅ log 𝑚), where 𝑚 is the number of indexed RDF 

files and 𝑑 is the dimensionality of the feature vector, 

assuming a reasonably balanced tree. However, as with 

many tree-based structures, the worst-case query 

complexity can degrade to 𝑂(𝑑 ⋅ 𝑚) if the tree becomes 

highly unbalanced due to non-uniform data insertion 

patterns. This performance stands in contrast to graph 

traversal techniques commonly used in RDF triple stores. 

While such methods can be efficient for specific SPARQL 

relationship queries using pre-optimized indexes, their 

worst-case complexity for complex pattern matching can 



98 Informatica 49 (2025) 85–110 K. Halimi et al. 

be significantly higher—potentially polynomial—and 

they are not inherently designed for the type of vector-

based similarity search employed in our framework. 

Standard hash-based indexing offers excellent average-

case performance (𝑂(1)) for exact-match lookups, but it 

is inherently unsuitable for distance-based similarity 

searches without specialized adaptations such as Locality-

Sensitive Hashing (LSH), which introduces 

approximation and may compromise accuracy. Therefore, 

while we acknowledge the possibility of worst-case 

𝑂(𝑑 ⋅ 𝑚) performance, the proposed binary tree structure 

represents a task-specific, efficient solution for retrieving 

RDF files based on similarity within the multi-

dimensional feature space defined by measurement values 

and fuzzy scores. It outperforms traditional graph traversal 

or hashing approaches in direct applicability to this 

retrieval objective. 

5 Application scenario: IoT-driven 

enhancements in healthcare 
Healthcare is a critical priority for governments and 

health organizations as they strive to protect populations 

from disease, enhance diagnostic capabilities, and 

promote overall well-being. The integration of IoT 

technologies has transformed this sector, introducing 

advanced capabilities that improve diagnostic accuracy, 

reduce costs and delays, and enable continuous patient 

monitoring. This domain is particularly well-suited for the 

application of our proposed approach, which can have a 

significant impact. Timely and accurate data management 

is essential in healthcare, as it not only has the potential to 

save lives but also to improve patient outcomes. By 

enabling more efficient and reliable data processing, our 

approach supports better clinical decision-making and 

enhances the overall quality of care. Vital signs—such as 

heart rate, blood pressure, and oxygen saturation—are 

essential indicators of a patient’s condition [37]. IoT 

devices enable the real-time collection of these 

measurements and facilitate immediate transmission to 

healthcare providers or hospitals. This capability supports 

early detection of potential health issues and enables 

continuous monitoring, particularly for patients with 

chronic conditions. Beyond data collection, IoT 

technologies rely on robust architectures to process, store, 

and retrieve this critical information [38]. Paradigms such 

as cloud computing offer scalable solutions for data 

storage and processing, while semantic processing 

addresses data heterogeneity—ensuring that diverse data 

formats can be effectively integrated. These architectures 

facilitate the seamless transmission and retrieval of 

actionable insights, empowering healthcare professionals 

to analyze patient data efficiently [39]. Our approach 

aligns with these objectives by introducing a semantic-

driven IoT architecture that enables faster and more 

accurate data processing while ensuring proper 

categorization and storage. By addressing key challenges 

such as data heterogeneity and retrieval latency, this 

framework equips healthcare providers with the tools 

needed to make informed, timely decisions—ultimately 

improving the quality of care and patient outcomes. 

According to the proposed IoT framework, the 

healthcare system architecture is structured into multiple 

layers. The first layer comprises all health-related IoT 

devices responsible for generating and transmitting patient 

data. These devices include sensors capable of measuring 

vital signs—such as wearable devices, smartphones, and 

other smart technologies—with limited memory and 

processing capabilities. They enable seamless real-time 

data processing and analysis, supporting immediate 

insights and decision-making at the edge of the network. 

These smart devices utilize Semantic Web technologies to 

address data heterogeneity, producing RDF files for 

standardized representation. The third layer consists of 

devices such as routers and servers, deployed within 

hospitals and covering broader geographic areas. This 

layer is subdivided into Fog Level 1, which handles the 

clustering of RDF files, and Fog Level 2, which performs 

indexing. The final layer represents the Cloud, equipped 

with greater storage and processing capabilities. It 

functions as the central infrastructure for nationwide 

healthcare data management and coordination. 

Representing patient data using RDF offers a 

structured and standardized method for managing 

healthcare information. RDF facilitates the integration of 

diverse data sources—including vital signs, medical 

histories, and IoT device readings—into a machine-

readable format that promotes interoperability and 

semantic understanding. By organizing data into triples 

(subject, predicate, object), RDF captures the relationships 

between data points, enabling efficient querying, sharing, 

and analysis of patient information. This model supports 

effective decision-making, real-time monitoring, and 

system scalability, making it well-suited for modern 

healthcare environments. 

The creation of RDF files marks the final step within 

the semantic layer, transforming raw IoT data into 

structured, meaningful, and actionable formats. After 

collecting health-related data, the system applies the 

SAREF ontology to standardize and organize information 

into a consistent, machine-readable structure. 

Furthermore, ontology-based SWRL rules are used to 

infer additional insights about the patient, aiding in the 

generation of relevant services and personalized 

recommendations. An inference engine is also 

incorporated to validate and enhance the accuracy of the 

generated knowledge. This seamless integration of 

semantic technologies improves both decision-making 

and service delivery by enabling more informed and 

context-aware actions. An example RDF file is shown in 

Figure 4, illustrating how patient data is organized and 

semantically enriched for practical use. 

To support the early detection of health deterioration, 

the framework incorporates an Early Deterioration 

Identification System based on the Modified Early 

Warning Score (MEWS).  

 



A Fuzzy Logic-Driven Semantic and Binary Tree-Based Indexing… Informatica 49 (2025) 85–110 99 

 

Figure 4: Patient’s RDF file. 

MEWS is a clinical scoring method that evaluates five 

vital signs: blood pressure, pulse, oxygen saturation, 

respiratory rate, and body temperature. Each vital sign is 

assigned a score from 0 to 3, where 0 indicates a normal 

state, and higher scores reflect increasing risk levels. 

Clinicians calculate a patient’s overall MEWS score by 

summing the individual scores, resulting in a total value 

ranging from 0 to 14. Each incremental increase in the 

MEWS score signifies a greater health risk and may 

prompt a change in the treatment plan. For example, an 

increase of one point suggests heightened clinical concern 

requiring immediate medical attention. Additionally, RDF 

files are structured to categorize patient health status into 

predefined MEWS score ranges—such as [0–1], [1–2], ..., 

[13–14]—ensuring precise classification of patient 

conditions for continuous monitoring and timely 

intervention.  

To apply our framework to the healthcare scenario, 

we establish a direct connection between the raw vital sign 

data collected via IoT devices and the fuzzy classification 

process. The MEWS system serves as the foundational 

structure. As previously described, MEWS assigns scores 

(ranging from 0 to 3) to specific intervals of vital signs 

(e.g., a pulse rate below 40 receives a score of 2, a value 

between 51–90 receives 0, and values above 130 receive a 

score of 3). These MEWS ranges and their associated 

scores form the direct basis for defining the inputs to our 

fuzzy logic system. In particular, the fuzzification process 

translates raw numerical vital sign measurements into 

fuzzy linguistic terms based on the MEWS-defined 

scoring ranges. For each vital sign—such as systolic blood 

pressure, heart rate, oxygen saturation, and temperature 

(i.e., the Attributes extracted from the RDF file)—we 

define a corresponding set of fuzzy linguistic terms 

aligned with MEWS scoring levels. For example, for heart 

rate, the terms might include: Low2 (corresponding to 

MEWS score 2 range <40), Low1 (score 1 range 41-50), 

Normal (score 0 range 51-90), High1 (score 1 range 91-

110), High2 (score 2 range 111-130), and High3 (score 3 

range >130). 

Membership functions are then defined for each 

linguistic term, mapping the numerical value of a vital sign 

to a degree of membership (ranging from 0 to 1). As 

illustrated in Figure 5 (for pulse rate), these membership 

functions—trapezoidal—are shaped directly based on 

MEWS ranges.  

 

Figure 5 : Membership function of pulse rate 

This allows for smooth transitions between categories 

rather than abrupt thresholds. For instance, a heart rate of 

95 bpm may have a high degree of membership in High1, 

but also a small degree in Normal, reflecting uncertainty 

near clinical boundaries. This fuzzified representation of 

all relevant vital signs becomes the input to the fuzzy 

inference engine. The fuzzy inference engine applies a set 

of predefined fuzzy rules designed to mirror the clinical 

logic behind the MEWS system, but operating on fuzzy 

rather than crisp inputs. These rules—often implemented 

using Mamdani-style inference [40]—combine fuzzy 

states across multiple vital signs. For example: IF Pulse is 

High1 AND OxygenSaturation is Low1 then Risk IS 

Moderate. The results of these rules are aggregated into a 

final fuzzy output set that characterizes the patient’s 

overall risk profile.  

The final step, defuzzification—typically performed 

using the centroid method (see Equation 1)—converts the 

fuzzy output set into a single crisp value: the fuzzy MEWS 

score 𝑆. This score represents the system’s comprehensive 

assessment of the patient’s condition, analogous to the 

standard MEWS score but enhanced through fuzzy logic 

to better manage uncertainty and borderline cases. The 

calculated score is used to classify the patient into one of 

15 predefined risk categories (see Table 3). For instance, 

a score between 7.0 and 8.0 may correspond to the 

Elevated Risk category. This process illustrates how raw 

healthcare data (vital signs) are transformed into fuzzy 

inputs, processed using clinically grounded rules, and 

translated into a decision-making score. The fuzzy score 

not only determines the patient's risk category 𝐶𝑙
𝑖, but also 

guides the insertion of the patient’s feature vector 

(comprising 𝑆 and original measurements) into the 

appropriate binary tree using Algorithm 2, directly 

integrating fuzzy classification into the retrieval 

framework. The shapes and boundaries of the membership 

functions were derived directly from the clinically 

validated MEWS scoring ranges. For example, the Normal 

pulse range ([51–90]) forms the core of the corresponding 

membership function, while trapezoidal shapes are used 

for transitional zones. These slightly overlap adjacent 

ranges (e.g., Low1, High1) to accurately model the 

ambiguity near clinical thresholds. This design ensures 

that the fuzzy representation remains grounded in 

established medical practice. 



100 Informatica 49 (2025) 85–110 K. Halimi et al. 

As shown in Figure 5, membership functions for vital 

signs are used as inputs to a set of predefined fuzzy rules 

structured in the form: IF antecedent (input condition) 

THEN consequent (risk level). These rules are based on 

combinations of vital signs such as heart rate or oxygen 

saturation, each represented by a linguistic term (e.g., 

High, Low) with associated membership degrees. 

The fuzzy inference system uses Mamdani-style rules 

[40] and logical operators such as AND and OR to produce 

a fuzzy output set, which is then defuzzified into a single 

global MEWS score. This score corresponds to one of 15 

predefined health statuses—ranging from Optimal Health 

to Unknown Risk —as outlined in Table 3. If a score does 

not fall within a category's defined range, the system 

proceeds to evaluate the next category until the 

appropriate classification is identified.  

Introducing fuzzy logic into clinical systems requires 

careful design to ensure reliability, interpretability, and 

clinical alignment. Our approach incorporates four key 

safeguards: 

1. Clinical Grounding: Membership functions and fuzzy 

rules were derived directly from MEWS guidelines, 

ensuring precise alignment with medical standards 

and avoiding the introduction of untested diagnostic 

logic. 

2. Modeling Natural Uncertainty: Rather than 

introducing ambiguity, fuzzy logic models inherent 

uncertainty and gradual physiological transitions—

features that crisp threshold fail to capture. This 

reduces misclassification risks for borderline cases. 

3. Interpretability: Unlike black-box machine learning 

models, the rule-based structure of the fuzzy system 

allows clinicians to inspect, understand, and adjust 

the system logic. The use of clear linguistic terms and 

IF-THEN rules ensures transparency. 

4. Expert Validation: A practicing physician can review 

selected patient cases to assess the accuracy and 

clinical relevance of the fuzzy logic-enhanced MEWS 

system. Such expert evaluations can confirm that the 

system often produces more nuanced and context-

appropriate classifications—particularly in borderline 

scenarios where traditional MEWS scores may be 

ambiguous. This type of validation is essential to 

ensure that the fuzzy logic approach enhances, rather 

than compromises, the reliability of clinical risk 

assessment. 

By grounding the fuzzy logic system in clinical 

knowledge, accurately modeling uncertainty, ensuring 

transparency, and validating outputs with expert feedback, 

our approach may deliver a robust and trustworthy 

enhancement to traditional MEWS scoring. It enables 

precise, interpretable, and clinically meaningful 

classification of patient risk in real-time healthcare 

environments. 

It is important to clarify that the objective of 

incorporating fuzzy logic in our framework is not to 

perform unsupervised clustering (as with algorithms like 

k-means or DBSCAN), which aim to discover previously 

unknown data structures. Instead, we leverage fuzzy logic 

to enhance classification accuracy within the predefined, 

clinically meaningful MEWS risk categories. 

Physiological data inherently exhibits vagueness and 

gradual transitions between health states—characteristics 

that fuzzy logic is uniquely suited to model through the 

use of membership functions. In contrast, the rigid 

thresholds of standard MEWS scoring and the crisp 

assignments of traditional clustering algorithms are ill-

equipped to represent these nuanced transitions. 

Moreover, standard clustering approaches do not utilize 

the clinical relevance embedded in the MEWS categories 

and are thus less suitable for this application. As a result, 

our primary evaluation focuses on demonstrating the 

improvement in classification performance achieved by 

integrating fuzzy logic, using the standard MEWS system 

as the direct clinical baseline for comparison. 

Table 3: Health status corresponding to the defined ranges. 

Range Category Description 

[0–1] Optimal Health All indicators are within excellent ranges. 

[1–2] Healthy Normal Slight variations within the healthy range, no concerns. 

[2–3] Mild Variation Slight deviation from the ideal range but still acceptable. 

[3–4] Low Alert A single parameter slightly outside the normal range, minimal risk. 

[4–5] Moderate Alert Two or more parameters are borderline abnormal, requiring monitoring. 

[5–6] Potential Concern Mild irregularities across several parameters; action recommended. 

[6–7] Early Warning Detectable issues that may indicate emerging problems. 

[7–8] Elevated Risk Significant deviation in one or two key indicators; requires action. 

[8–9] Moderate Risk Persistent deviations suggesting underlying conditions. 

[9–10] High Risk Clear signs of health risk; needs immediate attention. 

[10–11] Critical Risk Severe abnormalities; potential medical emergency. 

[11–12] Unstable Multiple parameters indicate serious health instability. 

[12–13] Acute Danger Immediate medical intervention required. 

[13–14] Severe Emergency Life-threatening abnormalities across vital signs. 

[14–15] Unknown Risk Insufficient or inconsistent data to assess risk level. 



A Fuzzy Logic-Driven Semantic and Binary Tree-Based Indexing… Informatica 49 (2025) 85–110 101 

In healthcare systems, efficient indexing of medical 

records is also essential, as it allows for rapid and accurate 

retrieval of patient data—crucial for timely decision-

making and improved clinical outcomes. Effective 

indexing ensures that key information—such as health 

status, treatment history, and medical records—remains 

readily accessible, even within the vast and complex 

structure of healthcare datasets. Our indexing approach 

relies on constructing a Binary Tree, in which each node 

holds two pivot points. Given that RDF files are classified 

into 15 distinct categories, the system creates a separate 

Binary Tree for each category, resulting in a total of 15 

trees. Algorithm 2 outlines the procedure for inserting a 

new RDF file into the corresponding Binary Tree. The 

input vector for indexing is constructed using the patient's 

vital sign measurements along with the fuzzy score 

generated during classification.  

In the following section, we present a practical 

implementation using a patient RDF file containing vital 

sign information. This example demonstrates how an RDF 

file is inserted into and retrieved from a Binary Tree 

structure comprising 15 distinct categories. Each class is 

represented by its own Binary Tree, with each node 

maintaining two pivot vectors to support efficient 

similarity-based indexing. 

1. Input: The patient RDF file (Figure 4) 

2. Fuzzification 

Fuzzification converts crisp input values into fuzzy 

sets using membership functions. Each vital sign (vi) is 

mapped to a fuzzy linguistic term (e.g., Very Low, Low, 

Normal) based on its range. 

𝜇𝛢(𝑥): 𝑋 → [0, 1] 
Where: 

• μA(x): Membership function of fuzzy set A for input x 

• X: The domain of input values (e.g., Pulse, Blood 

Pressure) 

Example for Pulse: 

𝜇VeryLow(x) = {

1,     𝑥 ≤ 40
50 −x

10

0,      𝑥 > 50 

, 40 < 𝑥 ≤ 50  (5) 

 

Combined Membership Function:   Each vital sign's fuzzy 

score is calculated based on predefined ranges, producing 

membership values (μ) for each linguistic category. 

Fuzzy Score for Pulse= 

μVeryLow(x)+μLow(x)+μNormal(x)+μHigh(x)+μVeryHigh(x)          (6) 

 

The fuzzy rule base consists of rules combining all vital 

signs: 

Rule: If μv1 is A and μv2 is B and …, then μOutput = C 

Where: 

• v1,v2,…,vn : Vital signs (e.g., Pulse, Temperature) 

• A,B,…: Membership values of each input 

• C: Output class (e.g., Low Alert) 

Example Rule: 

If μPulse is Normal and μTemperature is High, then Output = 

Moderate Alert 

 

The fuzzy rules are then aggregated using fuzzy logic 

operators (e.g., AND, OR) to calculate the overall 

membership of the output. 

Using AND (Minimum Operator):  

μOutput=min (μPulse, μTemperature,…) 

Using OR (Maximum Operator):   

μOutput=max (μPulse, μTemperature,…) 

3. Defuzzification 

Defuzzification converts the fuzzy output into a crisp 

score (S), which represents the patient's overall status. The 

centroid method is commonly used: 

S = 
∫ 𝑥 .  𝜇Output (𝑥)𝑑𝑥Range

∫ 𝜇Output (𝑥)𝑑𝑥Range

   (7) 

Where: 

• x: Crisp value within the fuzzy range 

• 𝜇Output(x): Membership function of the output 

4. Euclidean Distance for Indexation 

The fuzzy score (S) and vital sign values are combined into 

a vector (v) for comparison within the binary tree. 

v = [S, v1,v2,…,vn] 

The Euclidean distance between two vectors (vi  and vj) is 

calculated as: 

𝑑(𝐯𝑖  , 𝐯𝑗) =  √∑ (v𝑖,𝑘 − v𝑗,𝑘)2𝑛
𝑘=1               

 

5. Binary Tree Search 

Using the calculated distance, the binary tree is traversed 

to find the closest match: 

1. Compare v to pivot nodes: 

, Pivot1)v(d= 1 d 

, Pivot2)v(d= 2 d 

Move to the left or right child based on the smallest 

distance: If d1<d2, traverse left. Otherwise, traverse right. 

A. Input Data 

1. Patient Data (RDF File): 

• Measurement values: Pulse: 85; Blood 

Pressure: 120/80; Respiration Rate: 16; Body 

Temperature:  37°C 

• Fuzzy Score: 2.3 (calculated using fuzzy logic) 

2. Binary Tree Example (Class “Healthy Normal”): 

• Root Node: Pivot 1: [85, 120, 16, 37, 2.0]    and 

Pivot 2: [90, 125, 18, 38, 2.5] 

• Left Node: Pivot 1: [80, 115, 14, 36.5, 1.5] and 

Pivot 2: [82, 118, 15, 36.8, 1.8] 

• Right Node: Pivot 1: [92, 130, 19, 38.5, 3.0] 

and Pivot 2: [95, 135, 20, 39, 3.5] 

B. Insertion Process 

1. Determine the Fuzzy Score: 

• The fuzzy logic system calculates a score of 

2.3, placing the RDF file in the class “Healthy 

Normal” 

• The corresponding Binary tree for “Healthy 

Normal” is used. 

2. Construct the Input Vector: 

• Vector = [85, 120, 16, 37, 2.3]. 

3. Insert into Binary Tree (Algorithm 2): 

• Compare the vector to the Root Node pivots 

using Euclidean distance: 

− Distance to Pivot 1 = 0.3 

− Distance to Pivot 2 = 0.2 



102 Informatica 49 (2025) 85–110 K. Halimi et al. 

• The closest pivot is Pivot 2, so move to the 

Right Node. 

• Compare the vector to the Right Node pivots: 

− Distance to Pivot 1 = 0.7 

− Distance to Pivot 2 = 1.0 

• The closest pivot is Pivot 1, so the RDF file is 

inserted in the Right Node under Pivot 1. 

C. Searching Process 

1. Calculate the Fuzzy Score: 

• For retrieval, the fuzzy score is recalculated as 

2.3 to determine the class “Healthy Normal” 

2. Traverse the Tree (Algorithm 3): 

• Start at the Root Node and compare the 

vector to the pivots: 

− Distance to Pivot 1 = 0.3 

− Distance to Pivot 2 = 0.2 

• Move to the Right Node (closest pivot). 

• Compare the vector to the Right Node pivots: 

− Distance to Pivot 1 = 0.0 (match found). 

• The RDF file is retrieved successfully. 

D. Outcome 

1. Insertion Result: 

• As presented in Figure 6: Efficient and Scalable 

insertion of RDF file., the RDF file with vector 

[85, 120, 16, 37, 2.3] is inserted into the 

“Healthy Normal” Binary tree at the Right 

Node under Pivot 1. 

2. Search Result: 

• The algorithm retrieves the RDF file from the 

Right Node based on the closest match to the 

input vector. 

The algorithm demonstrates efficiency by narrowing 

down searches to specific pivots and clusters, reducing 

unnecessary computations. It is highly scalable, as new 

RDF files can be seamlessly added to the appropriate 

binary tree, ensuring that future searches maintain their 

efficiency even as data volumes grow. Additionally, the 

use of Euclidean distance calculations enhances accuracy 

by reliably retrieving the closest match, preserving the 

system's precision and ensuring consistent results. 

 

Figure 6: Efficient and Scalable insertion of RDF file. 

6 Experimental evaluation 
The integration of semantic technologies and fuzzy logic 

into IoT systems offers a powerful approach to enhancing 

data interoperability, accuracy, and efficiency. This study 

explores the implementation of a comprehensive 

framework designed to process, classify, and retrieve IoT 

data through the use of RDF files, semantic ontologies, 

and fuzzy logic. By leveraging these advanced 

computational techniques, the proposed framework 

effectively addresses key challenges such as data 

heterogeneity, imprecise sensor measurements, and the 

growing need for scalable storage and retrieval 

mechanisms. The results highlight the potential of 

combining semantic reasoning and fuzzy inference to 

manage the inherent complexity of IoT-driven systems—

particularly in high-stakes environments like healthcare. 

Experimental validation confirms the robustness and 

efficiency of the proposed solution, emphasizing its 

practical applicability in real-world contexts. The 

outcomes pave the way for more reliable, intelligent, and 

semantically aware IoT architectures capable of 

supporting critical decision-making and delivering 

improved system performance at scale. 

6.1 Data collection  

To address the lack of publicly available datasets that 

accurately represent IoT-based patient health monitoring, 

the BIDMC dataset [41] —a subset of the larger MIMIC 

dataset [42] —was utilized. MIMIC is an open-access 

repository containing anonymized patient data collected 

from a U.S. hospital, offering a valuable resource for 

healthcare research and real-world evaluation. The dataset 

includes detailed records of patients’ vital signs, such as 

blood pressure, oxygen saturation, heart rate, and other 

essential physiological metrics. The BIDMC data 

specifically consists of numerous files—often in formats 

such as CSV—which are derived from original waveform 

data [43]. For our experiments, we used a selection of 

these CSV files, each typically containing several hundred 

timestamped measurements for multiple patients. This 

structure served as the foundation for generating our 

experimental RDF datasets. In addition to vital sign data, 

the BIDMC dataset includes demographic information, 

such as patient age and gender, which enriches the dataset 

and supports a more comprehensive evaluation of patient 

health status. By leveraging the BIDMC dataset, our 

framework is grounded in realistic and diverse clinical 

data, ensuring a robust foundation for the development 

and testing of IoT-driven health monitoring solutions. 

6.2 Methods 

To evaluate the feasibility and performance of the 

proposed approach, the framework was implemented on a 

machine equipped with an Intel® Core™ i7-6700U CPU 

running at 3.40 GHz, with 8 GB of RAM and a 500 GB 

hard drive. The implementation was developed using 

Python, and the experiments were conducted on a 

Windows 8.1 operating system.  

The transformation of selected BIDMC vital sign data 

(originally in CSV format) into RDF was carried out using 



A Fuzzy Logic-Driven Semantic and Binary Tree-Based Indexing… Informatica 49 (2025) 85–110 103 

custom Python scripts that utilized the Owlready2 library 

and the SAREF ontology, specifically the SAREF4Health 

extension, to ensure semantic interoperability. The 

process included the following steps: 

1. Measurement Extraction and RDF Modelling: Each 

source CSV file was parsed line by line. For every 

row—representing a timestamped set of vital sign 

measurements for a patient—a corresponding RDF 

structure was generated. This involved instantiating 

relevant SAREF4Health classes (e.g., 

saref4health:Patient, saref4health:Heart-Rate-

Measurement, saref4health:Blood -Pressure -

Measurement) and populating semantic properties 

such as saref4health:hasValue, saref4health:hasUnit, 

saref4health:hasTimestamp, while linking each 

measurement to its corresponding patient instance. 

The modelling approach closely followed the 

structure illustrated in Figure 4. 

2. RDF File Generation: Each individual measurement 

instance—representing a specific vital sign recorded 

at a specific time for a specific patient—was saved as 

a separate, self-contained RDF file. This granular file 

generation strategy was adopted to simulate a realistic 

IoT scenario involving streams of sensor readings or 

discrete health events, while also testing the 

framework’s ability to efficiently manage a large 

volume of distinct semantic data files. 

3. Dataset Construction: Six experimental datasets of 

varying sizes were constructed based on the number 

of CSV files processed. Since each CSV file 

contained approximately 500 individual measurement 

instances, the datasets were generated in scalable 

increments to test the system under different load 

conditions: 

• Dataset 1 (~2,500 RDF files): Generated from 

processing ~5 source CSV files. 

• Dataset 2 (~5,000 RDF files): Generated from 

processing ~10 source CSV files. 

• Dataset 3 (~10,000 RDF files): Generated from 

processing ~20 source CSV files. 

• Dataset 4 (~15,000 RDF files): Generated from 

processing ~30 source CSV files. 

• Dataset 5 (~25,000 RDF files): Generated from 

processing ~50 source CSV files. 

• Dataset 6 (~50,000 RDF files): Generated from 

processing ~100 source CSV files. 

 

This dataset generation method ensured that all 

experimental datasets shared a consistent RDF structure 

based on SAREF4Health and contained similar types of 

vital sign data. The primary controlled variable was the 

volume of RDF files, allowing a systematic evaluation of 

the framework’s performance—particularly in terms of 

retrieval time and index scalability—under conditions that 

simulate the “Big IoT Data” challenge. These generated 

RDF files served as the direct input to the subsequent 

layers of the framework, with the ExtractAttributes step 

 

 
2 https://bitbucket.org/jibalamy/owlready2 

parsing the necessary vital sign values from each file for 

further processing. To rigorously evaluate the proposed 

framework, several performance metrics were employed. 

To enhance the accuracy of health status calculations, the 

skfuzzy3 library was employed, leveraging a fuzzy 

logic algorithm. The evaluation focused on the proportion 

of cases reclassified into more appropriate risk categories, 

compared to the original standard MEWS classifications.  

This was quantified based on the percentage of patient 

records whose risk classification improved (as shown in 

Figure 5), supported by expert validation.  

Traditional unsupervised clustering metrics were not 

used, as they are less suitable for this task driven by 

clinically grounded categories. Retrieval efficiency was 

primarily assessed through query execution time (in 

seconds). The performance of our binary tree indexing 

was compared against non-indexed searches and against 

established RDF management systems—namely Jena, 

RDFLib, Blazegraph, and DBgraph—across datasets of 

increasing size. While direct optimization of storage size 

was not a central focus, the scalability of the indexing 

structure was examined by tracking key characteristics of 

the binary trees—such as the number of internal nodes per 

level, tree height, and leaf node count—as dataset sizes 

increased. These structural metrics reflected the 

organizational efficiency that contributed to the 

framework’s overall retrieval performance. 

To benchmark our framework against traditional RDF 

data management systems, specific steps were taken to 

align the evaluation conditions, considering the 

architectural differences between our file-based retrieval 

model and the centralized triple-store architecture used by 

the baseline systems. 

1. Data Consolidation: Unlike our system, which 

operates on discrete RDF files, traditional triple stores 

require data to be consolidated into a single RDF 

graph. Therefore, for each dataset size (e.g., 50,000 

RDF files), we programmatically merged all 

individual RDF files into a single large RDF file using 

standard serialization formats (Turtle). This 

consolidation allowed the baseline systems to import 

and query the data using their native triple store 

engines. In contrast, our system bypasses this 

consolidation step, operating directly on individual 

files—a design that contributes significantly to its 

improved query performance. 

2. Data Handling and Querying: Each baseline system 

imported the corresponding consolidated RDF file. 

Queries analogous to those used in our framework 

(e.g., retrieving patient records based on specific 

measurement values) were then formulated using 

SPARQL, the standard RDF query language. Query 

execution followed each system’s native pipeline—

SPARQL parsing, query plan optimization, index 

lookup (typically Subject-Predicate-Object), and 

result retrieval—which contrasts with the vector-

based similarity search mechanism used in our 

system.  

3 https://pythonhosted.org/scikit-fuzzy/  

https://bitbucket.org/jibalamy/owlready2
https://pythonhosted.org/scikit-fuzzy/


104 Informatica 49 (2025) 85–110 K. Halimi et al. 

3. System Configuration: All baseline systems were 

installed and executed on the same hardware used for 

testing our framework, ensuring fair comparison 

conditions. Tests were conducted using default 

configurations, without performance tuning. While 

additional tuning could improve results, default 

settings were chosen to provide a standardized 

benchmark representing typical out-of-the-box 

behavior.  

4. Performance Metric: The primary comparison metric 

was average query execution time (in seconds), 

consistent with our framework’s retrieval evaluation. 

This directly reflects the efficiency and 

responsiveness of the system under load, addressing 

one of the core challenges in large-scale IoT data 

environments.  

5. Reporting Units: Our framework operates on 

individual RDF files, while traditional systems 

operate on RDF triples. For comparative purposes. 

This dual reporting bridges the gap between the two 

models: it illustrates the file-based scale of our system 

while providing triple count estimates to 

contextualize performance relative to traditional 

triple store literature. The evaluation demonstrates 

that our framework’s efficiency stems not only from 

its use of fuzzy classification and indexing but also 

from its lightweight, decentralized file-processing 

model, which avoids the overhead of building and 

querying massive unified graphs. 

Regarding baseline comparisons, our performance 

evaluation included runtime analyses against several 

established RDF-based database systems—Jena, RDFLib, 

Blazegraph, and DBGraph— demonstrating the efficiency 

of our framework’s retrieval mechanism. With respect to 

alternative clustering algorithms such as k-means, 

DBSCAN, or hierarchical clustering, it is important to 

emphasize the distinct goal of our fuzzy logic component. 

As discussed earlier, we adopted the Modified Early 

Warning System (MEWS) as the foundation for patient 

classification, and enhanced it using fuzzy logic 

specifically to handle the uncertainty, variability, and 

gradual transitions inherent in physiological data—

elements that conventional MEWS thresholds do not 

manage well. Our aim was not to discover latent clusters 

but to refine clinically relevant classifications. 

Traditional clustering algorithms like k-means 

operate under the assumption of well-separated clusters 

and require a predefined number of clusters (k), which 

does not align with the progressive and overlapping nature 

of patient health states nor with the fixed MEWS 

categories. Similarly, DBSCAN, though effective in 

handling noise, is highly sensitive to its parameters (e.g., 

epsilon and minPts) and lacks the capacity to model the 

subtle, fuzzy boundaries that characterize adjacent clinical 

risk levels. Therefore, these algorithms are conceptually 

unsuitable for replacing the fuzzy logic module in our 

framework. They serve a different purpose—namely 

unsupervised cluster discovery—whereas our framework 

focuses on fuzzy classification refinement grounded in 

domain-specific clinical rules. 

As such, a direct runtime comparison with these 

traditional clustering algorithms was not conducted, as 

they would not yield clinically meaningful outputs or 

support the semantic indexing and retrieval stages tailored 

to the MEWS classification scheme. Our evaluation 

instead focused on demonstrating the improvement fuzzy 

logic offers over the standard MEWS baseline and the 

efficiency gains of the complete framework against 

relevant RDF storage solutions. 

6.3 Results and discussion  

This section presents and discusses the experimental 

results evaluating the different components of the 

proposed framework, focusing on its core objectives: 

achieving scalable, efficient storage and retrieval of RDF 

data and improving classification accuracy through fuzzy 

logic within the healthcare application scenario. 

6.3.1 Framework scalability and retrieval 

efficiency 

A primary objective of this research was to address the 

scalability challenges associated with managing large 

volumes of RDF data generated by IoT systems. To this 

end, we evaluated the efficiency of our proposed binary 

tree indexing mechanism and compared the retrieval 

performance of the overall framework against standard 

methods and widely used RDF database systems. 

Figure 7 and Figure 8 provide insights into the 

structural characteristics of the binary tree index as the 

dataset size increased, reaching up to 50,000 RDF files. 

Figure 7 illustrates the distribution of internal nodes per 

level, while Figure 8 tracks the growth in both the overall 

tree height and the number of leaf nodes. 

The patterns observed in these figures indicate that the 

binary tree structure scales effectively with the growing 

number of RDF files. Importantly, the tree maintains a 

manageable height, which is critical for ensuring efficient 

search operations. These results affirm the organizational 

scalability of the indexing approach, supporting its 

suitability for large-scale, file-based semantic data 

retrieval in IoT environments. 

 

 

Figure 7: Number of internal nodes per level in the 

binary tree 



A Fuzzy Logic-Driven Semantic and Binary Tree-Based Indexing… Informatica 49 (2025) 85–110 105 

 

Figure 8: Comprehensive visualization of tree structure, 

height, and leaf node Count. 

To quantify the efficiency gains achieved by the 

binary tree indexing method, we compared retrieval times 

against a baseline linear search approach conducted 

without the use of the index structure. This baseline 

simulated data retrieval by sequentially iterating through 

the relevant, classified RDF files—emulating a 

conventional non-indexed search. A set of 10 

representative queries was executed for each dataset size, 

ranging from 2,500 to 50,000 RDF files. These queries 

were designed to retrieve specific RDF files based on 

randomly selected measurement values, with each query 

targeting feature vectors expected to be located at varied 

logical positions within the data structure (e.g., 

approximating beginning, middle, and end cases). This 

strategy was employed to capture potential variations in 

search performance based on data distribution. For each 

dataset size and query method (indexed vs. non-indexed), 

the search operation was repeated multiple times to ensure 

consistency. The average query execution time, measured 

in seconds, was then calculated and reported in Table 4. 

Table 4: Comparative search time with and without 

binary tree indexing 

Size (Files) 2500 5000 10000 15000 25000 50000 

Without tree(s) 0.10 0.14 0.15 0.18 0.20 0.24 

With tree (s) 0.003 0.004 0.005 0.0042 0.0055 0.0049 

 

The results presented in Table 4 clearly demonstrate 

the substantial improvement in retrieval time achieved by 

utilizing the binary tree index, compared to the non-

indexed baseline search. For the largest dataset 

comprising 50,000 RDF files, the average retrieval time 

dropped dramatically from 0.24 seconds to just 0.0049 

seconds. The minor fluctuations observed in the "With 

Tree (s)" retrieval times are attributed to the dynamic 

nature of the binary tree’s construction. Variability in data 

insertion order and the specific characteristics of the input 

vectors can affect tree balance and, consequently, the path 

length required to reach a given node during a search.  

Despite this, the overall trend confirms the consistent 

and significant performance advantage provided by the 

indexing structure. Moreover, the initial fuzzy logic 

classification plays an important role in supporting this 

efficiency. By grouping RDF files into more 

homogeneous categories, it helps the indexing mechanism 

partition the search space more effectively, reducing the  

 

Figure 9: Comparison of the proposed framework with 

the RDF systems management. 

complexity and time required for each query. This table 

offers a clear, numerical comparison that highlights the 

direct impact of the indexing component on retrieval 

performance, validating its role as a key contributor to the 

overall scalability and responsiveness of the proposed 

framework. 

Figure 9 presents a critical comparison of the end-to-

end query execution time of our approach against 

established RDF management systems—Jena, RDFLib, 

Blazegraph, and DBgraph—across datasets of increasing 

size. It is important to note that Figure 9 presents the 

overall retrieval process in each system, whereas Table 4 

isolates the performance gain attributed specifically to the 

binary tree indexing component within our framework.  

As detailed in Section 6.2, scalability was rigorously 

validated by extending tests up to 100,000 RDF files, 

representing several million RDF triples. The results 

clearly demonstrate that while traditional triple-store-

based systems, which rely on complex SPARQL query 

processing over large, consolidated graphs, experience 

significant performance degradation at scale, our approach 

maintains consistently low and stable query execution 

times, even at 100,000 files. Notably, the performance at 

100,000 files shows no appreciable increase compared to 

the 50,000-file dataset, underscoring the robustness of the 

architecture. This clear distinction—where baseline 

systems either struggled or became impractical due to 

SPARQL overhead and the limitations of triple 

management—strongly reinforces the superior scalability 

of our architecture, which combines fuzzy logic-based 

categorization with binary tree indexing.  

6.3.2 Enhancement of classification accuracy 

via fuzzy logic 

Within the healthcare application scenario, we 

evaluated the impact of integrating fuzzy logic into the 

MEWS classification process to better manage the 

inherent ambiguity present in vital sign data.  

Table 5  presents selected examples comparing patient risk 

classifications generated using the standard MEWS 

system versus our fuzzy logic-enhanced approach. (BP = 

Blood Pressure, HR = Heart Rate, RR = Respiration Rate, 

OS = Oxygen Saturation, BT = Body Temperature). As 



106 Informatica 49 (2025) 85–110 K. Halimi et al. 

illustrated, the fuzzy logic system yielded more nuanced 

scores in several cases, leading to different—and 

potentially more accurate—risk categorizations for 

patients (e.g., Patients 3, 4, and 5) compared to the rigid 

thresholds used in standard MEWS. These examples 

highlight the fuzzy system’s ability to produce a more 

refined understanding of patient conditions, particularly in 

borderline scenarios.  

Such differences underscore the risk of 

misclassification associated with traditional methods, 

which can be critical in clinical decision-making. By 

incorporating fuzzy logic, the classification process 

becomes more precise, offering clinicians deeper insights 

into patient status and supporting more informed 

interventions. Qualitative validation by an expert 

physician confirmed that the fuzzy-based classifications 

were, in many cases, more clinically representative than 

those derived from the standard MEWS system. 

This expert feedback lends credibility to the practical 

utility of our approach in real-world healthcare contexts. 

Figure 10 further supports this observation by plotting the 

trend of ‘Classes Improved’ versus ‘Classes Unchanged’ 

as dataset size increases. The observed growth in ‘Classes 

Improved’ indicates that fuzzy logic consistently enhances 

classification outcomes across a substantial portion of 

cases. This improvement is particularly evident as data 

volume increases, demonstrating fuzzy logic’s value in 

interpreting complex and imprecise patient data at scale. 

Ultimately, this improved classification accuracy directly 

contributes to the quality of data organization within our 

indexing structure, further enhancing the efficiency and 

clinical relevance of the overall retrieval process.

 

 
Figure 10: Comparison of MEWS classification with and without fuzzy logic. 

Table 5: An example of classification of patients using the MEWS system with and without fuzzy logic 

Patient 
Vital signs 

Results 

Using MEWS Using Fuzzy logic 

BP HR RR OS BT Score Class Score Class 

1 229 70 35 74 38 7 Moderate risk, further evaluation 7.00 Elevated Risk 

2 238 126 11 97 38 9 Severe, urgent attention needed 9.49 High Risk 

3 201 105 19 67 38 8 Moderate risk, further evaluation 9.00 High Risk 

4 
215 116 20 81 38 6 Early warning, intervention likely 

needed 

9.00 High Risk  

5 
182 118 19 90 38 7 Moderate risk, further evaluation 5.49 Potential 

Concern 

6.3.3 Discussion on component roles and 

evaluation metrics 

It is important to clarify the distinct roles of the 

framework’s components in contributing to the observed 

performance improvements. The experimental results 

related to retrieval efficiency (presented in Table 4 and 

Figure 9) highlight the substantial speed gains primarily 

attributed to the combination of two mechanisms: fuzzy 

logic-based categorization (which narrows the initial 

search space) and subsequent binary tree indexing (which 

provides fast average access within the category). 

Together, these techniques directly address the challenge 

of efficiently navigating large-scale RDF datasets, making 

retrieval both scalable and responsive. While the semantic 

reasoning components—including SWRL rules and the 

inference engine described in Section 4—play a critical 

role in data enrichment. semantic consistency, and the 

provision of context-aware services (as illustrated in the 

healthcare scenario), are not directly involved in the core 

retrieval process measured in Algorithm 3. Therefore, the 

efficiency gains reported in this study stem primarily from 

the optimized data organization and indexing strategy, 

rather than from semantic reasoning modules.  

Regarding evaluation metrics beyond execution time 

and classification comparison, we have not included 



A Fuzzy Logic-Driven Semantic and Binary Tree-Based Indexing… Informatica 49 (2025) 85–110 107 

standard metrics such as Precision, Recall, F1-score, and  

 

the Silhouette Score for specific methodological reasons. 

Calculating Precision /Recall /F1 rigorously requires a 

comprehensive ground truth dataset validated by multiple 

clinical experts, which was beyond the scope of this work. 

Our focus was on demonstrating the improvement over the 

standard MEWS baseline using fuzzy logic's ability to 

handle gradual transitions. Furthermore, Silhouette 

Scores, designed for unsupervised clustering, were 

deemed unsuitable. Our objective is not unsupervised 

cluster discovery but classification into predefined, 

clinically meaningful categories where adjacent risk levels 

are expected to overlap. Applying silhouette scores could 

yield misleadingly low values due to this inherent 

proximity, failing to reflect the clinical relevance and 

accuracy of the fuzzy classification. 

This synergy between fuzzy classification and 

indexing directly contributes to the framework's 

adaptability in dynamic environments. Fuzzy logic 

robustly handles noisy or uncertain inputs and models 

gradual state transitions, providing a stable yet responsive 

classification. This accurate, adaptive categorization 

ensures that even evolving data is consistently organized 

within the appropriate index structure. Consequently, 

when decisions rely on retrieving relevant current or 

historical data, the optimized indexing allows for efficient 

access to information that accurately reflects the system's 

state, thereby enhancing the reliability and timeliness of 

the overall decision-making process. 

The experimental results provide strong evidence 

supporting the effectiveness and scalability of the 

proposed multi-layered framework. The core research 

claims regarding scalability and efficient retrieval of large 

RDF datasets are directly addressed by the explicit 

numerical results in Table 4 (demonstrating the indexing 

benefit) and Figure 9 (showing superior performance 

compared to traditional RDF systems, validated up to 

100,000 files). While evaluated within a healthcare use 

case, these performance results highlight the general 

applicability of the architecture. The fuzzy logic 

component demonstrably enhances classification 

accuracy within the chosen application by handling data 

ambiguity effectively. Together, these findings 

demonstrate that the framework offers a robust, scalable, 

efficient, and a promising approach to managing the 

complexities of SIoT data. 

To mitigate potential data loss in dynamic, real-time 

IoT environments, the proposed architecture incorporates 

complementary standard practices, even though robust 

end-to-end loss prevention mechanisms fall outside the 

core algorithmic scope of this work. At the edge layer, 

buffering is employed to temporarily store generated RDF 

files during periods of network disruption, ensuring that 

data can be transmitted to the fog layer once connectivity 

is restored. This approach helps prevent immediate data 

loss at the source and supports continuity in data 

processing. In addition, both the fog and cloud layers 

inherently utilize reliable storage infrastructures that 

include redundancy and backup mechanisms, features 

commonly found in these tiers. These built-in safeguards 

protect the integrity of indexed and archived RDF files, 

even in the event of hardware or network failures. 

Although not explicitly detailed in the framework, a robust 

implementation would also incorporate transactional 

principles during data transfer and indexing to further 

ensure data consistency and reliability throughout the 

processing pipeline. Therefore, while the framework itself 

is primarily focused on efficient data processing and 

retrieval after reception, it implicitly relies on standard 

edge buffering and reliable storage strategies at the fog 

and cloud layers to uphold data integrity and minimize the 

risk of loss. 

While cross-domain experimental testing represents 

crucial future work to definitively validate effectiveness 

elsewhere (like smart cities or industrial IoT, etc.), the 

framework's modular design and reliance on generalizable 

concepts (distributed architecture, semantic representation 

principles, fuzzy logic for uncertainty, vector indexing) 

provide a strong foundation for adaptability. The core data 

processing pipeline and indexing logic are expected to 

remain effective, with the primary adaptation effort 

concentrated on tailoring the semantic layer and the fuzzy 

classification system (rules, functions, etc.) to the specific 

requirements and knowledge of the target IoT domain. 

7  Conclusion 
This paper introduced and evaluated a 

comprehensive, multi-layered framework for the 

Semantic Internet of Things (SIoT), specifically designed 

to address key challenges in managing the heterogeneity, 

volume, and retrieval efficiency of Big IoT data 

represented in RDF format. Motivated by the need for 

greater scalability and improved accuracy compared to 

existing SIoT solutions and traditional RDF storage 

methods, we explored the integration of semantic 

representation, fuzzy logic classification, and binary tree 

indexing within a unified architectural model. The 

proposed framework leverages the SAREF ontology at the 

semantic layer to effectively standardize heterogeneous 

IoT data into RDF, thereby addressing core issues of data 

representation and interoperability. To manage and utilize 

the resulting RDF files efficiently, the framework 

introduces a novel combination of techniques within its 

fog layer. A central feature of the framework is the fuzzy 

logic component, which significantly enhances data 

classification accuracy. This improvement was 

particularly validated in a healthcare context, using the 

MEWS. Unlike traditional approaches based on crisp 

thresholds, the fuzzy logic mechanism is capable of 

handling ambiguity and gradual transitions, offering more 

nuanced and clinically relevant categorization of patient 

data. Following classification, the system produces 

optimized RDF file groupings, which are then processed 

by the indexing layer. Here, category-specific binary trees 

are employed to ensure efficient storage organization and 

rapid retrieval, overcoming the performance limitations 

typically associated with large-scale semantic datasets. 

The framework’s effectiveness in achieving scalable 

and efficient data retrieval was validated through 

experimental evaluation. Performance comparisons 



108 Informatica 49 (2025) 85–110 K. Halimi et al. 

demonstrated that the binary tree indexing significantly 

accelerates data retrieval compared to non-indexed 

searches, as shown by direct time measurements. 

Crucially, the complete framework exhibited substantially 

lower query execution times and superior scalability – 

maintaining stable performance up to 100,000 RDF files – 

when compared to established RDF management systems 

that rely on SPARQL over consolidated triple stores and 

show significant performance degradation at scale. These 

findings confirm that the proposed architecture offers 

significant improvements in efficiency and scalability for 

managing large-scale semantic IoT data. While the 

retrieval mechanism, based on vector similarity search, 

inherently avoids the need for user-formulated SPARQL 

queries, potentially enhancing usability for domain 

experts, a formal evaluation of this specific usability 

aspect was outside the scope of this study. 

This work presents a viable and high-performance 

SIoT framework designed to effectively address the 

complexities associated with Big IoT RDF data. By 

integrating semantic standardization, fuzzy classification, 

and efficient binary tree indexing, the framework offers a 

validated, scalable, and efficient solution for data 

management. While the results are promising, we 

acknowledge that the current experimental validation is 

limited to a single domain. Further testing on diverse 

datasets from various IoT sectors is necessary to fully 

demonstrate the framework’s broader applicability. Future 

work will focus on expanding the scope and adaptability 

of the approach. This includes exploring alternative 

clustering and indexing techniques, investigating the 

direct integration of semantic reasoning into the retrieval 

process, and conducting formal usability evaluations 

across a range of IoT domains. Additionally, a more 

comprehensive performance evaluation is warranted—

one that extends beyond query execution time to include 

metrics such as data ingestion throughput, indexing time, 

and detailed measurements of computational overhead. 

Assessing these additional dimensions will provide a more 

complete characterization of the framework’s efficiency 

and resource consumption, thereby further substantiating 

its practical advantages over baseline systems. 

References 
[1] ‘IoT devices installed base worldwide 2015-2025’, 

Statista. Accessed: Apr. 25, 2025. [Online]. 

Available: 

https://www.statista.com/statistics/471264/iot-

number-of-connected-devices-worldwide/ 

[2] S. Benkhaled, M. Hemam, M. Djezzar, and M. 

Maimour, ‘An Ontology – based Contextual 

Approach for Cross-domain Applications in 

Internet of Things’, Informatica, vol. 46, no. 5, Mar. 

2022, doi: 10.31449/inf.v46i5.3627. 

[3] K. N. Prashanth Kumar, V. Ravi Kumar, and K. 

Raghuveer, ‘A Survey on Semantic Web 

Technologies for the Internet of Things’, in 2017 

International Conference on Current Trends in 

Computer, Electrical, Electronics and 

Communication (CTCEEC), Mysore: IEEE, Sep. 

2017, pp. 316–322. doi: 

10.1109/CTCEEC.2017.8454974. 

[4] J. D. McDonald and M. Levine-Clark, Eds., 

‘Resource Description Framework (RDF)’, in 

Encyclopedia of Library and Information Science, 

Fourth Edition, 0 ed., CRC Press, 2017, pp. 3961–

3969. doi: 10.1081/E-ELIS4-120043688. 

[5] K. Gunaratna, S. Lalithsena, and A. Sheth, 

‘Alignment and dataset identification of linked data 

in Semantic Web’, WIREs Data Min. Knowl. 

Discov., vol. 4, no. 2, pp. 139–151, Mar. 2014, doi: 

10.1002/widm.1121. 

[6] M. H. Al-Zubaidie and R. H. Razzaq, ‘Maintaining 

Security of Patient Data by Employing Private 

Blockchain and Fog Computing Technologies 

based on Internet of Medical Things’, Informatica, 

vol. 48, no. 12, Sep. 2024, doi: 

10.31449/inf.v48i12.6047. 

[7] Y. Bu, ‘Fuzzy Decision Support System for 

Financial Planning and Management’, Informatica, 

vol. 48, no. 21, Nov. 2024, doi: 

10.31449/inf.v48i21.6718. 

[8] C. Hou, N. Xu, and S. Liu, ‘Design of Online 

Monitoring Method for Distribution IoT Devices 

Based on DBSCAN Optimization Algorithm’, 

Informatica, vol. 49, no. 5, Jan. 2025, doi: 

10.31449/inf.v49i5.6399. 

[9] X. Huo, ‘Blockchain-Based Distributed Network 

Security Architecture with Smart Contract 

Vulnerability Detection Using Improved Tree 

CNN’, Informatica, vol. 49, no. 17, Mar. 2025, doi: 

10.31449/inf.v49i17.8050. 

[10] F. Firouzi, B. Farahani, and A. Marinšek, ‘The 

convergence and interplay of edge, fog, and cloud 

in the AI-driven Internet of Things (IoT)’, Inf. Syst., 

vol. 107, p. 101840, Jul. 2022, doi: 

10.1016/j.is.2021.101840. 

[11] H. A. Tran, D. Tran, L. G. Nguyen, Q. T. Ha, V. 

Tong, and A. Mellouk, ‘SHIOT: A novel SDN-

based framework for the heterogeneous Internet of 

Things’, Informatica, vol. 42, no. 3, Sep. 2018, doi: 

10.31449/inf.v42i3.2245. 

[12] A. Rhayem, M. B. A. Mhiri, and F. Gargouri, 

‘Semantic Web Technologies for the Internet of 

Things: Systematic Literature Review’, Internet 

Things, vol. 11, p. 100206, Sep. 2020, doi: 

10.1016/j.iot.2020.100206. 

[13] A. Gyrard, C. Bonnet, K. Boudaoud, and M. 

Serrano, ‘LOV4IoT: A Second Life for Ontology-

Based Domain Knowledge to Build Semantic Web 

of Things Applications’, in 2016 IEEE 4th 

International Conference on Future Internet of 

Things and Cloud (FiCloud), Vienna, Austria: 

IEEE, Aug. 2016, pp. 254–261. doi: 

10.1109/FiCloud.2016.44. 

[14] M. Compton et al., ‘The SSN ontology of the W3C 

semantic sensor network incubator group’, J. Web 

Semant., vol. 17, pp. 25–32, Dec. 2012, doi: 

10.1016/j.websem.2012.05.003. 

[15] M. B. Alaya, S. Medjiah, T. Monteil, and K. Drira, 

‘Toward semantic interoperability in oneM2M 



A Fuzzy Logic-Driven Semantic and Binary Tree-Based Indexing… Informatica 49 (2025) 85–110 109 

architecture’, IEEE Commun. Mag., vol. 53, no. 12, 

pp. 35–41, Dec. 2015, doi: 

10.1109/MCOM.2015.7355582. 

[16] L. Daniele, F. Den Hartog, and J. Roes, ‘Created in 

Close Interaction with the Industry: The Smart 

Appliances REFerence (SAREF) Ontology’, in 

Formal Ontologies Meet Industry, vol. 225, R. Cuel 

and R. Young, Eds., in Lecture Notes in Business 

Information Processing, vol. 225. , Cham: Springer 

International Publishing, 2015, pp. 100–112. doi: 

10.1007/978-3-319-21545-7_9. 

[17] ‘Ontology (DBO)’, DBpedia Association. 

Accessed: Nov. 28, 2024. [Online]. Available: 

https://www.dbpedia.org/resources/ontology/ 

[18] ‘dblp /rdf’. Accessed: Nov. 28, 2024. [Online]. 

Available: https://dblp.org/rdf/ 

[19] ‘Bio2RDF v2.7a’. Accessed: Apr. 25, 2025. 

[Online]. Available: https://bio2rdf.org/ 

[20] S. Duan, A. Kementsietsidis, K. Srinivas, and O. 

Udrea, ‘Apples and oranges: a comparison of RDF 

benchmarks and real RDF datasets’, in Proceedings 

of the 2011 ACM SIGMOD International 

Conference on Management of data, Athens 

Greece: ACM, Jun. 2011, pp. 145–156. doi: 

10.1145/1989323.1989340. 

[21] ‘Lehigh University Benchmark (LUBM)’. 

Accessed: Apr. 25, 2025. [Online]. Available: 

https://swat.cse.lehigh.edu/projects/lubm/ 

[22] L. Ma, Z. Su, Y. Pan, L. Zhang, and T. Liu, ‘RStar: 

an RDF storage and query system for enterprise 

resource management’, in Proceedings of the 

thirteenth ACM international conference on 

Information and knowledge management, 

Washington D.C. USA: ACM, Nov. 2004, pp. 484–

491. doi: 10.1145/1031171.1031264. 

[23] D. J. Abadi, A. Marcus, S. R. Madden, and K. 

Hollenbach, ‘SW-Store: a vertically partitioned 

DBMS for Semantic Web data management’, 

VLDB J., vol. 18, no. 2, pp. 385–406, Apr. 2009, 

doi: 10.1007/s00778-008-0125-y. 

[24] ‘Jena Property Table Implementation’. Accessed: 

Apr. 25, 2025. [Online]. Available: 

http://shiftleft.com/mirrors/www.hpl.hp.com/techr

eports/2006/HPL-2006-140.html 

[25] ‘Apache Jena - Home’. Accessed: Apr. 25, 2025. 

[Online]. Available: https://jena.apache.org/ 

[26] ‘Blazegraph Database’. Accessed: Apr. 25, 2025. 

[Online]. Available: https://blazegraph.com/ 

[27] S. Sakr and A. Y. Zomaya, Eds., ‘Graph Databases’, 

in Encyclopedia of Big Data Technologies, Cham: 

Springer International Publishing, 2019, pp. 835–

835. doi: 10.1007/978-3-319-77525-8_100147. 

[28] S. Benedict, ‘IoT-Enabled Remote Monitoring 

Techniques for Healthcare Applications -- An 

Overview’, Informatica, vol. 46, no. 2, Jun. 2022, 

doi: 10.31449/inf.v46i2.3912. 

[29] A. Cimmino et al., ‘VICINITY: IoT Semantic 

Interoperability Based on the Web of Things’, in 

2019 15th International Conference on Distributed 

Computing in Sensor Systems (DCOSS), Santorini 

Island, Greece: IEEE, May 2019, pp. 241–247. doi: 

10.1109/DCOSS.2019.00061. 

[30] A. Broring et al., ‘The BIG IoT API - Semantically 

Enabling IoT Interoperability’, IEEE Pervasive 

Comput., vol. 17, no. 4, Art. no. 4, Oct. 2018, doi: 

10.1109/MPRV.2018.2873566. 

[31] A. Gyrard, C. Bonnet, K. Boudaoud, and M. 

Serrano, ‘LOV4IoT: A Second Life for Ontology-

Based Domain Knowledge to Build Semantic Web 

of Things Applications’, in 2016 IEEE 4th 

International Conference on Future Internet of 

Things and Cloud (FiCloud), Vienna, Austria: 

IEEE, Aug. 2016, pp. 254–261. doi: 

10.1109/FiCloud.2016.44. 

[32] M. G. Kibria, S. Ali, M. A. Jarwar, and I. Chong, ‘A 

framework to support data interoperability in web 

objects based IoT environments’, in 2017 

International Conference on Information and 

Communication Technology Convergence (ICTC), 

Jeju: IEEE, Oct. 2017, pp. 29–31. doi: 

10.1109/ICTC.2017.8190935. 

[33] D. Lymperis and C. Goumopoulos, ‘SEDIA: A 

Platform for Semantically Enriched IoT Data 

Integration and Development of Smart City 

Applications’, Future Internet, vol. 15, no. 8, Art. 

no. 8, Aug. 2023, doi: 10.3390/fi15080276. 

[34] A. Pliatsios, D. Lymperis, and C. Goumopoulos, 

‘S2NetM: A Semantic Social Network of Things 

Middleware for Developing Smart and 

Collaborative IoT-Based Solutions’, Future 

Internet, vol. 15, no. 6, Art. no. 6, Jun. 2023, doi: 

10.3390/fi15060207. 

[35] M. Banane, A. Belangour, and L. El Houssine, 

‘Storing RDF Data into Big Data NoSQL 

Databases’, in Lecture Notes in Real-Time 

Intelligent Systems, vol. 756, J. Mizera-Pietraszko, 

P. Pichappan, and L. Mohamed, Eds., in Advances 

in Intelligent Systems and Computing, vol. 756. , 

Cham: Springer International Publishing, 2019, pp. 

69–78. doi: 10.1007/978-3-319-91337-7_7. 

[36] C. K. Wu et al., ‘An IoT Tree Health Indexing 

Method Using Heterogeneous Neural Network’, 

IEEE Access, vol. 7, pp. 66176–66184, 2019, doi: 

10.1109/ACCESS.2019.2918060. 

[37] M. D. Le Lagadec, T. Dwyer, and M. Browne, 

‘Indicators of patient deterioration in poorly 

resourced private hospitals: Which vital sign to 

watch? A retrospective case–control study’, Aust. 

Crit. Care, vol. 37, no. 3, pp. 461–467, May 2024, 

doi: 10.1016/j.aucc.2023.05.006. 

[38] S. Nasiri, F. Sadoughi, A. Dehnad, M. H. Tadayon, 

and H. Ahmadi, ‘Layered Architecture for Internet 

of Things-based Healthcare System: A Systematic 

Literature Review’, Informatica, vol. 45, no. 4, Dec. 

2021, doi: 10.31449/inf.v45i4.3601. 

[39] M. Belkebir, T. M. Maarouk, and B. Nini, ‘Realtime 

Semantic Healthcare System: Visual Risks 

Identification for Elders and Children’, Informatica, 

vol. 48, no. 14, Sep. 2024, doi: 

10.31449/inf.v48i14.6271. 



110 Informatica 49 (2025) 85–110 K. Halimi et al. 

[40] J. Martinez-Gil and J. M. Chaves-Gonzalez, 

‘Interpretable ontology meta-matching in the 

biomedical domain using Mamdani fuzzy 

inference’, Expert Syst. Appl., vol. 188, p. 116025, 

Feb. 2022, doi: 10.1016/j.eswa.2021.116025. 

[41] M. Pimentel et al., ‘BIDMC PPG and Respiration 

Dataset’. physionet.org, 2018. doi: 

10.13026/C2208R. 

[42] A. L. Goldberger et al., ‘PhysioBank, 

PhysioToolkit, and PhysioNet: Components of a 

New Research Resource for Complex Physiologic 

Signals’, Circulation, vol. 101, no. 23, Jun. 2000, 

doi: 10.1161/01.CIR.101.23.e215. 

[43] ‘Respiratory Rate Estimation by peterhcharlton’. 

Accessed: Apr. 25, 2025. [Online]. Available: 

https://peterhcharlton.github.io/RRest/datasets.htm

l 

 

 

 

 

 

 

 

 

 

 

 

 

 


