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With the widespread adoption of edge computing technology, efficient resource allocation becomes an 

urgent problem to be solved. Aiming at the optimization of resource allocation in the edge computing 

environment, a multi-objective optimization function with three dimensions of time, energy consumption, 

and computing resource occupation is constructed. An improved genetic algorithm resource allocation 

strategy model based on a knowledge-guided cross-segmentation mutation mechanism is proposed. 

Knowledge crossover enhances the global search capability by prioritizing the retention of gene 

segments with higher historical fitness contributions. The experimental results showed that the loss 

function value of the new model could be as low as 0.012 during the training process, indicating that the 

model convergence on multi-objective optimization was effectively improved. Meanwhile, the improved 

genetic algorithm model generated an average of 4.8 optimal solutions, which was 1.8 more than the 

traditional genetic algorithm which generated an average of 3.0 optimal solutions. Compared with 

multi-objective optimization algorithms such as NSGA-II, SPEA, and MOPSO, the research model 

reduced the average energy consumption of the device to 112.68 Joules and the average energy 

consumption of the system to 208.12 Joules in the EdgeDroid dataset. Its utilization of computational 

resources reached 77.45%, with the processing time of the task shortened to 5.44 seconds. In real 

application scenarios, the model achieved a 92.1% and 89.2% task completion rate in shopping malls 

and hospital environments, and the resource utilization rate was improved to 83.49% and 81.67%. In 

summary, the proposed method effectively improves resource allocation efficiency, reduces system 

energy consumption, and optimizes task completion performance, which provides strong support for 

dynamic resource management in edge computing environments. 

Povzetek: Predlagan je izboljšan genetski algoritem, ki ima križanje podprto z znanjem in 

segmentacijsko mutacijo za učinkovito dodeljevanje virov v robnem računalništvu z večciljno 

optimizacijo časa, energije in zmogljivosti.

1 Introduction 

Driven by the Internet of Things, smart devices, and 5G 

networks, the sharp increase in demand for computing 

resources has become a significant issue in the field of 

modern information technology. To meet these 

challenges, Edge Computing (EC), as a new computing 

architecture, has gradually been widely used [1]. 

However, with the rapid growth in the number of access 

devices and the increasing diversity of application 

scenarios, traditional EC gradually exposes its limitations 

in resource scheduling and load balancing. Especially in 

the context of heterogeneous resources, dynamic network 

changes, and diverse task requirements, existing resource 

allocation mechanisms make it difficult to balance system 

efficiency and service quality. This has led to 

increasingly prominent issues such as decreased system 

energy efficiency and increased task delays. Therefore, 

how to realize efficient and flexible resource allocation in  

 

a large-scale dynamic environment has become an 

important topic to be solved in the field of EC. In recent 

years, Mobile Edge Computing (MEC) has emerged with 

the popularization of mobile Internet and the rapid 

development of wireless communication technology [2]. 

MEC further promotes the development of EC, 

emphasizing the close integration of computing and 

communication infrastructure to support large-scale 

mobile devices and diverse application requirements. In 

this context, researchers are faced with two core problems: 

on the one hand, the EC resource allocation is a complex 

multi-constraint optimization problem. Although 

traditional Genetic Algorithms (GAs) have good global 

search capabilities, they are prone to getting stuck in local 

optima in dynamic and heterogeneous edge environments, 

making it difficult to quickly adapt to changes in 

resources. Therefore, improving the search mechanism of 

GA and enhancing its global exploration ability becomes 

an important direction for resource allocation 
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optimization. On the other hand, multi-objective 

optimization in EC involves multiple metrics such as 

computation time, energy consumption, and resource 

utilization, and these metrics are often contradictory to 

each other. How to balance device energy consumption 

control and resource load balancing while ensuring 

system response speed, and establishing an effective 

balancing mechanism, is also an urgent problem to be 

solved. To address the aforementioned issues, many 

industry researchers have conducted explorations. 

Mohajer A et al. believed that energy efficiency and 

fairness assurance were key issues in MEC-based cellular 

systems. For this purpose, a dynamic optimization model 

was proposed. Compared to traditional methods, this 

model had higher energy efficiency in resource allocation 

and larger throughput [3]. Jiang H et al. built an online 

joint offloading and resource allocation method under 

long-term MEC energy constraints to improve the 

resource utilization efficiency of MEC. The framework 

could solve the queue optimization problem of resource 

allocation [4]. Chai F et al. proposed a joint multi-task 

resource allocation scheme by combining directed acyclic 

graphs to address the scarcity of satellite communication 

computing resources. The experimental results showed 

that this method reduced the cost by 8.87% compared to 

the baseline method [5]. Liu Q et al. proposed a 

multi-objective resource allocation method for the 

Internet of Things to achieve load balancing and lower 

energy consumption. The experimental results showed 

that this method was more effective in achieving the goal 

and had a shorter number of iterations compared to 

traditional methods [6]. 

GA is a stochastic optimization strategy that 

simulates natural selection and genetic mechanisms. Due 

to its powerful global search capability and good 

adaptability, GA is widely used in resource allocation 

optimization problems [7]. Chakraborty S et al. believed 

that the resource limitation threat of existing mobile 

devices still existed. Therefore, a resource offloading 

model in conjunction with GA was proposed. The 

experimental results showed that the model reduced 

energy consumption and computational delay compared 

to traditional methods within the allowed transmission 

delay range [8]. Apinaya Prethi K N et al. found that due 

to various tasks, edge nodes had an impact on data 

accessibility. Therefore, a new optimization scheduling 

method by combining GA and the multi-objective 

Krill-Held algorithm was proposed. The experimental 

results showed that this method was more effective in 

allocating resources compared to other traditional 

algorithms [9]. Fan W et al. found that existing research 

rarely considered the resource utilization of mobile 

vehicles. Therefore, a joint task offloading and resource 

allocation model using GA was developed. The model 

could minimize the total priority-weighted task 

processing delay in seven different scenarios [10]. Gabi D 

et al. believed that meta-heuristic technology still faced 

bottlenecks in achieving sustainable profit advantages 

and cost reduction in MEC. To this end, a novel resource 

allocation strategy that combined GA and simulated 

annealing optimization algorithms was proposed. This 

strategy outperformed other methods in terms of 

statistical results within the 95% confidence interval [11]. 

Chen M et al. found that although several studies have 

been conducted to investigate the scheduling problem for 

edge cloud computing. There were still some issues that 

needed to be addressed in their applications, such as 

ignoring resource heterogeneity and focusing on only one 

kind of request. Therefore, this research proposed a 

heterogeneity-aware task scheduling algorithm to 

improve the task completion rate and resource utilization 

of edge clouds with deadline constraints. The results 

showed that this algorithm outperformed 13 other 

classical and state-of-the-art scheduling algorithms in 

terms of task completion rate [12]. Liu Q et al. found that 

Internet of Things applications still faced severe 

challenges when applying multi-objective resource 

allocation to satisfy service demands. Technically, the 

Pareto archive evolution strategy was used to optimize 

the time cost, load balancing of MEC servers, and energy 

consumption of Internet of Things applications. From the 

results, the tested results were better than before 

optimization [13]. Chen Q H et al. developed an 

enhanced framework, namely a multi-objective 

micro-services allocation algorithm. This algorithm 

formulated efficient resource management of cloud 

micro-services resources as a constrained optimization 

problem guided by resource utilization and network 

communication overheads to simplify workload 

monitoring and analysis in different cloud systems. The 

results showed that the method significantly improved 

resource utilization, reduced network transmission 

overhead, and improved reliability [14]. To 

comprehensively sort out the characteristics and 

limitations of existing studies in terms of optimization 

objectives, dataset selection, and performance 

performance, the study compiles typical representative 

methods, which are shown in Table 1. 

 

Table 1: Literature review table 

Method Dataset used 
Optimization 

objective 

Main 

performance 

indicators 

Limitations 

Dynamic optimization 

model (Mohajer A et al.) 

MEC cellular system 

simulation dataset 

Energy efficiency 

optimization, 

fairness assurance 

Improved 

energy 

efficiency, 

Single resource 

allocation strategy, 

limited dynamic 
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increased 

throughput 

adaptability 

Joint offloading and 

resource allocation 

framework (Jiang H et 

al.) 

Long-term MEC 

energy-constrained 

simulation data 

Queue 

optimization, 

improved resource 

utilization 

Queue stability, 

higher resource 

utilization 

Focused on long-term 

constraints, 

insufficient real-time 

support 

Multi-task resource 

allocation scheme (Chai 

F et al.) 

Satellite 

communication 

simulation data 

Cost reduction, 

task offloading 

optimization 

Cost reduced by 

over 8.87% 

Limited to satellite IoT 

scenarios 

Multi-objective resource 

allocation (Liu Q et al.) 

IoT application 

simulation data 

Load balancing, 

energy 

minimization 

Faster 

convergence, 

better load 

balancing 

Insufficient 

multi-objective 

trade-off handling, 

weak heterogeneity 

support 

Resource offloading 

model (Chakraborty S et 

al.) 

Mobile device 

simulation data 

Transmission 

delay 

optimization, 

energy reduction 

Lower energy 

consumption 

and delay 

Lack of task diversity 

consideration 

Optimized scheduling 

method (Apinaya Prethi 

K N et al.) 

Edge node simulation 

environment 

Improved data 

accessibility, 

resource 

allocation 

optimization 

Higher resource 

utilization 

Focused mainly on 

data access, limited 

comprehensiveness 

Joint task offloading 

model (Fan W et al.) 

Vehicular network 

multi-scenario data 

Minimization of 

task processing 

delay 

Reduced task 

delay 

Performance 

fluctuation under high 

mobility 

Resource allocation 

strategy (Gabi D et al.) 

MEC-cloud 

continuum simulation 

data 

Cost optimization, 

profit 

enhancement 

Lower cost, 

higher 

profitability 

Higher computational 

complexity 

Heterogeneity-aware 

scheduling algorithm 

(Chen M et al.) 

Edge cloud 

environment data 

Improved task 

completion rate, 

better resource 

utilization 

Outperformed 

13 classic 

scheduling 

algorithms in 

task completion 

rate 

Focused on single-type 

request scenarios 

Multi-objective 

microservice allocation 

algorithm (Chen Q H et 

al.) 

Multi-cloud system 

environment 

Improved 

resource 

utilization, 

reduced 

communication 

overhead 

Higher resource 

utilization, lower 

network 

overhead 

Focused on cloud, 

insufficient support for 

edge scenarios 

 

To sum up, the existing research has made 

significant progress in resource allocation of EC and 

MEC. However, most existing methods still suffer from a 

single resource allocation strategy and a balance between 

computational efficiency and fairness. To solve the above 

problems, the research innovatively considers MEC's 

time resources, computing resource occupation, 

equipment energy consumption, and system energy 

consumption, and introduces GA to improve the genetic 

structure, especially crossover and mutation. Finally, a 

new EC resource allocation strategy model is proposed. 

To ensure the operability of the proposed method in real 

MEC scenarios, the study comprehensively considers key 

factors such as node heterogeneity, resource dynamic 

changes, task real-time constraints, and energy sensitivity 

during the design process. Specifically, the knowledge 

crossover mechanism combines historical task load 

statistics and node adaptability information to 

dynamically adjust the gene fragment priority during 

execution. The segmentation mutation operation 

adaptively adjusts the mutation probability according to 

the load state of the edge nodes to avoid excessive 

perturbation and ensure the stability and effectiveness of 

resource scheduling. Through this scenario 

characteristic-oriented mechanism design, the proposed 

IGA method is able to achieve efficient and reliable 
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resource allocation optimization in complex and changing 

real MEC environments. The study further improves the 

overall performance of the EC system under the premise 

of ensuring the quality of service, aiming to provide a 

more robust method to support the diversified 

development of MEC in the future. 

2 Methods and materials 

2.1 EC system model and its multi-objective 

problem 

Unlike traditional EC, MEC focuses more on 

supporting large-scale mobile devices and terminal 

applications, such as smartphones, autonomous driving, 

smart cities, etc [15]. Among them, MEC's resource 

allocation optimization is particularly crucial. Firstly, 

MEC's resources not only include computing and storage 

capabilities but also multidimensional resources such as 

network bandwidth and delay. The allocation of these 

resources needs to consider multiple factors, such as 

changes in user demand, device mobility, and uncertainty 

in the network environment. The network framework of 

MEC is shown in Figure 1 [16]. 
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Figure 1: MEC network framework. 

 

In Figure 1, the mobile edge system module involves 

user devices, third-party devices, coordinators, operating 

systems, and lifecycle management systems. This module 

is mainly used for overall control of MEC and visual 

optimization. In the mobile edge host module, there are 

built-in application software modules, virtual 

infrastructure, and multiple management platforms. In the 

network module, there are mainly three key sub-networks, 

namely local network, external network, and 4-5G 

network. The multi-MEC scenario architecture is shown 

in Figure 2. 
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Figure 2: Multi-MEC scenario architecture diagram. 

 



Multi-Objective Resource Allocation in Edge Computing Using… Informatica 49 (2025) 213–228 217 

In Figure 2, the multi-MEC scenario consists of 

multiple similar sub-MECs, each of which is composed 

of user devices such as mobile phones, computers, 

portable digital devices, as well as network base stations 

and electronic communication networks. The devices and 

networks are connected in a sub-channel manner. If each 

user starts to perform their own structured tasks, their 

needs can be effectively disseminated through electronic 

communication networks. However, the computing 

resources of each individual electronic communication 

network are limited, and the increasing demand for user 

tasks only increases the network load and causes it to 

collapse. If a crash occurs, the user's task requirements 

cannot be processed, and timely resource computation 

and offloading can be carried out to achieve lightweight. 

The unloading process is shown in Figure 3 [17]. 

Applied computing 

task

Task cutting

Do computing tasks 

need to be uninstalled?

Local network 

offload
Output result

The task is 

transferred to 

the EMC

EMC task 

processing

Result 

calculation

Are computing 

resources sufficient?

Result return

N

Y  

Figure 3: MEC computing uninstall process. 

 

 

From Figure 3, first, the user device generates 

computational tasks and evaluates their computational 

requirements. Based on the computational complexity, 

data transmission requirements, and latency constraints of 

the task, the user device decides whether to perform 

offloading locally, prioritizing tasks with high 

computation, low latency sensitivity, or sufficient 

bandwidth conditions. When the task needs to be 

offloaded, the user device sends the task to a neighboring 

EC node through the local network and cuts the task data 

on the node side. The cutting step includes task 

segmentation, data format standardization, and necessary 

preprocessing operations for distributed computing. After 

receiving the task, the edge node will further determine 

whether to accept the task and enter the formal processing 

stage according to the current computing resources and 

load. The processing steps mainly include parallel 

execution of segmented tasks, resource scheduling, and 

intermediate result summarization. If the node resources 

are insufficient, it can carry out offloading or queuing of 

some sub-tasks again. After completing the computation, 

the edge nodes transmit the final processing results back 

to the user device through the network. The returned 

results include task output data and status feedback. This 

is different from the initial offloading phase of the local 

network where only the original task data is transmitted. 

Assuming that data transmission time and computation 

time cannot be ignored during task execution, the time 

resource model is calculated, as shown in equation (1). 

task user
total propagation handover

edge user

D d
T T T

C v
= + + +    (1) 

In equation (1), totalT  represents the total amount 

of time resources in seconds. taskD  signifies the 

computational requirements of the task. edgeC  indicates 

the computing capacity of EC nodes. userd  represents 

the transmission distance from the user device to the edge 

node. userv  represents the transmission rate. propagationT  

represents the delay caused by signal propagation. 

user
propagation

signal

d
T

c
= , where signalc  represents the speed 

of signal propagation. handoverT  denotes the additional 

delay incurred during device movement or network 

switching. The basis for selecting this parameter is the 

propagation theory modeling in wireless communication. 

This theory refers to the fixed delay caused by physical 

propagation during the transmission of signals from user 

devices to edge nodes. It should be noted that secondary 

influences such as data queuing delays and scheduling 

delays are ignored in the model, which focuses on the two 

key overheads of transmission and computation. To 

further portray the resource occupancy of tasks on the 
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edge node, it is assumed that the computational capacity 

of the EC node is edgeC  and the computational demand 

of each task is edgeC . Then, the computational resource 

proportion occupied by a single task and multiple tasks is 

calculated as shown in equation (2). 

*

1

1

task
task

in
task

task

i

in
task i

total

edge

edg

di

e

e ge

C

C

C

D

D

D








=

=


=





=




 =






   (2) 

In equation (2), task  and 
*

task  represent the 

proportion of computing resources occupied by a single 

task and multiple tasks, respectively. i  denotes the 

prioritization factor of task i . The determination of the 

prioritization factor takes into account the urgency of the 

task, the computational resource demand, the energy 

sensitivity, and the business importance level of the 

application scenario to which the task belongs. In general, 

tasks with shorter deadlines, higher computational 

demands, or from high-priority application scenarios have 

their corresponding i  values set larger to obtain more 

computational resource support in the resource allocation 

process. n  denotes the total number of tasks. The 

introduction of priority factor can adjust the resource 

allocation strategy according to the importance of tasks. 

In terms of energy modeling, to reflect the energy 

consumption of the device during task processing, the 

energy consumption of the device is divided into two 

parts: computational energy consumption and 

transmission energy consumption. The total energy 

consumption of the device is calculated as shown in 

equation (3). 

task
compute compute compute compute

edge

user
transmit transmit transmit transmit

user

device compute transmit

D
E P T P

C

d
E P T P

v

E E E

=  = 

= 






= 

= +






   (3) 

In equation (3), computeE  signifies the 

computational energy consumption of the user device. 

computeP  represents computational power consumption. 

computeT  represents the calculation time. transmitE  

represents transmission energy consumption. transmitP  

represents transmission power consumption. deviceE  

represents the total energy consumption of the user 

device. Standby energy consumption and re-transmission 

overhead are not introduced in the model, which mainly 

focuses on the explicit energy consumption during task 

execution. Assuming that there are m  total of EC nodes 

in the system. The energy consumption of individual 

nodes and the whole MEC system can be further derived 

as follows when considering the energy consumption of 

individual nodes and the whole MEC system, as shown in 

equation (4). 

1 1

task
edge edge compute edge

edge

n m
i j

system device edge

i j

D
E P T P

C

E E E
= =


=  = 



 = +



 
   (4) 

In equation (4), edgeE  signifies the energy 

consumption of a single node. systemE  represents the 

total energy consumption of the system. 
i

deviceE  

represents the energy consumption of the i -th user 

device. 
j

edgeE  indicates the energy consumption of the 

j -th EC node. At this point, the resource allocation 

problem of MEC system is transformed into a 

multi-objective optimization problem, as displayed in 

equation (5). 

min( , , , )total total total device systemE T E E=    (5) 

In equation (5), the multi-objective function includes 

time, energy consumption, and utilization of computing 

resources, while considering resource constraints such as 

computing power, transmission bandwidth, and device 

power consumption. 

 

2.2 Edge computing resource allocation 

model based on improved GA 

After constructing a complete function for the 

multi-objective optimization problem of resource 

allocation in multi-scenario MEC, this paper explores 

how to solve the optimization problem through efficient 

algorithms. Due to the dynamic changes in resources, 

high mobility of devices, and time-varying nature of tasks 

in e-commerce scenarios, traditional deterministic 

optimization methods (such as precise mathematical 

programming) often struggle to obtain globally optimal 

solutions [18]. Therefore, in recent years, heuristic 

optimization methods based on evolutionary computation, 

especially GA, have been widely applied to solve 

resource allocation problems in such complex dynamic 

environments. The process of GA is shown in Figure 4. 
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Figure 4: GA flow diagram. 

 

In Figure 4, the initial population is randomly 

generated during the initialization phase. Each individual 

represents a resource allocation scheme in the form of an 

integer vector encoding, used to represent the allocation 

decisions of different tasks to edge nodes. A population is 

composed of multiple independent individuals, each of 

whom is a complete resource allocation plan. As the basic 

operating unit, individuals ensure the independence and 

diversity of understanding. Then, in the selection phase, 

the excellent individuals are selected as parents for 

crossover and mutation operations based on the fitness 

function to generate offspring individuals to explore 

better solutions in the resource allocation space. Next, the 

individuals are screened by fitness evaluation. The 

optimal individuals are retained into the next generation 

to gradually optimize the key performances of the system 

such as energy consumption, computation time, and 

resource utilization. Each generation refers to the state 

update of the population during an evolutionary iteration. 

The whole evolutionary process is repeated until the 

preset maximum number of iterations is reached or the 

population fitness converges, ultimately realizing 

efficient resource scheduling optimization under 

multi-objective. However, when allocating resources for 

multi-scenario MEC, there are still limitations of multiple 

electronic communication networks. Therefore, to reduce 

the complexity of the algorithm and optimize its 

adaptability, the GA is optimized. In the encoding stage, 

the allocation decision is set to integer encoding, where 

an individual represents an allocation decision and the 

decision can be encoded as a vector with dimensions. 

Among them, the dimensionality represents the number 

of tasks required by the user. The fitness function of 

Improved Genetic Algorithm (IGA) is shown in equation 

(6). 

1 2 3( ) ( ) ( ) ( )F x w T x w E x w C x=  +  +     (6) 

In equation (6), ( )F x  signifies the fitness value of 

the resource allocation scheme. ( )T x  signifies the total 

task processing time of the system under the allocation 

plan. ( )E x  represents the total energy consumption of 

the system under the allocation scheme. ( )C x  

represents the system computing resource utilization rate 

under the allocation scheme. 1w , 2w , and 3w  

represent the weight coefficients of time, energy 

consumption, and computational resource utilization, 

respectively. After completion, the individual with higher 

if -value is selected by means of roulette wheel betting. 

This means that the parent generation is randomly 

selected according to the proportional probability of the 

individual fitness value. The higher the fitness value, the 

higher the probability that the individual is selected. The 

roulette wheel betting method can keep the population 

diversity while retaining the excellent individuals and 

avoid falling into local optimization. The calculation 

formula is shown in equation (7). 

1

i
i N

ii

f
P

f
=

=


   (7) 

In equation (7), if  represents the fitness value of 

individual i . N  represents the quantity of individuals. 

iP  represents the probability of selecting the individual 

i . The if  is shown in equation (8). 

1

( )
if

F x
=


   (8) 

In equation (8),   represents the coefficient for 

adjusting fitness. In the crossover stage, traditional GA 

uses single point crossover to combine and select 

individuals. Specifically, a crossover point is randomly 

selected on the encoding vector of two parental 

individuals, and gene fragments are exchanged after the 

crossover point, resulting in two new offspring 

individuals. This process can ensure the partial 

inheritance of the excellent genes of the parent generation 
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while introducing new combinations to increase the 

population diversity and promote the further exploration 

of the solution space. However, in MEC, single point 

crossover may lead to a lack of sufficient diversity in the 

population. Therefore, the study introduces 

knowledge-based crossover operators. In addition, the 

study aims to avoid excessive concentration of excellent 

individuals during the crossover process, which may 

cause the algorithm to fall into local optima prematurely. 

During the crossover process, the study conducts 

segmentation and mutation operations in advance to 

further divide the population, ensuring that the 

chromosome and mutation probabilities are different. The 

improved crossover and mutation operations are shown in 

Figure 5. 
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Figure 5: Schematic diagram of knowledge-based crossover and segmentation mutation operations. 

 

Figure 5(a) is a schematic diagram of 

knowledge-based crossover, and Figure 5(b) is a 

schematic diagram of segmentation mutation. From 

Figure 5, knowledge-based crossover operations first 

evaluate the fitness performance of parental individuals 

and the contribution of gene fragments to fitness 

enhancement through prior knowledge or historical data. 

Prior knowledge includes the average effect of each gene 

fragment on fitness enhancement during past 

evolutionary processes. During the crossover process, 

gene segments with higher historical contributions are 

preferentially selected for combination. The genes with 

darker colors after crossover are shown in the figure. The 

darker genes indicate potential segments [19]. The critical 

point in the figure indicates the position of gene fragment 

switching, and the numbered element represents the 

specific position of the gene fragment in the chromosome 

code. Then, the segmentation variational operation 

randomly generates two variational points. Two point 

switching and inverse sorting are performed on the 

depicted intervals to expand the search space, increase 

perturbations, and enhance global search capabilities. 

Unlike traditional mutation methods with small single 

point perturbations, split mutation involves randomly 

selecting two mutation points on the chromosome, 

exchanging interval genes, and performing reverse 

sequencing operations. By implementing large-scale 

structural reorganization in this way, the search space has 

been significantly expanded [20]. The knowledge 

crossover is shown in equation (9). 

1

i

i

f

crossover N f

j

e
P

e









=

=


   (9) 

In equation (9), crossoverP  represents the probability 

of i  being selected for crossover.   represents the 

weighting factor. if  signifies the change in fitness of 

i . To ensure that potential gene fragments are prioritized 

during the crossover process, a weighted selection 

mechanism can be used based on the historical 

performance of gene fragments and their fitness 

contribution in the population, as shown in equation (10). 

,1

1

( )
gene M

k i kk

S
w

=

=


   (10) 

In equation (10), geneS  represents the priority of 

selecting the k -th gene fragment. ,k i  represents the 

contribution of gene fragment k  segment in individual 

i . kw  denotes the historical performance weighting 

coefficient of gene fragment k , which is used to reflect 

the contribution of this gene fragment to the enhancement 

of individual fitness in the previous optimization process. 

Specifically, kw  is set to be a uniform value for all gene 

fragments at the initial stage. As the evolutionary process 

advances, the changes in fitness brought about by new 

individuals generated by each gene fragment participating 

in the crossover are recorded and cumulatively updated. 

M  signifies the number of gene fragments. At this point, 

the multi-level mutation probability control after 

population segmentation is shown in equation (11) [21]. 
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=
+

   (11) 

In equation (11), mutationP  represents the 

probability of individual i  mutating within 

subpopulation s .   represents the parameter that 

controls the rate of change in mutation probability. 

subgroup  denotes the measure of fitness difference 

between individuals s  within a sub-population, used as 

a measure of population diversity. The sub-populations 

are divided based on the Euclidean distance of the 

resource allocation decision vector. Individuals with 

distances less than a set threshold are grouped into the 

same sub-population.   denotes the mean value of 

fitness in the sub-population. In summary, the study is 

based on a knowledge-based crossover operation that 

preferentially combines gene segments that have 

historically contributed more to fitness enhancement to 

improve evolutionary directionality. To prevent 

premature convergence, a split-variation mechanism is 

used and the probability of variation is adaptively 

adjusted based on fitness differences within 

sub-populations to enhance perturbation when population 

diversity declines. At the same time, an elite retention 

strategy has been established to ensure that each 

generation can directly inherit the best individuals, 

greatly avoiding premature convergence. To sum up, the 

research uses IGA to solve the multi-objective problem of 

MEC system in equation (5). A new EC resource 

allocation strategy is designed. The flow is shown in 

Figure 6. 
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Figure 6: New EC resource allocation strategy model flow. 

 

From Figure 6, first, the user equipment produces a 

computing task and evaluates the task requirements, and 

decides whether to unload the task to the EC node 

according to the computing complexity, data transmission 

requirements, and delay constraints. Secondly, based on 

task requirements and edge node load, appropriate edge 

nodes are selected for resource allocation. Next, 

considering multidimensional factors such as time 

resources, computational resource utilization, and energy 

consumption, a comprehensive evaluation of resources is 

conducted. Then, the resource allocation problem is 

transformed into a multi-objective optimization problem, 

balancing time, energy consumption, and computational 

resource utilization, and optimized through IGA. Next, 

IGA generates an initial population, performs crossover 

and mutation operations, selects individuals with higher 

fitness, and schedules resources through optimization 

schemes. Finally, the EC node executes the task and 

sends the result back to the user equipment to ensure the 

task is completed successfully. 
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3 Results 

3.1 Performance test of new edge computing 

resource allocation strategy model 

The research sets the CPU to Intel Xeon Gold 6230R 

and the GPU to NVIDIA Tesla A100 40GB. The 

operating system is Ubuntu 20.04, with 5 edge nodes 

configured with 2 GPUs and 16 CPU cores per node, 

simulating a multi-node distributed computing 

environment. In addition, the EdgeDroid dataset and the 

Canadian Institute for Cybersecurity Intrusion Detection 

System (CICIDS 2017) dataset are used as test data 

sources. In the experimental setup, for the EdgeDroid and 

CICIDS 2017 datasets, features such as task size, latency, 

bandwidth, etc. are first extracted and then uniformly 

normalized. In addition, the population is initialized with 

a uniform random distribution by setting the resource 

requirements in the range of [0.5, 5] MB, latency of [50, 

500] ms, bandwidth of [0.5, 10] Mbps, and the random 

seed is fixed at 42 to ensure reproducibility. In addition, 

the reason for choosing these two types of datasets is that 

EdgeDroid covers diverse mobile application scenarios 

and CICIDS 2017 reflects complex network traffic 

characteristics. The combination of the two can 

comprehensively verify the adaptability and 

generalization of the algorithms under dynamic loads and 

heterogeneous environments. The adjustment factor for 

setting the fitness coefficient is to balance selection 

pressure and population diversity. A smaller adjustment 

factor is beneficial for maintaining the early explorability 

of the population. A larger adjustment factor is beneficial 

for convergence speed. The setting of cross mutation 

weight factors is to control the strength of the impact of 

knowledge guided cross mutation and segmentation 

mutation. It achieves a dynamic balance between 

exploration and utilization by adjusting the dominance of 

both at different stages. The study first conducts training 

and value selection tests on the fitness coefficient 

adjustment factor   and cross mutation weighting 

factor   that have the greatest impact on model 

strategy generation. The result is shown in Figure 7. The 

figure shows the trend of the Loss function on the 

training set under different configurations of the fitness 

adjustment factor and the cross-variance weighting factor. 

By comparing the convergence speed and final Loss 

values corresponding to different hyperparameter 

combinations, the parameter settings that make the model 

perform optimally are selected to ensure a good balance 

between convergence and generalization performance 

during the optimization process. 
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Figure 7: Hyperparameter selection test result. 

 

Figure 7 (a) displays the selection test results of the 

fitness coefficient adjustment factor, and Figure 7 (b) 

displays the selection test results of the cross-mutation 

weighting factor. As shown in Figure 7 (a), when the 

fitness coefficient adjustment factor was 0.2, the lowest 

value of the loss function reached 0.015. When the fitness 

coefficient adjustment factor gradually increased to 0.8, 

the lowest value of the loss function was around 0.012, 

indicating that the model had the strongest generalization 

ability at this time. As shown in Figure 7 (b), when the 

cross-mutation weighting factor increased from 0.25 to 

0.75, the loss function value obviously decreased to 

around 0.015. However, when the cross-mutation 

weighting factor was 1.00, the loss function value 

actually increased, indicating that factor values that are 

too large or too small can interfere with the optimization, 

thereby affecting its performance. Therefore, with a 

fitness coefficient adjustment factor of 0.8 and a cross 

mutation weighting factor of 0.75, the model could 

achieve good performance on both the training and 

testing sets. The research attempts to conduct ablation 

tests on the IGA to verify the effectiveness of the 

improvements made in the study. The results are shown 

in Figure 8. 
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Figure 8: The results of the IGA ablation test. 

 

Figure 8 (a) displays the test results of generating 

optimal solutions for GA and GA-knowledge crossover. 

Figure 8 (b) displays the test results of generating optimal 

solutions for GA and GA-segmentation mutation. Figure 

8 (c) displays the test results of generating optimal 

solutions for GA and GA-knowledge 

crossover-segmentation mutation. From Figure 8, under 

different test conditions, the IGA that incorporates 

knowledge crossover and segmentation variants generates 

the highest mean value of optimal solutions (4.8). This is 

significantly better than the version that uses the 

traditional GA alone or only incorporates a single 

improvement strategy. This shows that the 

dual-mechanism synergy effectively improves the 

algorithm's global search capability and convergence 

performance. The results under different initial 

population distributions and task scenario changes show 

that IGA can still maintain a low fluctuation amplitude, 

and the number of optimal solutions does not change by 

more than ± 0.3. This result verifies that the proposed 

method has good stability and consistency under different 

initial conditions and dynamic loading environments, and 

has strong scene adaptability. The study compares similar 

multi-objective optimization algorithms, such as 

Non-dominated Sorting Genetic Algorithm II (NSGA-II), 

Strength Pareto Evolutionary Algorithm (SPEA), and 

Multi-objective Particle Swarm Optimization (MOPSO), 

as displayed in Table 2. The average energy consumption 

of equipment, utilization rate of computing resources, 

average energy consumption of the system, and average 

processing time of tasks are used as comparison 

indicators. 

 

Table 2: Multiple index test results of different models 

Data 

set 
Model 

Computing 

resource 

usage/% 

Average energy 

consumption of 

equipment/J 

Average system 

energy 

consumption/J 

Average task 

processing 

time/s 

p 

Edge

Droi

d 

NSGA-II 82.56 115.76 212.34 5.63 0.018 

SPEA 80.21 121.34 220.56 5.78 0.012 

MOPSO 79.84 119.54 217.34 5.93 0.015 

Our model 77.45 112.68 208.12 5.44 0.003 
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CICI

DS 

2017 

NSGA-II 85.29 145.67 274.65 7.21 0.021 

SPEA 83.12 150.23 280.45 7.35 0.017 

MOPSO 82.76 148.56 276.89 7.45 0.019 

Our model 80.54 141.23 268.42 7.11 0.002 

 

From Table 2, the proposed model has the lowest 

computational resource occupancy of 77.45% in both 

datasets, which is 5.11%, 2.76%, and 2.39% lower 

compared to NSGA-II, SPEA, and MOPSO, respectively. 

In addition, the proposed model also shows better energy 

efficiency in terms of average device energy consumption 

(112.68 J) and average system energy consumption 

(208.12 J). The system energy consumption is reduced by 

4.22% compared to NSGA-II and MOPSO. In terms of 

average task processing time, the proposed model is 

optimal with a result of 5.44 seconds, which is 0.19 

seconds less than NSGA-II and 0.49 seconds less than 

MOPSO. Further statistical analysis shows that all 

comparison items reach a significant difference level 

(p<0.05). This indicates that the proposed method has 

statistical advantages in resource utilization, energy 

optimization, and improving processing efficiency. 

Among them, the weight coefficients of energy 

consumption, task completion time and resource 

utilization are determined by preliminary hyperparameter 

search. The parameter combination that can balance each 

index and optimize the overall adaptability is selected. 

When the system detects significant changes in task load 

or node status, the research model can dynamically adjust 

the weight ratio of energy consumption target and delay 

target through a weight adaptive adjustment mechanism 

to maintain the stability and optimization effect of system 

performance. 

3.2 Simulation test of new edge computing 

resource allocation strategy model 

The study selects two real scenarios for testing, 

namely shopping malls and hospitals. The bandwidth 

between edge nodes and servers is set to 1Gbps, and 

between servers and cloud computing centers to 10Gbps. 

About 2,000 smart devices are installed inside the mall. 

The hospital's internal equipment is relatively complex, 

involving equipment monitoring, real-time diagnosis, and 

other tasks, simulating 40 EC nodes. In the energy 

consumption modeling process, the study 

comprehensively considers the hardware heterogeneity 

among edge nodes. The node computing power, energy 

consumption characteristics, and transmission bandwidth 

are modeled as input parameters, respectively. Node 

heterogeneity directly affects task offloading and 

resource allocation decisions. That is, 

low-computing-capacity or high-energy-consumption 

nodes are inclined to be assigned with lighter or 

latency-tolerant tasks during the optimization process. 

This further optimizes the energy consumption 

distribution and resource utilization while ensuring the 

overall system performance. The completion rate of 

resource allocation tasks for four types of models in 

different scenarios is shown in Figure 9. 
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Figure 9: Success test of model resource allocation in shopping mall and hospital scenarios. 

 

Figure 9 (a) shows the task completion rate results of 

four types of models in the shopping mall scenario. 

Figure 9 (b) displays the task completion rate results of 

four types of models in the hospital scenario. According 
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to Figure 9 (a), the task completion rate of the proposed 

model is significantly better than the other three models, 

reaching 92.1%, while the task completion rates of 

NSGA-II, SPEA, and MOPSO are 88.42%, 87.15%, and 

90.34%, respectively. This result indicates that in the 

shopping mall scenario, the proposed model can better 

meet the real-time and processing requirements of the 

task, maximizing the task completion rate. From Figure 9 

(b), the task completion rate of the proposed model is 

89.2%, which is far higher than the other three models. It 

is proved again that the new model can better adapt to 

complex equipment monitoring and real-time diagnosis 

tasks in the hospital scene, and optimize the allocation of 

EC resources. During the resource allocation process, the 

model sets feasibility filtering criteria based on the 

memory capacity, processing capability, and bandwidth 

constraints of edge nodes. It allocates tasks only when the 

node resource constraints are met, ensuring the feasibility 

of the allocation scheme and the stability of the system. 

The MOPSO with better performance is selected and 

compared it with the proposed method. Taking the 

network load and delay as indicators, the results are 

shown in Figure 10. In this case, the network load is 

measured by recording the data transfer rate (in Mbps) 

between nodes in real-time, and the latency is calculated 

by recording the end-to-end delay (in ms) from the 

initiation of the task to the reception of the returned 

result. 
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Figure 10: Load and delay comparison results of MOPSO and the designed method. 

 

Figure 10 (a) shows the load and delay test results of 

shopping malls and hospitals in the MOPSO model. 

Figure 10 (b) shows the load and delay test results of 

shopping malls and hospitals in the proposed model. In 

Figure 10 (a), in the shopping mall scenario, with the 

increase of network tasks, the network load of MOPSO 

reached up to 600 Mbps. This indicated that the resource 

scheduling efficiency of the model was low under high 

user density, resulting in heavy network load. Meanwhile, 

the delay also significantly increased with the increase of 

network load, reaching a maximum of 18.4 ms. In the 

hospital scenario, although the network load was always 

lower than in the shopping mall scenario, the delay 

fluctuated between 10 ms and 15 ms, indicating higher 

user density and task quantity. From Figure 10 (b), the 

proposed model had significantly lower network loads in 

shopping malls and hospitals compared to MOPSO when 

handling multitasking, with average loads of 318 Mbps 

and average delays of 9.1 ms, respectively. This 

demonstrated that the proposed method could effectively 

control network load and delay in high load environments, 

with better resource allocation capabilities and 

optimization effects. Finally, the study conducted tests 

using resource utilization rate, allocation execution time, 

and total system energy consumption as indicators, as 

displayed in Table 3. 

 

Table 3: Index test results of different models in shopping mall and hospital scenarios 

Environm

ent 
Model Resource utilization/% 

Allocation execution 

time/s 

Total system energy 

consumption/J 

Mall 

NSGA-II 75.34 15.87 230.57 

SPEA 72.18 16.5 240.63 

MOPSO 80.21 14.32 225.11 

Our model 83.49 12.94 215.32 

Hospital 

NSGA-II 68.92 18.25 280.47 

SPEA 70.14 17.88 290.25 

MOPSO 78.11 16.17 270.83 

Our model 81.67 14.68 260.02 
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According to Table 3, the proposed model in 

shopping mall and hospital scenarios was superior to 

other comparative models. In the shopping mall scenario, 

the resource utilization rate of the proposed model was 

83.49%, the allocation execution time was 12.94 seconds, 

and the total energy consumption was 215.32 J. In the 

hospital scenario, the resource utilization rate was 

81.67%, the allocation execution time was 14.68 seconds, 

and the total energy consumption was 260.02 J. 

Compared with NSGA-II, SPEA, and MOPSO models, 

the proposed model showed the highest resource 

utilization, the shortest allocation execution time, and the 

lowest system energy consumption in these two scenarios. 

This verifies its optimization effect in EC resource 

allocation, which can more effectively balance 

performance and energy efficiency, and improve the 

overall system performance. In addition, the results in 

Table 2 were based on the simulation experiments of 

EdgeDroid with CICIDS 2017 dataset. The statistics were 

the average values of system energy consumption under 

different dataset tests. On the other hand, the results in 

Table 3 were from tests conducted in actual application 

scenarios (shopping centers and hospitals), reflecting the 

average system energy consumption measured in specific 

deployment environments, hence there were differences 

in values. The study continued to validate the task 

offloading success rate, computational complexity, and 

task re-scheduling rate of the different approaches under 

different task priority fluctuation ranges. The results are 

shown in Table 4. 

 

Table 4: Model performance results under fluctuating task priorities 

Fluctuation level Method 
Task offloading 

success rate (%) 

Computational 

complexity (ms) 

Task rescheduling rate 

(%) 

Small fluctuation 

(±1 level) 

NSGA-II 90.7 240 11.2 

SPEA 89.3 235 12.5 

MOPSO 91.5 220 10.1 

Our model 95.8 185 6.3 

Large fluctuation 

(±3 levels) 

NSGA-II 86.4 255 18.9 

SPEA 84.9 250 20.3 

MOPSO 87.8 235 16.2 

Our model 92.4 190 10.5 

 

From Table 4, under the condition of small priority 

fluctuation, the proposed model outperforms NSGA-II, 

SPEA, and MOPSO in task offloading success rate 

(95.8%), computational complexity (185 ms), and task 

re-scheduling rate (6.3%), and exhibits higher scheduling 

efficiency and stability. Under the condition of large 

priority fluctuation, although the overall performance of 

each method decreases, the proposed model still 

maintains the highest task offloading success rate (92.4%) 

and the lowest task re-scheduling rate (10.5%). The 

computational complexity grows less, which further 

verifies the adaptability and robustness of the proposed 

method under dynamic task priority change scenarios. 

Compared with traditional GA, the proposed IGA 

effectively improves global search capability and 

dynamic scheduling flexibility by introducing knowledge 

guided crossover and splitting variants, while increasing a 

small amount of computational overhead. This has good 

scalability for multi node heterogeneous device 

environments in large MEC systems. The optimization 

model can dynamically adjust resource allocation based 

on node algorithm power, prioritize low complexity tasks 

to low-power devices, and  

 

 

achieve overall energy efficiency optimization. 

4 Discussion 

Aiming at the problem of resource allocation 

efficiency and energy consumption optimization in EC 

environment, this paper proposed an IGA model 

incorporating knowledge-guided crossover and 

segmentation variants. The proposed model was 

comprehensively validated in the EdgeDroid and CICIDS 

2017 datasets, as well as in real-world application 

scenarios in shopping malls and hospitals. The 

experimental results showed that the proposed model 

outperformed mainstream multi-objective optimization 

methods such as NSGA-II, SPEA, and MOPSO in terms 

of computational resource occupancy (minimum 77.45%), 

average energy consumption of the device (minimum 

112.68J), and task processing time (minimum 5.44s) 

(p<0.05). The improvement in this performance was 

mainly due to the collaborative mechanism of 

knowledge-guided intersection. In the early stage, global 

search was accelerated, and in the later stage, variant 

segmentation was accelerated, enhancing population 

diversity. This effectively avoided the local optimization 
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problems that traditional GA is prone to. By dynamically 

balancing energy consumption, latency, and resource 

utilization targets through the resource aware fitness 

function, the overall flexibility and robustness of 

scheduling were enhanced. 

Compared with NSGA-II's lack of efficiency in 

Pareto frontier exploration, SPEA's slow convergence of 

energy consumption under high load conditions, and 

MOPSO's large fluctuation of task completion rate, the 

proposed IGA was able to maintain a higher level of task 

success and energy efficiency under different task priority 

changes and server dynamics. This result verified its 

adaptive advantages in dynamic MEC environments. 

However, there are still some limitations to this study. 

The main reason is that IGA introduces additional cross 

and variance computation overhead in complex scenarios, 

which may lead to an overall increase in scheduling 

latency for large-scale node systems (such as thousands 

of edge nodes), although the time cost increase for a 

single iteration is small (about 8.5%). Moreover, although 

the current model has taken node heterogeneity into 

account, it has not yet been optimized for the extreme 

resource-limited devices. In addition, although the current 

model has considered node heterogeneity, there is still 

room for further optimization for the migration and 

deployment of extreme resource-constrained devices. 

Future work can combine the lightweight evolution 

strategy with the layered parallelism mechanism to 

further improve the scalability and real-time response 

capability of the algorithm in the ultra-large-scale 

distributed MEC environment. 

5 Conclusion 

To solve the optimization problem of MEC resource 

allocation in EC environment, the study constructed a 

multi-objective optimization function and improved the 

crossover and variance structure of the GA. A new EC 

resource allocation strategy model was proposed. The 

results showed that the training Loss reached a minimum 

of about 0.012 when the fitness adjustment factor was 0.8 

and the cross-variance weighting factor was 0.75. The 

number of optimal solutions generated by the IGA that 

incorporated the knowledge crossover and segmentation 

variance was improved to nearly 4.8 in this setting. This 

was significantly optimized compared to both the 

traditional GA and the single-improved strategy. 

Compared with NSGA-II, SPEA, and MOPSO methods, 

the proposed model achieved the optimum in key metrics 

such as computational resource occupancy (minimum 

77.45%), average energy consumption of the device 

(112.68 J), average energy consumption of the system 

(208.12 J), and average processing time (5.44 s). The task 

completion rates for the shopping mall and hospital 

scenarios were 92.1% and 89.2%, respectively. The 

average network latency was 9.1ms, the resource 

utilization rate was 83.49%, and the allocated execution 

time was 12.94s. It had scheduling advantages in 

dynamic multi-scenario environments. Nevertheless, 

considering the challenge of highly dynamic changes of 

edge nodes, dynamic scheduling methods based on 

real-time reinforcement learning can be explored in the 

future. Additionally, IGA can be fused with other 

evolutionary algorithms to further improve the model's 

real-time responsiveness and self-adaptive optimization 

in ultra-large-scale MEC systems. 
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