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Gait recognition is a key biometric technology with broad applications, yet cross-perspective variation 

severely impairs performance. This study proposes a novel gait recognition model that integrates a 

breadth-first search-guided feature propagation mechanism with gated recurrent unit-based temporal 

modeling and multi-scale spatial feature map interaction. The model enhances feature fusion across 

different layers and perspectives while selectively attending to key temporal cues through global max 

pooling. Experimental evaluations on the CASIA-B dataset demonstrate that the proposed method 

achieves an accuracy of 0.97, 0.94, and 0.91 under normal walking, carrying object, and wearing jacket 

conditions, respectively, significantly surpassing the baseline models in recognition performance. The 

method also obtains the lowest root mean square error of 0.09 and the fastest recognition time of 1.2 

seconds. Compared with conventional convolutional neural networks and recurrent neural 

network-based architectures, the proposed model shows substantial improvements in accuracy, 

robustness, and computational efficiency. The key innovation lies in the introduction of a breadth first 

search-driven feature interaction strategy and a hierarchical temporal-spatial fusion structure, which 

jointly optimize the feature representation for robust cross-view gait recognition. 

Povzetek:  Za robustno večperspektivno prepoznavo hoje je razvit model BFS-CNN-GMP-GRU-MSP, 

ki združuje iskanje v širino (BFS) za propagacijo značilk, GRU za časovno modeliranje in večmerno 

prostorsko interakcijo značilk. 

 

 

1  Introduction 
Gait recognition is a non-contact biometric 

recognition technology that utilizes human gait features 

for identity recognition. Unlike other biometric 

recognition technologies, gait recognition does not rely 

on close range collection or high-resolution data, and has 

the advantages of long-distance operability and no need 

for active cooperation [1-3]. However, gait recognition 

faces many challenges in practical applications, and the 

cross-perspective problem is one of the most critical 

difficulties. When individual gait images are collected 

from different perspectives, gait features may undergo 

significant changes due to external factors such as angle, 

lighting, and clothing, which can lead to inconsistent 

expression and extraction of gait features, thereby 

affecting recognition accuracy. With the development of 

deep learning, techniques such as Convolutional Neural 

Network (CNN) and recurrent neural network have been 

widely applied in gait recognition tasks. However, 

existing methods still have shortcomings in 

cross-perspective gait recognition. Traditional CNN 

models mainly focus on single scale spatial feature 

extraction and cannot fully express multi-scale 

information from different perspectives, resulting in 

unstable recognition performance. Although temporal 

modeling can capture temporal dependencies, it lacks a 

global attention mechanism and cannot effectively focus 

on key time points in gait sequences, resulting in 

redundant and inefficient feature extraction. The 

mechanism of feature interaction and fusion is not yet 

perfect, and efficient information integration cannot be 

achieved between shallow, middle, and deep features. 

Therefore, a cross-perspective gait recognition model 

based on Breadth First Search (BFS) algorithm and 

feature map interaction was proposed. This model 

extracts spatial features through CNN, searches for 

feature maps through BFS algorithm, and finally 

combines Gated Recurrent Unit (GRU) and Global Max 

Pooling (GMP) to capture temporal dependency 

characteristics. The innovation of the research lies in 

introducing the BFS algorithm to optimize the feature 

propagation mechanism, improve computational 

efficiency and accuracy, and aim to provide an efficient 

and robust solution for gait recognition.  

To address the limitations in current gait recognition 

models, this study is driven by two primary research 

questions: (1) Can a BFS mechanism enhance the 

efficiency and comprehensiveness of feature propagation 
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across spatial hierarchies in cross-perspective gait 

recognition? (2) How does the integration of multi-scale 

spatial feature interaction influence the effectiveness of 

temporal modeling and attention in dynamic and 

occluded environments? These questions guide the 

model design, which incorporates BFS-guided node 

traversal, multi-stage spatial feature map fusion, and 

gated recurrent units for temporal dependency capture. 

The proposed model is rigorously evaluated on the 

CASIA-B dataset under various conditions to empirically 

validate the effectiveness of each component. 

2 Related works 
Cross-perspective gait recognition is an important 

task in addressing the impact of perspective changes on 

gait features. Parashar et al. proposed a deep learning 

architecture and pipeline to utilize the complex features 

of human gait for biometric applications. The research 

results indicated that although gait recognition faced 

diversity and complexity, deep learning models could 

still effectively work on low resolution images, but were 

greatly affected by various covariates such as shoes and 

clothing [4]. Castro et al. proposed an innovative hybrid 

protection scheme to ensure the privacy and security of 

gait analysis for early detection of neurodegenerative 

diseases in human activity recognition. This scheme 

combined partially homomorphic encryption and 

revocable biometric technology based on random 

projection. The research results indicated that this 

scheme could achieve a high trade-off between security 

and performance, with an accuracy decrease of up to 

1.20, and was applicable to any type of neural network 

[5]. Baniasad et al. proposed an algorithm suitable for 

different sensor configurations, gait speeds and shoe 

types to solve the problem of complex and error prone 

connection of IMU sensors in motion and rehabilitation 

motion analysis. The research results showed that the 

algorithm could accurately identify body parts and lower 

limb sensor sides. For gait speed ranges of 0.5-2.2 m/s, 

the accuracy and precision reached 99.7% and 99.0%, 

respectively, and had broad application prospects [6]. 

Zhang et al. proposed a non-contact bendable 

sensitive sensor that uses a semi-circular optical fiber to 

monitor muscle activity to improve the detection 

accuracy of wearable robot human interaction. The 

research results showed that using this sensor combined 

with neural networks, the recognition accuracy of five 

gaits was over 99%, significantly better than traditional 

machine learning algorithms, providing a new and 

effective approach for abnormal gait recognition [7]. 

Derlatka et al. proposed a solution using heterogeneous 

base classifier ensemble to improve the accuracy and 

running speed of human gait recognition. The research 

results showed that the proposed scheme has been tested 

on a sample of 322 people, with a recognition accuracy 

of up to 99.65%. The model construction time was less 

than 12.5 minutes, and the time required to identify a 

person was less than 0.1 seconds. The performance was 

significantly better than other methods in the literature 

[8]. Yan et al. proposed a new gait recognition 

framework to address performance issues caused by 

occlusion and viewpoint changes in gait recognition, as 

well as the problem of traditional time pools ignoring 

unique time information. The research results indicated 

that the framework could effectively extract adaptive 

structured spatial representations, aggregate multi-scale 

temporal information, and improve recognition accuracy, 

especially in complex scenes, with an average accuracy 

of 93.5% on the CASIA-B dataset [9]. 

In summary, significant progress has been made in 

the field of gait recognition, from gait feature extraction, 

temporal modeling to cross-perspective adaptation. Many 

scholars have applied deep learning techniques to gait 

recognition tasks and achieved certain results. Despite 

notable advances in gait recognition, several critical 

limitations persist in existing state-of-the-art models. 

Many approaches, such as those by Parashar et al. and 

Baniasad et al., either focus on static spatial features or 

rely heavily on wearable sensors, limiting their 

adaptability in vision-only, cross-view scenarios. Models 

like that of Yan et al. employ multi-scale temporal 

aggregation but still lack explicit mechanisms to capture 

global feature interactions across different spatial levels, 

which are essential for robustness under perspective 

changes. Moreover, methods using deep learning 

pipelines often ignore temporal attention granularity, 

leading to suboptimal performance when distinguishing 

subtle gait variations across sequences. Few works have 

integrated a structured propagation mechanism to ensure 

efficient multi-level feature fusion and comprehensive 

node traversal. These gaps highlight the necessity for a 

model that explicitly addresses both spatial hierarchy and 

temporal dynamics, motivating the design of BFS-guided, 

GRU-enhanced gait recognition framework. To provide a 

clear comparison between the proposed method and 

other state-of-the-art approaches, Table 1 summarizes 

key aspects of recent representative studies, including 

their methods, research content, datasets used, and 

performance indicators. 

 

Table 1: Performance comparison between the SOTA method and the model in this paper

Research Method Research content 
Dataset 

used 

Key performance 

indicators 
Reference 

Parashar et 

al. (2023) 

Deep learning 

pipeline for gait 

biometrics 

Addressing covariates 

like clothing and shoes 

in gait recognition 

Custom gait 

dataset 

Effective under low 

resolution, but 

performance drops under 

covariates 

[4] 

Castro et 

al. (2024) 

Hybrid protection 

with homomorphic 

Gait analysis for early 

dementia recognition 

Gait dataset 

(private) 

Accuracy loss up to 1.20, 

emphasizes 
[5] 
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encryption with 

privacy-preserving 

techniques 

security-performance 

tradeoff 

Baniasad 

et al. 

(2023) 

IMU-based 

segment 

recognition 

algorithm 

Recognition of body 

segment and limb side 

in gait using inertial 

sensors 

IMU sensor 

dataset 

Accuracy 99.7%, 

Precision 99.0% in 

0.5–2.2 m/s gait range 

[6] 

Zhang et 

al. (2023) 

Optical fiber sensor 

+ neural networks 

Abnormal gait 

recognition through 

muscle activation 

detection 

5-class gait 

dataset 

Recognition accuracy 

over 99%, better than 

conventional ML 

methods 

[7] 

Derlatka et 

al. (2023) 

Heterogeneous 

classifier ensemble 

Human gait 

recognition using 

classifier fusion 

Sample size 

322 

Accuracy 99.65%, 

identification time < 0.1s 
[8] 

Yan et al. 

(2024) 

Adaptive 

spatial-temporal 

aggregation 

network 

Occlusion- and 

viewpoint-robust gait 

recognition 

CASIA-B Average accuracy 93.5% [9] 

3 Methods 
The first section proposes a cross-perspective gait 

recognition model based on feature map interaction for 

cross-perspective gait recognition. At the same time, BFS 

algorithm is introduced to improve the problem of large 

parameter quantity. 

 

2.1 Cross-perspective gait recognition model 

based on feature map interaction 
In practical applications, people's gait characteristics 

may undergo significant changes due to factors such as  

 

 

shooting angle, perspective changes, lighting conditions, 

etc. Therefore, a cross-perspective gait recognition model 

based on feature map interaction is proposed in this study. 

To enhance the stability and convergence of the training 

process, min-max normalization is applied to all gait 

silhouette pixel values, scaling them to the range [0, 1]. 

This choice is motivated by its simplicity and 

effectiveness in preserving the structural consistency of 

grayscale images used in silhouette-based gait 

recognition. The structure of the model is shown in 

Figure 1. 
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Figure 1: Cross-perspective gait recognition model based on feature map interaction 

 

As shown in Figure 1, multiple experimental 

devices collect different gait sequences, which are 

processed by the Temporal Spatial Multi-Feature 

Extraction (TASMF) module to generate cross device 

gait features. Gait sequences are captured using multiple 

fixed-angle video cameras positioned at different 

horizontal viewpoints (ranging from 0° to 180° with 18° 

intervals), simulating cross-view observation conditions.  

Each camera corresponds to a specific viewpoint and 

records RGB gait videos of each subject under three 

walking conditions: normal, carrying a bag, and wearing 

a coat. These RGB sequences are later converted into 

binary silhouette images through background subtraction 

preprocessing, which serve as the actual input to the 

proposed model. These features are then extracted using 

the Multi-Scale Spatial (MSP) module. The MSP module 

utilizes multiple CNNs to process gait images of 

different scales, enhancing the ability to express 

cross-perspective features by fusing multi-scale 

information [10]. These features then enter the temporal 

attention module, which combines GRU with GMP 

operations to capture temporal dependencies in gait 

sequences and focus on important time points, generating 

weighted temporal feature representations. Finally, the 
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features are used for classification through a Fully 

Connected layer (FC). After aggregation, these features 

enter the classifier to complete the recognition task and 

output the final gait classification result. By using a 

TASMF fusion structure that does not share parameters, 

shallow, middle, and deep information is extracted 

separately. The output features of each stage are 

segmented, and the gait sequence is cut into multiple 

segments. The maximum pooling operation is performed 

to obtain the feature map, which is expressed as equation 

(1). 

( )=out s slicex Maxpooling f (1) 

In equation (1), 
slicef  represents the sequence and 

( )sMaxpooling  represents the max pooling operation. 

The TASMF module is responsible for the initial 

preprocessing and structuring of gait sequence data 

before it is passed to the CNN-based multi-scale spatial 

feature extractors. Specifically, TASMF receives binary 

silhouette sequences and performs three operations: (1) 

Temporal segmentation – each gait sequence is divided 

into multiple fixed-length temporal slices to preserve 

motion continuity and reduce noise from long sequences. 

(2) Frame normalization – silhouette frames are aligned 

and resized to a uniform spatial resolution, ensuring 

consistent scale across viewpoints and walking styles. (3) 

Feature stacking-segmented frame sets are converted into 

structured tensors, where temporal and spatial 

information is jointly encoded, allowing downstream 

CNN modules to extract joint spatial-temporal patterns. 

This preprocessing enables the model to retain localized 

motion details while also providing a consistent input 

format for subsequent convolutional processing in the 

MSP modules. The temporal attention module is 

constructed using GRU as the basic algorithm, and its 

structure is shown in Figure 2. 

In Figure 2, this module models the temporal 

dependencies in a gait sequence and emphasizes key time 

steps. "Conv8" denotes an 8-channel convolutional layer 

applied to extract preliminary spatial features. 

"Segmentation" divides the temporal dimension of the 

input into fixed-length slices. "GMP" stands for Global 

Max Pooling, used to compress spatial dimensions and 

highlight dominant features. "Max Pooling" reduces 

temporal resolution and noise by selecting maximum 

values across segmented frames. "GRU" refers to a 

bidirectional Gated Recurrent Unit layer that captures 

long-range temporal dependencies. "Norm" indicates 

batch normalization, which stabilizes training and 

improves convergence. The final output is a 

temporally-weighted feature vector passed to the 

classification stage. The symbol 's' represents the number 

of temporal segments after slicing the input gait sequence. 

The original input is a sequence of binary silhouette 

frames with spatial dimensions height (h), width (w), and 

channel (c). After applying the Conv8 convolutional 

layer, the sequence is temporally segmented into 's' slices, 

each containing a fixed number of consecutive frames. 

These segments form a 4D tensor of shape (s, c, h, w), 

where each slice retains the original spatial resolution but 

is treated as an independent temporal unit for attention 

modeling. Firstly, the input feature map undergoes 

Conv8 convolution operation to extract preliminary 

spatial features and form a feature map with a size of s × 

c × h × w. Subsequently, through GMP operation, the 

input feature map is globally pooled in spatial dimension 

to obtain a feature matrix with a size of s × c. Next, the 

features are segmented and the sequence is divided into T 

time steps, outputting a feature representation in the s/T 

× c dimension. Further max pooling is performed to 

compress the time dimension and obtain a more 

concentrated temporal feature representation. Next, these 

features are input into the GRU, which captures the 

temporal dependencies of gait features through a 

bidirectional GRU structure, while enhancing attention 

weight allocation for critical time steps [11-12]. The 

output temporal features are batch normalized to improve 

the stability and training efficiency of the model. Finally, 

the temporal features are mapped to classification scores. 

The MSP module is designed to enhance the spatial 

feature representation by capturing gait features at 

different resolutions. Specifically, each input silhouette 

sequence is resized into three spatial scales: a shallow 

resolution (e.g., 64×64), a middle resolution (e.g., 

96×96), and a deep/full resolution (e.g., 128×128). These 

versions preserve different levels of detail: shallow 

inputs capture global body posture, while deeper inputs 

retain fine-grained motion and contour information. Each 

scaled input is independently processed through a 

dedicated CNN branch, forming a parallel architecture. 

These branches are composed of convolutional layers 

with identical configurations but operate on different 

input resolutions. After processing, each CNN outputs a 

spatial feature map that is temporally aligned. The 

outputs are then passed to the feature fusion pipeline, 

where pooling, reshaping, and concatenation are applied 

to integrate the three scales into a unified global 

representation. This parallel multi-resolution strategy 

ensures the model can extract both coarse and fine spatial 

details, improving robustness under viewpoint variation 

and body occlusion. The expression for maximum value 

pooling for each time period is shown in equation (2). 

( )=T s slicex Maxpooling x ( )=T s slicex Maxpooling x (2) 

In equation (2), 
Tx  represents the feature after max 

pooling, and the expression for temporal attention score 

is shown in equation (3). 

( )=score slicex GRU x (3) 

In equation (3), 
scorex  represents the temporal 

attention score. The MSP structure is shown in Figure 3. 
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Figure 3: Multi-scale pyramid feature fusion structure 

 

As illustrated in Figure 3, the proposed MSP fusion 

module receives three independent inputs corresponding 

to shallow, middle, and deep spatial features extracted 

from different CNN branches. Each input branch 

undergoes the following processing steps: Frame Max: 

applies temporal max pooling across each frame 

sequence to extract the most salient feature from each 

frame. Multi-scale feature fusion: applies dilated 

convolutions with varying receptive fields to capture 

local and global context at different scales. Reshape: 

reshapes the output into a flattened form suitable for 

fully connected layers. Pooling: performs dimensionality 

reduction to retain only key information. FC: applies a 

fully connected layer to generate a compact feature 

vector for each scale. These three vectors-representing 

shallows, middle, and deep scale features-are then passed 

to the Montage node. The Montage operation refers to 

the concatenation of the three feature vectors into a 

single comprehensive feature vector. This operation 

enables the integration of low-level (texture/edge), 

mid-level (shape/pose), and high-level (semantic/global) 

spatial features. The resulting unified representation is 

then fed to the final classification stage. The structure of 

the multi-scale pyramid feature fusion module mainly 

processes spatiotemporal features of shallow, middle, and 

deep layers, achieving effective fusion of multi-level 

features [13-14]. The FrameMax operation is designed to 

extract the most salient spatial representation across 

temporal frames within a given feature stream. For each 

of the three scale branches (shallow, middle, deep), the 

input to FrameMax is a 4D tensor of shape (T, C, H, W), 

where T is the number of frames in the sequence, and C, 

H, W denote channel, height, and width respectively. 

FrameMax applies a temporal max pooling operation 

along the T dimension at each spatial location, resulting 

in a 3D tensor of shape (C, H, W). This operation 

captures the strongest activation at each spatial position 

across the entire sequence, effectively summarizing 

motion dynamics over time. Firstly, the three sets of 

features are maximally pooled in the temporal dimension 

through FrameMax operation, extracting important 

information from each frame to obtain a temporal feature 

map, which is expressed as equation (4). 

FrameMax( )= out scorex x x (4) 

In equation (4), FrameMax( )  represents max 

pooling multiple feature maps. Through the multi-scale 

spatial feature fusion module, different scales of feature 

information are processed separately. Subsequently, 

through the Reshape operation, the feature map is 

reshaped into a shape suitable for subsequent network 

inputs, forming feature representations in k1, k2, and k3 

dimensions. The next pooling operation performs spatial 

dimensionality reduction on the reshaped feature map, 

further compressing redundant information and 

extracting key features. After dimensionality reduction, 

the features are input into FCs, and the shallow, middle, 

and deep features are further mapped into new feature 

vectors [15]. Finally, the three sets of feature vectors are 

fused at multiple scales through concatenation, resulting 

in a global feature representation with dimensions c × 

(k1+k2+k3). For the basic features extracted through 

multi-stage feature extraction modules, different dilated 

convolutions are used to obtain receptive fields. The 

structure of the multi-scale spatial feature fusion module 

is shown in Figure 4. 
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Figure 4: Multi-scale spatial feature fusion module structure 

 

In Figure 4, this structure extracts and fuses spatial 

features through convolution operations at different 

scales, enhancing the overall feature representation 

ability. The channels, heights, and widths of the input 

feature map are convolved using three different 

convolution kernels. Each convolution kernel is 

responsible for capturing spatial information at different 

scales, focusing on detail features, local features, and 

global features [16]. Next, the three convolution results 

are used for feature fusion, which is achieved by adding 

or concatenating elements one by one to 

comprehensively express spatial features of different 

scales. The fused feature map is further processed 

through an additional unified convolution operation, and 

the final output feature map maintains the same 

dimension as the input feature map. 

 

2.2 Cross-perspective gait recognition model 

combining BFS algorithm and feature map 

interaction 
Although the proposed cross-perspective gait 

recognition model based on feature map interaction can 

solve some cross-perspective gait recognition problems, 

it has a large number of parameters and a long training 

time. Therefore, the study introduces BFS to improve it. 

The BFS algorithm traverses the nodes in the feature 

map in a layer-by-layer fashion, where each layer 

corresponds to the set of nodes that are reachable from 

the starting node in the same number of steps. This 

traversal mechanism ensures that nodes are visited in 

increasing topological distance, meaning that the 

shortest unweighted path to each reachable node is 

discovered naturally as a property of the traversal 

order. This structure supports comprehensive spatial 

propagation and enables effective feature interaction 

across receptive fields [17]. Compared with other 

feature propagation strategies such as Depth-First Search 

(DFS) or random traversal, the proposed use of BFS 

ensures a layer-wise, hierarchical traversal of feature 

map nodes, which aligns with the convolutional layer 

depth structure in CNNs. BFS allows the model to 

gradually aggregate spatial information from local to 

global across all receptive fields, thus supporting 

structured and scalable multi-scale feature fusion. DFS, 

in contrast, is more suited for exhaustive, 

non-hierarchical exploration and lacks the regularity 

needed for structured node updating in convolutional 

feature maps. BFS provides a balance between 

computational efficiency and structural completeness. It 

updates each feature node based on its neighborhood in a 

breadth-prioritized manner, ensuring that spatial 

dependencies are fully captured with controlled 

computational overhead. This makes BFS especially 

suitable for tasks requiring global feature consistency, 

such as gait recognition under varying viewpoints. The 

principle is shown in Figure 5. 

To conceptually illustrate the behavior of the BFS 

algorithm, Figure 5 demonstrates a simplified traversal 

process on a feature node map. The traversal begins at 

node A, which first visits its immediate neighbors B and 

C. In the next iteration, nodes B and C each visit their 

respective neighbors E and F. The corresponding binary 

matrix reflects which nodes have been marked as 

"visited" at each stage. This visualization highlights the 

layer-wise node expansion property of BFS, where nodes 

are explored in increasing order of their minimal 

topological distance from the root node. It is worth 

noting that some nodes such as D are included in the 

structure but not traversed in this simplified 

demonstration, and thus are intentionally excluded from 

the visitation matrix. Starting with node A, it is gradually 

extended to neighbouring nodes at different levels by 

three traversals. In the first image, node A is visited and 

located at the starting layer of the search. At this time, 

the leading edge set only contains A, and the 

corresponding encoding for f is 1, indicating that A has 

been visited, while other nodes are 0. In the second 

figure, B and C are visited as neighboring nodes of A, 

entering the next layer's frontier set. f is updated to 

011000, indicating that nodes B and C are marked as 

visited. In the third figure, nodes E and F are extended as 

neighboring nodes of nodes B and C into a new layer of 

frontier set, with f updated to 010111, indicating that E 

and F are also accessed, and the frontier set is extended 

to more nodes. In the process of multi-scale feature map 

interaction, node expansion is carried out in a breadth 

first manner, gradually fusing feature information from 

different perspectives from shallow to deep layers, 

ensuring that feature extraction has global and 

hierarchical characteristics [18]. BFS searches layer by 
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layer on the feature map and updates the status of nodes 

in order of distance priority. In the initial state, all nodes 

are set to an unvisited state, and the starting node joins 

the queue while being marked as visited. Its expression is 

shown in equation (5). 

0

0

{ }

visited[ ] 1

=


=

Q v

v
(5) 

In equation (5), Q  represents the queue, and 

visited  represents whether the node has been accessed. 

BFS retrieves a node from the head of queue Q  each 

time, accesses all neighboring nodes of that node, and 

updates the rules accordingly. In the BFS traversal 

mechanism, the study initializes a queue Q to manage 

the order of node expansion. Q = {v} indicates that the 

traversal begins from the starting node v, which 

corresponds to the initial active feature node on the 

feature map. The queue structure ensures that nodes are 

explored in a first-in, first-out manner, consistent with 

the breadth-first expansion strategy. To prevent revisiting 

the same node, the study maintains a binary visited array 

where visited[i] = 1 signifies that node i has already been 

processed. Therefore, visited[v] = 1 sets the visitation 

flag of the starting node immediately upon enqueueing. 

This prevents redundant enqueue operations during 

subsequent neighbor expansion stages. The rule 

expression is shown in equation (6). 

ifvisited[ ] 0 .enqueue( ), visited[ ] 1=  =u Q u u (6) 

Equation (6) represents adding node u  to queue 

Q  and marking node u  as visited if it has not been 

accessed. If it is necessary to calculate the shortest path 

from the starting node to any node, the update formula is 

shown in equation (7). 

[ ] [ ] 1= +d u d v (7) 

In equation (7), [ ]d u  represents the shortest path 

distance from node u  to the starting node, and [ ]d v  

represents the distance from the current node v  to the 

starting node. When queue Q  is empty, BFS ends and 

all reachable nodes are accessed. The structure of the 

cross-perspective gait recognition model combining BFS 

algorithm and feature map interaction is shown in Figure 

6. 
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Figure 5: BFS schematic diagram 
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Figure 6: The BFS-CNN-GMP-GRU-MSP model structure 

 

In Figure 6, firstly, the gait video sequence or image 

is input into the model and preprocessed to generate 

multi-scale feature maps, including shallow, middle, and 

deep features. Next, spatial features are extracted using 

convolution kernels of different scales to form an initial 

multi-level feature representation. Subsequently, the BFS 

algorithm is used to search and interact nodes on the 

feature map, traversing the nodes layer by layer in 

breadth first order. Through the propagation and 

accumulation of information from neighboring nodes, the 

feature representation is gradually updated to ensure 

global coverage and feature integrity of spatial 
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information. The queue definition update rule is shown in 

equation (8). 
1

, , ,
( , ) ( , )

+



= +  t t t

i j i j m n
m n N i j

f f W f (8) 

In equation (8), 1

,

+t

i jf  represents the feature values 

of the updated node in the 1+t th layer search, 
,

t

i jf  

represents the initial feature values of the t th layer node, 

( , )N i j  represents the set of neighboring nodes of node 

( , )i j , and W  represents the weight matrix used to 

control the importance of feature propagation. For 

feature maps at different levels, multi-scale spatial 

feature fusion is performed separately, using pooling 

operations to reduce feature dimensions while preserving 

key information. Next, features of different scales are 

fused through concatenation operations to form a unified 

global feature representation. Its expression is shown in 

equation (9). 

fused Concat( ( ), ( ), ( ))= a b cF P F P F P F (9) 

In equation (9), ( )P  represents pooling operation, 

used to compress the dimensionality of feature maps, and 

Concat  represents feature concatenation operation, 

which combines features of different scales into global 

features. Finally, the fused global features are input into 

the FC, and the recognition results are output by the 

classifier, while the cross-entropy loss function is used to 

optimize the model.  

In summary, Figure 6 illustrates the overall 

workflow of the proposed gait recognition model that 

integrates BFS, convolutional feature extraction, 

temporal modeling, and multi-scale feature fusion. The 

process begins with input gait images or sequences, 

which are fed into three parallel CNN branches to extract 

shallow, middle, and deep spatial features. These features 

are then processed through segmentation and GMP to 

reduce spatial dimensions while preserving key 

information. Next, the BFS mechanism is applied across 

feature map nodes to propagate information layer by 

layer, ensuring global spatial interaction and continuity 

across different scales. The GRU module is used to 

model temporal dependencies across gait frames, while 

GMP highlights key frames that contribute most to 

classification. Finally, the multi-stage features are fused 

in the Multi-Scale Pyramid module and passed through a 

fully connected layer for final gait classification. This 

architecture allows the model to combine spatial, 

temporal, and hierarchical cues effectively, resulting in 

high performance under varied viewing conditions. The 

BFS pseudocode is shown in Figure 7. 

Input: Feature map nodes F = {f_ij}, Adjacency matrix A

Output: Updated feature representations F'

1: Initialize queue Q     

2: Initialize visited[ij]   False for all nodes (i, j)

3: For each starting node (i, j):

4:     Q.enqueue((i, j))

5:     visited[ij]   True

6:     while Q is not empty:

7:         (i, j)   Q.dequeue()

8:         for each neighbor (m, n) of (i, j) in A:

9:             if not visited[mn]:

10:                 F[mn]   F[mn] + W × F[ij]

11:                 Q.enqueue((m, n))

12:                 visited[mn]   True

13: Return F'

Breadth-First Search Based Feature Propagation on Feature Maps

Figure 7: BFS pseudocode 

4 Results 
The first sub-section analyzes the performance of a 

cross-perspective gait recognition model that combines 

BFS algorithm and feature map interaction. The second 

sub-section applies it to practical applications and tests 

its performance. 

 

3.1 Performance analysis of 

cross-perspective gait recognition model 

combining BFS algorithm and feature map 

interaction 
In this section, the study evaluated the performance 

of our proposed and baseline models using the following 

metrics: Accuracy (ACC): The ratio of correctly 

classified gait sequences to the total number of test 

samples. F1 score (F1): The harmonic mean of precision 

and recall, used to assess classification balance. Error 

Rate: Defined as 1 minus the classification accuracy, 

indicating the proportion of misclassified samples. Root 

Mean Square Error (RMSE): Used to measure the 

deviation between predicted gait contour positions and 

ground-truth. Mean Square Error (MSE): Represents the 

average squared error between predicted and actual 

silhouette values, primarily applied to regression-based 

silhouette reconstruction results in Table 3. These metrics 

provide both classification-level and reconstruction-level 

insights into model performance. Particularly, MSE and 

RMSE quantify spatial consistency of silhouette 

generation, while F1 and ACC reflect recognition 

precision. 

 

 

 

 

 

 

 

 

 



A Cross-Perspective Gait Recognition Framework Integrating… Informatica 49 (2025) 275–288 283 

The experimental hardware configuration used Intel 

Core i5-8750H CPU, NVIDIA Geforce GTX2080Ti 

GPU, 8GB VRAM, and 16GB RAM. All experiments in 

this study were conducted using the CASIA-B gait 

dataset, a widely used public benchmark for gait 

recognition research. The dataset was developed by the 

Institute of Automation, Chinese Academy of Sciences, 

and contains gait sequences from 124 subjects recorded 

under 11 different view angles ranging from 0° to 180° at 

18° intervals. Each subject was recorded under three 

walking conditions: normal walking, walking while 

carrying a bag, and walking while wearing a coat. The 

dataset provides both RGB video and silhouette binary 

images. In this study, the silhouette sequences were used 

after background subtraction, as they are less sensitive to 

clothing and lighting variations. To ensure optimal model 

performance, several core components underwent 

empirical tuning using validation ACC as the objective. 

For CNN layers, a kernel size of 3×3 with ReLU 

activation was selected to balance locality and 

non-linearity. All convolution blocks were followed by 

Batch Normalization and MaxPooling layers with stride 

2 to reduce spatial dimensions and control overfitting. 

For the GRU module, the number of hidden units was set 

to 128 after grid search testing over {64, 128, 256}. A 

bidirectional GRU was used to better capture temporal 

dependencies across gait sequences. In pooling 

operations, GMP was chosen over average pooling based 

on its stronger ability to highlight key discriminative 

frames in gait sequences. Dropout layers (rate = 0.5) 

were inserted after dense layers to improve 

generalization. 

The study selected CNN-GRU-MSP and 

CNN-GMP-MSP as comparative models, named Model 

1 and Model 2, and named the proposed model Model 3. 

The performance of each model was analyzed, and the 

results are shown in Figure 8. 
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Figure 8: Comparison of ACC and RMSE among three gait recognition models on CASIA-B dataset 
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Figure 9: Recognition time and error rate of three models under different viewpoint directions 

 

Figure 8 (a) shows the comparison of ACC between 

different models during the iteration process, and Figure 

8 (b) shows the comparison of root mean square error 

(RMSE) between different models. From Figure 8 (a), 

Model 3 performed the best, with ACC quickly reaching 

a stable value of 0.97 after about 20 iterations, with the 

fastest convergence speed and highest ACC. Model 2 

followed closely and stabilized at 0.87 after about 50 

iterations, with higher ACC but slower convergence 

speed than Model 3. Model 1 performed the worst, 

converging after 100 iterations, with a final ACC of only 

0.76. In Figure 8 (b), Model 3 had the lowest RMSE, 
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which rapidly decreased and stabilized at 0.09 after about 

50 iterations, indicating that it had the smallest error and 

the strongest generalization ability. The RMSE of Model 

2 was 0.16, with a slightly slower stabilization time but 

still better than Model 1. The RMSE of Model 1 

converged slowly, with a final error of 0.26 and the 

maximum error. The experimental results showed that 

the proposed Model 3 had high ACC and low error in 

cross prospective gait recognition, exhibiting the best 

performance and robustness. The gait data were selected 

in different directions and the data were collected from 1 

different viewpoint with an angle range of 0° to 180° and 

an interval of 18°, and the results are shown in Figure 9. 

Figure 9 (a) shows a comparison of the recognition 

time of three models for different directions, and Figure 

9 (b) shows a comparison of the recognition errors of 

three models for different directions. According to Figure 

9 (a), Model 1 had the longest duration, with some 

directions such as Direction 1 and Direction 7 taking 

nearly 3 seconds. The recognition time of Model 2 was 

shortened, with most directions ranging from 1.5 to 2.5 

seconds. Model 3 performed the best with the shortest 

time, with most directions taking less than 1.5 seconds, 

especially in directions 4 and 10 where the time was 

close to 1 second. From Figure 9 (b), Model 1 had the 

highest error rate, especially in direction 7 where the 

error rate was close to 0.05, indicating that Model 1 had 

weak adaptability to complex direction or perspective 

changes. The error rate of Model 2 was reduced, with 

most directions remaining between 0.02 and 0.03, 

indicating that the GMP module enhanced its ability to 

screen features, but its adaptability to complex directions 

was still limited. The error rate of Model 3 was the 

lowest, with an overall error rate below 0.02, and the 

error rates of Direction 3 and Direction 9 were close to 

0.01. The experimental results showed that the proposed 

Model 3 had excellent model performance. Using 

ablation experiments, the performance of each part of the 

model was analyzed, and the results are shown in Table 

2. 

 

Table 2: Ablation test table 

Model ACC RMSE Recognition time/s Error rate 

BFS-CNN-GMP-GRU-MSP 0.97 0.09 1.2 0.012 

BFS-CNN-GMP-GRU 0.91 0.13 1.8 0.018 

BFS-CNN-GRU-MSP 0.85 0.21 1.5 0.025 

BFS-CNN-GMP-MSP 0.88 0.17 1.7 0.02 

CNN-GMP-GRU-MSP 0.83 0.24 2.0 0.032 

Model F1 Recall Precision / 

BFS-CNN-GMP-GRU-MSP 0.96 0.95 0.97 / 

BFS-CNN-GMP-GRU 0.89 0.88 0.90 / 

BFS-CNN-GRU-MSP 0.82 0.81 0.83 / 

BFS-CNN-GMP-MSP 0.86 0.84 0.87 / 

CNN-GMP-GRU-MSP 0.80 0.79 0.82 / 

 

According to Table 2, BFS-CNN-GMP-GRU-MSP 

performed the best, with ACC reaching 0.97, RMSE 

being the lowest at 0.09, recognition time only 1.2 

seconds, error rate being the lowest at 0.012, F1 score, 

recall rate, and ACC rate being 0.96, 0.95, and 0.97, 

respectively. This indicated that the BFS algorithm 

combined with multiple modules could efficiently extract 

cross-perspective gait features, and the model had high 

ACC and excellent computational efficiency. After 

removing BFS, the model BFS-CNN-GMP-GRU showed 

a decrease in ACC to 0.91, an increase in RMSE to 0.13, 

an increase in recognition time to 1.8 seconds, and an 

increase in error rate to 0.018, demonstrating the 

importance of BFS algorithm in accelerating feature 

propagation and optimizing ACC. The performance of 

the BFS-CNN-GRU-MSP model after removing GMP 

decreased significantly, with ACC at 0.85, RMSE 

increasing to 0.21, and error rate increasing to 0.025, 

indicating that the GMP module played a key role in 

feature screening and noise reduction. After removing the 

GRU from the BFS-CNN-GMP-MSP model, the ACC 

decreased to 0.88 and the RMSE was 0.17, indicating 

that GRU had a significant effect on time series feature  

 

modeling. While the ablation results in Table 2 

demonstrate noticeable drops in performance when 

individual modules are removed (e.g., GMP, GRU, or 

BFS), The study acknowledge that these tests evaluate 

components in isolation and do not capture potential 

interaction effects between modules. To more rigorously 

assess these relationships, a full-factorial ablation 

analysis would be necessary. However, given space 

constraints, we focused on evaluating the marginal 

contribution of each module. In future work, we plan to 

investigate combinatorial ablations (e.g., removing both 

GRU and GMP) to better understand interdependencies 

and possible synergy among architectural components. 

To verify the statistical significance of the observed 

performance differences, pairwise two-tailed t-tests were 

conducted between the proposed model and the baselines 

(CNN-GRU-MSP and CNN-GMP-MSP). The results 

indicated that the improvements in ACC (p < 0.01) and 

F1 score (p < 0.01) were statistically significant across 

all tested conditions. 
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3.2 Simulation result analysis 
The study selected CNN-GRU-MSP and 

CNN-GMP-MSP as comparative models, named Model 

1 and Model 2, and named the proposed model Model 3.  

To further validate the performance of the model, 

simulation analysis was used to analyze the images in 

actual situations, and the results are shown in Figure 10. 
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Figure 10: F1 and ACC comparison of three models under varying training data volumes 

 

Figure 10 (a) shows the F1 scores of the three 

models under different data volumes, and Figure 10 (b) 

shows the ACC of the three models under different data 

volumes. As shown in Figure 10, both ACC and F1 

generally increased for Model 1 and Model 3 as training 

data volume grows, demonstrating improved 

generalization ability. However, Model 2 exhibited a 

decline in F1 after a certain data threshold, despite its 

ACC still increasing slightly. This behavior suggested 

that Model 2 may become overfitted to dominant class 

patterns in the expanded dataset, leading to degraded 

recall and thus lower F1. This implies that without BFS 

or GRU integration, the model lacks sufficient temporal 

representation or inter-feature interaction to maintain 

balanced classification under more diverse gait inputs. In 

contrast, Model 3 maintained consistent or even slightly 

improved F1 performance across scales, validating the 

contribution of BFS-driven feature propagation and 

GRU-based temporal modeling in resisting overfitting 

and improving classification robustness. The 

experimental results showed that the proposed model 

performed the best in both F1 score and ACC, with better 

generalization and data utilization ability. The 

recognition performance of each model was analyzed, 

and the results are shown in Figure 11. 

Figure 11 (a) shows the original image, while 

Figures 11 (b), 11 (c), and 11 (d) respectively 

demonstrate the recognition performance of Model 1, 

Model 2, and Model 3. From Figure 11, the original gait 

image contained the contours of pedestrians walking. 

Although Model 1 could locate the contours of 

pedestrians, there were obvious local truncation 

phenomena, such as missing information in the legs and 

head. Model 2 showed some improvement in the 

localization process, but there were still issues with false 

positives and feature truncation, such as incomplete 

extraction of the leg region and inaccurate alignment of 

some red boxes with the contour edges. The 

comprehensive performance of each model was analyzed, 

and the results are shown in Table 3. 

(a) Original image

(c) Model 2 (d) Model 3

(b) Model 1

 

Figure 11: Visualization of gait contour recognition outputs for the three models 
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Table 3: Comprehensive performance analysis of the model 

Type Model ACC F1 RMSE MSE Time/s 

Normal 

Model 1 0.84 0.82 0.22 0.048 2.0 

Model 2 0.92 0.89 0.12 0.014 1.6 

Model 3 0.97 0.96 0.09 0.008 1.2 

Carrying a 

bag 

Model 1 0.79 0.76 0.25 0.063 2.1 

Model 2 0.88 0.85 0.14 0.02 1.7 

Model 3 0.94 0.92 0.11 0.012 1.4 

Clothing 

Model 1 0.76 0.74 0.28 0.078 2.3 

Model 2 0.86 0.82 0.16 0.025 1.8 

Model 3 0.91 0.89 0.14 0.02 1.5 

 

According to Table 3, under normal gait, Model 3 had an 

ACC of 0.97, an F1 score of 0.96, the lowest RMSE of 

0.09, and the shortest recognition time of 1.2 seconds. 

Model 2 had an ACC of 0.92, while Model 1 had an ACC 

of only 0.84, an RMSE of up to 0.22, and a recognition 

time of 2.0 seconds. In the state of carrying objects, 

Model 3 had a stable ACC of 0.94 and RMSE of 0.11, 

while Model 2 and Model 1 had ACC of 0.88 and 0.79, 

respectively.  

4  Discussion 

The experimental results and comparative analysis 

in Related Works clearly demonstrated that the proposed 

BFS-CNN-GMP-GRU-MSP model outperformed 

existing gait recognition methods in multiple evaluation 

metrics. Compared to models like that of Yan et al., the 

proposed model achieved 93.5% ACC on the CASIA-B 

dataset, The study model achieves up to 97.0% accuracy 

under normal conditions and maintains robust 

performance (94.0% and 91.0%) under challenging 

conditions such as carrying objects or wearing clothing. 

This performance gain is primarily attributed to two core 

innovations: the BFS-driven global feature propagation 

and the multi-scale feature map interaction. The BFS 

algorithm ensures exhaustive traversal of feature nodes 

across all spatial scales, allowing the model to capture 

hierarchical and contextual spatial patterns that static 

CNN layers or short-range skip connections might miss. 

This contributes to the model’s superior generalization 

across viewpoints. Meanwhile, the multi-stage feature 

map interaction enables the fusion of shallow, middle, 

and deep spatial features, preserving both local detail and 

global structure. Combined with GRU-enhanced 

temporal modeling, the model can dynamically allocate 

attention to key gait frames, thereby reducing temporal 

noise and enhancing feature stability. However, these 

performance benefits come at a computational cost. The 

inclusion of multi-branch CNN modules, GRU layers, 

and BFS-based traversal increases both model 

complexity and training time. For instance, compared to 

baseline CNN-GRU-MSP models, the designed model 

takes approximately 30%–40% longer to train and 

requires more GPU memory during inference. While this 

trade-off is acceptable in offline or controlled 

environments, it may limit the model’s deployment in 

resource-constrained scenarios such as edge devices or  

 

mobile platforms. To mitigate these inefficiencies, future 

work could explore lightweight alternatives. These 

include pruning and quantization strategies for CNNs, 

replacing GRUs with more efficient attention-only 

mechanisms, or using graph convolutional 

approximations to emulate BFS behavior without full 

traversal overhead. Moreover, a dynamic 

perspective-adaptive module could be integrated to 

adjust feature processing based on input complexity, 

further improving computation-to-accuracy ratios. 

In summary, the proposed method demonstrates 

superior robustness and accuracy in cross-view gait 

recognition, driven by its spatial-temporal fusion strategy. 

While computational costs are a concern, they are 

justified by the substantial gains in recognition 

performance. Nonetheless, ongoing optimization of 

model efficiency remains an important future direction. 

5  Conclusion 

A gait recognition model combining BFS algorithm 

and multi-scale feature map interaction was proposed to 

address the issues of viewpoint changes and 

computational efficiency in cross-perspective gait 

recognition. The model extracted multi-scale spatial 

features of shallow, middle, and deep layers through 

CNN. The BFS algorithm searched for nodes in the 

feature map layer by layer to ensure the propagation and 

fusion of global information. In the ablation experiment, 

after removing the BFS algorithm, the ACC of the model 

decreased to 0.91, the RMSE increased to 0.13, and the 

recognition time increased to 1.8 seconds, indicating the 

critical role of BFS in global feature map search and 

information propagation. After removing the GMP 

module, the RMSE further increased to 0.21, indicating 

that GMP effectively strengthened the feature weights at 

key time points. When removing GRU, the 

time-dependent characteristics of the model were 

suppressed, and the RMSE reached 0.17, highlighting the 

importance of GRU in temporal modeling. The research 

results indicated that the proposed model had excellent 

model performance. Although the study has achieved 

good results, there is still room for optimization in terms 

of computational complexity and training time on 

large-scale datasets. In the future, it will further combine 

lightweight networks with adaptive feature selection 

strategies to improve the computational efficiency and 
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generalization ability of the model in practical 

application scenarios. 
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