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Gait recognition is a key biometric technology with broad applications, yet cross-perspective variation
severely impairs performance. This study proposes a novel gait recognition model that integrates a
breadth-first search-guided feature propagation mechanism with gated recurrent unit-based temporal
modeling and multi-scale spatial feature map interaction. The model enhances feature fusion across
different layers and perspectives while selectively attending to key temporal cues through global max
pooling. Experimental evaluations on the CASIA-B dataset demonstrate that the proposed method
achieves an accuracy of 0.97, 0.94, and 0.91 under normal walking, carrying object, and wearing jacket
conditions, respectively, significantly surpassing the baseline models in recognition performance. The
method also obtains the lowest root mean square error of 0.09 and the fastest recognition time of 1.2
seconds. Compared with conventional convolutional neural networks and recurrent neural
network-based architectures, the proposed model shows substantial improvements in accuracy,
robustness, and computational efficiency. The key innovation lies in the introduction of a breadth first
search-driven feature interaction strategy and a hierarchical temporal-spatial fusion structure, which
jointly optimize the feature representation for robust cross-view gait recognition.

Povzetek:  Za robustno vecperspektivno prepoznavo hoje je razvit model BFS-CNN-GMP-GRU-MSP,
ki zdruzuje iskanje v Sirino (BFS) za propagacijo znacilk, GRU za casovno modeliranje in vecmerno

prostorsko interakcijo znacilk.

1 Introduction

Gait recognition is a non-contact biometric
recognition technology that utilizes human gait features
for identity recognition. Unlike other biometric
recognition technologies, gait recognition does not rely
on close range collection or high-resolution data, and has
the advantages of long-distance operability and no need
for active cooperation [1-3]. However, gait recognition
faces many challenges in practical applications, and the
cross-perspective problem is one of the most critical
difficulties. When individual gait images are collected
from different perspectives, gait features may undergo
significant changes due to external factors such as angle,
lighting, and clothing, which can lead to inconsistent
expression and extraction of gait features, thereby
affecting recognition accuracy. With the development of
deep learning, techniques such as Convolutional Neural
Network (CNN) and recurrent neural network have been
widely applied in gait recognition tasks. However,
existing methods still have shortcomings in
cross-perspective gait recognition. Traditional CNN
models mainly focus on single scale spatial feature
extraction and cannot fully express multi-scale

information from different perspectives, resulting in
unstable recognition performance. Although temporal
modeling can capture temporal dependencies, it lacks a
global attention mechanism and cannot effectively focus
on key time points in gait sequences, resulting in
redundant and inefficient feature extraction. The
mechanism of feature interaction and fusion is not yet
perfect, and efficient information integration cannot be
achieved between shallow, middle, and deep features.
Therefore, a cross-perspective gait recognition model
based on Breadth First Search (BFS) algorithm and
feature map interaction was proposed. This model
extracts spatial features through CNN, searches for
feature maps through BFS algorithm, and finally
combines Gated Recurrent Unit (GRU) and Global Max
Pooling (GMP) to capture temporal dependency
characteristics. The innovation of the research lies in
introducing the BFS algorithm to optimize the feature
propagation  mechanism, improve  computational
efficiency and accuracy, and aim to provide an efficient
and robust solution for gait recognition.

To address the limitations in current gait recognition
models, this study is driven by two primary research
questions: (1) Can a BFS mechanism enhance the
efficiency and comprehensiveness of feature propagation
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across spatial hierarchies in cross-perspective gait
recognition? (2) How does the integration of multi-scale
spatial feature interaction influence the effectiveness of
temporal modeling and attention in dynamic and
occluded environments? These questions guide the
model design, which incorporates BFS-guided node
traversal, multi-stage spatial feature map fusion, and
gated recurrent units for temporal dependency capture.
The proposed model is rigorously evaluated on the
CASIA-B dataset under various conditions to empirically
validate the effectiveness of each component.

2 Related works

Cross-perspective gait recognition is an important
task in addressing the impact of perspective changes on
gait features. Parashar et al. proposed a deep learning
architecture and pipeline to utilize the complex features
of human gait for biometric applications. The research
results indicated that although gait recognition faced
diversity and complexity, deep learning models could
still effectively work on low resolution images, but were
greatly affected by various covariates such as shoes and
clothing [4]. Castro et al. proposed an innovative hybrid
protection scheme to ensure the privacy and security of
gait analysis for early detection of neurodegenerative
diseases in human activity recognition. This scheme
combined partially homomorphic encryption and
revocable biometric technology based on random
projection. The research results indicated that this
scheme could achieve a high trade-off between security
and performance, with an accuracy decrease of up to
1.20, and was applicable to any type of neural network
[5]. Baniasad et al. proposed an algorithm suitable for
different sensor configurations, gait speeds and shoe
types to solve the problem of complex and error prone
connection of IMU sensors in motion and rehabilitation
motion analysis. The research results showed that the
algorithm could accurately identify body parts and lower
limb sensor sides. For gait speed ranges of 0.5-2.2 m/s,
the accuracy and precision reached 99.7% and 99.0%,
respectively, and had broad application prospects [6].

Zhang et al. proposed a non-contact bendable
sensitive sensor that uses a semi-circular optical fiber to
monitor muscle activity to improve the detection
accuracy of wearable robot human interaction. The
research results showed that using this sensor combined
with neural networks, the recognition accuracy of five
gaits was over 99%, significantly better than traditional
machine learning algorithms, providing a new and
effective approach for abnormal gait recognition [7].
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Derlatka et al. proposed a solution using heterogeneous
base classifier ensemble to improve the accuracy and
running speed of human gait recognition. The research
results showed that the proposed scheme has been tested
on a sample of 322 people, with a recognition accuracy
of up to 99.65%. The model construction time was less
than 12.5 minutes, and the time required to identify a
person was less than 0.1 seconds. The performance was
significantly better than other methods in the literature
[8]. Yan et al. proposed a new gait recognition
framework to address performance issues caused by
occlusion and viewpoint changes in gait recognition, as
well as the problem of traditional time pools ignoring
unique time information. The research results indicated
that the framework could effectively extract adaptive
structured spatial representations, aggregate multi-scale
temporal information, and improve recognition accuracy,
especially in complex scenes, with an average accuracy
of 93.5% on the CASIA-B dataset [9].

In summary, significant progress has been made in
the field of gait recognition, from gait feature extraction,
temporal modeling to cross-perspective adaptation. Many
scholars have applied deep learning techniques to gait
recognition tasks and achieved certain results. Despite
notable advances in gait recognition, several critical
limitations persist in existing state-of-the-art models.
Many approaches, such as those by Parashar et al. and
Baniasad et al., either focus on static spatial features or
rely heavily on wearable sensors, limiting their
adaptability in vision-only, cross-view scenarios. Models
like that of Yan et al. employ multi-scale temporal
aggregation but still lack explicit mechanisms to capture
global feature interactions across different spatial levels,
which are essential for robustness under perspective
changes. Moreover, methods using deep learning
pipelines often ignore temporal attention granularity,
leading to suboptimal performance when distinguishing
subtle gait variations across sequences. Few works have
integrated a structured propagation mechanism to ensure
efficient multi-level feature fusion and comprehensive
node traversal. These gaps highlight the necessity for a
model that explicitly addresses both spatial hierarchy and
temporal dynamics, motivating the design of BFS-guided,
GRU-enhanced gait recognition framework. To provide a
clear comparison between the proposed method and
other state-of-the-art approaches, Table 1 summarizes
key aspects of recent representative studies, including
their methods, research content, datasets used, and
performance indicators.

Table 1: Performance comparison between the SOTA method and the model in this paper

Dataset Key performance

Research Method Research content S Reference
used indicators
. . . Effective under low
Deep learning Addressing covariates . .
Parashar et o . - - Custom gait resolution, but
pipeline for gait like clothing and shoes [4]
al. (2023) bi - S . dataset performance drops under
iometrics in gait recognition .
covariates
Castro et Hybrid protection  Gait analysis for early ~ Gait dataset  Accuracy loss up to 1.20, [5]
al. (2024)  with homomorphic ~ dementia recognition (private) emphasizes
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encryption with security-performance
privacy-preserving tradeoff
techniques
Baniasad IMU-based Recognition 9f bOQy Accuracy 99.7%,
segment segment and limb side  IMU sensor - .
et al. . SIU T R EUE Y Precision 99.0% in [6]
recognition in gait using inertial dataset :
(2023) . 0.5-2.2 m/s gait range
algorithm Sensors
Abnormal gait Recognition accuracy
Zhang et  Optical fiber sensor recognition through 5-class gait over 99%, better than [7]
al. (2023) + neural networks muscle activation dataset conventional ML
detection methods
Derlatka et Heterogeneous H“”.‘a.‘“ galt- Sample size Accuracy 99.65%,
hyd recognition using it (8]
al. (2023)  classifier ensemble o - 322 identification time < 0.1s
classifier fusion
Yan et al spa&?iztr;vsoral _ Occlusion-and
' ; viewpoint-robust gait CASIA-B  Average accuracy 93.5% [9]
(2024) aggregation -
recognition
network
3 Methods shooting angle, perspective changes, lighting conditions,

The first section proposes a cross-perspective gait
recognition model based on feature map interaction for
cross-perspective gait recognition. At the same time, BFS
algorithm is introduced to improve the problem of large
parameter quantity.

2.1 Cross-perspective gait recognition model

based on feature map interaction
In practical applications, people's gait characteristics
may undergo significant changes due to factors such as

etc. Therefore, a cross-perspective gait recognition model
based on feature map interaction is proposed in this study.
To enhance the stability and convergence of the training
process, min-max normalization is applied to all gait
silhouette pixel values, scaling them to the range [0, 1].
This choice is motivated by its simplicity and
effectiveness in preserving the structural consistency of
grayscale images used in silhouette-based gait
recognition. The structure of the model is shown in
Figure 1.

Multi stage feature extraction Temporal attention extraction module
Input = CNN » CNN » CNN » CNN
- GRU Pooling
MSP
! MSP-d 3
MSP-s A

Figure 1: Cross-perspective gait recognition model based on feature map interaction

As shown in Figure 1, multiple experimental
devices collect different gait sequences, which are
processed by the Temporal Spatial Multi-Feature
Extraction (TASMF) module to generate cross device
gait features. Gait sequences are captured using multiple
fixed-angle video cameras positioned at different
horizontal viewpoints (ranging from 0° to 180° with 18°
intervals), simulating cross-view observation conditions.
Each camera corresponds to a specific viewpoint and
records RGB gait videos of each subject under three
walking conditions: normal, carrying a bag, and wearing
a coat. These RGB sequences are later converted into

binary silhouette images through background subtraction
preprocessing, which serve as the actual input to the
proposed model. These features are then extracted using
the Multi-Scale Spatial (MSP) module. The MSP module
utilizes multiple CNNs to process gait images of
different scales, enhancing the ability to express
cross-perspective  features by fusing multi-scale
information [10]. These features then enter the temporal
attention module, which combines GRU with GMP
operations to capture temporal dependencies in gait
sequences and focus on important time points, generating
weighted temporal feature representations. Finally, the
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features are used for classification through a Fully
Connected layer (FC). After aggregation, these features
enter the classifier to complete the recognition task and
output the final gait classification result. By using a
TASMEF fusion structure that does not share parameters,
shallow, middle, and deep information is extracted
separately. The output features of each stage are
segmented, and the gait sequence is cut into multiple
segments. The maximum pooling operation is performed
to obtain the feature map, which is expressed as equation
).
Xout = MaXpOOIings(fslice) (1)

In equation (1), f,_ represents the sequence and

Maxpooling, () represents the max pooling operation.

The TASMF module is responsible for the initial
preprocessing and structuring of gait sequence data
before it is passed to the CNN-based multi-scale spatial
feature extractors. Specifically, TASMF receives binary
silhouette sequences and performs three operations: (1)
Temporal segmentation — each gait sequence is divided
into multiple fixed-length temporal slices to preserve
motion continuity and reduce noise from long sequences.
(2) Frame normalization — silhouette frames are aligned
and resized to a uniform spatial resolution, ensuring
consistent scale across viewpoints and walking styles. (3)
Feature stacking-segmented frame sets are converted into
structured tensors, where temporal and spatial
information is jointly encoded, allowing downstream
CNN modules to extract joint spatial-temporal patterns.
This preprocessing enables the model to retain localized
motion details while also providing a consistent input
format for subsequent convolutional processing in the
MSP modules. The temporal attention module is
constructed using GRU as the basic algorithm, and its
structure is shown in Figure 2.

In Figure 2, this module models the temporal
dependencies in a gait sequence and emphasizes key time
steps. "Conv8" denotes an 8-channel convolutional layer
applied to extract preliminary spatial features.
"Segmentation” divides the temporal dimension of the
input into fixed-length slices. "GMP" stands for Global
Max Pooling, used to compress spatial dimensions and
highlight dominant features. "Max Pooling" reduces
temporal resolution and noise by selecting maximum
values across segmented frames. "GRU" refers to a
bidirectional Gated Recurrent Unit layer that captures
long-range temporal dependencies. "Norm" indicates
batch normalization, which stabilizes training and
improves convergence. The final output is a
temporally-weighted feature vector passed to the
classification stage. The symbol 's' represents the number

of temporal segments after slicing the input gait sequence.

The original input is a sequence of binary silhouette
frames with spatial dimensions height (h), width (w), and
channel (c). After applying the Conv8 convolutional
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layer, the sequence is temporally segmented into 's' slices,
each containing a fixed number of consecutive frames.
These segments form a 4D tensor of shape (s, ¢, h, w),
where each slice retains the original spatial resolution but
is treated as an independent temporal unit for attention
modeling. Firstly, the input feature map undergoes
Conv8 convolution operation to extract preliminary
spatial features and form a feature map with a size of s x
¢ x h x w. Subsequently, through GMP operation, the
input feature map is globally pooled in spatial dimension
to obtain a feature matrix with a size of s x ¢. Next, the
features are segmented and the sequence is divided into T
time steps, outputting a feature representation in the s/T
x ¢ dimension. Further max pooling is performed to
compress the time dimension and obtain a more
concentrated temporal feature representation. Next, these
features are input into the GRU, which captures the
temporal dependencies of gait features through a
bidirectional GRU structure, while enhancing attention
weight allocation for critical time steps [11-12]. The
output temporal features are batch normalized to improve
the stability and training efficiency of the model. Finally,
the temporal features are mapped to classification scores.
The MSP module is designed to enhance the spatial
feature representation by capturing gait features at
different resolutions. Specifically, each input silhouette
sequence is resized into three spatial scales: a shallow
resolution (e.g., 64x64), a middle resolution (e.g.,
96x96), and a deep/full resolution (e.g., 128x128). These
versions preserve different levels of detail: shallow
inputs capture global body posture, while deeper inputs
retain fine-grained motion and contour information. Each
scaled input is independently processed through a
dedicated CNN branch, forming a parallel architecture.
These branches are composed of convolutional layers
with identical configurations but operate on different
input resolutions. After processing, each CNN outputs a
spatial feature map that is temporally aligned. The
outputs are then passed to the feature fusion pipeline,
where pooling, reshaping, and concatenation are applied
to integrate the three scales into a unified global
representation. This parallel multi-resolution strategy
ensures the model can extract both coarse and fine spatial
details, improving robustness under viewpoint variation
and body occlusion. The expression for maximum value
pooling for each time period is shown in equation (2).
XT = MaXpOOIings (Xslice) XT = MaXpOOIings (Xslice) (2)
In equation (2), x, represents the feature after max

pooling, and the expression for temporal attention score
is shown in equation (3).
Xscore = GRU (Xslioe) (3)
In equation (3), x represents the temporal

score

attention score. The MSP structure is shown in Figure 3.
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Figure 2: Temporal attention extraction module
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Figure 3: Multi-scale pyramid feature fusion structure

As illustrated in Figure 3, the proposed MSP fusion
module receives three independent inputs corresponding
to shallow, middle, and deep spatial features extracted
from different CNN branches. Each input branch
undergoes the following processing steps: Frame Max:
applies temporal max pooling across each frame
sequence to extract the most salient feature from each
frame. Multi-scale feature fusion: applies dilated
convolutions with varying receptive fields to capture
local and global context at different scales. Reshape:
reshapes the output into a flattened form suitable for
fully connected layers. Pooling: performs dimensionality
reduction to retain only key information. FC: applies a
fully connected layer to generate a compact feature
vector for each scale. These three vectors-representing
shallows, middle, and deep scale features-are then passed
to the Montage node. The Montage operation refers to
the concatenation of the three feature vectors into a
single comprehensive feature vector. This operation
enables the integration of low-level (texture/edge),
mid-level (shape/pose), and high-level (semantic/global)
spatial features. The resulting unified representation is
then fed to the final classification stage. The structure of
the multi-scale pyramid feature fusion module mainly
processes spatiotemporal features of shallow, middle, and
deep layers, achieving effective fusion of multi-level
features [13-14]. The FrameMax operation is designed to
extract the most salient spatial representation across
temporal frames within a given feature stream. For each
of the three scale branches (shallow, middle, deep), the
input to FrameMax is a 4D tensor of shape (T, C, H, W),
where T is the number of frames in the sequence, and C,
H, W denote channel, height, and width respectively.

FrameMax applies a temporal max pooling operation
along the T dimension at each spatial location, resulting
in a 3D tensor of shape (C, H, W). This operation
captures the strongest activation at each spatial position
across the entire sequence, effectively summarizing
motion dynamics over time. Firstly, the three sets of
features are maximally pooled in the temporal dimension
through FrameMax operation, extracting important
information from each frame to obtain a temporal feature
map, which is expressed as equation (4).
x = FrameMax(X,,, - X.ore) (4)
In equation (4), FrameMax(-) represents max

pooling multiple feature maps. Through the multi-scale
spatial feature fusion module, different scales of feature
information are processed separately. Subsequently,
through the Reshape operation, the feature map is
reshaped into a shape suitable for subsequent network
inputs, forming feature representations in k1, k2, and k3
dimensions. The next pooling operation performs spatial
dimensionality reduction on the reshaped feature map,
further compressing redundant information and
extracting key features. After dimensionality reduction,
the features are input into FCs, and the shallow, middle,
and deep features are further mapped into new feature
vectors [15]. Finally, the three sets of feature vectors are
fused at multiple scales through concatenation, resulting
in a global feature representation with dimensions ¢ x
(k1+k2+k3). For the basic features extracted through
multi-stage feature extraction modules, different dilated
convolutions are used to obtain receptive fields. The
structure of the multi-scale spatial feature fusion module
is shown in Figure 4.
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Figure 4: Multi-scale spatial feature fusion module structure
In Figure 4, this structure extracts and fuses spatial  in  contrast, is more suited for exhaustive,

features through convolution operations at different
scales, enhancing the overall feature representation
ability. The channels, heights, and widths of the input
feature map are convolved using three different
convolution kernels. Each convolution kernel is
responsible for capturing spatial information at different
scales, focusing on detail features, local features, and
global features [16]. Next, the three convolution results
are used for feature fusion, which is achieved by adding
or concatenating elements one by one to
comprehensively express spatial features of different
scales. The fused feature map is further processed
through an additional unified convolution operation, and
the final output feature map maintains the same
dimension as the input feature map.

2.2 Cross-perspective gait recognition model
combining BFS algorithm and feature map
interaction

Although the proposed cross-perspective gait
recognition model based on feature map interaction can
solve some cross-perspective gait recognition problems,
it has a large number of parameters and a long training
time. Therefore, the study introduces BFS to improve it.
The BFS algorithm traverses the nodes in the feature
map in a layer-by-layer fashion, where each layer
corresponds to the set of nodes that are reachable from
the starting node in the same number of steps. This
traversal mechanism ensures that nodes are visited in
increasing topological distance, meaning that the
shortest unweighted path to each reachable node is
discovered naturally as a property of the traversal
order. This structure supports comprehensive spatial
propagation and enables effective feature interaction
across receptive fields [17]. Compared with other
feature propagation strategies such as Depth-First Search
(DFS) or random traversal, the proposed use of BFS
ensures a layer-wise, hierarchical traversal of feature
map nodes, which aligns with the convolutional layer
depth structure in CNNs. BFS allows the model to
gradually aggregate spatial information from local to
global across all receptive fields, thus supporting
structured and scalable multi-scale feature fusion. DFS,

non-hierarchical exploration and lacks the regularity
needed for structured node updating in convolutional
feature maps. BFS provides a balance between
computational efficiency and structural completeness. It
updates each feature node based on its neighborhood in a
breadth-prioritized manner, ensuring that spatial
dependencies are fully captured with controlled
computational overhead. This makes BFS especially
suitable for tasks requiring global feature consistency,
such as gait recognition under varying viewpoints. The
principle is shown in Figure 5.

To conceptually illustrate the behavior of the BFS
algorithm, Figure 5 demonstrates a simplified traversal
process on a feature node map. The traversal begins at
node A, which first visits its immediate neighbors B and
C. In the next iteration, nodes B and C each visit their
respective neighbors E and F. The corresponding binary
matrix reflects which nodes have been marked as
"visited" at each stage. This visualization highlights the
layer-wise node expansion property of BFS, where nodes
are explored in increasing order of their minimal
topological distance from the root node. It is worth
noting that some nodes such as D are included in the
structure but not traversed in this simplified
demonstration, and thus are intentionally excluded from
the visitation matrix. Starting with node A, it is gradually
extended to neighbouring nodes at different levels by
three traversals. In the first image, node A is visited and
located at the starting layer of the search. At this time,
the leading edge set only contains A, and the
corresponding encoding for f is 1, indicating that A has
been visited, while other nodes are 0. In the second
figure, B and C are visited as neighboring nodes of A,
entering the next layer's frontier set. f is updated to
011000, indicating that nodes B and C are marked as
visited. In the third figure, nodes E and F are extended as
neighboring nodes of nodes B and C into a new layer of
frontier set, with f updated to 010111, indicating that E
and F are also accessed, and the frontier set is extended
to more nodes. In the process of multi-scale feature map
interaction, node expansion is carried out in a breadth
first manner, gradually fusing feature information from
different perspectives from shallow to deep layers,
ensuring that feature extraction has global and
hierarchical characteristics [18]. BFS searches layer by
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layer on the feature map and updates the status of nodes
in order of distance priority. In the initial state, all nodes
are set to an unvisited state, and the starting node joins
the queue while being marked as visited. Its expression is
shown in equation (5).

{Q :{Vo}
visited[v,] =1

In equation (5), Q represents the queue, and
visited represents whether the node has been accessed.
BFS retrieves a node from the head of queue Q each

time, accesses all neighboring nodes of that node, and
updates the rules accordingly. In the BFS traversal
mechanism, the study initializes a queue Q to manage
the order of node expansion. Q = {v} indicates that the
traversal begins from the starting node v, which
corresponds to the initial active feature node on the
feature map. The queue structure ensures that nodes are
explored in a first-in, first-out manner, consistent with
the breadth-first expansion strategy. To prevent revisiting
the same node, the study maintains a binary visited array
where visited[i] = 1 signifies that node i has already been

Informatica 49 (2025) 275-288 281

processed. Therefore, visited[v] = 1 sets the visitation
flag of the starting node immediately upon enqueueing.
This prevents redundant enqueue operations during
subsequent neighbor expansion stages. The rule
expression is shown in equation (6).
ifvisited[u] = 0 = Q.enqueue(u), visited[u] =1(6)

Equation (6) represents adding node u to queue
Q and marking node u as visited if it has not been
accessed. If it is necessary to calculate the shortest path
from the starting node to any node, the update formula is
shown in equation (7).

d[u] =d[v]+1(7)

In equation (7), d[u] represents the shortest path

distance from node u to the starting node, and d[v]

represents the distance from the current node v to the
starting node. When queue Q is empty, BFS ends and
all reachable nodes are accessed. The structure of the

cross-perspective gait recognition model combining BFS
algorithm and feature map interaction is shown in Figure

o3s o3 o3s

Flilofofofofo]

FloJof1]1]ofo]

Flofsfofofa]1]

Figure 5: BFS schematic diagram

BFS
Multi stage feature extraction Temporal attention extraction module
Input - CNN » CNN » CNN » CNN
GRU [«—Pooling
MSP
! MSP-d 3
MSP-s A

Figure 6: The BFS-CNN-GMP-GRU-MSP model structure

In Figure 6, firstly, the gait video sequence or image
is input into the model and preprocessed to generate
multi-scale feature maps, including shallow, middle, and
deep features. Next, spatial features are extracted using
convolution kernels of different scales to form an initial
multi-level feature representation. Subsequently, the BFS

algorithm is used to search and interact nodes on the
feature map, traversing the nodes layer by layer in
breadth first order. Through the propagation and
accumulation of information from neighboring nodes, the
feature representation is gradually updated to ensure
global coverage and feature integrity of spatial
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information. The queue definition update rule is shown in
equation (8).
fri= £t 4 w-f!
nho (m,n)g(i,j) mn (8)
In equation (8), fi‘j+1 represents the feature values

of the updated node in the t41th layer search, fifj

represents the initial feature values of the t th layer node,
N(i, j) represents the set of neighboring nodes of node

(i,j),» and  represents the weight matrix used to

control the importance of feature propagation. For
feature maps at different levels, multi-scale spatial
feature fusion is performed separately, using pooling
operations to reduce feature dimensions while preserving
key information. Next, features of different scales are
fused through concatenation operations to form a unified
global feature representation. Its expression is shown in
equation (9).
F..., = Concat(P(F?),P(F"), P(F%)) (9)
In equation (9), P() represents pooling operation,

used to compress the dimensionality of feature maps, and
Concat represents feature concatenation operation,

which combines features of different scales into global
features. Finally, the fused global features are input into
the FC, and the recognition results are output by the
classifier, while the cross-entropy loss function is used to
optimize the model.

In summary, Figure 6 illustrates the overall
workflow of the proposed gait recognition model that
integrates BFS, convolutional feature extraction,
temporal modeling, and multi-scale feature fusion. The
process begins with input gait images or sequences,
which are fed into three parallel CNN branches to extract
shallow, middle, and deep spatial features. These features
are then processed through segmentation and GMP to
reduce spatial dimensions while preserving key
information. Next, the BFS mechanism is applied across
feature map nodes to propagate information layer by
layer, ensuring global spatial interaction and continuity
across different scales. The GRU module is used to
model temporal dependencies across gait frames, while
GMP highlights key frames that contribute most to
classification. Finally, the multi-stage features are fused
in the Multi-Scale Pyramid module and passed through a
fully connected layer for final gait classification. This
architecture allows the model to combine spatial,
temporal, and hierarchical cues effectively, resulting in
high performance under varied viewing conditions. The
BFS pseudocode is shown in Figure 7.

J. Liuetal.

Breadth-First Search Based Feature Propagation on Feature Maps

Input: Feature map nodes F = {f_ij}, Adjacency matrix A
Output: Updated feature representations F'

1: Initialize queue Q « []

2: Initialize visited[ij] < False for all nodes (i, j)
3: For each starting node (i, j):

4:  Q.enqueue((i, j))

5: visited[ij] « True

6: while Q is not empty:

7 (i, j) < Q.dequeue()

8 for each neighbor (m, n) of (i, j) in A:

9: if not visited[mn]:

10: F[mn] < F[mn] + W x F[ij]
11 Q.enqueue((m, n))

12: visited[mn] < True

13: Return F'

Figure 7: BFS pseudocode

4  Results

The first sub-section analyzes the performance of a
cross-perspective gait recognition model that combines
BFS algorithm and feature map interaction. The second
sub-section applies it to practical applications and tests
its performance.

3.1 Performance analysis of
cross-perspective gait recognition model
combining BFS algorithm and feature map

interaction

In this section, the study evaluated the performance
of our proposed and baseline models using the following
metrics: Accuracy (ACC): The ratio of correctly
classified gait sequences to the total number of test
samples. F1 score (F1): The harmonic mean of precision
and recall, used to assess classification balance. Error
Rate: Defined as 1 minus the classification accuracy,
indicating the proportion of misclassified samples. Root
Mean Square Error (RMSE): Used to measure the
deviation between predicted gait contour positions and
ground-truth. Mean Square Error (MSE): Represents the
average squared error between predicted and actual
silhouette values, primarily applied to regression-based
silhouette reconstruction results in Table 3. These metrics
provide both classification-level and reconstruction-level
insights into model performance. Particularly, MSE and
RMSE quantify spatial consistency of silhouette
generation, while F1 and ACC reflect recognition
precision.
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The experimental hardware configuration used Intel
Core i5-8750H CPU, NVIDIA Geforce GTX2080Ti
GPU, 8GB VRAM, and 16GB RAM. All experiments in
this study were conducted using the CASIA-B gait
dataset, a widely used public benchmark for gait
recognition research. The dataset was developed by the
Institute of Automation, Chinese Academy of Sciences,
and contains gait sequences from 124 subjects recorded
under 11 different view angles ranging from 0° to 180° at
18° intervals. Each subject was recorded under three
walking conditions: normal walking, walking while
carrying a bag, and walking while wearing a coat. The
dataset provides both RGB video and silhouette binary
images. In this study, the silhouette sequences were used
after background subtraction, as they are less sensitive to
clothing and lighting variations. To ensure optimal model
performance, several core components underwent
empirical tuning using validation ACC as the objective.
For CNN layers, a kernel size of 3 X3 with ReLU
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activation was selected to balance locality and
non-linearity. All convolution blocks were followed by
Batch Normalization and MaxPooling layers with stride
2 to reduce spatial dimensions and control overfitting.
For the GRU module, the number of hidden units was set
to 128 after grid search testing over {64, 128, 256}. A
bidirectional GRU was used to better capture temporal
dependencies across gait sequences. In pooling
operations, GMP was chosen over average pooling based
on its stronger ability to highlight key discriminative
frames in gait sequences. Dropout layers (rate = 0.5)

were inserted after dense layers to improve
generalization.
The study selected CNN-GRU-MSP and

CNN-GMP-MSP as comparative models, named Model
1 and Model 2, and named the proposed model Model 3.
The performance of each model was analyzed, and the
results are shown in Figure 8.
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Figure 8: Comparison of ACC and RMSE among three gait recognition models on CASIA-B dataset
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Figure 8 (a) shows the comparison of ACC between
different models during the iteration process, and Figure
8 (b) shows the comparison of root mean square error
(RMSE) between different models. From Figure 8 (a),
Model 3 performed the best, with ACC quickly reaching
a stable value of 0.97 after about 20 iterations, with the
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fastest convergence speed and highest ACC. Model 2
followed closely and stabilized at 0.87 after about 50
iterations, with higher ACC but slower convergence
speed than Model 3. Model 1 performed the worst,
converging after 100 iterations, with a final ACC of only
0.76. In Figure 8 (b), Model 3 had the lowest RMSE,
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which rapidly decreased and stabilized at 0.09 after about
50 iterations, indicating that it had the smallest error and
the strongest generalization ability. The RMSE of Model
2 was 0.16, with a slightly slower stabilization time but
still better than Model 1. The RMSE of Model 1
converged slowly, with a final error of 0.26 and the
maximum error. The experimental results showed that
the proposed Model 3 had high ACC and low error in
cross prospective gait recognition, exhibiting the best
performance and robustness. The gait data were selected
in different directions and the data were collected from 1
different viewpoint with an angle range of 0° to 180° and
an interval of 18°, and the results are shown in Figure 9.
Figure 9 (a) shows a comparison of the recognition
time of three models for different directions, and Figure
9 (b) shows a comparison of the recognition errors of
three models for different directions. According to Figure
9 (a), Model 1 had the longest duration, with some
directions such as Direction 1 and Direction 7 taking
nearly 3 seconds. The recognition time of Model 2 was

J. Liuetal.

shortened, with most directions ranging from 1.5 to 2.5
seconds. Model 3 performed the best with the shortest
time, with most directions taking less than 1.5 seconds,
especially in directions 4 and 10 where the time was
close to 1 second. From Figure 9 (b), Model 1 had the
highest error rate, especially in direction 7 where the
error rate was close to 0.05, indicating that Model 1 had
weak adaptability to complex direction or perspective
changes. The error rate of Model 2 was reduced, with
most directions remaining between 0.02 and 0.03,
indicating that the GMP module enhanced its ability to
screen features, but its adaptability to complex directions
was still limited. The error rate of Model 3 was the
lowest, with an overall error rate below 0.02, and the
error rates of Direction 3 and Direction 9 were close to
0.01. The experimental results showed that the proposed
Model 3 had excellent model performance. Using
ablation experiments, the performance of each part of the
model was analyzed, and the results are shown in Table
2.

Table 2: Ablation test table

Model ACC RMSE Recognition time/s Error rate
BFS-CNN-GMP-GRU-MSP 0.97 0.09 1.2 0.012
BFS-CNN-GMP-GRU 0.91 0.13 1.8 0.018
BFS-CNN-GRU-MSP 0.85 0.21 15 0.025
BFS-CNN-GMP-MSP 0.88 0.17 1.7 0.02
CNN-GMP-GRU-MSP 0.83 0.24 2.0 0.032
Model F1 Recall Precision /
BFS-CNN-GMP-GRU-MSP 0.96 0.95 0.97 /
BFS-CNN-GMP-GRU 0.89 0.88 0.90 /
BFS-CNN-GRU-MSP 0.82 0.81 0.83 /
BFS-CNN-GMP-MSP 0.86 0.84 0.87 /
CNN-GMP-GRU-MSP 0.80 0.79 0.82 /
According to Table 2, BFS-CNN-GMP-GRU-MSP  modeling. While the ablation results in Table 2

performed the best, with ACC reaching 0.97, RMSE
being the lowest at 0.09, recognition time only 1.2
seconds, error rate being the lowest at 0.012, F1 score,
recall rate, and ACC rate being 0.96, 0.95, and 0.97,
respectively. This indicated that the BFS algorithm
combined with multiple modules could efficiently extract
cross-perspective gait features, and the model had high
ACC and excellent computational efficiency. After
removing BFS, the model BFS-CNN-GMP-GRU showed
a decrease in ACC to 0.91, an increase in RMSE to 0.13,
an increase in recognition time to 1.8 seconds, and an
increase in error rate to 0.018, demonstrating the
importance of BFS algorithm in accelerating feature
propagation and optimizing ACC. The performance of
the BFS-CNN-GRU-MSP model after removing GMP
decreased significantly, with ACC at 0.85, RMSE
increasing to 0.21, and error rate increasing to 0.025,
indicating that the GMP module played a key role in
feature screening and noise reduction. After removing the
GRU from the BFS-CNN-GMP-MSP model, the ACC
decreased to 0.88 and the RMSE was 0.17, indicating
that GRU had a significant effect on time series feature

demonstrate noticeable drops in performance when
individual modules are removed (e.g., GMP, GRU, or
BFS), The study acknowledge that these tests evaluate
components in isolation and do not capture potential
interaction effects between modules. To more rigorously
assess these relationships, a full-factorial ablation
analysis would be necessary. However, given space
constraints, we focused on evaluating the marginal
contribution of each module. In future work, we plan to
investigate combinatorial ablations (e.g., removing both
GRU and GMP) to better understand interdependencies
and possible synergy among architectural components.

To verify the statistical significance of the observed
performance differences, pairwise two-tailed t-tests were
conducted between the proposed model and the baselines
(CNN-GRU-MSP and CNN-GMP-MSP). The results
indicated that the improvements in ACC (p < 0.01) and
F1 score (p < 0.01) were statistically significant across
all tested conditions.
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3.2 Simulation result analysis

The study selected CNN-GRU-MSP and
CNN-GMP-MSP as comparative models, named Model
1 and Model 2, and named the proposed model Model 3.
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To further validate the performance of the model,
simulation analysis was used to analyze the images in
actual situations, and the results are shown in Figure 10.
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Figure 10: F1 and ACC comparison of three models under varying training data volumes

Figure 10 (a) shows the F1 scores of the three
models under different data volumes, and Figure 10 (b)
shows the ACC of the three models under different data
volumes. As shown in Figure 10, both ACC and F1
generally increased for Model 1 and Model 3 as training
data volume grows, demonstrating improved
generalization ability. However, Model 2 exhibited a
decline in F1 after a certain data threshold, despite its
ACC still increasing slightly. This behavior suggested
that Model 2 may become overfitted to dominant class
patterns in the expanded dataset, leading to degraded
recall and thus lower F1. This implies that without BFS
or GRU integration, the model lacks sufficient temporal
representation or inter-feature interaction to maintain
balanced classification under more diverse gait inputs. In
contrast, Model 3 maintained consistent or even slightly
improved F1 performance across scales, validating the
contribution of BFS-driven feature propagation and
GRU-based temporal modeling in resisting overfitting
and improving classification  robustness.  The

(a) Original image

(c) Model 2

experimental results showed that the proposed model
performed the best in both F1 score and ACC, with better
generalization and data utilization ability. The
recognition performance of each model was analyzed,
and the results are shown in Figure 11.

Figure 11 (a) shows the original image, while
Figures 11 (b), 11 (c), and 11 (d) respectively
demonstrate the recognition performance of Model 1,
Model 2, and Model 3. From Figure 11, the original gait
image contained the contours of pedestrians walking.
Although Model 1 could locate the contours of
pedestrians, there were obvious local truncation
phenomena, such as missing information in the legs and
head. Model 2 showed some improvement in the
localization process, but there were still issues with false
positives and feature truncation, such as incomplete
extraction of the leg region and inaccurate alignment of
some red boxes with the contour edges. The
comprehensive performance of each model was analyzed,
and the results are shown in Table 3.

(b) Model 1

(d) Model 3
Figure 11: Visualization of gait contour recognition outputs for the three models
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Table 3: Comprehensive performance analysis of the model
Type Model ACC F1 RMSE MSE Time/s
Model 1 0.84 0.82 0.22 0.048 2.0
Normal Model 2 0.92 0.89 0.12 0.014 1.6
Model 3 0.97 0.96 0.09 0.008 1.2
_ Model 1 0.79 0.76 0.25 0.063 2.1
Cargy'“g a Model 2 0.88 0.85 0.14 0.02 1.7
ag Model 3 0.94 0.92 0.11 0.012 14
Model 1 0.76 0.74 0.28 0.078 2.3
Clothing Model 2 0.86 0.82 0.16 0.025 1.8
Model 3 0.91 0.89 0.14 0.02 15

According to Table 3, under normal gait, Model 3 had an
ACC of 0.97, an F1 score of 0.96, the lowest RMSE of
0.09, and the shortest recognition time of 1.2 seconds.
Model 2 had an ACC of 0.92, while Model 1 had an ACC
of only 0.84, an RMSE of up to 0.22, and a recognition
time of 2.0 seconds. In the state of carrying objects,
Model 3 had a stable ACC of 0.94 and RMSE of 0.11,
while Model 2 and Model 1 had ACC of 0.88 and 0.79,
respectively.

4 Discussion

The experimental results and comparative analysis
in Related Works clearly demonstrated that the proposed
BFS-CNN-GMP-GRU-MSP model outperformed
existing gait recognition methods in multiple evaluation
metrics. Compared to models like that of Yan et al., the
proposed model achieved 93.5% ACC on the CASIA-B
dataset, The study model achieves up to 97.0% accuracy
under normal conditions and maintains robust
performance (94.0% and 91.0%) under challenging
conditions such as carrying objects or wearing clothing.
This performance gain is primarily attributed to two core
innovations: the BFS-driven global feature propagation
and the multi-scale feature map interaction. The BFS
algorithm ensures exhaustive traversal of feature nodes
across all spatial scales, allowing the model to capture
hierarchical and contextual spatial patterns that static
CNN layers or short-range skip connections might miss.
This contributes to the model’s superior generalization
across viewpoints. Meanwhile, the multi-stage feature
map interaction enables the fusion of shallow, middle,
and deep spatial features, preserving both local detail and
global structure. Combined with GRU-enhanced
temporal modeling, the model can dynamically allocate
attention to key gait frames, thereby reducing temporal
noise and enhancing feature stability. However, these
performance benefits come at a computational cost. The
inclusion of multi-branch CNN modules, GRU layers,
and BFS-based traversal increases both model
complexity and training time. For instance, compared to
baseline CNN-GRU-MSP models, the designed model
takes approximately 30%-40% longer to train and
requires more GPU memory during inference. While this
trade-off is acceptable in offline or controlled
environments, it may limit the model’s deployment in
resource-constrained scenarios such as edge devices or

mobile platforms. To mitigate these inefficiencies, future
work could explore lightweight alternatives. These
include pruning and quantization strategies for CNNSs,
replacing GRUs with more efficient attention-only
mechanisms, or using graph convolutional
approximations to emulate BFS behavior without full
traversal overhead. Moreover, a dynamic
perspective-adaptive module could be integrated to
adjust feature processing based on input complexity,
further improving computation-to-accuracy ratios.

In summary, the proposed method demonstrates
superior robustness and accuracy in cross-view gait
recognition, driven by its spatial-temporal fusion strategy.
While computational costs are a concern, they are
justified by the substantial gains in recognition
performance. Nonetheless, ongoing optimization of
model efficiency remains an important future direction.

5 Conclusion

A gait recognition model combining BFS algorithm
and multi-scale feature map interaction was proposed to
address the issues of viewpoint changes and
computational efficiency in cross-perspective gait
recognition. The model extracted multi-scale spatial
features of shallow, middle, and deep layers through
CNN. The BFS algorithm searched for nodes in the
feature map layer by layer to ensure the propagation and
fusion of global information. In the ablation experiment,
after removing the BFS algorithm, the ACC of the model
decreased to 0.91, the RMSE increased to 0.13, and the
recognition time increased to 1.8 seconds, indicating the
critical role of BFS in global feature map search and
information propagation. After removing the GMP
module, the RMSE further increased to 0.21, indicating
that GMP effectively strengthened the feature weights at
key time points. When removing GRU, the
time-dependent characteristics of the model were
suppressed, and the RMSE reached 0.17, highlighting the
importance of GRU in temporal modeling. The research
results indicated that the proposed model had excellent
model performance. Although the study has achieved
good results, there is still room for optimization in terms
of computational complexity and training time on
large-scale datasets. In the future, it will further combine
lightweight networks with adaptive feature selection
strategies to improve the computational efficiency and
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generalization ability of the model in
application scenarios.

practical
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