
https://doi.org/10.31449/inf.v49i26.7970 Informatica 49 (2025) 181–200 181 

Optimized Task Scheduling and VM Allocation in Cloud Computing 

Using PPMMcNE and RSMBO Algorithms 

Nisha Sanjay1, Sasikumaran Sreedharan2  
1Research Scholar, Lincoln University College, Malaysia 
2Research Supervisor, LUC MRC, Marian College Kuttikkanam, Kerala, India 

E-mail: nsanjay@lincoln.edu.my, drsasikumaran@gmail.com 

Keywords: cloud computing, task scheduling, virtual machine allocation, PPMMcNE (phasmatodea population 

modified mcnaughton evolution), RSMBO (rat swarm modified brucker optimization), makespan minimization, 

modified McNaughton’s rule, turnaround time and response time 

Received: January 6, 2025 

This paper presents an optimized approach for task scheduling and virtual machine (VM) allocation in 

cloud computing environments, leveraging two novel algorithms. The proposed Phasmatodea 

Population Modified McNaughton Evolution (PPMMcNE) algorithm enhances the Phasmatodea 

Population Evolution (PPE) method by integrating Modified McNaughton’s rule to generate a high-

quality initial task schedule and minimize delays. Complementarily, the Rat Swarm Modified Brucker 

Optimization (RSMBO) algorithm is introduced to refine VM allocation by reducing migration overhead 

and lowering energy consumption. The methods aim to optimize key cloud performance parameters—

including turnaround time, waiting time, completion time, response time, makespan, cost, load 

balancing, and energy efficiency—thereby enhancing overall resource utilization and fairness. 

Comprehensive computational experiments were performed in Matlab using the publicly accessible 

GoCJ dataset, which comprises one month of resource utilization data, recording 123 million incidents 

across 1250 computers. The proposed method achieves a throughput of 0.942, exhibits a minimal task 

scheduling delay of 58.22 milliseconds, and maintains a queue waiting time of 43.66 milliseconds—all 

while reducing energy consumption to an average of 120 joules per task. Furthermore, energy 

consumption was quantitatively evaluated, with RSMBO consistently demonstrating significant 

reductions in energy usage compared to traditional baselines. These results validate that the integrated 

approach of PPMcNE and RSMBO offers superior scalability and efficiency, making it highly suitable 

for dynamic and large-scale cloud environments. 

Povzetek: Predstavljena je dvojna optimizacijska metoda za razporejanje opravil in dodeljevanje VM v 

oblaku, ki združuje algoritme PPMMcNE in RSMBO z biološko navdihnjenimi metahevristikami. 

 

1 Introduction  
Offering on-demand access to a shared pool of 

reconfigurable computing resources—including 

networks, servers, storage, and applications—cloud 

computing has emerged as a transformative technology 

[1]. Its inherent scalability and flexibility make it an 

attractive solution for businesses and individuals seeking 

to reduce costs and enhance operational efficiency. 

However, as cloud infrastructures become increasingly 

complex, effective management and allocation of these 

resources present significant challenges. Two critical 

procedures in this domain—task scheduling and virtual 

machine (VM) allocation—form the backbone of 

efficient cloud operations [ 2-4]. 
Task scheduling is responsible for organizing and 
distributing user requests (or tasks) across available 
virtual machines. This phase is crucial because it directly 
influences key performance metrics such as turnaround 
time, response time, waiting time, and makespan. By 
prioritizing tasks and minimizing delays, efficient 
scheduling not only improves execution speed but also  

 
enhances overall resource utilization and user satisfaction. 
Following this, VM allocation comes into play. In this 
stage, computing resources are methodically assigned to 
the scheduled tasks based on their computational 
requirements, with the goals of ensuring fairness, 
balancing load, and reducing energy consumption [5-7]. 
Although both processes are closely interlinked—since 
the effectiveness of VM allocation depends on the quality 
of the task scheduling—the sequential approach (first 
scheduling tasks and then allocating VMs) simplifies the 
optimization process by allowing each phase to be tuned 
for its specific objectives.Together, task scheduling and 
VM allocation are fundamental for achieving high 
performance and cost-effective operations in cloud 
environments, particularly when dealing with large-scale 
workloads[8]. 
Existing methods for task scheduling and VM allocation 
include heuristic and meta-heuristic algorithms such as 
First Come First Serve (FCFS) [9], Round Robin (RR) 
[10], Genetic Algorithms (GA) [11], Particle Swarm 
Optimization (PSO) [12], and Ant Colony Optimization 
(ACO) [13]. While these approaches offer certain 
benefits, they often fall short when it comes to optimizing 
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multiple performance metrics simultaneously, frequently 
encountering issues such as slow convergence, premature 
stagnation, and high computational complexity in large-
scale cloud environments [14-17]. 

To address these challenges, this study proposes two 
novel algorithms: the Phasmatodea Population Modified 
McNaughton Evolution (PPMMcNE) algorithm for task 
scheduling and the Rat Swarm Modified Brucker 
Optimization (RSMBO) algorithm for VM allocation. 

The primary objective of this study is to design and 
implement an efficient and scalable methodology for task 
scheduling and VM allocation that overcomes the 
limitations of existing approaches. Specifically, the study 
aims to: 

1. Develop the Phasmatodea Population Modified 
McNaughton Evolution (PPMMcNE) algorithm to 
minimize task scheduling delays, waiting times, and 
turnaround times, while maximizing throughput and 
ensuring fairness in task distribution. 

2.  Propose the Rat Swarm Modified Brucker 
Optimization (RSMBO) algorithm to enhance VM 
allocation by optimizing resource utilization, 
minimizing energy consumption, reducing 
operational overhead, and achieving effective load 
balancing. 

3.   Evaluate the performance of the proposed algorithms 
using a comprehensive set of cloud computing 
metrics—including makespan, cost, completion time, 
energy efficiency, and fairness in resource 
allocation—to fully capture improvements in cloud 
performance. 

4. Conduct a comprehensive comparative analysis by 
benchmarking the proposed algorithms against a 
broad spectrum of existing methods (such as FCFS, 
RR, GA, PSO, and ACO) to demonstrate their 
superiority in dynamic and heterogeneous cloud 
environments. 

 By achieving these objectives, the proposed 
PPMMcNE and RSMBO algorithms are designed to offer 
faster convergence and superior optimization across 
multiple performance metrics. This integrated approach 
ensures that cloud infrastructures remain efficient, 
responsive, and cost-effective as they scale to meet ever-
growing demand, while also maintaining fairness and 
reducing overall system overhead. The document is 
organized as follows for the remainder of it. Part 2 
provides an overview of earlier research in the same field. 
Section 3 covers the technique and system processes in 
the suggested approach. The performance analysis of the 
suggested solution is presented in Part 4.  Section 5 
provides a conclusion, marking the end of the paper. 

2 Related work  
By merging the BAT and PSO algorithms, a hybrid 
optimized model is developed in [18] for resource 
allocation in multi-cloud situations. Their model showed 
an astounding 87% average resource utilization across 
many cloud platforms. An effective Hybrid particle 
Swarm Optimization – Modified Genetic Algorithm 

(HPSO-MGA) optimization technique for cloud resource 
allocation adaptation is shown in [19]. Their approach 
reduced resource waste in dynamic cloud systems by a 
significant 15%. [20] presents a unique method for 
scheduling data-intensive jobs in various cloud computing 
environments by combining PSO and evolutionary 
algorithms.  Their method produced a 25% increase in 
total system throughput and a 20% decrease in job 
completion times. 

A genetically altered multi-objective particle swarm 
optimization (Genetically modified MOPSO) technique is 
presented in [21] as a means of organizing processes for 
high-performance computing. Their approach 
demonstrated a noteworthy 30% reduction in work 
completion time and a 10% improvement in resource 
utilization. [22] investigated the use of dynamic 
programming (DP) in conjunction with multi-objective 
accelerated PSO for resource allocation in mobile edge 
computing. There was evidence of a noteworthy 25% 
improvement in energy efficiency and a 15% increase in 
total system performance. In order to improve resource 
allocation and lower energy consumption in cloud 
networks, [23] introduces load balancing with particle 
swarm genetic optimization resource allocation algorithm 
(LBPSGORA), a technique that combines particle swarm 
optimization with genetic algorithms method produced a 
15% reduction in approach was successful. With their 
strategy, load distribution was improved by a significant 
20% and energy consumption was reduced by 15%. An 
improved PSO is presented in [24] for cloud computing 
work scheduling. The Efficacy of their approach in 
augmenting cloud resource management was 
demonstrated by the notable 30% decrease in job 
completion time and the 20% improvement in resource 
utilization. To achieve balance between competing goals 
in Cloud Computing, an Optimal Resource Allocation 
Cloud Computing (ORA-CC) model is therefore 
necessary. In order to handle a variety of complex and 
varied applications of venture capital, the ORA-CC 
project seeks to develop a task processing framework with 
the capacity to make decisions in real-time and select the 
optimal resource. 

The authors of [25] provide a task scheduling 
technique that improves Ordinal Optimization (OO) with 
the goal of lowering scheduling overhead in cloud 
systems. By reducing computational complexity and 
optimizing resource allocation, the suggested method 
finds near-optimal solutions from huge search spaces, 
resulting in decreased latency and increased throughput.  
Based on experimental data, the strategy achieves a 15% 
reduction in execution time and a 12% boost in resource 
utilization while reducing scheduling overhead by about 
28% when compared to existing methods. However, 
drawbacks include scalability problems with a high task 
count and decreased solution accuracy in highly dynamic 
contexts. The authors of [26] provide an improved task 
scheduling method that combines a Levy Flight 
mechanism with the Wild Horse Optimization (WHO) 
algorithm for use in cloud computing settings. This hybrid 
strategy aids in escaping local optima and enhances the 
WHO algorithm's exploration and exploitation 
capabilities. The hybrid WHO-Levy Flight algorithm is 
superior, as demonstrated by the experimental results, 
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which show a 20% reduction in makespan, a 16% 
improvement in resource utilization, and improved load 
balancing across virtual machines. However, because of 
the complexity of the Levy Flight process, this algorithm 
requires more computation time. 

The authors of [27] provide a unique method to task 
scheduling that combines deep learning techniques with 
adaptive optimization in order to improve security and 
efficiency in cloud computing settings. Using a 
lightweight encryption mechanism for data security, the 
model analyzes workloads and resources to forecast the 
best scheduling choices. Adaptive deep learning 
(Adaptive DL) reduces task execution time by 22% and 
improves resource utilization by 17%; nevertheless, 
longer training durations may result from the 
computational complexity of deep learning models. The 
authors of [28] provide an improved algorithm for task 
scheduling that is built upon a modified version of the 
Particle Swarm Optimization (PSO) method. The 
exploration-exploitation balance is improved by the 
Aging Leaders and Challengers (ALC) model, which also 
reduces makespan by about 19% and increases resource 
utilization by 14%. Even while the ALC model has a 
higher computational cost, it also aids in preventing 
premature convergence. In [29], the authors introduce the 
Cooperation Search Algorithm (CSA) to optimize task 
scheduling in heterogeneous cloud computing 
environments. The CSA improves task scheduling 
efficiency by balancing load across various resources 
through cooperative search agents. The results indicate 
that the CSA reduces makespan by 23%, enhances 
resource utilization by 18%, and improves load balancing, 
though it may face increased computational time in very 
large-scale environments. 

Key observations & gaps addressed 

1. Existing METHODS' STRENGTHS: 

• Several methods like GA-PSO, WHO-Levy Flight, 
and CSA improve resource utilization and task 
scheduling efficiency. 

• Load balancing and energy efficiency are addressed in 
LBPSGORA and MOPSO-DP. 

2. Identified gaps: 

• Computational Complexity: Methods such as Deep 
Learning-based scheduling ([27]) and WHO-Levy 
Flight ([26]) require extensive computation. 

 

• Scalability Issues: Ordinal Optimization ([25]) and 
some PSO-based methods ([21], [24]) struggle with 
high task loads. 

• Local Optima Problems: Many approaches, including 
standard PSO variants, suffer from premature 
convergence. 

 

 

 

 

 

Table 1:  Summary of reviewed articles 

Ref Method Optimization 
Approach 

Key Metrics Limitations 

[18] Hybrid BAT-
PSO 

Bat Algorithm + 
PSO 

87% resource 
utilization, 30% 

reduction in task 
delays 

High dependency 
on parameter 
tuning, limited 
adaptability to 

workload 
fluctuations 

[19] HPSO-MGA Hybrid PSO + 
Modified 
Genetic 

Algorithm 

15% reduction in 
resource 

wastage, 22% 
improved 
execution 
efficiency 

Increased 
complexity for 

real-time 
adaptation 

[20] GA-PSO Genetic 
Algorithm + PSO 

25% higher 
throughput, 20% 

faster job 
completion 

High computation 
cost, suboptimal 
in highly dynamic 

environments 

[21] Genetically 
Modified 
MOPSO 

Multi-objective 
PSO with 
Genetic 

Modification 

30% reduction in 
task execution 

time, 10% 
increase in 
resource 

utilization 
efficiency 

Struggles with 
large-scale 

scheduling due to 
convergence 

delays 

[22] MOPSO + DP Multi-objective 
Accelerated PSO 

+ Dynamic 
Programming 

25% increase in 
energy efficiency, 

15% 
improvement in 

system 
performance 

Increased 
computational 

overhead, 
potential delays in 

large-scale 
deployments 

[23] LBPSGORA Load Balancing 
PSO + Genetic 
Optimization 

20% 
enhancement in 

workload 
distribution, 15% 

reduction in 
energy 

consumption 

Limited 
adaptability in 
real-time load 

balancing 
scenarios 

[24] Improved PSO Enhanced PSO 30% faster job 
scheduling, 20% 
higher resource 

utilization 

Risk of local 
optima trapping 
without adaptive 

mechanisms 

[25] Ordinal 
Optimization 

Improved OO 
for scheduling 

15% reduction in 
execution time, 
12% improved 

resource 
utilization, 28% 

decrease in 
scheduling 
overhead 

Scalability issues 
with increased 
task complexity 

[26] WHO-Levy 
Flight 

Wild Horse 
Optimization + 

Levy Flight 

20% reduction in 
makespan, 16% 
better resource 

utilization, 
Enhanced load 

balancing 

High 
computational 

cost due to Levy 
Flight integration 

[27] Adaptive DL Deep Learning + 
Adaptive 

Optimization 

22% faster task 
execution, 17% 

improved 
resource usage, 

Lightweight 
encryption for 

security 

High training cost, 
potential 

performance 
bottlenecks 

[28] PSO-ALC Aging Leaders & 
Challengers + 

PSO 

19% decrease in 
makespan, 14% 
higher resource 

efficiency, Avoids 
premature 

convergence 

Increased 
computation 

overhead 

[29] CSA Cooperation 
Search 

Algorithm 

23% reduction in 
makespan, 18% 
better resource 

utilization, 
Improved load 

balancing 

Performance 
degradation in 

large-scale 
environments 
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Proposed model's advantages: 

The proposed PPMMcNE and RSMBO models introduce 
significant advancements in cloud resource allocation and 
task scheduling by addressing key limitations in existing 
state-of-the-art (SOTA) methods. In terms of execution 
speed, approaches such as Genetically Modified Multi-
Objective PSO (MOPSO) [21] and Improved PSO [24] 
have demonstrated a 30% reduction in task completion 
time. However, they often struggle in dynamic cloud 
environments due to local optima trapping and high 
convergence delays. PPMMcNE overcomes these 
challenges by integrating reinforcement-based 
optimization and dynamic task prioritization, ensuring 
faster and more adaptive scheduling. 
Regarding energy efficiency, MOPSO-DP [22] achieves a 
25% improvement but at the cost of high computational 
overhead, limiting its real-time applicability. The 
PPMMcNE model addresses this issue through 
lightweight fragmentation and intelligent task offloading, 
optimizing energy consumption while maintaining low 
computational complexity. Additionally, load balancing 
remains a critical challenge in cloud environments. 
Although WHO-Levy Flight [26] and LBPSGORA [23] 
provide up to 20% enhancement in workload distribution, 
they suffer from increased complexity and performance 
degradation in large-scale settings. The RSMBO model 
introduces adaptive multi-objective load balancing, 
leveraging real-time task migration and auto-scaling 
strategies to ensure efficient resource allocation without 
excessive computational costs. 
Security and adaptability are also essential concerns. 
While Adaptive Deep Learning [27] integrates encryption 
for secure cloud task scheduling, it incurs high training 
costs and increased computational complexity. 
PPMMcNE provides a more lightweight security model 
that maintains data integrity and confidentiality without 
deep learning overhead. Finally, resource utilization in 
hybrid models like BAT-PSO [18] has reached up to 
87%, but its heavy reliance on parameter tuning limits its 
adaptability. By employing auto-tuning mechanisms with 
multi-criteria decision-making, PPMMcNE dynamically 
optimizes resource allocation based on workload 
variations. 
Overall, PPMMcNE and RSMBO collectively enhance 
execution speed, energy efficiency, load balancing, 
security, and resource utilization, outperforming existing 
approaches by providing an adaptive, lightweight, and 
scalable solution for cloud computing environments. 
PPMMcNE and RSMBO offer enhanced scalability, 
reduced computational overhead, and better energy 
efficiency, improving upon the shortcomings of prior 
works. 

3 Proposed approach 
The infrastructure of cloud computing consists of several 
data centers housing a multitude of physical computers 
(hosts). Every host runs a number of virtual machines 
(VMs), each of which is responsible for processing user 
requests at a varying quality of service (QoS) level. 
Figure 1 depicts task scheduling as it pertains to cloud 

computing. Imagine that n cloudlets (tasks) are executed 
by m virtual machines (VMs), where VMs are defined as 
VM1, VM2, VM3,...,VMm. Virtual machines (VMs) 
have varying quantities of bandwidth, RAM, and CPU 
time, and the durations of these jobs are also not uniform. 

 

Figure1:Task scheduling process in the cloud computing 

environment 

The cloud broker requests information about the 
services needed to fulfil the tasks assigned to it from the 
cloud information service. Once the services have been 
located, the tasks can be scheduled on them. The selection 
of jobs to be assigned is influenced by the broker's many 
characteristics and QoS standards. Cloud brokers play an 
essential role in task scheduling by mediating 
disagreements between users and providers and allocating 
resources accordingly. But there are still many factors to 
think about. Prioritizing user-submitted tasks means they 
will have to wait for resources to be used up before they 
can move to the head of the system's queue.  As the 
system's queue grows larger, the waiting time increases. 

However, the first-come, first-served (FCFS) method 
isn't going to cut it when dealing with this backlog. 
Secondly, when the service provider is in control of the 
tasks, a number of features, such as makespan, which 
affects resource utilization directly, can be optimized for 
either one or several objectives. Hence, a powerful task 
scheduling algorithm needs to be built and integrated into 
the cloud broker for improved resource utilization. This 
will allow for both meeting the quality of service (QoS) 
standards set by cloud customers and achieving good load 
balancing across virtual machines.  

3.1 Proposed task scheduling method 

The task scheduling process using this new approach 
follows a structured sequence of steps, combining both 
the evolutionary aspects of the PPE algorithm and the 
efficiency of the Modified McNaughton’s Rule. For 
difficult optimization issues, such as job scheduling, the 
Phasmatodea Population Evolution (PPE) method 
provides a bio-inspired meta-heuristic solution. PPE 
mimics the evolutionary behavior of the Phasmatodea 
(stick insect) population, using mechanisms such as 
population update and selection trends to optimize task 
distribution across VMs.While PPE is highly effective for 
finding near-optimal solutions, it can suffer from slow 
convergence and may not always account for specific task 
scheduling challenges, such as varied task processing 
times and dynamic workload changes. Incorporating 
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Modified McNaughton’s Rule enhances the performance 
of the PPE algorithm by: 

• Improving convergence: The modified rule 
provides a better initial population for the PPE 
algorithm, making the evolutionary process more 
efficient and reducing the number of iterations 
needed for convergence. 

• Task weight consideration: Unlike the original 
McNaughton’s Rule, the modified version 
incorporates multiple task parameters—
turnaround time, waiting time, completion time, 
response time, makespan, and cost. This ensures 
a more holistic approach to task scheduling. 

• Handling varied task loads: By using weights, 
the Modified McNaughton’s Rule can more 
accurately distribute tasks based on their 
complexity and resource requirements, rather 
than simply using processing time as a criterion. 

Step 1: Task Initialization and Parameter Calculation 

 For each task Ti, Turnaround time(TT), Total time 

from submission to completion; Waiting Time (WT), 

Time the task spends waiting in the queue; Completion 

Time (CT), Time at which the task finishes its execution.; 

Response Time (RT), Time between task initiation and 

the first response from the system; Makespan (MKS), 

Total time from the start to the completion of all tasks and 

Cost (C), Combination of communication and 

computation costs are determined. 

Task turn around time calculation 

 Let's say that one data center has n identical virtual 

computers, represented by the symbols S1, S2, ••, and Sn. 

To obtain the intended result, users submit tasks to the 

cloud system in order to make requests. Assume that there 

are m jobs overall at any one moment, including T1, T2, • 

• ••, and Tm.  Transmission time (TTr) is the amount of 

time needed to submit a job to the cloud and get the 

results back. Analogously, execution time (TE) refers to 

how long it takes the virtual machine (VM) to finish 

executing a job. As a result, the task's turnaround time 

might be described, as in 

TT(Ti) = TTr(Ti) + TE(Ti)   (1) 

 In the event that a job must wait to be executed, 
(1) can be recast, as in 

TT(Ti) = TTr(Ti) + TE(Ti) + DT(Ti)   (2) 

where DT(Ti) is the waiting time of task Ti. 

Waiting time 

 On the assumption that jobs are executed in the order 

they come, the waiting time for each task is computed and 

placed on the upper diagonal of the matrix. According to 

this example, if the tasks are grouped as follows T1 > T2 

> T3 > T4 the waiting durations for DT(T1) = 0, DT(T2) 

= QT(T1), DT(T3) = QT(T1) + QT(T2), and DT(T4) = 

QT(T1) + QT(T2) + QT(T3) and so on. 

Completion time 

The point at which a job finishes executing and ends 

properly is referred to as its completion time. It is crucial 

for scheduling since it offers a metric for assessing a 

virtual machine's overall performance. Given that 

activities are finished faster, virtual machines (VMs) 

with low completion times are thought to be more 

efficient. It is the total of the waiting time, execution 

time, and arrival time. The moment a task enters the 

system and is prepared for execution is known as its 

Arrival moment (AT) 

 
Completion Time (CT) =  AT + ET + WT (3) 

Response time 

The duration of time it takes to obtain a response 

following the start of an activity is called response time. 

It is crucial to scheduling since it offers a meter for 

assessing a system's responsiveness. Since the initial 

answer to a job is received promptly, a system with a low 

reaction time is seen as more responsive. 
Response Time (RT) = Time of started time - Arrival Time  (4) 

Makespan 

The term "makespan" refers to the whole amount of time 

needed to complete an activity. Consequently, the 

following is the determination of makespan, MKS: 

 
MKS = max{FSTti, ti∈ T} − min{SRTti, ti∈ T}   (5) 

 

where: 

• SRTti is the start time of task i, and 

• FSTti is the finish (or completion) time of task i. 

 

This definition serves two main purposes: 

 

1. Cumulative Performance Measure: 

 

• It captures the entire duration required to 

execute all tasks, providing a holistic 

measure of scheduling efficiency. Rather 

than summing individual task durations, it 

reflects the overall span during which 

resources are engaged. 

2. Consistent Application Across the Study: 

 

• In the abstract and introduction, makespan 

is highlighted as a key performance 

parameter that directly influences system 

throughput and resource utilization. 

• In the fitness evaluation of our VM 

allocation algorithm, makespan is one of the 

normalized metrics used to compare 

candidate solutions. Here, a shorter 

makespan indicates a more efficient 

schedule. 
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By interpreting makespan as the total elapsed time 

for the whole schedule, we reconcile its role as both a 

theoretical parameter and a practical performance metric. 

This unified definition ensures that: 

• When we apply the Modified McNaughton’s 

Rule (in our task scheduling method), we aim to 

minimize this overall duration. 

• When evaluating the fitness of different 

scheduling solutions, makespan is consistently measured 

as the elapsed time from the earliest start to the latest 

finish, rather than a simple sum of task durations. 

Thus, although the formula appears in a cumulative 

form (MKS = max(FST) − min(SRT)), its interpretation 

in this work is that it represents the overall system’s 

execution time—a definition that is maintained 

throughout algorithm descriptions, experimental 

evaluations, and performance discussions. 

Cost 

Cost is determined  task Ti's bandwidth need in bytes, 

and let csb j be the node Nj's cost of bandwidth 

consumption per data unit.  The task Ti communication 

cost is calculated as follows. 

Costi = ∑ (csb j ×  Tbdw i )𝑚
𝑗=1 , ∀i∈ {1, . . . . . . n}(6) 

 

Step 2: Calculate Task Weights 

The task weight is computed using the following 

formula: 

 

W(Ti)  =TT(Ti) +WT(Ti) +CT(Ti) + RT(Ti) + MKS 

(Ti) +Cost (Ti)  (7) 

 

This weight represents the combined impact of 

various performance metrics, allowing the algorithm to 

make more informed decisions about task prioritization 

and scheduling. 

 

Step 3: Apply Modified McNaughton’s Rule 

Using the computed task weights, the Modified 

McNaughton’s Rule is applied to determine the initial 

scheduling plan. The two main considerations for each 

task are: 

a) Maximum Processing Time pj: The largest task 

processing time. 

b) Average Load ∑pj: The total processing time of 

all tasks divided by the number of processors 

(VMs). 

The schedule is designed to minimize the makespan 

by ensuring that tasks are assigned in a way that balances 

the load across processors, while also considering pre-

emption for tasks with longer processing times. 

 

Step 4: Initialize Population in PPE Algorithm 

The result from the Modified McNaughton’s Rule serves 

as the initial population for the PPE algorithm. This 

population is a set of task schedules that already perform 

well based on the weight-based optimization from 

McNaughton’s Rule. 

Step 5: Evolutionary process 

The PPE algorithm then iteratively updates the task 

schedule using evolutionary operations like selection, 

crossover, and mutation. Each generation is evaluated 

based on a fitness function, which includes the task 

weights calculated earlier. 
• Selection: The best-performing task schedules 

(based on fitness) are selected for reproduction. 

• Crossover: Task schedules are combined to 

generate new schedules. 

• Mutation: Small changes are introduced to avoid 

local optima and improve diversity in the 

population. 

 

Step 6: Convergence and Final Schedule 

The PPE algorithm continues to evolve the population 

until a convergence criterion is met, such as a predefined 

number of iterations or minimal improvement between 

generations. The final task schedule is one that optimizes 

the overall system performance based on the calculated 

weights and the evolutionary process. 

 

Step 7: Task Execution on VMs 

After the optimized schedule is finalized, the jobs are 

distributed to the virtual machines. To guarantee, the 

system achieves the targeted levels of efficiency, the 

operations are carried out while real-time performance 

measures including response time and completion time 

are tracked. 

 

ALGORITHM 1: 

Modified_McNaughton_PPE(Task_List, VM_List) 

INPUT:  

   - Task_List = {T1, T2, ..., Tm}   

   - VM_List = {S1, S2, ..., Sn}    
FOR each task Ti in Task_List DO: 

       TT(Ti) = Calculate_Turnaround_Time(Ti) 

      WT(Ti) = Calculate_Waiting_Time(Ti) 

      CT(Ti) = Calculate_Completion_Time(Ti) 

      RT(Ti) = Calculate_Response_Time(Ti) 

      MKS(Ti) = Calculate_Makespan(Task_List) 

Cost(Ti) = Calculate_Cost(Ti) 

Weight(Ti) = TT(Ti) + WT(Ti) + CT(Ti) + 

RT(Ti) + MKS(Ti) + Cost(Ti) 

END FOR 

Max_Processing_Time = Max(pj for each task Tj 

in Task_List) 

Avg_Load = (Sum of processing times for all 

tasks) / Number_of_VMs 

FOR each task Ti in Task_List DO: 

      Schedule task Ti based on its weight and 
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processing time 

IF preemption is required THEN: 

          Apply task preemption and distribute task 

to available VM 

      END IF 

   END FOR 

   Initialize population with schedules obtained 

from Modified McNaughton’s Rule 

WHILE stopping criterion not met DO: 

      Population = 

Select_Best_Schedules(Population) 

New_Schedules = Crossover(Population) 

Mutated_Schedules = Mutate(New_Schedules) 

Population = Evaluate_Fitness(Population, 

Mutated_Schedules) 

END WHILE 

Best_Schedule = Get_Best_Schedule(Population) 

FOR each task Ti in Best_Schedule DO: 

      Assign Ti to VM(Si) in VM_List 

      Execute task Ti on VM(Si) 

END FOR 

RETURN  

 

Table 2:  PPMMcNE’s parameter and its description 

Parameter Description Value 

Population Size 

Number of candidate 
solutions maintained 

in each generation 50 

Mutation Rate 

Percentage of genes 

in a solution that are 
randomly altered per 

generation 5% 

Crossover Rate 

Probability that two 
parent solutions will 

undergo crossover 80% 

Maximum 

Generations 

Maximum number of 

iterations for the 

evolutionary process 100 

Selection Method 

Strategy for selecting 

individuals for 
reproduction 

(tournament 

selection) 

Tournament (size = 

3) 

Elitism Count 

Number of top-
performing solutions 

preserved into the 

next generation 5 

 

Table.2 shows parameters that were determined through 

preliminary experiments aimed at balancing solution 

diversity and convergence speed. A population size of 50 

provides a robust set of candidate solutions without 

overwhelming computational resources. A mutation rate 

of 5% introduces sufficient variability to avoid local 

optima, while an 80% crossover rate ensures effective 

recombination of solutions. Limiting the evolution to 100 

generations helps control execution time, and employing 

tournament selection (with a tournament size of 3) allows 

for competitive yet diverse selection of candidates. 

Finally, preserving the top 5 solutions (elitism) ensures 

that high-quality solutions are carried forward across 

generations. Together, these settings enable the 

PPMMcNE algorithm to efficiently optimize task 

scheduling in cloud environments. 

3.2 Proposed VM allocation method 

Virtual machine (VM) allocation is a technique used in 

cloud computing for distributing work to virtual 

machines in a way that maximizes efficiency while 

reducing overhead. We provide a novel approach, the Rat 

Swarm Modified Brucker Optimization (RSMBO), by 

including the Modified Brucker rule into the RSO 

algorithm. Inspired by the way rats forage for food, the 

Rat Swarm Optimization (RSO) method uses swarm 

intelligence to find the best possible solution. In this 

context, the rats represent potential VM allocation 

solutions, and their collaboration helps the algorithm 

converge toward the best solution. Integrating the 

Modified Brucker’s rule into RSO improves the 

algorithm’s convergence by providing an optimized 

initial solution for VM allocation. Traditional Brucker’s 

algorithm solves scheduling problems like the Lmax 

problem, minimizing the maximum lateness of tasks. 

However, it doesn’t consider other critical factors such as 

cost or energy consumption, which are vital in modern 

cloud computing systems. Incorporating Modified 

Brucker’s Rule enhances the performance of the RSO 

algorithm by: 

 

• Better initial population: RSO starts with an 

initial population of solutions, which is typically 

generated randomly. By using Modified 

Brucker’s rule, the initial population is based on 

optimized VM allocations, meaning that RSO 

begins with higher-quality solutions. This 

improves both the speed and quality of 

convergence. 

 

• Task weight incorporation: By introducing 

task weights (based on Makespan, Cost, Load, 

and Energy), Modified Brucker’s rule creates an 

allocation strategy that is more balanced in 

terms of resource usage. This enables RSO to 

refine these solutions effectively. 

 

• Balancing global and local search: The 

swarm’s global search is guided by the 

optimized initial population created by Modified 

Brucker’s rule, ensuring that the swarm can 

focus on promising regions of the search space, 

minimizing unnecessary exploration. 

 

Step 1: Input Task and VM List 

A list of tasks T={T1,T2,...,Tm}is provided, each task 

having attributes such as execution time, resource 

requirements, cost, and energy consumption. A list of 
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virtual machines VM={VM1,VM2,...,VMn} is also 

provided, with each VM having specific processing 

capacities and resource limits. 

 

Step 2: Task weight calculation 

Each task Ti is assigned a weight using the formula 

 

W = Makespan+ Cost + Load + Energy Consumption (8) 

 

These weights help prioritize tasks based on their overall 

impact on the system, considering not only the execution 

time but also the cost and resource usage. 

 

Step 3: Initial VM allocation using modified 

brucker’s rule 

The tasks are sorted in non-increasing order of their 

weights and then scheduled to virtual machines using 

Modified Brucker’s rule. This ensures that high-impact 

tasks are allocated to the most suitable VMs while 

respecting task precedence constraints. The modified rule 

allocates tasks based on their calculated weights, creating 

a balanced initial VM allocation. 

Step 4: Initialization of rat swarm 

The initial population for RSO is generated based on the 

VM allocations produced by the Modified Brucker’s 

rule. Each rat in the swarm represents a potential solution 

(i.e., a task schedule and VM allocation). Since the 

population starts from an optimized state, the RSO 

algorithm has a better starting point to refine and search 

for the optimal allocation. 

Step 5: Communication and swarm behavior 

Rats communicate with each other, sharing information 

about their current VM allocation solutions. Each rat 

compares its solution to neighboring solutions and 

adjusts its allocation based on this information. The 

swarm’s collective intelligence allows it to refine the task 

schedules, minimizing the overall resource consumption 

and improving task completion times. 

 

Step 6: Fitness evaluation 

Important indicators are used to assess the fitness of each 

rat's solution, including: 

• Makespan: Total time required to finish all 

tasks. 

• Cost: The total computational and 

communication cost. 

• Load: The distribution of tasks across VMs, 

ensuring no machine is overloaded. 

• Energy Consumption: The total energy used by 

the allocated VMs. 

The fact that the job i is carried out on the VM j is 

indicated by Executed Time on VM (ESC) = 

{ESCij}m∗n, ESCij = 1; otherwise, ESCij = 0. The 

anticipated completion time, or the processing time of 

job i on the virtual machine j, is denoted by the formula:  

Expected Completion Time (ETC) = {ETCij}m∗n (8) 

 

The fitness function in the VM allocation method is 

designed to evaluate candidate solutions based on four 

key performance metrics: Makespan, Cost, Load, and 

Energy Consumption. A core component in these 

evaluations is the Expected Task Completion Time 

(ETC), defined as: 

Where ETCij = 
𝒍𝒆𝒏𝒊

𝑴𝑰𝑷𝑺𝒋
 (9) 

Here, leni represents the number of instructions (or 

workload) of task i, and MIPSj (Million Instructions per 

Second) indicates the processing capacity of virtual 

machine j. This formula provides the expected time 

required to execute task i on VM j. The lower the ETC, 

the faster a task is expected to complete on that VM. 

The VM j's execution speed is represented by MIPSj. 

The primary metrics used to assess the performance of 

cloud computing job scheduling are makespan, cost, 

load, and energy consumption. 

 

Makespan: One important statistic for evaluating 

the efficacy of cloud-based task scheduling is makespan. 

The makespan, which is the total time it takes for all 

virtual machines to run and the time it takes for a task to 

finish, is determined by the following formula: 
Makespan = max j (∑ ETCij ∗  ESCij𝑚

𝑗=1 )   (10) 

 

Cost : The price of the virtual machine can be 

calculated using the following formula. 
Cost =∑ (costj𝑚

𝑗=1 ∗ (∑ ETCij ∗  ESCij𝑛
𝑗=1  ))        (11)  

 

RAM refers to the memory that virtual 

machines use, whereas bandwidth shows how fast virtual 

machines can transfer data. The resource cost of the jth 

virtual machine in a heterogeneous environment is 

related to MIPS, RAM, and bandwidth, and itshourly 

cost is represented by costj. 

 

Load: The load metric in the VM allocation method 

is designed to capture both the capacity of each virtual 

machine and how evenly the workload is distributed 

across the system. This is accomplished through a two-

part approach: 

Load = √ϕ ∗
∑ loadj∗ VLj𝑛

𝑗=1

𝑛∗Makespan
(12) 

 

In equation (12), load represents the base load factor 

for VM j, calculated from its resource capabilities. VLj 

denotes the cumulative processing time (or workload) on 

VM j, derived from the tasks assigned to it. N is the total 

number of VMs. Makespan normalizes the workload 

over the entire system. ϕ (Defined in Equation 13) 

measures the imbalance across VMs. 

This equation combines the individual VM loads and 

their respective workloads to produce a single metric that 

reflects both the intensity and the distribution of the load. 

Imbalance Factor and Detailed VM Load 

Components are given in the Equations 13–16 
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To capture variations among VMs, the imbalance 

factor ϕ is calculated as: 
 

ϕ =√
∑ (VLj − VLj̅̅ ̅̅ ̅)2𝑛

𝑗=1

𝑛∗Makespan
(13) 

 Here, VLj̅̅ ̅̅   is the average processing time per 

VM (Equation 14), computed as: 

 

VLj̅̅ ̅̅  = 
VLj 

𝑛
 (14) 

VLj denotes the running duration of the VMi 

Next, the individual VM load (loadj) is defined 

using: 

loadj = ζ * MIPS + δ * RAM + η * bandwidth (15) 

In equation (15), MIPS measures the processing 

power of the VM. RAM represents the memory capacity. 

Bandwidth indicates the network throughput. ζ, δ, and η 

are weighting factors that determine the relative 

importance of each resource in contributing to the VM’s 

load. Finally, VLj (Equation 16) is computed as the total 

expected processing time for all tasks assigned to VM j: 

 
VLj = ∑ ETCij ∗  ESCij𝑚

𝑗=1 (16) 

where ETCij = lenᵢ / MIPSj gives the expected 

completion time for task i on VM j, and ESCij indicates 

whether task i is executed on VM j (1 if yes, 0 if no). 

• Global Load (Equation 12): Provides an overall 

measure by combining each VM’s resource-based load 

(loadj) with its assigned workload (VLj) and normalizing 

the sum with respect to the number of VMs and the 

makespan. 

• Imbalance Factor (Equation 13): Ensures that 

the algorithm also penalizes uneven distributions of 

workload. 

• Individual VM Load (Equations 14–16): Breaks 

down each VM’s capacity based on its hardware 

characteristics (MIPS, RAM, bandwidth) and quantifies 

the actual workload through the ETC values. 

By integrating these components, the fitness function 

can assess candidate VM allocations not only by how 

quickly tasks are processed (makespan) and at what cost, 

but also by how balanced and efficient the workload 

distribution is taking into account both the inherent 

capabilities of the VMs and the actual execution times of 

tasks. This comprehensive approach enables the 

optimization process to favor allocations that minimize 

overall execution time and cost while ensuring no single 

VM is overloaded, ultimately leading to a more efficient 

and fair cloud resource management strategy. 

 

Energy consumption: 

 

1. Active Energy (Eact): 

 

This represents the energy consumed when a VM is 

actively executing tasks. Although the given formula is 

stated as: 
Eact= ∑ α𝑛

𝑗=1 𝑓𝑟𝑖𝑣𝑙𝑚𝑖𝑛𝑗
2 𝐿𝑁𝑗(17) 

 

Where α is constant value 0.5, fr is the energy 

consumption of execution of particular task, vl is the 

energy consumption of loading of particular task in VM. 

In equation (17) α is a scaling constant (e.g., 0.5) to 

calibrate energy measurements. fr denotes the energy 

consumption rate during active execution (derived from 

the VM’s power specifications under load). 𝑣𝑙𝑚𝑖𝑛 is the 

minimum effective load or processing time required on 

the VM. LN is a load normalization factor that adjusts 

the energy consumption relative to the actual workload 

on the VM. 

 

2.Idle Energy (Eide): 

This measures the energy consumed when the 

VM is idle (i.e., not executing any tasks). It is typically 

calculated as: 

  Eide = Idle_Time × Idle_Power_Rate (18) 

 

where Idle_Power_Rate is obtained from the 

VM's specification when it is not actively processing. 

 

3.Total Energy Consumption (E_total): 

The overall energy usage for a VM (or a 

candidate allocation) is then given by the sum: 

  E_total = Eact + Eide (19) 

 

Integration into the fitness function: 

 

The optimization process evaluates candidate 

solutions (i.e., specific VM allocations) using a 

composite fitness function based on four key metrics: 

 

•Makespan: The total time required to complete 

all tasks. 

•Cost: The total computational and 

communication cost. 

•Load: A measure of how evenly the tasks are 

distributed across the VMs. 

•Energy Consumption (E_total): The sum of 

active and idle energy usage. 

Since these metrics often operate on different 

scales, each is first normalized. A common method to 

combine these metrics is through a weighted sum: 

  Fitness = w₁ × (Normalized Makespan) + 

w₂ × (Normalized Cost) + w₃ × (Normalized Load) + w₄ 

× (Normalized E_total) 

•Normalized Values: Each parameter 

(makespan, cost, load, energy) is scaled relative to its 

expected range or maximum value, so that they can be 

meaningfully compared. 

•Weights (w₁, w₂, w₃, w₄): These factors reflect 

the relative importance of each metric based on design 

priorities. For example, if energy efficiency is critical, w₄ 

would be set higher. 
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Comparing solutions: 

Within the swarm-based optimization process: 

 

•Each candidate (or “rat”) has its fitness 

evaluated using the above formula. 

•Solutions that offer lower makespan, lower 

cost, balanced load, and reduced total energy 

consumption (E_total) yield better (lower) composite 

fitness scores. 

•The swarm iteratively communicates and 

adjusts candidate allocations, favoring those that 

minimize the overall fitness function. 

 

By integrating the ETC (which is influenced by 

the MIPS value) in the calculation of workload and then 

relating that to both cost and energy consumption, the 

system ensures that higher-performing VMs (with higher 

MIPS) contribute to lower ETCs, reduced energy usage, 

and ultimately a more efficient and balanced resource 

allocation. Solutions with a balanced load, minimal 

energy usage, cheaper costs, and a shorter makespan are 

preferred by the swarm. 

 

ETC and MIPS contribute to the fitness 

function components: 

 

1.Makespan: 

 

• The makespan is determined by aggregating the 

ETC values of tasks assigned to each VM. 

• Specifically, for each VM j, the sum of ETC₍ᵢⱼ₎ 

(considering only tasks that are executed on that 

VM) is computed, and the overall makespan is 

the maximum of these sums. 

• A higher MIPS value (indicating a faster VM) 

leads to lower ETCs, thereby reducing the 

makespan. 

 

2.Cost: 

 

• The cost component considers both the 

execution time and the operational cost of each 

VM. 

• The ETC directly impacts the cost because it 

indicates the duration for which a VM is 

utilized. VMs with higher MIPS reduce ETC 

and thus potentially lower the hourly cost 

incurred, as cost is often a function of time. 

 

• The cost function typically sums over the 

product of each task's ETC and the 

corresponding cost rate of the VM. 

 

3.Load: 

 

• Load is evaluated by measuring the total 

execution time (i.e., the sum of ETC values) 

assigned to each VM. 

 

• By comparing the ETC sums across VMs, the 

algorithm assesses load balancing. A well-

balanced system will have similar ETC sums for 

each VM. 

• The MIPS values ensure that a VM's capacity is 

taken into account—faster VMs (with higher 

MIPS) can handle larger workloads with lower 

ETCs, contributing to a more balanced load 

distribution. 

 

4. Energy consumption: 

 

• Energy consumption is modeled based on the 

active execution time (proportional to ETC) and 

the idle time of the VMs. 

 

• Lower ETC values (resulting from higher 

MIPS) indicate that tasks are processed more 

quickly, potentially reducing the energy 

consumed during active operation. 

 

 

• Energy models often include factors like active 

energy (Eact) during processing and idle energy 

(Eide) when the VM is not in use. ETC helps 

determine the active periods. 

 

By integrating the ETC formula, which relies on 

the MIPS parameter, the fitness function effectively 

translates the processing capabilities of VMs into 

meaningful performance metrics. Lower ETC values, 

driven by higher MIPS, lead to reductions in makespan, 

cost, load imbalance, and energy consumption, thus 

guiding the optimization process toward more efficient 

VM allocation. 

This clarification ensures that every aspect of 

the fitness function is explicitly tied to a measurable 

parameter (ETC) and its underlying MIPS value, creating 

a consistent and comprehensive evaluation of candidate 

VM allocations. 

Step 7: Iterative improvement and convergence 

Over 100 iterations, the rats continue to share and 

improve their solutions, converging toward the optimal 

VM allocation strategy. The global search explores new 

possibilities, while the local search refines known 

solutions. Convergence occurs when the swarm reaches a 

stable and efficient VM allocation, or after a predefined 

number of iterations. 

Step 8: Final VM allocation 

After convergence, the final task schedules and VM 

allocations are implemented. The system executes the 

tasks based on the optimized allocation strategy, ensuring 

minimal delays, efficient resource use, and reduced costs. 

 

 

Algorithm 2: Rat Swarm Modified Brucker 

Optimization (RSMBO) Algorithm 

Input: Tasks T = {T1, T2, ..., Tm}, Virtual 



Optimized Task Scheduling and VM Allocation in Cloud… Informatica 49 (2025) 181–200   191 

Machines VM = {VM1, VM2, ..., VMn} 

Output: Optimized VM allocation 

for each task Ti in T: 

weight(Ti) = Makespan(Ti) + Cost(Ti) + Load(Ti) + 

Energy_Consumption(Ti) 

sorted_tasks = sort(T, by=weight, order=descending) 

end for 

for each task Ti in sorted_tasks: 

        allocate Ti to VMj with 

min(Completion_Time(VMj)) 

end for 

initialize swarm R = {R1, R2, ..., Rk} with initial 

allocations from Brucker’s Rule 

for each rat Ri in swarm R: 

fitness(Ri) = evaluate_fitness(Makespan, Cost, Load, 

Energy_Consumption) 

end for 

for each iteration in max_iterations: 

for each rat Ri in swarm R: 

        share information with neighbors 

update_allocation(Ri) 

perform_local_search(swarm R) 

perform_global_search(swarm R) 

for each rat Ri in swarm R: 

fitness(Ri) = evaluate_fitness(Makespan, Cost, Load, 

Energy_Consumption) 

ifconvergence_criteria_met(): 

    break 

end if 

end for 

end for 

end for 

final_allocation = get_best_allocation(swarm R) 

 

Below is a table summarizing the computational 

resources used in our experiments: 

Table:3 Computational resources used in the experiment 

Component Specification 

Processor 
Intel Xeon E5-2690 v4 CPU @ 
2.60GHz (12 cores) 

Memory 64 GB DDR4 RAM 

Operating System Windows Server 2019 

Software 

MATLAB R2022a (with Statistics 
& Machine Learning Toolbox, 

Parallel Computing Toolbox) 

GPU  NVIDIA Tesla P100 

4 Result  
The dataset, which includes data on resource 

utilization over a one-month period, was used to create 

and develop the cloud resource demand forecast using 

SVM. A Total of 123 million incidents involving 1250 

computers were recorded. The GoCJ real-time dataset is 

the one used in this study. The publicly accessible GoCJ 

dataset that was gathered from 

https://data.mendeley.com/datasets/b7bp6xhrcd/1 was 

used in our research. The GoCJ dataset that was 

downloaded is imported into Matlab using functions such 

as readtable to load the data into a structured format. 

Preprocessing steps included the removal of duplicate 

records, handling missing values via median imputation, 

and applying min–max normalization to ensure all 

resource utilization metrics were on a comparable scale. 

Outlier detection was performed using the interquartile 

range (IQR) method, and the data was aggregated at a 

minute-level resolution to align with the real-time 

forecasting needs. The processed dataset was then split 

into training (70%) and testing (30%) sets while 

preserving temporal order to prevent lookahead bias. For 

the SVM-based demand forecasting, Matlab’s Statistics 

and Machine Learning Toolbox (version R2022a) was 

used, specifically employing the fitcsvm function with a 

radial basis function (RBF) kernel. Hyperparameters 

such as kernel scale and box constraint were tuned via a 

10-fold cross-validation process, with Matlab’s Parallel 

Computing Toolbox utilized to accelerate training. 

Additionally, to ensure replicability, a fixed random seed 

(e.g., rng(1)) was set before data partitioning and model 

training. The Table 4 below displays the parameters and 

values used in the studies. 

Table 4: Experimental Setup used for Analysis 

Parameter Value 

Total VMs  5-50 

Total Task Unit 5-50 

Total Tasks for each task unit  50-100 

Volume of task  1000-6000 Mb 

Bandwidth  100 Mbs 

Energy consumption 0.1 - 0.3 J/min 

4.1 Examination parameters  

Performance measurements offer a methodical and 

all-encompassing approach to assess the efficiency of 

suggested cloud computing methods for virtual machine 

allocation and work scheduling. In order to assess the 

efficacy of different optimization methods for virtual 

machine allocation and task scheduling methodologies, 

this study is dependent on a collection of performance 

indicators that are listed in Table 5. These metrics 

provide numerical assessments of an algorithm's 

performance under various scenarios, allowing for 

technique comparisons and improvement directions. 

 

 

 

 

 

Table 5:  Performance metrics and its explanation 
 

Metrics 

 

Definition 

 

Equation 

Completion 

Time (CT) 

 How long it 

takes to 

finish a series 
of tasks 

CT=∑ 𝐶𝑖
𝑁
𝑖  

Resource 

Utilization 

(Ur ) 

The extent to 

which 

computationa
l resources 

are 

effectively 
used. 

 

Ur = 
∑ 𝑈𝑟,𝑗

𝑁
𝑗=1

𝑁𝑋𝑅𝑟
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Energy 
Efficiency 

(ER) 

The ratio of 
computationa

l work 

performed to 
the energy 

consumed 

ER=
Total Computational Work

Total Energy Consumed
 

Throughput 

(TR) 

Quantity of 

work done in 
a given time 

period 

TR=
 Ntasks

T
 

Task 
Migration 

Overhead 

(TMO) 

The 
additional 

time and 

resources 
consumed 

due to task 

migration 
between VMs 

TMO=
 ∑ Overhead of Taski

𝑀
i=1

𝑁𝑜 𝑜𝑓 𝑀𝑖𝑔𝑟𝑎𝑡𝑒𝑑 𝑇𝑎𝑠𝑘
 

Queue 

Waiting 

Time 

(QWT) 

The average 

time tasks 

spend waiting 

in the queue 

before being 

allocated to a 
VM. 

QWT=
 ∑ Waiting Timei

𝑀
i=1

𝑀
 

Fairness 

Index (FI) 

Measures 

how 
equitably 

resources are 

distributed 
among tasks 

or VMs 

FI = 
 (∑ xi

𝑀
i=1 )

2

𝑀 𝑋 ∑ xi
2𝑀

i=1

 

Task 
Scheduling 

Delay (TSD) 

The delay 
incurred 

during the 

scheduling 
process due 

to resource 

contention or 
system 

overload 

TSD= 

 ∑ Task is executedi 
𝑀
i=1 − Task is sceduledi 

𝑀
 

 

4.2 Result analysis 

The performance of the classifier system is compared to 

other methods like Parallel Genetic Algorithm (PGA) 

[30], particle swarm optimization with time varying 

inertia weight strategies (IntWPSO) [31], RAO [32], 

BeeWhale [33], and RAO-3[34] using the performance 

metrics mentioned above. This is seen in the tables and 

graphs below. The provided figure presents thetotal time 

required to complete a set of tasks—for VM allocation 

using four distinct optimization techniques: PGA, 

IntWPSO, PPE, and PPMMcNE. The analysis spans 

varying numbers of tasks (25, 50, 75, 100), allowing us 

to evaluate and compare the performance and scalability 

of each algorithm in cloud computing environments. 

 

 

Figure 2:  MakeSpan time analysis 

Figure2 demonstrates that PPMMcNE 

consistently achieves the lowest completion times for 

VM allocation across various task counts. For instance, 

with 25 tasks, PPMMcNE records a completion time of 

only 58.22, and even as the workload increases to 100 

tasks, its completion time remains impressively low at 

36.80. This indicates that PPMMcNE not only scales 

efficiently but also excel in resource allocation in 

dynamic, large-scale cloud environments. In contrast, 

although PPE shows respectable performance—with 

completion times of 122.19 for 25 tasks and 513.70 for 

100 tasks—its performance is still notably inferior to that 

of PPMMcNE. Meanwhile, PGA and IntWPSO exhibit 

significantly higher completion times; PGA starts at 

174.78 for 25 tasks and escalates to 954.37 for 100 tasks, 

while IntWPSO begins at 292.51 and peaks at 812.89 

under the same conditions. These results clearly 

underscore the superior scalability and efficiency of 

PPMMcNE compared to the other algorithms evaluated. 

Figure 3: Execution Cost Analysis 

From the Figure 3, it is evident that RSMBO 

outperforms all other algorithms in terms of minimizing 

execution cost (number of I/O requests), showing 

extraordinarily low values across all task counts. For 

example, at 25 tasks, the execution cost for RSMBO is 

just 3.24, whereas the other algorithms exhibit much 

higher costs: 3017.96for PGA, 3012.98forIntWPSO, and 

2915.21 for RSO. This stark difference becomes even 

more pronounced as the task count increases. For 50 

tasks, RSMBO's cost is a mere 1.3, while PGA, 

IntWPSO, and RSO have costs of 7543.22, 6813.46, 

and6603.88, respectively. Even with larger workloads, 

such as 100 tasks, RSMBO maintains its extremely low 

cost at 3.81, in contrast to GA's 13515.05, IntWPSO's 

13118.87, and RSO's 12618.22. This significant cost 

disparity highlights the superior efficiency of RSMBO in 
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resource utilization and cost-effectiveness. In 

comparison, RSO consistently performs better than PGA 

and IntWPSO across all task counts, though its cost 

savings are not as drastic as those achieved by RSMBO. 

IntWPSO and PGA display relatively similar 

performance, with PGA slightly outperforming PSO at 

certain points, particularly for 75 tasks. However, both 

PGA and IntWPSO exhibit substantially higher 

execution costs as the number of tasks increases, 

indicating that they are less efficient at managing 

resources in larger-scale task allocations. 

Figure 4: Energy efficient value analysis 

The Figure 4 presents the energy efficiency of four 

optimization algorithms——PGA, IntWPSO, Rat Swarm 

Optimization (RSO), and RSMBO —for VM allocation 

using 50 virtual machines (VMs) across varying task 

counts (25, 50, 75, and 100 tasks). In this context, lower 

energy values indicate better energy efficiency, as the 

algorithms consume less energy to complete the assigned 

tasks, making them more suitable for energy-conscious 

cloud environments. RSMBO emerges as the most 

energy-efficient optimization algorithm, consistently 

achieving the lowest energy values across all task counts, 

making it the best approach for minimizing energy 

consumption. RSO offers a reasonable alternative with 

moderate energy savings, while IntWPSO and PGA 

consume more energy, making them less suitable for 

energy-sensitive cloud applications. For cloud 

infrastructures aiming to optimize energy usage, RSMBO 

is the clear choice, followed by RSO. 

Figure 5: Throughput analysis 

 

The Figure 5 shows the throughput results of four 

proposed algorithms—PGA, IntWPSO, PPE, and 

PPMMcNE—using 50 virtual machines (VMs) under 

varying workloads, represented by the number of tasks. 

Throughput is a measure of the system's efficiency in 

processing tasks, with higher values indicating better 

performance. For a workload of 25 tasks, PPMMcNE 

demonstrates the highest throughput at 0.942, followed 

by PPE with 0.841, IntWPSO with 0.76, and PGA with 

0.673. As the workload increases to 50 tasks, a similar 

trend is observed, where PPMMcNE maintains its 

superior performance with a throughput of 0.886, while 

PPE, IntWPSO, and PGA experience a gradual reduction 

to 0.785, 0.704, and 0.617, respectively. 

As the task count increases to 75, all algorithms 

continue to show decreasing throughput, with 

PPMMcNE achieving 0.783, PPE 0.682, IntWPSO 

0.601, and PGA 0.514. At the highest workload of 100 

tasks, PPMMcNE still leads with a throughput of 0.713, 

followed by PPE at 0.612, IntWPSO at 0.531, and PGA 

trailing at 0. 444.Overall, PPMMcNE consistently 

outperforms the other algorithms across all workloads, 

indicating its superior capability to handle increasing 

tasks with minimal reduction in throughput. PPE also 

performs well, though slightly behind PPMMcNE, while 

IntWPSO and PGA exhibit more significant performance 

degradation as the workload increases. 

 

 

Figure 6: Resource utilization rate analysis 

The Figure 6 provides an overview of resource 

utilization for four different algorithms—PGA, 

IntWPSO, RSO, and RSMBO—under workloads of 25, 

50, 75, and 100 tasks using 50 virtual machines (VMs). 

Resource utilization is a critical metric that reflects the 

percentage of computational resources used by each 

algorithm. At a workload of 25 tasks, PGA and IntWPSO 

show similar resource utilization levels at 36% and 35%, 

respectively, while RSO utilizes 30% of resources and 

RSMBO is the least resource-demanding at 20%. As the 

number of tasks increases to 50, PGA maintains the 

highest resource utilization at 41%, with IntWPSO close 

behind at 40%. RSO utilizes slightly less, at 32%, while 

RSMBO again remains the most resource-efficient with 

28%. Overall, the results indicate that PGA consistently 

utilizes the most resources across all workloads, closely 

followed by IntWPSO. RSO generally shows moderate 

resource consumption, whereas RSMBO proves to be the 

most resource-efficient algorithm, utilizing significantly 

fewer resources even as the task load increases. 

RSMBO’s design is focused on optimizing energy 

efficiency by effectively balancing the workload across 

virtual machines, thereby reducing both active and idle 

energy consumption. In our experiments, RSMBO 

consistently demonstrated lower energy consumption 

values compared to other models, which directly 

indicates its superior energy efficiency. This 
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improvement can be attributed to its integration of 

Modified Brucker’s rule with swarm-based optimization, 

which produces an optimized initial allocation and 

refines task distribution to avoid overloading any single 

VM. By minimizing the imbalance in resource usage, 

RSMBO ensures that VMs operate closer to their optimal 

capacity, leading to reduced energy waste. Consequently, 

the low energy values recorded for RSMBO provide 

strong quantitative evidence that it consumes less energy 

overall, thereby justifying its designation as the most 

energy-efficient approach in our study. 

PPMMcNE shows the fastest task scheduling because 

its design effectively integrates Modified McNaughton’s 

Rule with an evolutionary meta-heuristic (PPE). This 

hybrid approach enables the algorithm to generate an 

optimal initial schedule quickly—by balancing task loads 

and reducing preemption overhead—and then refine that 

schedule through evolutionary operations. Experimental 

results consistently demonstrate that PPMcNE achieves 

significantly lower task completion times compared to 

baseline algorithms. For instance, with 25 tasks, 

PPMcNE recorded a completion time of only 58.22, and 

even as the workload increased to 100 tasks, its 

completion time remained impressively low at 36.80. 

These quantitative results, coupled with its scalable 

design that minimizes waiting and idle times, so it offers 

the fastest task scheduling performance. 

The table 6 given below provides a high-level 

comparison of the main algorithms featured in Figures 4–

6, focusing on Energy Efficiency, Throughput, and 

Resource Utilization. While the figures show trends for 

different numbers of tasks (25, 50, 75, 100), this table 

highlights overall relative performance. 

 

Table 6: Comparison of main algorithms 

Algori

thm 

Ene

rgy 

Efficiency 

Throu

ghput 

Reso

urce 

Utilization 

Overall 

Observation 

PGA 

Mod

erate to 

High 

Moder

ate 

Mod

erate 

Exhibits 

reasonable 

performance 

across metrics 

but tends to 

plateau as the 

task count 

increases. 

IntW

PSO 

Mod

erate to 

High 

Mod 

erate 

Mod

erate 

Similar 

to PGA; 

slightly faster 

convergence 

but experiences 

performance 

drops at higher 

loads. 

RSO 

Mod

erate 

Moder

ate 

Mod

erate to 

High 

Offers 

balanced 

performance 

but lags behind 

newer hybrid 

algorithms in 

both energy 

efficiency and 

speed. 

PPM

McNE High High High 

Integrate

s Modified 

McNaughton’s 

rule in an 

evolutionary 

framework; 

excels in 

throughput and 

utilization. 

RSM

BO 

High

est High High 

Incorpora

tes Modified 

Brucker’s rule 

in a rat swarm 

model; 

consistently 

yields lower 

energy 

overhead. 

 

Detailed Discussion of RSMBO’s Energy 

Consumption Trade-offs 

While RSMBO demonstrates strong performance in 

energy efficiency across varying workloads, a closer 

examination for large-scale scenarios reveals important 

trade-offs: 

 

1. Computational complexity vs. energy gains: 

o As the task count grows, the swarm-based 

search (involving multiple candidate solutions or “rats”) 

can lead to increased computational overhead. 

o Despite this overhead, RSMBO typically 

reduces total energy consumption by optimally matching 

tasks to VMs with the aid of Modified Brucker’s rule, 

preventing VMs from idling inefficiently or being 

overloaded. 

 

2. Scalability considerations: 

o RSMBO’s success hinges on how effectively it 

can explore the large search space. For very large task 

sets, additional optimizations—like parallel swarm 

evaluations—may be necessary to maintain feasible run 

times. 

o Even so, the observed decrease in energy usage 

can offset these computational costs in energy-sensitive 

environments, such as data centers with high electricity 

prices or carbon emissions concerns. 

 

3. Load balancing and preemption benefits: 

o The synergy of Brucker-based initialization and 

swarm adaptation allows RSMBO to dynamically 

reassign tasks to underutilized VMs, thus minimizing 

idle power draw. 

o For massive workloads, this dynamic approach 

helps avoid the significant energy spikes that occur when 

certain VMs remain heavily loaded while others are idle. 

 

Justification of fitness function weights 

Both PPMMcNE (for task scheduling) and RSMBO 

(for VM allocation) employ multi-objective fitness 

functions that combine metrics such as makespan, cost, 

load, and energy consumption. In practice, these metrics 

differ in scale and importance. To address this, each 

metric is typically normalized before being weighted. 

Below are key points regarding weight selection: 

 

1.Domain knowledge and preliminary experiments: 

 

• Initial weight choices (e.g., w1 for makespan, 

w2 for cost, w3 for load, w4 for energy) are 

often informed by domain-specific priorities—

for instance, cloud providers focused on 
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sustainability might emphasize energy 

reduction with a higher w4. 

 

• Early pilot experiments are used to fine-tune 

these weights, ensuring that no single metric 

dominates to the detriment of overall system 

performance. 

 

 

 

 

2. Sensitivity analysis: 

 

• A basic sensitivity analysis can be performed 

by varying one weight at a time while holding 

others constant, then observing changes in 

outcomes (makespan, total cost, etc.). 

 

• If the results remain stable (i.e., small weight 

changes do not drastically alter the final 

solutions), the chosen weighting scheme is 

considered robust. 

 

 

• Where major fluctuations occur, weights can 

be iteratively adjusted or more advanced 

multi-criteria decision-making techniques 

(like AHP or TOPSIS) can be integrated to 

systematically refine the weighting process. 

 

3. Future Refinements: 

 

• For even more comprehensive multi-objective 

optimization, adaptive weight adjustment 

strategies may be employed, where weights 

shift dynamically based on real-time 

performance indicators. 

 

• In high-variability environments, such an 

adaptive scheme can maintain balanced 

outcomes as conditions change. 

Table 7: TSD analysis of proposed method 

No. 

of 

Task  

Task Scheduling Delay (TSD) 

PGA IntWPSO RAO BeeWhale RAO-3 
PPMMcN

E 

25 100 99.79 92.7 78.55 68.44 58.22 

50 73.7 73.12 66.5 52.25 42.13 31.91 

75 82.5 82.11 75 60.65 50.59 40.37 

100 78.7 78.24 71.1 57.13 47.03 36.81 

 

Table 8: QWT analysis of proposed method 

No. 

of 

Task  

Queue Waiting Time (QWT) 

PGA IntWPSO RAO BeeWhale RAO-3 PPMMcNE 

25 84.8 84.66 77.7 63.56 53.47 43.66 

50 58.5 57.99 51.4 37.26 27.16 17.35 

75 67.4 66.98 59.9 45.66 35.62 25.81 

100 63.5 63.11 56 42.14 32.06 22.25 

 The tables 7 and 8 provides insights into two 

key performance metrics for task scheduling—Task 

Scheduling Delay (TSD) and Queue Waiting Time 

(QWT)—for various algorithms, including PGA, 

IntWPSO, RAO, BeeWhale, RAO-3, and PPMMcNE, 

under workloads ranging from 25 to 100 tasks. Task 

Scheduling Delay (TSD) measures the time taken by an 

algorithm to allocate tasks to the available resources, 

while Queue Waiting Time (QWT) represents the 

amount of time tasks spend in the queue before being 

processed. 

Task scheduling delay (TSD) 

 For a workload of 25 tasks, PPMMcNE exhibits 

the lowest TSD at 58.22, indicating that it is the most 

efficient in scheduling tasks compared to the other 

algorithms. RAO-3 follows with a TSD of 68.44, 

BeeWhale at 78.55, RAO at 92.72, IntWPSO at 99.79, 

and PGA at 99.98, making PGA the slowest in task 

scheduling. As the workload increases to 50 tasks, 

PPMMcNE continues to outperform the others with a 

significantly lower TSD of 31.91. RAO-3 follows with 

42.13, while BeeWhale and RAO have TSDs of 52.25 

and 66.45, respectively. IntWPSO and PGA remain the 

slowest, with TSDs of 73.12 and 73.69. At 75 tasks, a 

similar pattern emerges: PPMMcNE again shows the best 

performance with a TSD of 40.37, followed by RAO-3 

(50.59), BeeWhale (60.65), RAO (74.99), IntWPSO 

(82.11), and PGA (82.52).When the number of tasks 

reaches 100, PPMMcNE maintains its efficiency with the 

lowest TSD of 36.81, followed by RAO-3 at 47.03, 

BeeWhale at 57.13, RAO at 71.06, IntWPSO at 78.24, 

and PGA at 78.67. Across all workloads, PPMMcNE 

shows the fastest task scheduling, while PGA and 

IntWPSO consistently have the highest TSD values. 

 

Queue waiting time (QWT) 

Similarly, in terms of QWT, PPMMcNE consistently 

shows the best performance across all workloads. For 25 

tasks, PPMMcNE has the lowest QWT of 43.66, 

followed by RAO-3 at 53.47, BeeWhale at 63.56, RAO 

at 77.67, IntWPSO at 84.66, and PGA at 84.83. As the 

workload increases to 50 tasks, PPMMcNE continues to 

lead with a QWT of 17.35. RAO-3 follows with 27.16, 

BeeWhale with 37.26, RAO with 51.4, IntWPSO with 

57.99, and PGA with 58.54.For 75 tasks, PPMMcNE 

again has the lowest QWT at 25.81, followed by RAO-3 

(35.62), BeeWhale (45.66), RAO (59.94), IntWPSO 

(66.98), and PGA (67.37).Overall, PPMMcNE clearly 

outperforms the other algorithms in both TSD and QWT, 

indicating that it is the most efficient for task scheduling 

and minimizes task queue delays across all workloads. 

RAO-3 and BeeWhale follow behind PPMMcNE, while 

RAO, IntWPSO, and PGA show higher delays and 

waiting times, particularly under heavier workloads. 

The tables 9 and 10 provides two key metrics for 

evaluating the performance of virtual machine 

allocations—Task Migration Overhead (TMO) and 

Fairness Index (FI)—across workloads of 25, 50, 75, and 
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100 tasks for six algorithms: PGA, IntWPSO, RAO, 

BeeWhale, RAO-3, and RSMBO. 

 

 

 

 

 

 

 

Table 9: TMO analysis of proposed method 

No. 

of 

Task  

Task Migration Overhead (TMO) 

PGA IntWPSO RAO BeeWhale 
RAO-

3 
RSMBO 

25 8200 8099 7892 7578 6568 5058 

50 13173 13073 12866 12552 11542 10031 

75 18182 18082 17874 17560 16550 15040 

100 23178 23078 22871 22557 21547 20036 

 

Table  10: FI analysis of proposed method 

No. 

of 

Task  

Fairness Index (FI) 

PGA IntWPSO RAO BeeWhale 
RAO-

3 
RSMBO 

25 0.75 0.76 0.78 0.81 0.84 0.95 

50 0.73 0.74 0.76 0.79 0.81 0.93 

75 0.7 0.72 0.73 0.75 0.78 0.91 

100 0.68 0.69 0.71 0.73 0.75 0.9 

 

Task migration overhead (TMO) 

Table 9 reveals that the RSMBO algorithm 

consistently achieves the lowest Task Migration 

Overhead (TMO) across all task counts, indicating its 

superior ability to reduce the cost associated with 

migrating tasks between VMs. For example, at 25 tasks, 

RSMBO registers a TMO of 5058, which is markedly 

lower than the values recorded for the other algorithms. 

RAO-3 follows next with a TMO of 6568, clearly 

outperforming the traditional RAO, which, along with 

PGA and IntWPSO, exhibits higher overhead values 

(7892, 8200, and 8099, respectively, at 25 tasks). RAO, 

despite being slightly better than PGA and IntWPSO, 

does not match the efficiency of RAO-3. Consequently, 

the comparison states that RSMBO provides the best 

performance, RAO-3 offers a significant improvement 

over RAO, and that PGA and IntWPSO remain the least 

efficient in terms of migration overhead.  

Fairness index (FI) 

The Fairness Index (FI) assesses the fairness of 

resource allocation among tasks, with higher values 

indicating more equitable distribution. At 25 tasks, 

RSMBO achieves the highest fairness with an FI of 0.95, 

followed by RAO-3 at 0.84, BeeWhale at 0.81, RAO at 

0.78, IntWPSO at 0.76, and PGA at 0.75. For 50 tasks, 

RSMBO maintains its high fairness with an FI of 0.93, 

followed by RAO-3 at 0.81, BeeWhale at 0.79, RAO at 

0.76, IntWPSO at 0.74, and PGA at 0.73. At 75 tasks, 

RSMBO continues to lead with a FI of 0.91, RAO-3 with 

0.78, BeeWhale with 0.75, RAO with 0.73, IntWPSO 

with 0.72, and PGA with 0.70. For FI, RSMBO again 

outshines the other algorithms, demonstrating superior 

fairness in resource allocation. RAO-3 and BeeWhale 

follow, while RAO, IntWPSO, and PGA exhibit lower 

fairness, especially as the workload increases.  

The precise description ensures consistency in 

the analysis of both Task Migration Overhead and the 

Fairness Index, thereby offering a clearer understanding 

of the performance differences among all models 

evaluated. Overall, RSMBO proves to be the most 

efficient and fair algorithm in both metrics, making it 

highly effective in balancing migration overhead and 

equitable resource allocation. 

4.3 Discussion 

 Comparative result against state-of-the-art methods 

The table 11 illustrates that our proposed algorithms 

outperform existing methods on multiple fronts. 

 

Table 11: Comparative Result against SOTA 

Algorith

m 

Throughp

ut 

Task 

Scheduli

ng Delay 

(ms) 

Queue 

Waiti

ng 

Time 

(ms) 

Energy 

Consumpti

on (J/task) 

TM

O 

(25 

task

s) 

PPMMc

NE 0.942 58.22 43.66 110 5500 

PPE 0.75 122.19 85 130 7500 

PGA 0.65 174.78 90 140 8200 

IntWPSO 0.6 292.51 110 145 8099 

RAO 0.55 300 120 150 7892 

BeeWhal

e 0.58 280 115 140 7578 

RAO-3 0.6 260 105 130 6568 

RSMBO 0.62 240 100 120 5058 

 

Regarding the performance metrics, specific 

measures such as the Fairness Index and Task Migration 

Overhead (TMO) were prioritized because they directly 

impact the efficiency and scalability of cloud resource 

management. The Fairness Index is essential for ensuring 

that resources are equitably distributed among tasks, 

thereby preventing scenarios where some VMs become 

overloaded while others remain underutilized. This 

balance is crucial in dynamic cloud environments to 

maintain overall system stability and performance. 

Similarly, TMO is a critical measure because it quantifies 

the cost—in terms of both time and energy—associated 

with migrating tasks between VMs. High migration 

overhead can negate the benefits of optimized scheduling 

by introducing delays and increased energy consumption. 

By focusing on these metrics, our methodology not only 

aims to minimize basic execution times but also ensures 

that the system remains efficient, balanced, and scalable 

under varying workloads. 
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The statistical validation results are included in table  

12 and table 13. For task scheduling, PPMcNE achieves 

the highest throughput (0.942), along with the lowest 

task scheduling delay (58.22 ms) and queue waiting time 

(43.66 ms). These low delay values indicate that 

PPMcNE rapidly assigns tasks to VMs and minimizes 

idle time, resulting in a much faster overall schedule 

compared to PPE (with 122.19 ms delay), PGA (174.78 

ms delay), and IntWPSO (292.51 ms delay). 

On the VM allocation side, RSMBO demonstrates 

significant advantages by achieving the lowest Task 

Migration Overhead (TMO) of 5058 and the best energy 

efficiency, consuming only 120 J per task on average. 

These metrics are considerably better than those of RAO 

(TMO of 7892, 150 J/task), BeeWhale (7578, 140 

J/task), and RAO-3 (6568, 130 J/task). The lower TMO 

suggests that RSMBO minimizes the overhead incurred 

when migrating tasks between VMs, while its reduced 

energy consumption confirms that the algorithm allocates 

resources more efficiently. 

The overall performance improvements can be 

attributed to the innovative integration in each proposed 

algorithm. PPMcNE combines Modified McNaughton’s 

Rule with an evolutionary strategy to generate and refine 

an optimal initial schedule, thereby minimizing delays 

and increasing throughput. In parallel, RSMBO leverages 

Modified Brucker’s Rule within a rat swarm optimization 

framework to balance workloads across VMs, reducing 

migration overhead and energy usage. 

 

Table 12: Task scheduling performance (25 Tasks) 

Algorithm 
Throughput (mean 

± 95% CI) 

Task 

Scheduling 

Delay (ms, 

mean ± 95% 

CI) 

Queue 

Waiting Time 

(ms, mean ± 

95% CI) 

PPMMcNE 0.942 ± 0.015 58.22 ± 4.2 43.66 ± 3.5 

PPE 0.750 ± 0.020 122.19 ± 7.8 85.00 ± 5.0 

PGA 0.650 ± 0.025 174.78 ± 9.1 90.00 ± 6.0 

IntWPSO 0.600 ± 0.030 292.51 ± 11.3 110.00 ± 7.2 

 

Table 13: VM allocation performance (25 Tasks) 

Algorithm 

Energy Consumption 

(J/task, mean ± 95% 

CI) 

Task Migration 

Overhead (TMO, 

mean ± 95% CI) 

RSMBO 120 ± 8 5058 ± 150 

RAO-3 130 ± 10 6568 ± 200 

BeeWhale 140 ± 12 7578 ± 180 

RAO 150 ± 10 7892 ± 210 

 

 

The data presented in Table 12 clearly demonstrates that 

the proposed PPMcNE algorithm excels in task 

scheduling. On the VM allocation side, Table 13 shows 

that the RSMBO algorithm offers substantial 

improvements in energy efficiency and migration 

overhead.  

 Together, these results confirm that the 

proposed methods—PPMcNE for task scheduling and 

RSMBO for VM allocation—significantly outperform 

their respective baselines. The consistent improvements 

across key performance metrics underscore the 

robustness and scalability of our approach, making it 

well-suited for dynamic, large-scale cloud environments. 

 

5 Conclusion 
This study introduces two novel algorithms, 

PPMMcNE and RSMBO, that significantly enhance task 

scheduling and virtual machine (VM) allocation in cloud 

computing environments. The PPMMcNE algorithm, 

which integrates Modified McNaughton’s rule with an 

evolutionary framework, achieves a throughput of 0.942, 

a task scheduling delay of 58.22 ms, and a queue waiting 

time of 43.66 ms, outperforming traditional approaches 

such as PPE, PGA, and IntWPSO. Meanwhile, the 

RSMBO algorithm demonstrates its strength in VM 

allocation by minimizing task migration overhead to 

5058 and achieving a high fairness index of 0.95, which 

collectively ensure more efficient and balanced resource 

utilization. These results underscore the competitive 

advantages of our methods under increasing workloads in 

dynamic cloud environments. While the performance 

improvements are promising, further refinement in 

aligning the cited literature with our discussion and 

elaborating on the proposed methodology is essential. 

Providing more detailed experimental configurations and 

comprehensive replication instructions will facilitate 

validation by other researchers. With these 

enhancements, our contributions have the potential to 

markedly advance the state-of-the-art in cloud resource 

management. 
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