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In order to achieve effective perception of the power grid situation and accurate warning of operational 

faults, this study proposes a situation perception and fault warning method for smart grids based on deep 

learning technology. Firstly, using the digital twin smart grid platform as a carrier, build a smart grid 

digital twin situational awareness framework; Secondly, considering both dynamic and static security, 

intelligent grid situation evaluation indicators are selected; Then, comprehensively analyze the data of 

various indicators, evaluate the security situation of the power grid, and calculate the security situation 

assessment value of the power grid; Finally, a smart grid situational awareness model is built based on 

long short-term memory networks to achieve smart grid situational awareness and fault warning. A 

provincial-level smart grid big data information platform conducted experiments as the data source. After 

dividing the training and testing samples, 1000 iterations of learning were carried out to complete 

situational awareness and fault warning. The experiment was conducted to verify the accuracy, recall, F1 

score, fault warning accuracy, fault command response time, and resource consumption of safety situation 

prediction results and actual values, as well as safety situation discrimination results. The experimental 

results show that the accuracy of this method for identifying the safety situation of smart grid operation 

is 98.72%, the recall rate is 98.95%, and the F1 score is 99.06%. This indicates that the comprehensive 

application performance of this method is good, and it can accurately and effectively perceive, predict, 

and analyze the safety situation of smart grid operation. At the same time, the maximum fault warning 

accuracy of this method is 99.82%, the minimum fault command response time is 0.083 s, and the minimum 

resource consumption is 118.57 MB, indicating that this method has a good power grid fault warning 

effect, which can accurately distinguish between normal operating conditions and critical states before 

faults and provide real-time and effective warnings. 

Povzetek: Raziskava predstavi metodo za zaznavanje situacijskega zavedanja in napovedovanje napak v 

pametnih omrežjih, ki temelji na globokem učenju z uporabo omrežij dolgoročne kratkoročne pomnilnosti 

(LSTM) in digitalne tehnologije dvojčkov. 

 

1 Introduction 
The smart grid, known as the new era of “Grid 2.0”, 

is rooted in the solid foundation of integrated and high-

speed bidirectional communication networks [1]. With 

cutting-edge sensing and measurement technology, 

precision equipment technology, advanced control 

strategies, and the comprehensive application of 

intelligent decision support systems, it is committed to 

achieving the reliability, safety, economy, high efficiency, 

environmental harmony, and worry free safety of power 

supply for users [2]. With the rapid development of the 

power industry, China has entered an era of “ultra-high 

voltage, large power grid”. However, the structure of the 

smart grid is relatively weak, and the failure rate of 

electrical equipment and lines is high. It has also 

experienced multiple large-scale power outages [3]. 

Therefore, it is necessary to timely and effectively prevent  

 

power outages in the power grid, predict the safe operation  

status of the smart grid, and perceive the safety situation 

of the smart grid.  

Presekal et al. [4] proposes a hybrid deep learning 

model based on the perspective of smart grid network 

security situational awareness to achieve online network 

attack situational awareness. By combining deep 

convolutional neural networks to construct a basic 

perception network framework, a temporal data 

classification unit is constructed in the network 

architecture to detect anomalies in the input power grid 

situation data. However, this method has the problem of 

slow overall response speed to safety faults. Bai et al. [5] 

extensively explores effective security situational 

awareness methods and remote operation and 

maintenance technologies to enhance the overall defense 

capability of smart grid systems, ensure power supply 
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continuity and reliability. Constructing a neural network 

model using radial basis functions to comprehensively 

process operational data of the power grid system. On this 

basis, linear discriminant analysis was introduced into the 

model to establish an efficient power grid anomaly 

situation detection model, effectively realizing the 

perception of smart grid operation trends. However, this 

method has certain room for improvement in the division 

of power grid operation risk thresholds. Gong et al. [6] 

proposes a network security situational awareness 

detection technology based on distributed data analysis, 

taking into account the characteristics of big data in 

intelligent power networks. By applying cross entropy 

function and linear units, the loss evaluation part of the 

neural network model was optimized, and an innovative 

smart grid operation situation awareness model was 

constructed by integrating improved linear unit structure. 

However, this method has the problem of low utilization 

of computational resources. Zhai et al. [7], an iterative 

algorithm that integrates Gaussian processes was designed 

to use the time series measured by the phasor 

measurement units of the actual power grid to verify the 

trend indicators of power grid operation online, in order to 

evaluate the stability level of smart grid operation. 

However, the overall safety situation awareness accuracy 

of this method needs to be improved. 

Long Short Term Memory (LSTM), as a special 

variant of recurrent neural networks, is an efficient deep 

learning technique with strong sequential data processing 

capabilities, suitable for processing time-series data and 

predicting future situations. Due to the large and complex 

amount of data involved in the smart grid, including 

multiple dimensions and variables, many important states 

and changes may accumulate over time and affect future 

trends. Based on the above analysis, this study combines 

deep learning technology to propose a smart grid 

situational awareness method based on LSTM, and further 

designs a smart grid fault warning method with the aim of 

reducing the impact of operational faults. 

2 Design of smart grid situation 

awareness and fault warning 

methods 

2.1 Construction of smart grid digital twin 

situation awareness framework 

Smart grid digital twin refers to the complete mapping 

of the physical entities of the smart grid in the digital 

world based on digital twin technology, forming a digital 

model that is synchronized and consistent with the real 

grid. This digital model can include all information about 

the equipment, lines, operating status, environmental 

factors, etc. of the power grid, achieving real-time 

monitoring and prediction of the power grid status. 

The digital twin power grid essentially belongs to the 

form of a physical power grid coexisting with a virtual 

power grid in the information dimension, and the 

integration of virtual and real power grids [8, 9]. 

Therefore, the collection of smart grid situation indicator 

data can be based on the digital twin grid. On the basis of 

smart grid IoT data perception and multi-dimensional 

information transmission, real-time holographic 

simulation can be carried out through the digital Lisheng 

platform to make scientific decisions and intelligent 

control processes, and to achieve real-time prediction and 

analysis of the operation situation of the physical grid. The 

smart grid digital twin situational awareness framework is 

shown in Figure 1.
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Figure 1: The digital twin situational awareness framework of smart grid
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The smart grid digital twin situational awareness 

framework covers multiple elements. At the physical 

entity level of the smart grid, real-time collection of 

operational and management data and other status 

information of the smart grid and its internal devices, such 

as smart meter data and device operating parameters, is 

achieved through technology entities such as sensors and 

wireless communication. This information is transmitted 

to the digital twin through a digital twin link. The digital 

twin initially processes the received data and constructs a 

multidimensional power grid situation evaluation index 

system [10], including indicators such as line flow 

distribution and bus voltage. Then, based on this, the 

situation evaluation index data is filtered and generated, 

and transmitted to the deep learning unit through the 

digital twin data platform. The operational architecture of 

smart grid technology in the framework includes 

intelligent sensing, communication, control, and 

distributed energy access; The front-end operation 

architecture includes comprehensive management, 

equipment and power grid operation data related content, 

as well as various front-end devices and systems. The deep 

learning module uses LSTM situational awareness 

modeling and other methods to analyze data based on 

power grid status data, achieving intelligent power grid 

situational analysis functions. It also has response 

mechanisms such as fault warnings. 

2.2 Selection of evaluation indicators for 

smart grid situation 

Situational awareness refers to the recognition and 

understanding of environmental factors within a certain 

time and space range, and the prediction of future 

development trends. The situational awareness of smart 

grid is an important technical means to grasp the operation 

trajectory of the power grid. In the perception practice, it 

is necessary to first monitor and extract various factors 

related to the changes in power grid operation, in order to 

characterize the operation trajectory of the power grid. 

However, a single indicator cannot effectively 

characterize the operational trajectory of the smart grid. 

Therefore, based on the analysis structure of the smart grid 

situation using the correlation indicators in Figure 1, this 

article considers both dynamic and static security aspects 

of the smart grid, and sets the line flow distribution index 

1P , bus voltage index 2P , and active power margin 3P  

as the dynamic security situation evaluation indicators for 

the smart grid, which can reflect the operating status of the 

smart grid; The system load rate 1Q , system overload 

degree 2Q , node voltage offset index 3Q , and distributed 

power penetration rate 4Q  are static security situation 

assessment indicators, which perceive and analyze the 

situation of the smart grid. Based on the evaluation 

indicators and related parameters, the data collection 

scope is clarified, and the corresponding collection 

indicator data is collected to comprehensively and 

effectively evaluate the operation trajectory of the smart 

grid. 

Among them, the power flow distribution index of the 

line refers to the average difference between the maximum 

transmission capacity allowed by the line in the system 

and the active power flow of the line. This indicator 

reflects the stability of the system. The larger the indicator 

value, the farther the system is from the allowed maximum 

transmission capacity and the more stable the system is. 

The expression for this indicator and its associated 

parameters is Equations (1) and (2): 
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In the formula: zV   represents the phasor of the bus 

phase voltage; za  represents the branch bus in the smart 

grid, and zaI   represents the parallel double bus structure, 

which is the phasor of the line current generated during the 

load transfer process of the double bus; Z  represents 

conjugate complex numbers; zap  represents the active 

power of the three-phase AC line in the smart grid; 
z̂  

represents the voltage phase angle; 1  represents the 

phase angle of the current. 

The amplitude of bus voltage refers to the average 

value of the voltage of the bus (excluding the bus 

connected to the generator) in the system. This indicator 

reflects the ability of the system bus to withstand voltage. 

The larger the indicator value, the stronger the system's 

ability to withstand voltage [11, 12]. Based on the known 

power flow distribution of the line, calculate the bus 

voltage amplitude index and related parameters according 

to the active power of the line where the parallel bus is 

located Equation (3): 
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In the formula: 
1,zX   represents the reactance 

between the distributed generation unit of the smart grid 

and the busbar; 1  represents the power generation unit, 

which is a synchronous generator; aV   represents the 

phase voltage phasor of the branch bus in the double bus 

structure; zaR  represents the resistance of the three-phase 

AC line in the smart grid; zaq  represents the reactive 

power of the three-phase AC line in the smart grid [13]. 

The active power margin refers to the average ratio of 

the difference between the maximum transmission 

capacity of the line in the system and the active power 

flow of the line in the current state. This indicator reflects 

the system's ability to withstand power disturbances, and 

the larger the indicator value, the stronger the system's 

ability to withstand power disturbances [14]. Given the 

layout of distributed generation units in the three-phase 

AC line of a smart grid, and based on clarifying the 

reactance parameters between the distributed generation 
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units and the bus, calculate the active power margin of the 

smart grid system, as shown in Equations (4) and (5): 
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In the formula: 1  and 2  represent the total active 

power generation capacity and total active load demand of 

the smart grid system; m  represents the total layout of 

power generation units in the power grid system;    
represents the power angle of the power generation unit, 

which is the phase difference between the excitation 

potential and the terminal voltage of the generator; Ê  

represents the electromotive force of the generator. 

Based on the static security of the smart grid, the 

system load rate refers to the ratio of the sum of the 

transmission power of the system lines to the maximum 

transmission capacity allowed by the lines. This indicator 

reflects the probability of a major power outage in the 

system, and the higher the value of this indicator, the 

greater the probability of a major power outage occurring 

in the system [15]. The degree of system overload refers 

to the ratio of the number of overloaded lines to the total 

number of remaining lines when a component of the 

system fails. This indicator represents the degree of 

overload caused by system component failures. The larger 

the value of this indicator, the more lines the system 

deviates from normal state, and the greater the degree of 

overload of the system, making its state more dangerous. 

The expression for this indicator and its associated 

parameters is Equations (6) and (7): 
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In the formula: iC 
  represents the required capacity 

of the generator; 1n  and 2n  represents the total number of 

lines in the smart grid system and the total number of 

overloaded lines in the system; 1p


 represents the total 

load power of the power grid. 

The node voltage offset index 3Q  refers to the sum of 

the difference between the node voltage of the current 

system and the node voltage under normal conditions. 

This indicator reflects the volatility of the system voltage. 

The larger the value of this indicator, the greater the 

deviation of the system voltage from the normal voltage, 

and the more dangerous the system is. Considering the 

diversity and nonlinear characteristics of this indicator, 

only its characterization features will be analyzed here. 

In addition, the penetration rate of distributed power 

refers to an indicator that measures the proportion of 

distributed power in the smart grid, reflecting the scale of 

distributed power relative to the total load of the grid, and 

quantitatively reflecting the degree of penetration of 

distributed power in the entire smart grid system. As the 

penetration rate increases, the impact of fluctuations in 

distributed power sources on grid frequency will gradually 

increase. At this time, new frequency regulation strategies 

(such as the coordination of energy storage systems) are 

needed to ensure grid frequency stability. This indicator 

also verifies the matching degree between the connected 

distributed power sources and local loads. The expression 

for this indicator and its associated parameters is Equation 

(8): 
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In the formula: n~  represents the number of 

distributed power sources in the smart grid; j  represents 

the index of the power supply unit; jp


 represents the 

output power of a fixed sequence distributed power 

source. 

2.3 Smart grid situation awareness and 

fault warning based on long short term 

memory networks 

2.3.1 Smart grid situation assessment 

By comprehensively analyzing various indicator data, 

evaluate the safety situation of the power grid and 

calculate the safety situation assessment value of the 

power grid. Firstly, in order to improve the convenience 

of indicator processing and eliminate errors in indicators, 

dynamic and static security indicators are regarded as an 

analytical subject, and each indicator is normalized 

Equation (9): 

 ( )( ) 1
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In the formula: L  represents the comprehensive 

indicator of the power grid situation after the unified state 

analysis subject; ok  represents the o -th indicator value 

of the smart grid system. 

Secondly, based on the Analytic Hierarchy Process, 

determine the weight coefficients of the corresponding 

indicator values in Equation (9). By repeatedly 

determining the weight coefficients of multiple indicators 

and multiplying the comprehensive indicator data with the 

corresponding weights, the smart grid security situation 

assessment value is calculated Equation (10). 
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In the formula: ̂  represents the evaluation value of 

the security situation of the smart grid; o  represents the 

weight coefficient corresponding to specific indicator 

data. 

According to the safety standards for the operation of 

smart grids, further refine the risk categories 

corresponding to the security situation assessment values 

of smart grids, and set reasonable warning thresholds for 

the comprehensive indicators of security situation. The 
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threshold and risk level classification of smart grid 

security situation warning is shown in Table 1. 

 

 

 

Table 1: Threshold and risk level of smart grid security situation warning 

 

Indicator 

warning 

thresholds 

Risk class Description of the type of situational risk 

0-0.2 Safety status —— 

0.21-0.5 Early warning 

status (low risk) 

There are small fluctuations in the power of the distributed power sources, but 

the power supply is stabilizing the transmission efficiency of some lines 

slightly below optimal. 

0.51-0.8 Dangerous state 

(medium risk) 

Risk of overloading of transformers, small deviations from the normal range 

of voltage in some areas, abnormal intermittent changes in distributed power. 

0.81-1.0 Emergency status 

(high risk) 

Multiple key devices are close to or have reached their limit operating 

conditions, localized power outages, the grid control system is unable to 

accurately obtain information on the status of the devices, and there is a 

power deficit in the grid. 

 

The division of the warning threshold for smart grid 

security situation in Table 1 above is based on a deep 

understanding of the operating characteristics of the power 

grid, statistical analysis of actual operating data, and 

comprehensive consideration of power grid security 

standards. Taking 0-0.2 as an example to represent the 

safety status, selecting 0.2 as the upper limit is based on 

statistical analysis of historical operating data and 

comprehensive consideration of power grid safety 

standards. This value ensures that the power grid can 

maintain safe and stable operation in most cases. If the 

threshold is set too loosely, it may reduce the sensitivity 

and accuracy of the warning system, thereby increasing 

the risk of power grid operation. 

2.3.2 Analysis of long short term memory 

network structure 

Long Short Term Memory (LSTM), as a special 

variant of recurrent neural networks, is a deep learning 

technique with strong sequential data processing 

capabilities, suitable for processing time-series data and 

predicting future situations [16, 17]. LSTM network 

introduces a unique gate structure (input gate, forget gate, 

and output gate) based on traditional recurrent neural 

networks, and then captures and models long-term 

dependencies in time series data through memory units 

and gate structures [18-21]. 

The integration of digital twin technology and LSTM 

significantly enhances the situational awareness and fault 

warning capabilities of smart grids through dynamic 

modeling and real-time updates. The digital twin 

technology constructs a virtual model of the power grid 

that can reflect the operating status in real time, while 

LSTM, as a time series model, excels at capturing long-

term dependencies and complex nonlinear patterns in 

power grid data. This combination not only improves the 

accuracy of fault prediction, but also reduces false alarm 

rates, while enhancing adaptability, allowing it to 

dynamically adjust according to the real-time status of the 

power grid. Compared to traditional methods, LSTM 

performs better in processing time series data and can 

more effectively identify potential faults. 

As for why other models (such as GRU or transformer 

models) are not considered, it is mainly due to their 

limitations in applicability and efficiency in smart grid 

scenarios. Although GRU is a simplified version of 

LSTM, its modeling ability is not as good as LSTM when 

dealing with complex time series data, especially in 

capturing long-term dependencies. Although the 

transformer model performs well in certain tasks, its 

computational complexity is high and it requires large-

scale data for training, making it difficult to meet the real-

time processing requirements of smart grids. In addition, 

LSTM has been widely applied in time series tasks, and its 

performance and stability have been fully verified. 

However, GRU and transformer models have relatively 

few applications in the field of smart grids, lacking 

sufficient practical support. Therefore, LSTM has become 

the preferred model in this scenario. 

The data involved in the smart grid is massive and 

complex, containing multiple dimensions and variables, 

and many important states and changes may accumulate 

over time and affect future trends. LSTM, as a special 

variant of recurrent neural networks, has strong sequential 

data processing capabilities and is suitable for processing 

time-series data and predicting future situations. By 

introducing unique gate structures (input gate, forget gate, 

and output gate), LSTM can capture and model long-term 

dependencies in time series data, effectively improving 

the accuracy of situation prediction. In addition, the smart 

grid digital twin situational awareness framework 

constructed with digital twin technology can 

comprehensively and real-time monitor the status of the 

power grid, providing accurate and comprehensive input 

data for LSTM, further improving the accuracy of 

situational awareness and fault warning. Therefore, the 

article selects it as the main carrier for power grid 

situational awareness prediction, which is based on LSTM 
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network for smart grid situational awareness. LSTM 

network structure is shown in Figure 2. 
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Figure 2: LSTM network architecture

In this study, the optimizer used in the LSTM network 

is the Adam optimizer, which can adaptively adjust the 

learning rate, accelerate convergence, and improve 

training efficiency. Set the learning rate to 0.5 to reduce 

overfitting. Set the batch size to 64 to balance memory 

usage and training speed. To better balance model 

complexity and learning ability, two hidden layers were 

chosen. 

As shown in Figure 2, the basic unit of LSTM network 

includes three gates, namely input gate, forget gate, and 

output gate. Among them, the forget gate determines 

which information will be forgotten from the unit state, 

and its calculation Equation (11): 

 ( )( ) 111111
ˆ,,ˆ byLyF TT += −− 


 (11) 

In the formula: 
1F̂  represents the forget gate output at 

a specific time step; 1  represents the sigmoid activation 

function; 1


 represents the forgetting gate weight matrix; 

1−Ty  represents the hidden state of the previous time step; 

T  represents the current time step; 1b  represents the bias 

coefficient of the forget gate. 

The input gate consists of two parts: the sigmoid layer 

and the tanh layer. The sigmoid layer determines which 

values will be updated, while the tanh layer creates a new 

candidate value vector. The calculation is Equation (12): 
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In the formula: 
2F̂  represents the input gate output at 

a specific time step; 2


 represents the weight matrix of 

the input gate; 2b  represents the bias coefficient of the 

input gate; 0H


 represents the candidate unit state at a 

specific time step; 2  represents the tanh activation 

function; 0


 represents the weight matrix of candidate 

unit states; 0b  represents the bias coefficient of the 

candidate unit state. 

The output gate determines the output of the next 

hidden state, which is specifically represented as Equation 

(13): 

 ( )( ) 311313
ˆ,,ˆ byLyF TT += −− 


 (13) 

In the formula: 3F̂  represents the output gate output 

at a specific time step; 3


 represents the output gate 

weight matrix; 3b  represents the bias coefficient of the 

output gate. 

2.3.3 Implementation of smart grid situation 

awareness and fault warning 

On the basis of laying out the LSTM model, it is 

necessary to train the network model and combine the 

trained model with the dynamic and static characteristics 

of the smart grid situation, and deploy it to the smart grid 

system [22, 23]. The specific model training steps are as 

follows: 

Step 1: Input data partitioning. Using the normalized 

index data from the previous cycle (previous time step) as 

input and training data for LSTM, these normalized index 

data cover multiple dimensions of dynamic and static 

security of smart grids. Subsequently, these data are 

scientifically divided into training and testing sets. 

Typically, the training set is used for model training and 

learning, while the testing set is used for model 

performance validation, ensuring that the model can 

generalize to unseen data. 

Step 2: Build an LSTM network. Based on the 

characteristics of the smart grid situation indicator data, 

the number of input layer feature types in the LSTM 

network structure is set to 7, and the number of hidden 

layers is set to 2, in order to balance the complexity and 

learning ability of the model. This network architecture 

design aims to efficiently extract key information from 

input data, laying a solid foundation for subsequent 

security situation assessment and fault warning. 
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Step 3: Initialize network parameters. After the LSTM 

network is built, the weights and biases in the network are 

randomly initialized to ensure that the model has sufficient 

diversity at the beginning of training, so as to gradually 

converge to the optimal solution in the subsequent 

learning process. This study sets the weight to 0.5 and the 

bias to 0.1. 

Step 4: Model training. Using the training set data for 

forward propagation, calculate the loss function to 

measure the difference between the current model's 

predicted results and the true values. Subsequently, the 

weights and biases in the network are updated using 

backpropagation algorithm, gradually reducing the value 

of the loss function. This process is repeated in multiple 

iterations until the performance of the model on the 

training set reaches stability. 

Step 5: Performance evaluation. Evaluate the 

performance of the trained LSTM model through a test set. 

The evaluation indicators include accuracy, recall, and F1 

score, which can comprehensively reflect the model's 

ability in safety situation assessment and fault warning. 

Based on the evaluation results, continuously adjust the 

network structure and hyperparameters (such as learning 

rate, number of hidden units, etc.) to optimize the model 

performance. This process may require multiple iterations 

until the model performance reaches the predetermined 

accuracy and reliability standards [24-26].  

Step 6: After the LSTM network model completes 

training and meets the predetermined performance 

standards, deploy it to the smart grid system. The model 

can receive real-time operation data of the smart grid and 

output evaluation scores from multiple dimensions 

including power flow distribution of grid lines, system 

load, and power penetration rate. These evaluation scores 

constitute the security situation assessment values of the 

smart grid, which can be compared with the preset alarm 

threshold to determine whether the operating situation of 

the smart grid is in a fault abnormal state. 

Step 7: Based on the alarm threshold, corresponding 

level, and output evaluation value in Table 1, compare 

them to determine whether the operation status of the 

smart grid is in a fault abnormal state, and achieve smart 

grid situation perception and fault warning. 

3 Experiments and results analysis 

3.1 Experimental environment 

construction 

In order to verify the feasibility and effectiveness of 

the method proposed in this article, real-time data from a 

provincial smart grid big data information platform in 

October was used as the experimental object, and a real-

time data set size of 125 GB was collected. On this basis, 

the collected data is divided based on the power simulation 

system, generating a total of 120 power grid situation 

evaluation indicators including line flow distribution 

indicators, bus voltage indicators, active power margin, 

system load rate, system overload degree, node voltage 

offset indicators, distributed power source penetration 

rate, etc. (each data includes all power grid situation 

evaluation indicators). The specific number of generated 

indicators is as follows: 

(1) Dynamic security situation assessment indicators: 

15 data points on line flow distribution indicators; 12 

pieces of bus voltage indicator data; 23 active power 

margin data; 

(2) Static security situation assessment indicators: 18 

system load rate data; 21 pieces of system overload degree 

data; 16 pieces of node voltage offset index data; 15 pieces 

of penetration rate data for distributed power sources. 

In the experimental analysis process, the generated 

data will be used as samples for the security situation 

assessment of the smart grid system. Each piece of data 

corresponds to one sample, for a total of 120 samples. In 

order to ensure the generalization ability of the model and 

avoid overfitting, it is necessary to retain a portion of the 

data for testing. Therefore, this study selected 

approximately 70% (85 samples) as training samples and 

approximately 30% (35 samples) as testing samples.  

For the sample data, first, normalization is performed 

to treat dynamic and static security indicators as one 

analysis subject. Normalize each indicator to eliminate 

indicator errors and form a unified comprehensive 

indicator of the power grid situation. Then, the Analytic 

Hierarchy Process is used to determine the weight 

coefficients of each indicator value. By repeatedly 

determining the weight coefficients of multiple indicators, 

the comprehensive indicator data is multiplied with the 

corresponding weights to calculate the results of the 

security situation assessment of the smart grid. 

Preprocess the power grid situation evaluation index 

data in the test samples using the comprehensive index 

generation method described in the article. During 

training, randomly select a fixed number of samples in 

each iteration to form a small batch dataset for training 

until the preset number of iterations is reached. The 

configuration information of the software and hardware 

devices included in the experimental environment is 

shown in Table 2.

Table 2: Configuration information of experimental software and hardware equipment 

Type of experimental 
equipment 

Device model Performance parameters/running version 

Hardware equipment 

PowerEdge R740 server 

Processor: 20 cores, 40 threads, base frequency 2.3 GHz, max RWD 3.9 

GHz. 

Memory: Supports up to 1.5 TB of DDR4 memory. 
Storage: Equipped with multiple hard disks 8 x 1TB SAS hard disks in a 

RAID array. 

KC705 FPGA development board 
Logical Resources: The number of LCs is about 326,000 and the number of 

CLBs is about 40,750. 
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Storage Resources: Total BRAM capacity is 18.5 Mb. 

Software equipment 

Linux operating system Ubuntu 18.04 LTS 

Python programming language Python 3.7 

TensorFlow deep learning framework TensorFlow 2.3 

The experimental simulation parameters are shown in 

Table 3. 

Table 3: Experimental simulation parameters 

Simulation parameters Parameter 

value 

Input data time step 120 

Output data time step 1 

Number of hidden layers of LSTM 

network 

2 

Number of hidden units 128 

Hidden layer activation function tanh function 

Learning rate 0.5 

Number of iterations 1000 

3.2 Testing the effect of smart grid security 

situation awareness 

In order to verify the practical application effect of 

method of this paper in intelligent network security 

situational awareness and analysis, method of reference 

[5] and method of reference [6] were introduced as 

comparative methods, both of which were trained and 

learned 1000 times, and then predicted on the test samples. 

Based on the warning threshold and risk level of smart grid 

security situation in Table 1, the predicted value of the test 

sample is defined as the warning threshold range of smart 

grid security situation risk level. Compare the predicted 

values of the obtained test samples with the actual values 

to verify the effectiveness of the smart grid security 

situation prediction. The specific results are shown in 

Figure 3.
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(b) Method of Bai et al. [5] 
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(c) Method of Gong et al. [6] 

Figure 3: Test results of the perception effect of smart grid security situation (P-values<0.05)

 

As shown in Figure 3, using the method of this paper 

to predict the security situation of the smart grid for the 

test samples, the predicted results (i.e., the warning 

threshold corresponding to the risk level of the samples) 

are consistent with the actual values, and the overall fit is 

high. There is no situation where the predicted risk level 

deviates from the actual value. However, the overall fit 

between the predicted results obtained using the method 

of Bai et al. [5] and method of Gong et al. [6] and the 

actual values of the test samples is low, and there is a 

significant deviation between the predicted results and the 

actual values regardless of the risk threshold of the test 

samples. Although the method of Bai et al. [5] constructs 

a neural network model using radial basis functions and 

combines linear discriminant analysis to detect abnormal 

situations in the power grid, there are certain shortcomings 

in the division of risk thresholds for power grid operation. 

This may make it difficult for the model to accurately 

classify certain critical data points when judging the 

operation status of the smart grid, thereby affecting the 

overall prediction accuracy. Although the method of Gong 

et al. [6] combines the characteristics of big data in 

intelligent power networks and proposes a network 

security situational awareness detection technology based 

on distributed data analysis, there are still shortcomings in 

terms of computational resource utilization. This may 

limit the performance of the model when processing large-

scale, high-dimensional data, resulting in a certain 

deviation between the predicted results and the actual 

values [27-29]. 

From this, it can be seen that using the method of this 

paper can more accurately capture the changing trends of 

the smart grid situation, predict the risk level of data 

security situation better, effectively achieve smart grid 

security situation awareness, and provide more reliable 

basis for the scheduling and operation of smart grids. 

3.3 The effectiveness of identifying the 

safety situation of smart grid operation 

In order to verify the effectiveness of the method of 

this paper in discriminating the operating situation of 

smart grids, based on the experimental environment in 

section 3.2, the accuracy of different methods in 

discriminating the operating situation of smart grids was 

analyzed. However, considering that different methods 

may have inconsistent dimensions in extracting data 

features. Therefore, when the experimental environment is 

unified into the same feature quantity (analyzed according 

to the percentage of training samples to the total sample 

size), accuracy, recall, and F1 score are used as evaluation 

indicators to analyze the accuracy of various methods for 

predicting the safety situation of smart grid operation. The 

specific results are shown in Table 4. 

Table 4: The recognition effect of the safety situation of 

smart grid operation (P-values <0.05) 

Grid situational 

awareness 

algorithm 

Accuracy/% Recall 

rate/% 

F1 

score/% 

Method of this 

paper 

98.72 98.95 99.06 

Method of Bai et 

al. [5]  

89.32 90.01 90.93 

Method of Gong et 

al. [6] 

90.26 91.74 92.18 

 

According to Table 4, the accuracy of using the 

method of this paper for identifying the safety situation of 

smart grid operation is 98.72%, the recall rate is 98.95%, 

and the F1 score is 99.06%. This indicates that the 

algorithm has high risk prediction accuracy for smart grid 

safety situation operation data based on unified feature 

quantities, and its application is relatively stable. The 

obtained prediction accuracy numerical results are 

superior to those obtained by the method of Bai et al. [5] 

and method of Gong et al. [6]. Due to the inadequacy of 
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the method of Bai et al. [5] in dividing the risk threshold 

for power grid operation, the model may have 

misjudgments or omissions in identifying the safety 

situation of smart grid operation, thereby reducing 

accuracy and recall. Meanwhile, this deficiency may also 

affect the performance of F1 scores. The shortcomings of 

the method of Gong et al. [6] in terms of computational 

resource utilization may limit the performance of the 

model when dealing with complex data. This may lead to 

poor performance of the model in feature extraction, 

classification prediction, and other aspects, thereby 

affecting the overall accuracy, recall, and F1 score. 

From this, it can be seen that the overall performance 

of the method of this paper is good, which can accurately 

and effectively perceive, predict, and analyze the safety 

situation of smart grid operation. 

3.4 Analysis of the effectiveness of smart 

grid fault warning 

During the simulation testing process of smart grid 

situational awareness and fault warning, a total of 1000 

iterations were executed. In order to further verify the 

effectiveness of smart grid fault warning, the number of 

iterations to be executed will be uniformly divided into 5 

planning units. Each unit calculates the accuracy of fault 

warning, response time of fault command, amount of 

resources consumed (all average values during the 

iteration process) generated by method of this paper, 

method of Bai et al. [5], and method of Gong et al. [6] 

during 200 iterations to verify the effectiveness of 

intelligent power grid fault warnings. Among them: 

(a) Accuracy of fault warning: This indicator is the 

core standard for measuring the performance of smart grid 

fault warning methods. It represents the proportion of 

correctly predicted faults and issuing warning signals. 

High accuracy of fault warning means that the fault 

warning method can accurately distinguish between 

normal operating conditions and critical states before 

faults, providing strong guarantees for the safe and stable 

operation of the power grid. 

(b) Response time of fault command: This indicator 

reflects the speed at which smart grid fault warning 

methods issue warning instructions after detecting faults. 

A shorter response time for fault instructions means that 

the fault warning method can respond to faults faster, 

buying valuable time for subsequent fault handling. 

(c) Amount of resources consumed: This indicator 

measures the computational resources and storage space 

required for the operation of smart grid fault warning 

methods. Lower resource consumption means that fault 

warning methods can operate in a more economical way, 

reducing operational costs. 

The specific test results of the intelligent grid fault 

warning effect are shown in Table 5.

Table 5: Smart grid fault warning effectiveness (P-values <0.05) 

Experimental indicators Iterations/times 
Method of this 

paper 

Method of Bai et al. 

[5] 

Method of Gong et al. 

[6] 

Accuracy of fault 

warning/% 

200 98.12 88.34 90.42 

400 98.45 88.65 91.27 

600 98.96 90.03 91.39 

800 99.16 91.26 91.87 

1000 99.82 91.38 92.08 

Response time of fault 

command/s 

200 0.096 0.089 0.098 

400 0.085 0.098 0.107 

600 0.074 0.105 0.112 

800 0.091 0.107 0.101 

1000 0.083 0.112 0.118 

Amount of resources 

consumed/MB 

200 125.36 152.65 150.16 

400 123.28 153.78 155.79 

600 120.54 153.96 160.24 

800 119.16 155.02 161.77 

1000 118.57 155.28 168.56 

According to Table 5, as the number of iterations 

continues to increase, the accuracy of fault warning, 

response time of fault command, and amount of resources 

consumed generated by our method are generally superior 

to other methods. The maximum accuracy of fault warning 

is 99.82%, the minimum response time of fault 

instructions is 0.083 s, and the minimum amount of 

resources consumed is 118.57 MB, indicating that our 

method has a good power grid fault warning effect. Due to 

the inaccuracy of the method of Bai et al. [5] in dividing 

the risk threshold of power grid operation, the model may 

deviate in judging the fault state, thereby reducing the 

accuracy of fault warning. Meanwhile, this deviation may 

also affect the response time of fault command, making it 

difficult for the model to respond quickly after detecting a 

fault. The insufficient utilization of computational 

resources in the method of Gong et al. [6] may lead to 

performance degradation of the model when processing 

large amounts of data. This may result in a longer response 

time for the model during the fault warning process, while 

consuming more computing resources. This deficiency 
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limits the efficiency and reliability of the model in 

practical applications. 

From this, it can be seen that the method of this paper 

has strong understanding and analysis capabilities for the 

operation status of the power grid, high resource 

utilization, and can accurately distinguish between normal 

operation status and critical status before faults. At the 

same time, there is a good connection with the subsequent 

fault handling mechanism. After the fault command is 

output, it can quickly connect to the power grid system for 

early warning response, and the entire system can quickly 

respond to the warning. 

4 Discussion 
Based on the analysis of the above experimental 

results, it can be concluded that the method proposed in 

this paper has good performance in the fit between safety 

situation prediction results and actual values, safety 

situation discrimination, and fault warning, while the 

application effect of the two comparative methods is 

relatively inferior. Now use Table 6 to conduct a detailed 

analysis of the two comparison methods.

Table 6: Analysis of two comparative methods 

Method Specific process Result Limitations analysis 

Method of Bai 

et al. [5] 

A neural network 

model was constructed 

using radial basis 

functions to 

comprehensively 

process the operational 

data of the power grid 

system. Based on this, 

linear discriminant 

analysis was 

introduced into the 

model to establish an 

abnormal situation 

detection model for the 

power grid, which is 

used to perceive the 

trend of smart grid 

operation. 

(a) The fit between the predicted 

results and the actual values is 

relatively low; 

(b) The accuracy of identifying the 

safety situation of smart grid 

operation is 89.32%, the recall rate 

is 90.01%, and the F1 score is 

90.93%. In terms of numerical 

performance, it is inferior to the 

method of this paper; 

(c) The highest accuracy of fault 

warning is 91.38%, the minimum 

response time of fault command is 

0.089 seconds, and the maximum 

amount of resources consumed can 

reach 155.28 MB. In terms of 

numerical performance, it is 

inferior to the method of this paper. 

Although this method uses RBF 

to construct a neural network 

model and combines LDA to 

detect abnormal situations in the 

power grid, the RBF neural 

network has the problem of 

insufficient generalization 

ability when processing high-

dimensional and complex data. 

LDA is difficult to fully capture 

the subtle changes in smart grid 

data in feature extraction and 

classification, which affects the 

perceptual accuracy of this 

method. 

Method of 

Gong et al. [6] 

By applying the cross 

entropy function and 

linear units, the loss 

evaluation part of the 

neural network model 

was optimized, and a 

fusion improved linear 

unit structure was 

constructed to achieve 

perception of the 

operation status of the 

smart grid. 

(a) The fit between the predicted 

results and the actual values is 

relatively low; 

(b) The accuracy of identifying the 

safety situation of smart grid 

operation is 90.26%, the recall rate 

is 91.74%, and the F1 score is 

92.18%. In terms of numerical 

performance, it is inferior to the 

method of this paper; 

(c) The highest accuracy of fault 

warning is 92.08%, the minimum 

response time of fault command is 

0.098 s, and the maximum amount 

of resources consumed can reach 

168.56 MB. In terms of numerical 

performance, it is inferior to the 

method of this paper. 

Although this method optimizes 

the loss evaluation part of the 

neural network model through 

cross entropy function and linear 

unit, and constructs a model that 

integrates improved linear unit 

structure, it is still difficult to 

fully learn the intrinsic rules of 

the data when dealing with 

large-scale and high-

dimensional data such as smart 

grids, resulting in prediction 

accuracy and reliability. 

Moreover, this method has 

shortcomings in terms of 

computational resource 

utilization, which limits the 

performance of the model when 

processing large-scale data and 

reduces the real-time 

performance of the method. 

The method for this paper has adopted effective 

strategies to overcome the difficulties of situation 

awareness and fault warning in smart grids. Firstly, in 

response to the complexity and temporal nature of power 

grid data, a long short-term memory network model is 

adopted, which utilizes its powerful sequence data 

processing capabilities to effectively capture long-term 

dependencies in power grid data and improve the accuracy 
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of situation prediction. Secondly, by constructing a smart 

grid digital twin situational awareness framework, 

comprehensive real-time monitoring of the power grid 

status has been achieved, providing a solid foundation for 

accurate early warning. In addition, the method for this 

paper also comprehensively considers the dynamic and 

static security of the power grid, selects indicators that 

comprehensively reflect the operation trajectory of the 

power grid, and further improves the accuracy of 

situational awareness and fault warning. 

The innovative work of method for this paper is as 

follows: on the one hand, by combining digital twin 

technology and deep learning models, comprehensive 

mapping and real-time monitoring of the power grid status 

have been achieved, providing strong guarantees for the 

safe operation of the smart grid. On the other hand, by 

introducing LSTM networks, the shortcomings of 

traditional methods in processing time-series data have 

been effectively addressed, improving the accuracy and 

efficiency of situation prediction and fault warning. In 

addition, the method for this paper also proposes the 

principles and methods for selecting indicators for 

evaluating the situation of smart grids, providing new 

ideas for research in related fields. 

In summary, the method for this paper has significant 

innovation and application value in the field of smart grid 

situational awareness and fault warning. 

5 Conclusion 
In summary, this article comprehensively introduces 

a smart grid situational awareness and fault warning 

method that combines deep learning technology. This 

method is based on the digital twin smart grid platform 

and constructs a smart grid digital twin situational 

awareness framework. By selecting situational evaluation 

indicators that can comprehensively reflect the dynamic 

and static security of the smart grid, real-time monitoring 

and prediction of the power grid status are achieved. The 

core lies in utilizing Long Short Term Memory (LSTM) 

networks for deep learning analysis of power grid data, 

effectively capturing long-term dependencies in the data, 

thereby accurately assessing the power grid safety 

situation and providing fault warnings. The experimental 

results show that this method exhibits high accuracy, high 

recall rate, and high F1 score in safety situation prediction, 

discrimination, and fault warning, with high accuracy of 

fault warning, short response time of fault command, and 

low amount of resources consumed. This article provides 

an efficient and reliable solution for the safe operation of 

smart grids, demonstrating the enormous potential and 

application value of deep learning technology in the field 

of smart grids. 

In the next stage of work, we are considering 

exploring alternative deep learning architectures to 

achieve significant performance improvements in 

temporal data processing. At the same time, considering 

the scalability issues that current research may face when 

dealing with large-scale datasets, especially when dealing 

with test datasets exceeding 125 GB, efforts should be 

made to research and develop more efficient data 

processing algorithms and parallel computing 

technologies to alleviate potential limitations on 

computing resources and ensure smooth response to larger 

scale data challenges. 
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