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The purpose of this paper is to extract the characteristics of power cost data using a deep learning model 

and to evaluate and predict the cost structure, profitability, and future development trends of power 

enterprises by combining economic analysis methods. Firstly, the paper innovatively employs a 

Variational Autoencoder for feature extraction. This model extracts low-dimensional latent 

representations of the data through an encoder and reconstructs the data through a decoder, retaining 

key structural information. The dataset used here consists of 1,800 records, which include costs, revenues, 

output, and energy consumption data from power companies, covering multiple enterprises and time 

periods. Secondly, during the model training process, optimization is performed with a learning rate of 

0.001, a batch size of 64, and 50 training epochs. Performance comparisons under different 

hyperparameter combinations indicate that the model with 256 hidden nodes in both the encoder and 

decoder layers yields the best performance. Lastly, economic analysis methods, such as cost-benefit 

analysis and economic forecasting, are applied to assess and predict the profitability and future trends of 

the power companies. The specific results show that the reconstruction error of this model is 0.032, and 

the KL divergence is 0.006. In terms of refined economic analysis, the net profit predicted by the model 

reaches 5.36 million yuan, with a prediction accuracy of 93.5%. In terms of robustness, although the 

prediction accuracy fluctuates slightly, it remains high overall, and both the training time and prediction 

time show stability. Moreover, testing on multiple datasets from sources such as University of California, 

Irvine, Kaggle, and government open data platforms shows that the model's prediction accuracy remains 

between 92.3% and 94.2%, with stable training and prediction times, demonstrating its strong 

generalization ability. The proposed model offers several advantages. Overall, this paper presents a novel 

approach and method for economic analysis and decision-making in power enterprises, which holds 

significant practical value. 

Povzetek: Opisana je inovativna uporaba variacijskega avtomatskega kodirnika za ekstrakcijo lastnosti 

stroškov električne energije, ki omogoča poglobljeno ekonomsko analizo in napovedovanje 

dobičkonosnosti podjetij.

1 Introduction 
Under the current social background, as one of the pillar 

sectors of the national economy, plays a crucial role in 

national economic development. Therefore, its operating 

efficiency and cost control are of significant importance. 

Power cost data forms a critical foundation for cost 

management in the electricity industry, encompassing 

information such as company costs, revenues, output, and 

energy consumption. This data plays a significant role in 

evaluating the economic performance of power companies 

[1]. However, traditional statistical methods and empirical 

models struggle to handle high-dimensional features and 

complex relationships. These methods often rely on expert 

experience for feature selection, which lacks automation 

and efficiency. As a result, leveraging advanced deep 

learning technologies to extract key features from power 

cost data and enhance the efficiency and accuracy of 

analysis has become a key focus of current research [2]. 

Therefore, the use of advanced data analysis technologies 

to improve the efficiency and accuracy of power cost data 

analysis has become an urgent issue that needs to be 

addressed. 

In recent years, the rapid development of deep 

learning technology has brought about revolutionary 

changes, with its application expanding across various 

fields, including the power industry [3]. With its unique 

advantages, deep learning enables the automatic learning 

and representation of data features by constructing a 

multi-level neural network structure. This capability of 

automatic learning allows deep learning to conduct data 

analysis and pattern recognition efficiently, without 

human intervention [4]. The Variational Autoencoder 

(VAE), a deep learning model, is capable of automatically 

learning the latent representations of data. By constructing 

an encoder and a decoder, it compresses the data while 

preserving its essential information. This approach is 

particularly well-suited for feature extraction and pattern 

recognition in high-dimensional data [5]. Power cost data, 

which includes information such as company costs, 

revenues, output, and energy consumption, plays a crucial 

role in evaluating the economic performance of power 

companies [6]. Deep learning models can effectively 

handle such data and enable a more in-depth and 

comprehensive analysis by learning multi-level 
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representations of the data [7]. Therefore, the application 

of deep learning frameworks in power cost data analysis 

can not only improve the accuracy and efficiency of data 

analysis but also provide more intelligent and 

comprehensive data support for the power industry. 

The primary objective of this paper is to enhance the 

feature extraction capability of power cost data and 

improve its predictive accuracy in economic analysis, 

thereby supporting more precise cost management and 

decision-making. Although existing deep learning 

methods have achieved certain results in the power 

industry, they still exhibit the following limitations: (1) 

Traditional autoencoders (AEs) tend to lose critical 

information during the data compression process, 

resulting in insufficient feature extraction capability; (2) 

Existing economic forecasting models rely on manual 

feature selection, making it difficult to adapt to the 

complexity and high-dimensional nature of the data; (3) 

Deep learning models face challenges such as high 

computational costs and limited generalization ability 

when modeling high-dimensional data. 

To address these limitations, this paper adopts two 

improvement strategies: (1) Regularizing the latent 

variable distribution by using Kullback-Leibler (KL) 

divergence constraints to stabilize the distribution of the 

latent space, enhancing the continuity and robustness of 

data representation; (2) Introducing a multilayer 

perceptron structure to optimize the decoder, improving 

feature reconstruction ability and reducing information 

loss. Experimental results show that the improved method 

achieves superior feature extraction performance in terms 

of reconstruction error and KL divergence, providing 

more accurate and efficient input for subsequent economic 

analysis. By designing and implementing the feature 

extraction method based on VAE, the complex features of 

power cost data can be captured more accurately, 

providing a more reliable and effective data foundation for 

subsequent economic analysis. 

This paper employs a VAE to extract latent features 

from power cost data and optimizes the model using the 

best hyperparameters. Cost-benefit analysis (CBA) is 

integrated to assess the profitability of power enterprises, 

while economic forecasting methods are applied to predict 

future cost trends. Through experimental comparisons, the 

performance of the proposed model is evaluated against 

AEs, convolutional neural networks (CNNs), recurrent 

neural networks (RNNs), and support vector machines 

(SVMs) in terms of reconstruction error, KL divergence, 

prediction accuracy, and computational efficiency. CBA 

is used to evaluate the profitability of power enterprises 

and analyze the impact of various cost components on 

overall power costs. Additionally, economic forecasting 

methods are employed to construct a predictive model 

based on feature extraction, forecasting future trends in 

cost structure. Experimental results demonstrate that the 

proposed model outperforms other methods in terms of 

reconstruction error, KL divergence, and prediction 

accuracy, maintaining stable performance across multiple 

datasets (University of California, Irvine (UCI), Kaggle, 

and government datasets), which confirms its strong 

generalization ability. This paper aims to explore the 

application of deep learning frameworks in the analysis of 

power cost data and proposes a VAE-based feature 

extraction method to enhance the accuracy and 

intelligence of economic analysis in power enterprises. 

The findings provide more accurate and efficient decision 

support for cost management and economic forecasting in 

the power industry. The applicability of this method is not 

limited to a specific power cost dataset. In experiments, 

the method was tested on various datasets (UCI, Kaggle, 

and government data), with the results showing high 

prediction accuracy (92.3%-94.2%) across different data 

sources. Moreover, this approach is not only applicable to 

power cost data but can also be extended to other high-

dimensional economic data analysis tasks, such as energy 

price forecasting and corporate financial analysis. Due to 

the high-dimensional latent space representation in VAE, 

its computational complexity is higher than that of 

traditional regression methods. During the training phase, 

as the data size increases, the demand for computational 

resources also increases. Therefore, for large-scale 

datasets, further optimization of computational efficiency 

(e.g., distributed computing or dimensionality reduction 

techniques) will be necessary. Additionally, the latent 

space structure of VAE requires further optimization to 

enhance its generalization ability across various domains. 

Future research may focus on improving computational 

efficiency and extending the cross-industry applicability 

of the model. 

2 Literature review 
In previous research, many scholars have conducted in-

depth discussions on the cost management of the power 

industry [8, 9]. For example, the study by Fu et al. found 

that the costs in the power industry were mainly 

concentrated in fuel costs, equipment maintenance costs, 

and labor costs, with fuel costs being the primary factor 

affecting the profitability of power enterprises [10]. 

Additionally, some scholars have attempted to use 

economic models for the economic analysis of the power 

industry [11, 12]. For instance, the research by de Oliveira 

and Bollen showed that the level of economic growth had 

a significant impact on the growth of power demand, 

which provided important insights for capacity planning 

and resource allocation in the power industry [13]. In 

addition to the traditional methods mentioned above, 

recent studies have explored the use of machine learning 

and data mining technologies for cost management and 

economic analysis in the power industry [14, 15]. For 

example, Yoo et al. used a neural network model to predict 

the costs of electric power enterprises and achieved 

promising prediction results. Their research demonstrated 

that machine learning models could effectively uncover 

patterns in power industry data, offering new approaches 

and methods for economic decision-making in power 

enterprises [16]. 

In the field of data analysis, deep learning technology 

has become a powerful tool [17, 18]. For instance, Saha et 

al. employed deep learning models to forecast financial 

market data, achieving promising results. Their study 

demonstrated that deep learning models could effectively 
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capture the complex dynamics of financial markets, 

providing investors with more accurate predictions and 

better decision-making support [19]. In recent years, 

researchers have begun combining deep learning with 

statistical models for cost management and economic 

analysis in the power industry. For example, Khalid et al. 

proposed a deep feature extraction-based fault detection 

method for power systems [20]. This method has 

demonstrated strong generalization ability in complex 

energy systems [21]. Additionally, Pei et al. employed the 

knowledge-assisted neural-convolutional neural network 

structure for power load forecasting, improving prediction 

accuracy while reducing computational complexity [22]. 

Beyond financial and economic fields, deep learning 

technologies have been widely applied to data analysis 

and forecasting in other domains such as healthcare, 

transportation, and more [23-25]. 

The comparison of studies related to cost management 

and economic forecasting in the power industry is 

presented in Table 1 below: 

 

Table 1: Studies on cost management and economic forecasting in the power industry 

Study Method Dataset Key Indicator Main Strengths and 

Weaknesses 

Fu et al. [10] 

Traditional Cost 

Analysis 

Industry Report Data Identification of Cost 

Structure 

Clear structure, but 

challenging to handle 

large-scale data 

de Oliveira & 

Bollen [13] 

Linear Regression National Power Data Demand Forecast 

Accuracy 80% 

Applicable only to 

simple relationships, 

struggles to capture 

nonlinear features 

Yoo et al. [16] 

Neural Networks Internal Power Company 

Data 

Prediction Error 12% Capable of automatic 

feature learning, but 

prone to overfitting 

Pei et al. [22] 

Deep Learning Macroeconomic Data Prediction Error 8% Can capture temporal 

relationships, but high 

computational cost 

 

Based on the above research, traditional cost 

management and economic analysis methods have made 

some progress in the power industry, but they still face 

limitations, such as an inability to handle complex data 

characteristics effectively. In recent years, the emergence 

of machine learning and deep learning technologies has 

provided new solutions for the power industry, enabling a 

better exploration of underlying data patterns and 

improving the accuracy and efficiency of analysis. 

However, deep learning technologies also face challenges, 

such as weak model interpretability and high data 

demands. The improved VAE proposed here enhances 

feature extraction capability by regularizing latent 

variables and optimizing the decoder with a Multi-Layer 

Perceptron (MLP), making the predictions more accurate 

and interpretable in conjunction with economic analysis 

methods. 

3 High-dimensional feature 

extraction and refined economic 

analysis of power cost data 

3.1 Data collection and preprocessing 

This paper utilizes power cost data from a city's power 

engineering cost information network in mainland China. 

The dataset includes information on the costs, revenues, 

outputs, and other variables from several power  

 

enterprises over a specific period. It covers a range of 

power enterprises of varying sizes, providing a diverse set 

of data. Specifically, the dataset includes the following 

categories: 

 Cost data: including fuel costs, equipment 

maintenance costs, labor costs, etc. 

 Revenue data: including power sales revenue, 

government subsidies, etc. 

 Output data: including power output, utilization rates 

of power generation equipment, etc. 

 Energy consumption data: including fuel 

consumption and electricity consumption [26]. 

The dataset contains approximately 1,800 records, 

with each record corresponding to the cost, revenue, 

output, and energy consumption of a particular power 

enterprise during a specific time period. This dataset spans 

multiple power enterprises across different time points, 

ensuring both temporal diversity and enterprise variability, 

which enhances the model's generalization ability.  

Before using the data for analysis, a series of 

preprocessing steps are carried out to ensure the quality 

and suitability of the data. The preprocessing process 

includes the following steps: 

Data Cleaning: Missing and abnormal values are 

removed to ensure the integrity and accuracy of the data 

[27]. 
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Data Conversion: The data is normalized or 

standardized so that different features are on the same 

scale [28]. 

Dataset Division: The dataset is split into a training 

set, validation set, and test set (in a 7:2:1 ratio) for model 

training and evaluation. 

In the data preprocessing stage, this paper employs K-

Nearest Neighbors interpolation to handle missing values, 

aiming to retain as much data integrity as possible. For 

outlier detection, Z-score normalization is applied to filter 

data points that exceed three standard deviations from the 

mean. Additionally, Local Outlier Factor is used to 

remove anomalous samples. Furthermore, min-max 

normalization is applied to numerical variables, scaling 

them to the [0, 1] range to ensure consistent feature scales, 

which in turn improves the model's convergence speed. 

3.2 Selection and design of deep learning 

model 

In this paper, the VAE is chosen as the deep learning 

model for feature extraction from power cost data [29]. 

The VAE is a generative model, and its core idea is to 

achieve compressed representation and data generation by 

learning the underlying distribution of the data. The model 

primarily consists of two components: the encoder and the 

decoder. The encoder's function is to map the input data to 

the distribution parameters in the latent space [30]. 

Specifically, the encoder transforms the original power 

cost data into distributional features within the latent space, 

which effectively capture the essential information and 

structural characteristics of the original data [31, 32]. 

Specifically, when selecting the deep learning model, 

the VAE offers several advantages: First, compared to 

generative adversarial networks (GANs), VAE 

demonstrates greater stability in data feature extraction, 

avoiding the instability associated with adversarial 

training. This results in a more controllable distribution in 

the latent space. Second, in contrast to Transformer-based 

AEs, VAE exhibits higher feature extraction efficiency 

and lower computational complexity when handling high-

dimensional structured data, while better preserving the 

consistency of the data distribution. Furthermore, VAE is 

particularly well-suited for high-dimensional power cost 

data, as its latent variable regularization mechanism 

reduces information loss during the dimensionality 

reduction process, thereby enhancing the stability of 

economic predictions. For these reasons, VAE is chosen 

in this paper to improve the high-dimensional feature 

learning capability of power cost data. 

The workflow of the VAE model is as follows: First, 

the encoder maps the original power cost data to the 

distribution characteristics in the latent space. Then, 

samples are drawn from random variables in the latent 

space, and the decoder converts these samples into data. 

Finally, by comparing the generated data samples with the 

original data, the model's parameters are optimized to 

minimize the difference between the generated and 

original data [33]. The main structure of the VAE is shown 

in Figure 1. 

 

Figure 1: VAE structure. 

 

This characteristic of the VAE provides significant 

advantages for feature extraction from power cost data. 

First, VAE can learn the latent distribution of the data, not 

just its surface features, which is useful for extracting 

advanced features and structural information. Second, 

since the data samples generated by VAE are random, 

diverse data samples can be produced, improving the 

robustness and generalization ability of the model [34]. 

Lastly, the structure of the VAE encoder and decoder is 

relatively simple, yielding good training results, which 

makes it suitable for large-scale data processing and 

feature extraction. 

Traditional data analysis methods encounter 

difficulties in capturing nonlinear structures when 

processing high-dimensional data. In contrast, the VAE 

enhances data representation through probabilistic 

modeling, enabling dimensionality reduction while 

preserving complex structural features. The theoretical 

foundation of this paper is based on two key aspects. First, 

variational inference allows the VAE to approximate the 

true data distribution, facilitating stable learning of high-

dimensional latent representations. Second, the 

information bottleneck principle is applied, where the 

VAE employs KL divergence constraints to eliminate 

redundant information and retain only the most predictive 

features. In economic data analysis, compared to 

traditional methods such as principal component analysis 

(PCA), VAE effectively captures temporal dependencies 

and models long-term economic trends through latent 

variable representations, making it particularly 

advantageous for analyzing power cost data. 

In this paper, the VAE is employed to learn latent 

representations of power cost data and extract high-

dimensional features for refined economic analysis. To 

accommodate the complex structure of power industry 

data, the VAE is designed as follows: 

1. Input Data 

 

                      

  

      

  

                       

   



Variational Autoencoder-based High-dimensional Feature Extraction… Informatica 49 (2025) 75–92 79 

The input variable x consists of key economic 

indicators of power enterprises, including cost, revenue, 

production output, and energy consumption. Each record 

represents a specific enterprise’s data for a given time 

period. 

2. Encoder 

The encoder is a three-layer fully connected network 

with hidden dimensions of 256 →  128 →  64. The 

Rectified Linear Unit activation function enhances 

nonlinear representation capability. The encoder maps the 

input data to the mean (μ) and variance (σ2) of the latent 

space distribution: 

 

 𝜇, 𝜎2 =  Encoder (𝑥)  (1) 

 

Reparameterization Trick: To enable efficient 

gradient propagation, the latent variable 𝑧 is computed 

using the reparameterization trick: 

 

 𝑧 = 𝜇 + 𝜎 ⋅ 𝜖, 𝜖 ∼ 𝒩(0, 𝐼)  (2) 

 

In Equation (2), ϵ is sampled from a standard normal 

distribution to maintain differentiability. The VAE 

ensures that the latent variable z follows a standard normal 

distributionp(z)∼N(0,I), providing the following 

advantages: 

 Continuity: Small changes in the latent space 

lead to smooth variations in the data space, 

ensuring stable and coherent data 

representations. 

 Operability: The consistency of latent variables 

across samples facilitates high-quality sample 

generation. 

 Efficient Data Compression: The model 

compresses data while minimizing 

reconstruction error, preserving essential 

features for economic analysis. 

3. Latent Space Features 

In the latent space, each data point is mapped to a low-

dimensional vector z, which encapsulates its core 

characteristics. This representation facilitates pattern 

recognition in power cost data, enabling deeper insights 

into cost structures and profitability models across 

enterprises. 

4. Decoder 

The decoder mirrors the encoder’s architecture, with 

hidden layers configured as 64 →  128 →  256. It 

reconstructs the original input 𝑥 from the latent variable 𝑧 

using a MLP: 

 

 �̂� = 𝑓decoder(𝑧)  (3) 

 

In Equation (3), 𝑧  is a stochastic variable sampled 

from the latent space. The reconstructed output �̂� is then 

compared with the original input x to minimize 

reconstruction error. 

The VAE optimization objective is to minimize the 

weighted sum of reconstruction loss and KL divergence, 

ensuring both data fidelity and a well-structured latent 

space. The objective function is formulated as Equation 

(4): 

 

 ℒ =
1

𝑁
∑  𝑁
𝑖=1 ( 𝐿𝑟𝑒𝑐𝑜𝑛(𝑥𝑖 , �̂�𝑖) +  β𝐿𝐾𝐿(𝜇𝑖, 𝜎𝑖

2))  (4) 

 

In Equation (4), 𝑁 is the number of training samples, 

𝑥𝑖 is the 𝑖-th input, and �̂�𝑖 is its reconstructed counterpart. 

The encoder outputs the mean 𝜇𝑖  and 𝜎𝑖
2  of the latent 

variables.  

The reconstruction loss 𝐿𝑟𝑒𝑐𝑜𝑛(𝑥𝑖 , �̂�𝑖)  measures the 

difference between the original and reconstructed data, 

typically using Mean Squared Error (MSE): 

 

 𝐿𝑟𝑒𝑐𝑜𝑛(𝑥𝑖 , �̂�𝑖) = ‖𝑥𝑖 − �̂�𝑖‖
2  (5) 

 

The KL divergence 𝐿𝐾𝐿(𝜇𝑖, 𝜎𝑖
2) regularizes the latent 

space by minimizing the divergence between the learned 

latent distribution q(z∣x) and the standard normal prior 

p(z)=N(0,I): 

 

 ℒ𝐾𝐿 = −
1

2
∑  𝑑
𝑗=1 (1 + log 𝜎𝑖,𝑗

2 − 𝜇𝑖,𝑗
2 − 𝜎𝑖,𝑗

2 )  (6) 

 

In Equation (6), d denotes the latent space 

dimensionality, and μi,j and σi,j
2 represent the mean and 

variance of the latent variable in the j-th dimension. The 

KL divergence regularizes the latent space distribution to 

align with a standard normal distribution, preventing 

overfitting and ensuring a smooth latent representation. 

The hyperparameter β controls the trade-off between 

reconstruction accuracy and latent space regularization in 

the β-VAE framework:  

 β>1 enforces stronger regularization, improving 

feature disentanglement. 

 β<1 prioritizes reconstruction quality, making it 

more suitable for complex datasets. 

After completing model training, the performance of 

the VAE is evaluated using the validation set and test set. 

The evaluation primarily focuses on the model’s 

reconstruction ability, the continuity of the latent space, 

and the effectiveness of feature extraction in power cost 

data analysis. Additionally, model performance under 

different parameter and hyperparameter settings is 

compared to determine the optimal configuration. To 

optimize the VAE model, this paper employs Bayesian 

optimization for hyperparameter tuning. Compared to 

traditional grid search and random search, Bayesian 

optimization efficiently identifies optimal hyperparameter 

configurations with fewer evaluations. It leverages 

Gaussian Process Regression (GPR) to model the 

hyperparameter space and selects the best set of 

parameters in each iteration based on the Expected 

Improvement (EI) criterion. The optimization process 

consists of the following steps: 

(1) Definition of the Hyperparameter Search Space: 

The paper considers the following hyperparameters for 

optimization: 

 Number of hidden units in the encoder: {128, 

256} 
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 Number of hidden units in the decoder: {128, 

256} 

 Learning rate: {0.0005, 0.001} 

 Batch size: {32, 64} 

 Number of training epochs: {30, 50} 

(2) Initial Exploration: Twenty sets of 

hyperparameters are randomly selected and evaluated 

based on reconstruction error and KL divergence. 

(3) Bayesian Optimization Iterations: 

 GPR models the relationship between 

hyperparameters and model performance. 

 EI criterion identifies the hyperparameter 

combination most likely to enhance the loss 

function. 

 The VAE is trained with the selected parameters, 

and performance metrics are recorded. 

 The GPR model is updated iteratively, and the 

process repeats for 50 optimization rounds. 

(4) Selection of the Optimal Hyperparameter 

Configuration: After completing Bayesian optimization, 

the best-performing hyperparameter set is chosen for the 

final VAE model. 

This approach ensures efficient exploration of the 

hyperparameter space, leading to improved model 

performance in power cost data analysis. 

3.3 Refined economic analysis method 

The trained VAE model is utilized to extract high-

dimensional features from power cost data. Specifically, 

the encoder maps the original data into the latent space, 

and the mean vector in this space serves as the feature 

representation of the data. This feature extraction method 

effectively preserves critical information while 

simultaneously achieving dimensionality reduction and 

data compression. By leveraging the learned latent 

representations, the refined economic analysis can identify 

underlying patterns in power cost structures, improve 

predictive accuracy, and enhance decision-making in 

power enterprise management. 

The decision to use the mean vector (𝜇) as the feature 

representation in the VAE for economic analysis tasks is 

based on the following key considerations: 

(1) Stability and Interpretability: The mean vector (𝜇) 

reflects the central tendency of data in the latent space, 

offering a stable and deterministic feature representation. 

Unlike the latent variable (𝑧), which is influenced by 

randomness, or the variance vector (𝜎2), which primarily 

governs the variability in generated data, the mean vector 

provides a consistent feature representation. This stability 

is crucial for feature extraction tasks, especially when 

aiming to understand underlying data patterns and 

relationships. 

(2) Applicability in Economic Analysis: In economic 

analysis, interpretability is a critical factor. The mean 

vector directly captures the essential distributional 

characteristics of the data, providing meaningful insights 

into economic variables such as cost structures and 

revenue patterns. Since the mean vector represents the 

core information of the data, it ensures consistency across 

different experiments, making it more suitable for 

longitudinal analyses and predictive modeling. On the 

other hand, the variance vector may cause fluctuations in 

the feature set, which could introduce inconsistencies and 

make it harder to interpret the data reliably over multiple 

runs. 

In the refined economic analysis, high-quality 

features extracted through the VAE play a crucial role in 

enhancing the accuracy of prediction models and 

optimizing business decisions. This paper evaluates the 

quality and diversity of these features through two 

methods: 

 

1. Feature Discrepancy: To assess the distribution of 

different companies in the latent space, the divergence of 

latent space variables is computed. The calculation of 

feature discrepancy is given by Equation (7): 

 

 𝐷 =
1

𝑁
∑  𝑁
𝑖=1 ||𝜇𝑖 − �̅�||2  (7) 

 

In Equation (7), 𝜇𝑖 represents the mean of the latent 

features for the i-th company, �̅� is the mean of all sample 

means. A higher value of D indicates greater diversity in 

the extracted features, suggesting that the features possess 

strong discriminative power. This improves the precision 

of economic analysis by providing a clearer distinction 

between different companies' economic profiles. 

 

2. Feature Importance: Shapley Additive Explanations 

(SHAP) analysis is employed to assess the contribution of 

each feature to the model's predictions. SHAP values 

allow for the quantification of the importance of each 

input feature, offering a transparent and interpretable way 

to understand how individual economic variables, such as 

costs or revenue, impact the predictions. This method 

helps identify the most influential features in power cost 

data and refine decision-making processes. 

Additionally, to further evaluate the efficiency of 

economic decision-making, the paper uses CBA, focusing 

on the return on investment (ROI) and net present value 

(NPV) as key performance metrics [35]. 

The ROI calculates the return generated per unit of 

investment and is expressed by Equation (8): 

 

 𝑅𝑂𝐼 =
𝑅𝑒𝑣𝑒𝑛𝑢𝑒−𝐶𝑜𝑠𝑡𝑠

𝐶𝑜𝑠𝑡𝑠
× 100% (8) 

 

A higher ROI indicates better investment efficiency, 

signaling that a power enterprise is generating more value 

for its invested capital. 

The formula for calculating NPV is given by Equation 

(9): 

 

 𝑁𝑃𝑉 = ∑  𝑇
𝑡=1

𝐶𝑡

(1+𝑟)𝑡
  (9) 

 

In Equation (9), 𝐶𝑡 represents the cash flow in year t, 

r is the discount rate, and T is the forecast period. An NPV 

greater than zero indicates that the investment is profitable. 

In the power industry, CBA is a critical tool for 

evaluating operational efficiency, profitability, and 

investment returns. This paper develops a comprehensive 
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CBA framework based on the operational data of power 

enterprises to assess the impact of various cost factors on 

financial performance and provide decision-making 

support for optimization. 

In the cost structure analysis, the costs of power 

enterprises are categorized into two types: 

(1) Fixed Costs: These costs remain constant 

regardless of changes in production levels and primarily 

include equipment procurement and installation, such as 

generators and transmission/distribution equipment; 

infrastructure construction and maintenance, such as 

substations and transmission lines; and long-term 

operational management costs, such as land leasing and 

regulatory fees. 

(2) Variable Costs: These costs vary with production 

levels and mainly include fuel consumption costs, such as 

coal, natural gas, and renewable energy materials; 

equipment maintenance and repair expenses, such as 

turbine maintenance and component replacement; and 

labor costs, including salaries for technical personnel and 

training expenses. 

This paper analyzes the financial data of enterprises 

to examine the proportion of different cost categories and 

evaluate their impact on profitability. In the revenue 

source analysis, the revenue of power enterprises is 

primarily composed of two components: 

(1) Electricity Sales Revenue: This revenue is 

influenced by market electricity prices, electricity sales 

volume, and electricity trading models (such as long-term 

power purchase agreements or spot markets). The paper 

uses historical sales data to analyze the impact of varying 

electricity price levels on enterprise revenue. 

(2) Government Subsidies: Governments in different 

countries or regions provide subsidies to clean energy and 

renewable energy power generation enterprises to 

promote the development of green energy. The amount of 

subsidy is typically linked to power generation volume or 

carbon emission reductions. This paper assesses the 

contribution of various subsidy policies to enterprise 

profits and evaluates the potential impact of subsidy 

reductions or cancellations. 

In the cost-benefit evaluation, to assess the 

operational efficiency of power enterprises, this paper 

follows the steps outlined below: 

(1) Collection of Historical Data: Analyzing 

operational data from the past 5-10 years, including costs, 

revenue, and market price fluctuations. 

(2) Calculation of Long-term Operational Return: 

Combining various cost and revenue sources to assess the 

profitability of enterprises under different market 

conditions [36]. 

(3) Comparison of Different Types of Enterprises: 

Analyzing the cost-benefit situations of thermal power, 

wind power, and photovoltaic power enterprises to 

explore the economic feasibility of different energy 

structures. 

In the policy simulation aspect, given the uncertainty 

in policies and market conditions, this paper designs 

multiple scenario simulations to evaluate the impact of 

policy changes on the economic performance of 

enterprises: 

(1) Impact of Electricity Price Adjustments: 

Analyzing the effect of high, medium, and low electricity 

prices on enterprise profitability and further investigating 

the resulting market competition pressures. 

(2) Changes in Government Subsidies: Evaluating 

how the reduction or cancellation of government subsidies 

would affect enterprise profitability and exploring 

corresponding response strategies. 

(3) Fluctuations in Fuel Prices: Simulating the impact 

of varying fuel prices on enterprise costs and profits based 

on historical market data, thereby assessing the 

enterprise’s risk tolerance. 

Economic forecasting aims to predict and analyze 

future trends in the power market by examining historical 

data and feature representations while applying statistical 

methods such as regression analysis and time series 

analysis. By constructing economic models, including 

supply-demand relationship models and market demand 

forecasting models, this paper forecasts key market factors 

such as future power market capacity, prices, and demand. 

These predictions serve as a reference for enterprise 

decision-making and market strategy development. 

This paper employs regression analysis, time series 

analysis using the AutoRegressive Integrated Moving 

Average (ARIMA) model, and machine learning 

techniques, specifically Long Short-Term Memory 

(LSTM) networks, to forecast the future supply-demand 

relationship in the electricity market, price trends, and 

enterprise profitability. The specific applications are as 

follows: 

(1) Multiple Linear Regression (MLR) for 

Profitability Prediction: 

This analysis examines the impact of key economic 

factors, including fuel costs, electricity output, and 

government subsidies, on enterprise profitability. The 

input data consist of features extracted by the VAE along 

with economic variables such as electricity prices and 

subsidy policies. The regression model is formulated as 

follows: 

 

 𝑃𝑟𝑜𝑓𝑖𝑡𝑡 = 𝛽0 + 𝛽1𝐹𝑢𝑒𝑙𝐶𝑜𝑠𝑡𝑡 +
𝛽2𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑂𝑢𝑡𝑝𝑢𝑡𝑡 + 𝛽3𝑆𝑢𝑏𝑠𝑖𝑑𝑦𝑡 + 𝜀𝑡  (10) 

 

In Equation (10), 𝑃𝑟𝑜𝑓𝑖𝑡𝑡  denotes the profit of a 

power enterprise in period t (e.g., a specific month or year), 

serving as the dependent variable; 𝐹𝑢𝑒𝑙𝐶𝑜𝑠𝑡𝑡  represents 

the fuel cost in period 𝑡 (e.g., coal, natural gas), considered 

an independent variable; 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑂𝑢𝑡𝑝𝑢𝑡𝑡  refers to 

the electricity output in period 𝑡 (typically measured in 

megawatt-hours, MWh), also an independent variable; 

𝑆𝑢𝑏𝑠𝑖𝑑𝑦𝑡  indicates the government subsidy amount in 

period 𝑡, which is generally linked to the type of energy 

used (e.g., renewable energy) or emissions reductions, 

serving as an independent variable; 𝛽0 is the intercept of 

the regression model, representing the baseline profit 

when all independent variables are zero; 𝛽1 , 𝛽2 , and 𝛽3 

are the regression coefficients for the respective 

independent variables, indicating their marginal effects on 

profit; 𝜀𝑡 represents the random error term, accounting for 
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unobserved factors influencing profit, such as electricity 

market price fluctuations and policy changes. 

The ARIMA model is formulated as Equation (11): 

 

 𝑌𝑡 = 𝑐 + ∑  
𝑝
𝑖=1 𝜙𝑖𝑌𝑡−𝑖 +∑  

𝑞
𝑗=1 𝜃𝑗𝜖𝑡−𝑗 + 𝜖𝑡  (11) 

 

In Equation (11), 𝑌𝑡 represents electricity demand in 

period t; 𝜙𝑖  and 𝜃𝑗  are model parameters; 𝜖𝑡  is the error 

term. The ARIMA model is well-suited for forecasting 

electricity demand when the time series exhibits a stable 

trend. 

The LSTM network is formulated as follows: 

 

 ℎ𝑡 = 𝜎(𝑊ℎ𝑥𝑡 + 𝑈ℎℎ𝑡−1 + 𝑏ℎ)  (12) 

 

In Equation (12), ℎ𝑡  represents the hidden state at 

time step; 𝑥𝑡  denotes the input data; 𝑊ℎ , 𝑈ℎ , and 𝑏ℎ  are 

model parameters. LSTM networks are particularly 

effective for electricity market forecasting due to their 

ability to capture nonlinear dependencies and long-term 

temporal relationships. 

In the economic forecasting process, enterprise 

operational features extracted using the VAE—such as 

cost structure, profit margins, and equipment utilization 

rates—are integrated with historical economic data to 

construct regression and time series forecasting models. 

The role of feature extraction is as follows: 

(1) Enterprise Profitability Prediction: Features 

extracted by the VAE reduce redundant information, 

improving the goodness of fit of the regression model, as 

indicated by an increased 𝑅2 value. 

(2) Electricity Market Price Prediction: VAE-based 

dimensionality reduction enhances the stability of long-

term price forecasts when used as input for LSTM models. 

(3) Electricity Demand Prediction: VAE effectively 

captures changes in enterprise production patterns, 

improving the accuracy of ARIMA-based predictions. 

Economic forecasting plays a crucial role in the power 

industry, offering significant application value across 

multiple aspects. It enables power enterprises and relevant 

institutions to analyze the relationship between power 

supply and demand in depth, facilitating efficient resource 

allocation and ensuring the stable operation of the 

electricity market. Additionally, by forecasting electricity 

price fluctuations and other market dynamics, economic 

forecasting provides critical insights for power enterprises 

to formulate and adjust their competitive strategies. This, 

in turn, helps optimize business models and enhance 

market competitiveness. Various economic forecasting 

methods are employed in practice, including regression 

analysis, time series analysis, and machine learning. 

Regression analysis establishes mathematical models to 

examine relationships between variables, allowing for 

predictions of future trends. Time series analysis focuses 

on identifying patterns in historical data to model and 

forecast future developments. Machine learning methods, 

by analyzing large datasets, automatically detect hidden 

patterns and relationships within the data, leading to more 

accurate predictions. In the power industry, economic 

forecasting is widely applied across diverse scenarios. For 

instance, time series analysis can be used to model 

historical electricity demand data, providing forecasts that 

serve as a crucial basis for capacity planning and resource 

allocation in power enterprises. Meanwhile, machine 

learning techniques are extensively utilized in power 

market monitoring and government decision-making. By 

analyzing large-scale data and extracting hidden patterns, 

these methods enable more precise electricity market 

predictions, offering valuable decision-making support for 

both governmental agencies and enterprises. 

4 Analysis of high-dimensional 

feature extraction and refined 

economic analysis 

4.1 Evaluation of feature extraction 

performance for power cost data under 

the deep learning framework 

First, this paper identifies several possible combinations 

of hyperparameters and evaluates the model's 

performance based on these configurations. The specific 

hyperparameter combinations are presented in Table 2: 

 

Table 2: Hyperparameter combination 

Hyperparametric 

combination 

Number of 

hidden layer 

nodes of 

encoders 

Number of 

hidden layer 

nodes of 

decoder 

Learning rate Batch size 

Number of 

training 

rounds 

Parameter 

combination 1 128 128 0.001 64 50 

Parameter 

combination 2 256 256 0.001 64 50 

Parameter 

combination 3 128 128 0.0005 64 50 

Parameter 

combination 4 256 256 0.0005 64 50 
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This paper evaluates the quality of features extracted 

by the VAE using reconstruction error and KL divergence. 

Reconstruction error measures the model’s ability to 

reconstruct the original data, where lower values indicate 

that the extracted features more accurately represent the 

original data. KL divergence assesses the stability of the 

latent space distribution, with lower values contributing to 

smoother and more consistent feature representations. 

Additionally, the paper incorporates feature dispersion (𝐷) 

and feature importance scores to enhance the evaluation: 

(1) Feature Dispersion (𝐷): This metric quantifies the 

differentiation of enterprises in the latent space. A higher 

𝐷 value indicates that the extracted features provide 

greater discriminative power across different enterprises. 

(2) Feature Importance Score: Calculated using the 

SHAP method, this score evaluates the contribution of 

individual features to economic forecasting. 

The model's performance under different 

hyperparameter combinations is evaluated using 

reconstruction error and KL divergence. The results are 

presented in Figure 2. 

 

Figure 2: Model performance under different hyperparametric combinations. 

 

Based on the data in Figure 2, parameter combination 

2 exhibits the lowest reconstruction error and KL 

divergence in both the training and validation sets. This 

result indicates that the model under this configuration 

achieves the best reconstruction accuracy and latent space 

representation. Additionally, parameter combination 2 

features a larger number of hidden layer nodes in both the 

encoder and decoder, a moderate learning rate, an 

appropriate batch size, and a sufficient number of training 

epochs. These factors likely contribute to improved 

learning of data characteristics and distribution. 

Considering both model performance and 

hyperparameter settings, parameter combination 2 is 

identified as the optimal configuration and is selected as 

the benchmark for subsequent analyses and experiments. 

Specifically, this paper adopts the following 

hyperparameter settings: 

 Number of hidden layer nodes (encoder): 256 

 Number of hidden layer nodes (decoder): 256 

 Learning rate: 0.001 

 Batch size: 64 

 Number of training epochs: 50 

By evaluating both reconstruction error and KL 

divergence, this paper assesses the feature extraction 

effectiveness of the proposed model and compares it with 

four baseline algorithms: AE, CNN, RNN, and SVM. The 

selection of these baseline models is based on the 

following considerations: 

(1) AE shares structural similarities with the VAE but 

lacks the KL divergence constraint, making it useful for 

assessing the impact of KL divergence on feature 

extraction. 

(2) CNN is efficient at capturing local features but less 

effective when applied to structured economic data. 

(3) RNN is well-suited for time-series forecasting but 

less effective than VAE in high-dimensional feature 

extraction. 

(4) SVM is a traditional machine learning model, 

included to highlight the advantages of deep learning 

approaches in feature representation. 

Beyond reconstruction error and KL divergence, this 

paper also incorporates the F1-score and Area Under the 

Curve (AUC) as additional performance metrics to 

provide a comprehensive evaluation of model 

effectiveness. The result is shown in Figure 3: 
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Figure 3: Performance comparison of different models. 

 

In Figure 3, the model proposed in this paper 

demonstrates superior performance in both reconstruction 

error and KL divergence. The reconstruction error of this 

model is 0.032, which is slightly lower than that of the 

other algorithms, indicating its ability to more accurately 

reconstruct the original data. Additionally, the KL 

divergence of this model is 0.006, which is also lower 

compared to the other algorithms, suggesting that it more 

effectively preserves the structural information of the data 

and maps it into latent space. In contrast, the 

reconstruction error and KL divergence of the other 

algorithms are higher, indicating that their feature 

extraction capabilities are not as effective as those of the 

proposed model. Therefore, based on the lower 

reconstruction error and KL divergence, it can be 

concluded that this model outperforms the others in 

feature extraction, providing more reliable support for the 

analysis and application of power cost data. Furthermore, 

the VAE model outperforms the other methods in both F1-

score and AUC, demonstrating that the features extracted 

by VAE are more representative and enhance the accuracy 

of profitability predictions for electricity companies. 

To validate the effectiveness of the features extracted 

by VAE, a comparison was made between the PCA 

visualizations of the original data and the features 

extracted by VAE, as shown in Figures 4 and 5: 

 

Figure 4: PCA projection of original data. 
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Figure 5: PCA projection of VAE-extracted features 

 

Based on Figures 4 and 5, it can be observed that the 

PCA projection of the original data exhibits a dispersed 

distribution of data points, with fuzzy boundaries between 

different company types (coal-fired, wind, and solar). This 

indicates a low level of distinguishability in the original 

features. In contrast, the features extracted by VAE form 

clear clusters in the latent space, suggesting that the data 

of different types of companies are more distinguishable. 

Compared to the original data, the distribution of VAE-

generated features is smoother and more concentrated, 

reflecting the enhanced stability of the features due to the 

KL divergence regularization. Further analysis reveals 

that, after extracting features using VAE, the model's 

prediction error decreases by 15%, suggesting that this 

method more accurately captures the economic 

characteristics of electricity companies, thereby 

improving the accuracy of economic analysis and 

profitability forecasting. 

The SHAP analysis was used to calculate the 

contribution of features extracted by VAE to economic 

forecasting, with the results presented in Table 3: 

Table 3: Contribution of VAE extracted features to 

economic forecasting 

Feature Name Importance Score 

Electricity Output 0.35 

Electricity Price  0.28 

Fuel Cost 0.2 

Equipment 

Maintenance Cost 

0.1 

Government Subsidy 0.07 

 

Based on Table 3, it is evident that electricity output, 

electricity price, and fuel cost have the highest 

contributions, indicating that these features extracted by 

VAE are the most influential for economic forecasting. In 

contrast, the impact of government subsidies is relatively 

low, suggesting that the direct influence of policy changes 

on profitability is minimal in the context of the features 

analyzed. 

4.2 Refined economic analysis results 

This section compares the effects of the proposed model 

with those of four algorithms: AE, CNN, RNN, and SVM 

in refined economic analysis. The comparison metrics 

include total cost, total income, net profit, prediction 

accuracy, training time, and prediction time. 

The data sources for the economic analysis are as 

follows: 

 Total Cost: This data is derived from the 

company’s fuel, equipment maintenance, and 

labor costs, and is standardized through feature 

extraction using the VAE. 

 Total Revenue: Based on electricity market 

transaction data (including electricity sales and 

government subsidies), adjusted using market 

price forecasting models. 

 Net Profit: Calculated by subtracting total costs 

from total revenue. This is further adjusted using 

regression models in the forecasting analysis to 

enhance the robustness of the results. 

The specific process is as follows: 

VAE first extracts features, with latent variables 

serving as input for the economic analysis. The cost-

benefit analysis calculates the revenue for each company 

and evaluates profit fluctuations. The economic 

forecasting model uses historical data to predict future 

profit trends. The final net profit value is obtained from 

the economic analysis model, forming the experimental 

results.  The results are shown in Figures 6 and 7: 
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Figure 6: Comparison of refined economic analysis results. 

 

 

Figure 7: Comparison of prediction accuracy and prediction time of different models. 

 

According to the data presented in Figures 6 and 7, 

this model achieves the best results in terms of total cost, 

total revenue, and net profit, with a net profit of 5.36 

million yuan and a prediction accuracy of 93.5%. In 

contrast, the performance of other algorithms is slightly 

inferior. Although AE and CNN perform similarly in some 

indicators, they still exhibit a gap in terms of net profit and 

prediction accuracy. The latent features generated by VAE 

more accurately describe the cost structure of electricity 

companies, thereby improving the stability of economic 

forecasts. When predicting future cost trends, VAE 

enables the model to focus on important variables, 

enhancing its adaptability to market price fluctuations. 

Experimental results demonstrate that using features 

extracted by VAE for economic analysis improves the 

accuracy and stability of profit predictions. 

Additionally, the model in this paper shows high 

efficiency in both training time and prediction time, taking 

only 9.8 hours and 6 milliseconds, respectively—

significant advantages over other algorithms. Therefore, 

considering all indicators comprehensively, this model 

shows clear advantages in refined economic analysis, 

providing more reliable support for cost management and 

benefit evaluation in the power industry. In conclusion, 
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the model presented in this paper demonstrates strong 

competitiveness across various economic analysis metrics, 

with net profit and forecast accuracy surpassing those of 

other algorithms. Furthermore, it offers advantages in 

training time and computational efficiency. These results 

indicate that features extracted by VAE can significantly 

enhance the accuracy of economic analysis, offering more 

reliable support for cost management and performance 

evaluation in the electricity industry. 

4.3 Reliability and robustness analysis of 

experimental results 

To evaluate the prediction accuracy, training time, and 

prediction time of this model across different datasets, the 

paper utilizes three distinct datasets: the UCI machine 

learning repository dataset, the Kaggle dataset, and the 

power dataset from a government open data platform. The 

rationale for selecting these datasets is as follows:  

 UCI Power Dataset: This dataset includes 

operational data from companies, making it suitable 

for analyzing electricity costs. 

 Kaggle Economic Forecasting Dataset: This dataset 

provides information on company profitability, 

serving as a test for the generalization capability of 

the features extracted by VAE in economic 

forecasting. 

 Government Open Data Platform: This platform 

offers real-world electricity market data, enabling the 

validation of the model's stability in practical, real-

world applications.  

The results are shown in Figure 8: 

 

Figure 8: Robustness comparison under different datasets. 

 

By comparing these indicators in Figure 8, the 

robustness of the model across different datasets can be 

assessed. In terms of prediction accuracy, while there are 

minor fluctuations, it generally remains at a high level. 

Additionally, the training time and prediction time exhibit 

consistent stability, demonstrating that the model 

maintains good training and prediction efficiency across 

various datasets. 

4.4 Ablation study 

The ablation study explores multiple variables, including 

the latent space dimension, the KL divergence weight, and 

the inclusion of VAE-extracted features. The experimental 

comparison results are shown in Figure 9: 
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Figure 9: Results of the ablation study. 

 

Based on the data presented in Figure 9, the optimal 

parameter combination is 𝑧=32 and 𝛽=1. Under these 

conditions, the features extracted by the VAE exhibit the 

highest quality, with the lowest reconstruction error 

(0.0328) and the highest economic forecasting accuracy 

(93.5%). The importance of VAE feature extraction is 

evident: compared to using raw data directly, the features 

generated by VAE enhance the economic forecasting 

accuracy by approximately 9.6%. Moreover, the necessity 

of controlling KL divergence is highlighted, as 

appropriate regularization (𝛽=1) enables the model to 

learn latent representations, thereby improving feature 

quality. 

5 Discussion 
This paper employs a hyperparameter optimization 

strategy to identify the optimal structure for the VAE. 

Among all hyperparameter combinations, the 

configuration featuring 256 hidden layers for both the 

encoder and decoder, a learning rate of 0.001, a batch size 

of 64, and 50 training epochs achieved the best 

performance across multiple evaluation metrics. A larger 

number of hidden layer nodes enhances the model's 

capacity to represent non-linear relationships, allowing it 

to capture more intricate feature interactions. In contrast, 

smaller hidden layers limit feature extraction ability, 

leading to an increase in reconstruction error. The choice 

of learning rate is also critical for model convergence and 

stability. The experimental results indicate that a learning 

rate of 0.001 provides the optimal convergence speed 

while ensuring model stability. The weight of KL 

divergence (β) significantly impacts the quality of the 

latent space. Proper regularization (β=1) helps preserve 

reconstruction capability while improving the smoothness 

of feature distributions, preventing excessive 

concentration or collapse. A batch size of 64, compared to 

32, improves computational efficiency and reduces 

gradient fluctuations, leading to more stable feature 

extraction. Additionally, training for 50 epochs ensures 

model convergence, while training beyond 50 epochs 

leads to overfitting, which negatively affects 

generalization. 

In comparison to the study by Azzalini et al. (2025), 

which applied AEs on a similar power dataset with a KL 

divergence of 0.008 and a reconstruction error of 0.05 [37], 

this paper's VAE improves feature extraction by 

regularizing KL divergence, resulting in smoother features, 

lower reconstruction error, and greater stability in data 

representation. Further analysis reveals that, compared to 

GANs and Transformer-based AEs, VAE performs better 

on high-dimensional structured data such as electricity 

cost data. GANs, due to the complexity of adversarial 

training, exhibit unstable performance in economic 

forecasting tasks. Transformer-based AEs, while powerful, 

are computationally intensive and inefficient for large-

scale power data training. Therefore, VAE strikes an 

optimal balance between feature extraction quality and 

computational efficiency, making it more suitable for this 

application. 
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In contrast to CNNs and RNNs, VAE is better suited 

for feature extraction in electricity cost data. CNNs are 

typically used to extract local patterns in images (e.g., 

edges and textures), but electricity cost data is structured 

and lacks spatial correlation, making CNNs less effective 

for this task. RNNs are ideal for time-series prediction 

tasks, such as short-term power load forecasting, but 

electricity cost data is not typical time-series data; it is a 

multidimensional economic variable with complex 

relationships. While RNNs are suited for time-dependent 

predictions, VAE is more appropriate for the automatic 

learning of high-dimensional features in economic data. 

In terms of refined economic analysis, this model has 

achieved the best results in total cost, total revenue, and 

net profit, with high forecasting accuracy and short 

training and prediction times. In contrast, the performance 

of other algorithms is somewhat inferior. Therefore, 

considering all evaluation metrics, this model 

demonstrates clear advantages in refined economic 

analysis, offering reliable support for cost management 

and benefit evaluation in the power industry. Regarding 

the reliability and robustness of the experimental results, 

the model was tested on various datasets, including the 

UCI Machine Learning Repository, Kaggle, and the power 

dataset from a government data open platform. The results 

indicate that the model maintains stable prediction 

accuracy, training time, and prediction time across these 

different datasets, demonstrating its strong generalization 

performance and robustness. 

In the analysis of electricity cost data, the 

computational complexity of VAE is primarily influenced 

by the data scale, latent space dimensions, and model 

architecture. As the data scale increases, the relationship 

between training time and data volume becomes nonlinear, 

constrained by the encoder-decoder structure and the KL 

divergence regularization term, leading to exponential 

growth in computational cost. In this paper, VAE 

performs efficiently with 1,800 data points; however, as 

the data scale grows to 100,000 or more, the 

computational cost rises significantly. If the model were 

directly scaled to handle millions of data points, such as 

nationwide electricity cost data, single-machine training 

time would become prohibitively long. Thus, the model's 

scalability emerges as a crucial challenge. To address this, 

the paper proposes several optimization strategies. First, 

dimensionality reduction and feature selection are applied 

to identify key features through importance analysis and 

remove redundant information, thus improving 

computational efficiency. Second, Mini-Batch training is 

employed, splitting the data into smaller batches to reduce 

the computational burden of each iteration while 

accelerating the convergence of gradient descent. 

Additionally, distributed training using multiple GPUs or 

deep learning frameworks facilitates parallelized, 

accelerated training on large datasets. Finally, the model 

can be optimized by introducing lightweight VAE variants 

or Transformer architectures to reduce computational 

complexity and improve efficiency. Scalability is essential 

for VAE applications in the electricity sector, particularly 

for tasks such as national grid planning, corporate profit 

forecasting, and intelligent power scheduling, where large 

volumes of data need to be processed. Future research may 

explore federated learning, which enables cross-enterprise 

model training without sharing data, optimizing 

computational resource allocation, and making deep 

learning models more suitable for large-scale electricity 

cost analysis. 

6 Conclusion 
This paper utilizes a deep learning framework to 

extract high-dimensional features from power cost data, 

integrating economic analysis methods for refined 

evaluation. By assessing the model's performance under 

different hyperparameter combinations, the optimal 

configuration  as identified, demonstrating the model’s 

superiority in feature extraction and refined economic 

analysis.  

However, there are certain limitations to this paper. 

First, the research is based on electricity cost data from a 

single city, which imposes regional constraints, limiting 

the generalizability of the findings. Further validation 

across diverse datasets is necessary to confirm the results' 

broader applicability. Additionally, the paper assumes that 

economic conditions within the electricity market remain 

stable over time, though in practice, external factors such 

as policy changes and fuel price fluctuations can 

significantly impact the market. Furthermore, while VAE 

effectively extracts features, it lacks intuitive 

interpretability, making it challenging for enterprises to 

fully grasp the implications of the model's outputs in real-

world decision-making. 

Future research could expand the data sources to 

encompass nationwide or multi-regional electricity market 

datasets, enhancing the model’s applicability across 

different contexts. Dynamic modeling techniques, such as 

adaptive deep learning models, could be explored to 

improve prediction stability in fluctuating market 

conditions. Moreover, integrating explainable artificial 

intelligence methods like SHAP analysis could increase 

the transparency of economic forecasts, helping decision-

makers better understand and trust the model's results. 

In practical applications, the high-dimensional 

features extracted by VAE can enable enterprises to more 

accurately identify key cost components, such as fuel and 

equipment maintenance costs. This would support efforts 

to optimize cost structures and improve operational 

efficiency. Leveraging the economic forecasting 

capabilities of deep learning models, companies could 

better predict future profitability trends amidst market 

fluctuations and make more informed financial decisions. 

Furthermore, the methods presented in this paper could aid 

enterprises in adjusting market strategies, optimizing 

resource allocation during high-demand periods, and 

controlling costs during downturns, enhancing 

competitiveness. 

Governments and regulatory bodies could utilize the 

economic analysis methods proposed here to assess the 

impact of various policies—such as subsidy adjustments 

or carbon trading schemes—on electricity company 

operations, providing a scientific basis for energy market 

regulation. 
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