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The progress of technology and the Internet has brought the development of online advertising into a 

developed period. To optimize the accuracy of advertisement, click-through-rate rate, the research 

proposed an advertisement click-through-rate prediction model based on deep neural network combined 

with efficient channel attention network. This model consists of four parts: embedding layer, interaction 

layer, efficient channel attention layer, and prediction layer. The embedding layer is responsible for 

passing the feature vectors to the interaction layer. higher-order feature interactions are learned through 

deep neural networks and efficient channel attention networks are introduced for lower-order feature 

interactions. higher-order feature interactions can capture the nonlinear and complex relationships 

between original features, while low-level feature interactions mainly focus on the relationships between 

a few features. The channel attention layer integrates the original features with the features that have 

already been interacted with by the interaction layer. The prediction layer uses perceptrons to predict 

click-through-rates. The proposed model is compared with logistic regression, deep feature crossover 

network, and deep factorization machine on Criteo, Avazu, KDD12, and MovieLens-1M datasets. The 

results showed that when the network depth was 1, the area under the curve of the proposed model was 

0.8377, which was 10.4% higher than that of the logistic regression model. The average logarithmic loss 

was 0.1985, which was lower than that of the comparison model. The UC value of the model in the KDD12 

dataset was 0.7879 and the logarithmic loss value was 0.4478. Taken together, the proposed model of the 

study is able to predict click-through-rates more accurately and has better model performance.  

Povzetek:  Članek predstavi model za napovedovanje stopnje klikov (CTR) v spletnih oglasih, ki združuje 

globoke nevronske mreže in učinkovite mehanizme pozornosti, kar izboljša napovedi. 

 

1 Introduction 

The Internet has made an increasing amount of people tend 

to use the Internet to solve the items and other needs 

needed in daily life [1]. Today’s Internet has penetrated 

into all aspects of life in various families, text message 

exchanges between people, online shopping, cell phone 

taxi travel and so on. Among the various types of service 

companies on the Internet revenue is mainly dependent on 

advertising revenue. Internet online advertising can rely on 

the huge user traffic, which can be transformed into 

operating income [2]. With the development of the 

Internet, the media used for advertisements have gradually 

evolved from television, magazines, and so on to the 

Internet, and online advertisements are commercial 

advertisements that are published in various websites with 

pictures, text, and so on [3]. For online advertising, how to 

send the advertisements to the people who need them is the 

main problem, and thus the click-through-rate (CTR) 

prediction, which is the most common way to calculate the 

effectiveness of the advertisement delivery, has been 

developed [4]. The Internet has made an increasing amount 

of people tend to use the Internet to solve the items and 

other needs needed in daily life [1]. Today’s Internet has 

penetrated into all aspects of life in various families, text 

message exchanges between people, online shopping, cell 

phone taxi travel and so on. Among the various types of 

service companies on the Internet revenue is mainly 

dependent on advertising revenue. Internet online 

advertising can rely on the huge user traffic, which can be 

transformed into operating income [2]. With the 

development of the Internet, the media used for 

advertisements have gradually evolved from television, 

magazines, and so on to the Internet, and online 

advertisements are commercial advertisements that are 

published in various websites with pictures, text, and so on 

[3]. For online advertising, how to send the advertisements 

to the people who need them is the main problem, and thus 

the click-through-rate (CTR) prediction, which is the most 

common way to calculate the effectiveness of the 

advertisement delivery, has been developed [4]. For 

Internet service companies, CTR prediction is very 

important. In practical applications, CTR prediction 

models usually need to deal with the characteristics of high 

sparsity, which challenges the training and generalization 

ability of models, leading to the unsatisfactory prediction 
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performance of models [5]. By predicting and analyzing 

the CTR of the advertisements, it can improve the accuracy 

of the advertisements that Internet service companies push 

to the people in the network, and it can also predict in 

advance the return rate that the advertisements pushed can 

bring back [6]. However, traditional CTR prediction 

models have limitations in handling large-scale sparse data 

and capturing complex feature interactions, which cannot 

fully capture nonlinear relationships and higher-order 

feature (HOF) interactions in the data, resulting in poor 

generalization ability and low prediction efficiency of the 

model. In this context, the study aims to address the low 

accuracy and efficiency of traditional CTR prediction 

methods by proposing the use of deep neural network 

(DNN) combined with efficient channel attention network 

(ECANet) for CTR prediction. The research aims to 

improve the accuracy of CTR prediction by proposing a 

new deep learning model, which can help advertisers plan 

and optimize their advertising strategies more effectively, 

and contribute to the long-term stable development of e-

commerce. 

There are two main innovations of this study. The first 

point is to combine DNN and ECANet for feature 

interaction, which enables the model to comprehensively 

understand and utilize feature information, thereby 

improving the accuracy of CTR prediction. The second 

point is to effectively fuse the original features with the 

interactive features using channel attention layers, and 

adaptively adjust the Fws through attention mechanisms, 

further improving the predictive performance of the model. 

The main contribution of this study is: (1) proposing 

a deep learning model architecture that integrates DNN 

and ECANet, which helps improve the accuracy of 

advertising CTR prediction. (2) Introducing an ECANet 

and enhancing the expressive ability of key feature 

channels through dynamic weight allocation solves the 

problem of traditional models lacking adaptive selection 

for low-level feature interactions, while improving the 

interpretability of the model. 

2 Related work 

As the Internet has grown, so too has online advertising, 

and predicting the CTR of advertisements has become 

increasingly crucial. Advertising CTR prediction is one of 

the core algorithms in advertising technology, mainly used 

to predict the probability of ads being clicked. Traditional 

CTR prediction methods include logistic regression (LR), 

deep factorization machine (DeepFM), and deep feature 

crossover network (DCN). Jia S stated that CTR is closely 

related to students' level of active learning, reflecting their 

learning behavior in the data. Therefore, for the analysis of 

student performance data in online teaching, LR algorithm 

was proposed to predict whether students will pass the 

exam. The experimental results proved the feasibility of 

the proposed method [7]. Li et al. proposed a CTR 

prediction model based on DeepFM and used focal loss as 

the loss function. The results showed that the area under 

the curve (AUC) of the proposed model was 0.044 and 

0.013 higher than that of the logistic model and neural 

network, respectively [8]. Huang G et al. improved the 

predictive performance of CTR based on DNN by 

introducing a regularized leader following the DCN 

model. The results indicated that the proposed model had 

good predictive performance and helped promote the 

development of e-commerce [9]. However, traditional LR, 

DeepFM, and DCN also suffer from poor generalization 

ability and low efficiency, making it difficult to meet the 

high efficiency and precision requirements in network 

environments. With the rapid development of computer 

technology, more and more intelligent algorithms are 

being applied to the field of CTR prediction. Mao K et al. 

proposed a dual-stream feature interaction model based on 

multi-layer perceptron (MLP) for CTR prediction in online 

advertising and recommendation, which enhances CTR 

modeling through feature selection module and group 

bilinear fusion module. The results indicated that the 

proposed model achieved competitive performance 

compared to many existing dual-stream CTR models [10]. 

Qin J et al. proposed a user behavior retrieval framework 

that supports arbitrary and learnable retrieval functions to 

address the long-term dependency issue of current CTR 

prediction models. The results indicated that the proposed 

method achieved a 6.6% Effective Cost Per Mille gain in 

A/B testing [11]. Li X et al. proposed a decision context 

interaction network to learn decision context in response 

to the problem that existing CTR prediction methods often 

ignore the information background that affects users' click 

decisions. The results indicated that the proposed model 

could effectively improve the accuracy of CTR prediction 

[12]. The summary table of the relevant research on CTR 

prediction methods mentioned above is shown in Table 1. 

 

Table 1: Summary table of related research 

Literature Method Advantage Limitation 

[7] LR Simple and computationally efficient 
Unable to capture complex 

interactions between features 

[8] DeepFM 

AUC is 0.044 and 0.013 higher than the 

logistic model and neural network 

model, respectively 

Poor performance when dealing 

with very sparse data 

[9] DCN 

Enhancing the learning ability of 

feature interaction by introducing cross 

networks 

There are limitations in terms of 

representativeness 
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[10] 
Feature selection module and 

group bilinear fusion module 

Capable of effectively handling feature 

interactions 

Mainly relying on feature 

selection and bilinear fusion, 

there are limitations in handling 

high-order feature interactions 

[11] Learnable retrieval function 

Can effectively process user behavior 

data and improve the long-term 

dependence of CTR prediction 

The main focus is on user 

behavior retrieval, therefore there 

are limitations in handling low-

level feature interactions 

[12] 
Decision context interaction 

network 

Can effectively improve CTR 

prediction accuracy 

Mainly focusing on the 

interaction of decision context, 

there are limitations in handling 

high-order feature interactions 

ECANet is an efficient channel attention module that 

adopts a local cross channel interaction strategy without 

dimensionality reduction, avoiding information loss 

caused by dimensionality reduction. It is commonly used 

to improve the performance of deep learning models. Gao 

Q et al. proposed to merge the Neck part of ECANet and 

YOLO v5 network to build an improved YOLO v5 

network-based object recognition model for pedestrian 

target tracking and recognition in complex scenes. The 

results showed that the average accuracy of the proposed 

model improved by 1.3% [13]. Guo Z et al. proposed a 

lightweight semantic segmentation algorithm based on 

multi-module fusion, which combines coordinate attention 

and ECANet to enhance salient features, to address the 

problem of unsatisfactory and inefficient semantic 

segmentation results in existing methods. The results 

showed that the average pixel accuracy of the proposed 

algorithm reached 85.23%, and the training speed was 

improved by 68.69% [14]. Cui Z et al. proposed an image 

deblurring aggregation network based on ECANet to 

address the problem of low feature extraction efficiency in 

existing multi-scale network image denoising methods. 

The network improved feature representation through 

three feature aggregation blocks. The results indicated that 

the proposed method could clearly restore the texture and 

color of the image [15]. Chen W et al. proposed a low 

contrast defect detection method based on deep learning 

for ceramic parts, and used ECANet to detect defects in 

curved parts. The results indicated that the prediction 

accuracy of the proposed method could reach 94.35%, 

with an average detection time of only 0.78 seconds [16]. 

From domestic and international research, the 

traditional deep learning network for the prediction of 

advertisement CTR has the problems of low prediction 

accuracy, small scope of application, and inability to make 

long-term prediction. The study proposed a method based 

on DNN combined with ECANet for advertisement CTR 

prediction, which is expected to enhance the accuracy of 

advertisement CTR prediction and achieve long-term 

prediction. 

3 CTR prediction using DNN 

combined with ECANet 

3.1 DNN based CTR prediction 

CTR prediction is the process of predicting the CTR of the 

next advertisement that has a probability of being clicked 

by a web user under a specific conditional situation using 

an algorithm before clicking on the advertisement [17]. 

The advertisement CTR prediction process is in Figure 1. 
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Figure 1: CTR predication process. 

 

In Figure 1, the offline system collects and processes 

the data and trains the data, and passes the trained data into 

the online system, which delivers the advertisements to the 

user side through data caching. In traditional CTR 

prediction, the main role of feature engineering is to 

improve the prediction accuracy, which is improved by 

combining features to mine the potential relationship 

between different features. The CTR is calculated as Eq. 

(1).  

_

_

num click
CTR

num impression
=    (1) 

In Eq. (1) _num click   means the quantity of 

clicks made by the web user and _num impression  is 

the number of times the advertisement appears on the web 
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user interface.  

 

 

 

However, in actual user usage, it is possible that the 

web user does not make a click and thus there is a 

smoothing way to perform the formula leveling as in Eq. 

(2).  

_

_

num click
CTR

num impression

 



+ 
=

+
   (2) 

In Eq. (2),    and    denote the smoothing 

parameters to avoid the problem that the denominator is 

zero leading to the inability to calculate the CTR, which 

can help the model to give reasonable predictions even in 

the case of sparse data. DNN is used to learn higher order 

feature interactions. In deep structural models, the DNN 

structure is divided into multi-layer networks, able to 

construct non-linear higher order features. This feature 

also makes DNN has a better performance in click rate 

prediction. DNN is more common in deep learning. In this 

problem of click prediction, the perceptron with additional 

layers in DNN is defined in equation (3). 

1

( ) ( )
n

i i

i

f x sign w x b
=

= +    (3) 

In Eq. (3), sign   denotes the sign function, n  

denotes the quantity of perceptron layers, 
ix  denotes the 

i -th input feature, 
iw  denotes the weight of 

ix , and b  

denotes bias. Among them, input features refer to the raw 

data points used for training and predicting models. In the 

scenario of advertising CTR prediction, input features can 

include user features, advertising features, contextual 

features, historical behavior features, and interaction 

features. Weight is a parameter in DNNs that connects the 

input and output layers (OLs), representing the degree of 

influence of corresponding input features on the model 

output. During the training, weights are continuously 

adjusted through optimization algorithms to minimize the 

difference between predicted and actual values. This study 

uses the Adam optimization algorithm. In DNN, the output 

of the perceptron can be represented as a binary 

classification result, and the sign function is used to 

convert the output of the perceptron into a binary output 

sign function. The sign function is expressed as in Eq. (4).  

1, 0
( )

1, 0

x
sign z

x

− 
= 


   (4) 

In Eq. (4), z   denotes the input features. DNN 

increases the network layers on the perceptual machine, 

and to allow the model to learn HOFs, a hidden layer (HL) 

is added between the original input and OLs on the 

network model [18]. It makes the DNN can be diverse in 

choosing activation functions, and can choose more 

applicable activation functions according to the scene. To 

make the DNN capable of handling both regression and 

classification problems, neurons are added to the OL so 

that the OL of the DNN is no longer a single neuron [19]. 

Its DNN model network structure as in Figure 2.  

   

 

 

σ 

 Input layer

Hidden layer

Output layer

 

Figure 2: DNN model network structure. 

 

In Figure 2, DNN has 3 layers: input, hidden, and 

output. The input layer (IL) sends the information feature 

collection to the HL, and after the training, the OL will 

work with the trained information features as output. The 

larger and more complex the dataset, the more HLs and 

units may be needed to capture patterns in the data. But 

more HLs and units also mean higher computational costs, 

and too many HLs and units may also lead to overfitting. 

Therefore, determining the optimal number of HLs and 

units usually requires experimentation and tuning. 

Assuming the number of HLs is L , the calculation of the 

input layer for the DNN model is shown in equation (5).  

1 2 3X {X ,X ,X , ,X }n=     

(5) 

In Eq. (5), X   denotes the input vector. The HL is 

expressed as in Eq. (6).  
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( ) ( ) ( 1) ( )( )( 1,2,3, , 1)l l l lh h W h b l L−= +   −    

(6) 

In Eq. (6), ( )lh   and ( )lb   denote the input vector 

and bias vector of layer 1l +  and l . ( )lW  denotes the 

weight matrix of layer 1l − . The OL is represented as in 

Eq. (7).  

arg max ( , ; , )pre
C

y P y C X w b= =    (7) 

In Eq. (7), ( , ; , )P y C X w b=   denotes the 

possibility that the output category is equivalent to C, and 

the outcome category is either 0 or 1. In the forward 

propagation process of DNN, input features are input from 

the input layer, pass through multiple HLs, and finally 

output the predicted values of the model. It is necessary to 

optimize the objective function, and the minimum mean 

square error (MSE) is usually used to calculate the error 

between the predicted value and the true value, as shown 

in equation (8). 

2

1

1
ˆ( )

M

m m

m

MSE y y
M =

= −    (8) 

In Eq. (8), M  denotes the number of samples. The 

activation value of the last HL Ha  is a dense vector that 

contains all the information from the input layer to the HL. 

The study uses the Sigmoid function as the activation 

function for the OL, and introducing Ha   into the 

Sigmoid function can generate the final predicted value, as 

shown in equation (9). 

1 1
( )

H HH

DNNy W a b
+ +

=  +    (9) 

In Eq. (9), H  is the number of layers of the HLs 

in the DNN. In the process of regression prediction, the 

loss function is expressed as in Eq. (10).  

2

1

1
( )

N

i i

i

loss V M
N =

= −    (10) 

In Eq. (10), iV   denotes the predicted output and 

iM   denotes the actual output. In order for the loss 

function to become minimized, the network is to be trained 

and iteratively updated by Adam, expressed as in Eq. (11).  

1 1

2

2 2

(1 )

(1 )

v v dw

s s dw

 

 

= + −


= + −
   (11) 

In Eq. (11), 1 0.9 =  , 2 0.999 =  . w   denotes 

the changeover value and v , s  denote the variables in 

the update process.  

3.2 CTR prediction based on DNN-

ECANet 

Lower-order features (LOF) refer to basic features directly 

extracted from raw data, usually involving a single feature 

or a simple combination of a few features. They are rich in 

detail information and can capture subtle changes and local 

features in the data. HOF refer to features obtained through 

multiple nonlinear transformations and abstract 

representations of raw data, which can capture complex 

relationships and high-level semantic information in the 

data, usually involving interactions and combinations 

between multiple features. The study presents the ECANet 

in conjunction with DNN for the learning fusion of HOF 

and LOF interactions for advertisement CTR prediction. 

DNN is primarily used to perform HOF interactions, and 

its learning ability for LOF interactions is weak. DNN can 

automatically learn HOF interactions in data through 

multi-layer nonlinear transformations. In advertising CTR 

prediction, DNN can capture the complex relationships 

between user behavior, advertising attributes, and other 

features, providing richer information for prediction. The 

core of ECANet is the channel attention mechanism, which 

captures the dependency relationships between channels 

through one-dimensional convolution operations, 

enhancing the model's attention to important features. The 

combination of ECANet and DNN achieves dynamic 

modeling of multi-level feature interaction through 

efficient channel attention mechanism and complementary 

deep nonlinear learning. Compared with traditional 

attention mechanisms, ECANet proposes an adaptive 

method for selecting the size of one-dimensional 

convolution kernels, which avoids complex 

dimensionality reduction and enhancement processes and 

has higher computational efficiency. The ECANet is taken 

to learn the LOF interactions, and the problem of 

prediction for one in different application scenarios is 

different, for a specific CTR prediction, the ECANet is 

adopted to increase the feature weighting (Fw) and 

decrease the interference weights [20]. ECANet consists 

of three parts, as in Figure 3.  
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Figure 3: Composition of ECANet. 

 

In Figure 3, ECANet consists of three parts: feature 

compression, weighting, and Weight extraction (Ew). 

ECANet takes the feature information and passes it to 

different network layers for weighting calculation by 

compressing the features. Finally, the weights are extracted 

by the weighting layer after the weighting calculation. 

Feature compression is used to get the received vector 

information and embed the vectors into ECANet [21]. It is 

calculated as in Eq. (12).  

( )

1

1
( )

k t

i i it
z F e e

k =
= =     (12) 

In Eq. (12), 
iz
 denotes the statistical vector of the 

i  -th input vector, 
( )t

ie   denotes the t  -dimensional 

information of i  -th vectors, and 1,2,3, ,t k=  . To 

better capture the relationship between different features 

and improve the accuracy of advertisement CTR 

prediction, DNNs are utilized for advertisement CTR 

prediction, and the structure of DNN for CTR prediction is 

in Figure 4.  

FANet

  

0.5

0.8

 

DNN

Click through 

rate prediction 

layer
Feature interaction layerEmbedded layerInput layer

 

Figure 4: Structure of DNN for CTR prediction. 

 

In Figure 4, DNN for click prediction has four parts, 

which are IL, embedding layer, feature interaction layer, 

and click prediction layer. The feature information is 

passed from the IL to the embedding layer, and the 

embedding layer further sends the processed features to the 

feature interaction layer through computation. The feature 

interaction layer integrates and interacts the received 

feature information, and finally the prediction layer makes 

the prediction. Ew is used to learn the weights of the 

embedding. The information is obtained using a single 

feature with the feature it wants to be close to, which is 

realized by convolution, and the weights of its field 

embeddings are calculated as in Eq. (13).  

( 1 ( ))KA conv D Z=    (13) 

In Eq. (13), 1conv D   denotes convolution, 
mA R   denotes a vector, K   denotes the size of the 

convolution kernel, and   is the activation function. Fw 

is the most initial vector multiplied by the weights obtained 

from Ew, and thus the embedding vector obtained by 

fusion of the two, computed as in Eq. (14).  

1 1 1( , ) [ , , ] [ , , ]m m mV F A E a e a e v v= =   =  

(14) 
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In Eq. (14), ia R  , 
k

ie R  , 
k

iv R  . i  

denotes the i   feature domain and k   denotes the 

dimension of the embedding. In the established model, the 

DNN is interacted with the hidden features, which is 

calculated as in Eq. (15).  

1 (1) 1

( ) ( 1)

( )

( )n n n n

x W v b

x W v b



 −

 = +


= +
   (15) 

In Eq. (15), n   denotes the neural network depth, 
nx   denotes the DNN output at layer n  , and W  

denotes weight, and b  denotes bias. In explicit feature 

interaction, ECANet is utilized. According to the DNN 

combined with ECANet for constructing the CTR 

prediction model, the study proposes that the structural 

composition of the DNN-ECA model is in Figure 5. 

ECANet

DNN

Global Interaction Module

MLP

Softmax

Output prediction results

Channel Attention layerPrediction Layer Interaction Layer Embedding Layer

 

Figure 5: DNN-ECA model structure. 

 

In Figure 5, four parts, the embedding layer, the 

interaction layer, the ECA layer, and the prediction layer, 

together form the DNN-ECA CTR model. Among them, 

the embedding layer maps the original feature vectors to a 

low dimensional embedding space for subsequent 

processing. The interaction layer consists of DNN and 

ECANet. DNN can capture complex feature combinations 

and learn high-order interaction relationships between 

features through multi-layer nonlinear transformations. 

ECANet focuses on learning lower-order interaction 

relationships between features. The efficient channel 

attention layer integrates the features output by the 

embedding layer with the features processed by the 

interaction layer, and adaptively adjusts the weights of 

different features through the attention mechanism to 

capture the relationship between the original features and 

the interaction features. The prediction layer consists of an 

MLP and a Softmax layer. MLP can perform deeper feature 

interaction and learning, while Softmax converts the 

output of MLP into a probability distribution for predicting 

CTR, ultimately outputting the predicted results for 

advertising CTR. That is, all the captured features are 

represented by a vector, as in Eq. (16).  

1 2 3[ ; ; ] [ ; ; ]g i ECA jr e e e r r r= =    (16) 

In Eq. (16), 1r , 2r , and 3r denote individual 

features. All the features are combined as inputs and the 

model output is calculated as in Eq. (17).  

1

1

ˆ(tanh( ))

ˆ(tanh( ))

L l l l
g lLl

l l ll

exp r W b
R r

exp r W b
=

=

 +
=

 +



   (17) 

In Eq. (17), lW   denotes the weights, lb   denotes 

the deviation matrix, and tanh   denotes the activation 

function. In the final prediction layer, the adapted global 

features are delivered to the prediction module for CTR 

prediction using the perceptron machine, and the 

prediction process is in Eq. (18).  

( )l l l lR Relu W R b= +    (18) 

In Eq. (18), the value of l   ranges from 

1,2, ,l n=  . For the lowest implicit layer, the final 

CTR prediction is performed for it, expressed as in Eq. 

(19).  

ˆ ( )P h qy softmax W R b= +    (19) 

In Eq. (19), ŷ   denotes the prediction result, hR
 

denotes the output at layer h , which is the output of the 

prediction module, 
PW   represents the weight, and qb  

denotes the deviation. In summary, the specific flowchart 

of the DNN ECANet model proposed by the research is 

shown in Figure 6. 
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Figure 6: Flow chart of DNN ECANet model. 

 

The study used AUC value and LogLoss as evaluation 

indicators. AUC is the area under the receiver operating 

characteristic (ROC) curve of the subject, and its value is 

positively correlated with the model performance. The 

horizontal and vertical axes of the ROC curve represent 

false accuracy and true accuracy, respectively. LogLoss is 

used to measure the distance between two components, 

and its calculation is shown in Eq. (20). 

1

1
ˆ ˆ[ log( ) (1 ) log(1 )]

N

i i i i

i

LogLoss y y y y
N =

= − + − −    

(20) 

 

In Eq. (20), N  denotes the total number of samples, 

iy  denotes the true value, and ˆ
iy  denotes the predicted 

value. 

4 Analysis of experimental results 

4.1 Validity analysis of the DNN-ECANet 

Model 

The experiment was run on the Windows 11 system and 

implemented in the TensorFlow 2.0 environment, AMD 

Ryzen 75800H CPU. The host memory was 32.0GB, and 

the graphics card was NVIDIA GeForce RTX 3060. The 

study used Python programming language, Softmax 

activation function, set layer depth to 3, number of neurons 

to 128, embedding dimension to 16, Drop Out Ratio to 0.7, 

learning rate to 0.001, batch size to 1024, and optimized 

the model using Adam. To analyze the predictive 

effectiveness of the DNN ECANet model, AUC and 

LogLoss were used as evaluation metrics in the study. 

AUC measured the probability that the predicted value of 

positive samples was higher than that of negative samples, 

and the larger the value, the better the predictive 

performance of the model. Logloss was the most important 

classification metric based on probability, used to measure 

the difference between predicted and true values. The 

smaller the value, the better the predictive performance of 

the model. The four datasets were Criteo, Avazu, KDD12, 

and MovieLens-1M. The Criteo dataset contains various 

information such as users, merchants, and advertisements, 

and is a classic dataset on consumer behavior and machine 

learning algorithms. The Avazu dataset provides rich 

information through multiple feature fields containing user 

characteristics and advertising attributes, and has classic 

application scenarios in the field of mobile advertising 

CTR prediction. The KDD12 dataset contains a large 

amount of user behavior data, which can help researchers 

evaluate and develop CTR prediction algorithms. The 

MovieLens-1M dataset contains user ratings, tags, and 

background information for movies. These four public 

datasets cover common application areas in different real-

world scenarios, including data related to user preferences 

and behavior patterns, and can test the performance and 

generalization ability of the model under different 

conditions. Ten million data were randomly selected from 

each dataset and divided into training, testing, and 

validation sets in the ratio of 8:1:1. The experimental 

results are in Figure 7. 
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Figure 7: Impact of embedding dimensions on the model. 

 

From Figure 7 (a), as the embedding dimension 

increased from 8 to 32, the AUC values of the model 

gradually increased on all four datasets. When the 

embedding dimension reached 32, continuing to increase 

the embedding dimension would gradually decrease the 

AUC value of the model, and the performance would begin 

to decline. From Figure 7 (b), as the embedding dimension 

increased from 8 to 16, the LogLoss of the model gradually 

decreased, indicating that the prediction accuracy of the 

model gradually increased. When the embedding 

dimension reached 16, even if the embedding dimension 

continues to increase, there was no significant change in 

the LogLoss of the model. This may be because 

appropriately increasing the embedding dimension can 

enable the model to capture richer feature representations, 

thereby improving the model's ability to distinguish 

between positive and negative samples. But if the 

embedding dimension is too large, it may lead to 

overfitting of the model and a decrease in generalization 

ability on the test data. Therefore, it is reasonable to set the 

embedding dimension to 16 in the study. To further 

investigate the impact of the number of layers and neurons 

in each layer of DNN on the robustness of the model, the 

layers were set to 2, 3, and 4, and the number of neurons 

was set to 64, 128, and 256, respectively. The changes in 

AUC and LogLoss values of the DNN-ECA prediction 

model proposed by the research on the Criteo dataset are 

shown in Table 2. 

From Table 2, as the number of layers increased, the 

AUC and LogLoss values of the model did not show a 

significant monotonic trend. This indicated that the 

performance of the model did not solely depend on an 

increase in the number of layers.  

 

 

 

 

 

 

 

 

 

Table 2: AUC and LogLoss values of DNN-ECA model 

under different hyperparameters 

Number of 

layers 

Number of 

neurons 
AUC LogLoss 

2 64 0.821 0.453 

2 128 0.825 0.439 

2 256 0.818 0.452 

3 64 0.831 0.435 

3 128 0.837 0.428 

3 256 0.829 0.437 

4 64 0.824 0.441 

4 128 0.832 0.436 

4 256 0.829 0.438 

 

In addition, when the number of layers was fixed, 

increasing the number of neurons usually increased the 

AUC value of the model and reduced the LogLoss value. 

When the number of layers was 3 and the number of 

neurons was 128, the model performed the best in terms of 

AUC and LogLoss values, which were 0.837 and 0.428, 

respectively. 

 Therefore, it is reasonable to set the layer depth to 3 

in the study. The LR model, DCN model, and DeepFM are 

three classic CTR prediction models that are representative 

and highly applicable, providing comprehensive 

comparisons and references for this study. The 

performance of DNN-ECA was compared with LR model, 

DCN model, and DeepFM at different network depths, and 

the experimental results are in Figure 8. 
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Figure 8: The influence of network depth on the model. 

 

From Figure 8(a), as the network depth increased, the 

AUC value of the DNN-ECA model proposed by the 

research also increased continuously. When the network 

depth was 1, the AUC value of the proposed model was 

0.8377, which was 10.4% higher than that of the LR model. 

The average AUC value of the proposed model was 0.845, 

which was higher than the comparison model. The average 

AUC value of the LR model was the lowest, at 0.765. From 

Figure 8 (b), at different network depths, the LogLos of the 

proposed model was always the lowest and the variation 

amplitude was small, with an average LogLos of 0.1985. 

The LogLos of the other three prediction models fluctuated 

continuously with the increase of network depth, which 

greatly affected the predictive performance of the models. 

The results indicated that the DNN-ECA prediction model 

proposed by the research had better predictive 

performance than LR, DCN, and DeepFM models, and 

was less affected by network depth. Further comparing the 

computational complexity of the four models mentioned 

above, the results are shown in Table 3. 

 

Table 3: Comparison of computational complexity among 

four models 

Model Number of 

parameters/M 

Training time/s 

LR 0.01 150 

DCN 1.22 163 

DeepFM 1.54 201 

DNN-ECA 1.36 179 

From Table 3, the parameter of DNN-ECA was 

1.36M and the training time was 179s, which was superior 

to the DeepFM model in terms of computational 

complexity. In the public dataset Criteo, the DNN-ECA 

was compared with the commonly used CTR prediction 

model for machine learning performance. Figure 9 shows 

the comparative results. 
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Figure 9: Comparison of AUC performance of different models on the dataset. 
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Figure 9(a) shows that when comparing the model 

performance in the Criteo dataset, the DNN-ECA model 

had the highest AUC of 0.8124. While the commonly used 

LRM had an AUCof 0.7951, which was 0.0173 lower than 

that of the DNN-ECA. This indicated that compared to 

commonly used prediction models in the Criteo dataset, 

DNN-ECA had the best predictive performance. In Figure 

9(b), the Avazu dataset, the DNN-ECA model had the 

highest AUC value of 0.7612, and the LRM had an AUC 

value of 0.7538, which was 9.8% lower than the AUC of 

the DNN-ECA. the AutoInt model had the lowest AUC 

value of 0.7531. This showed that the DNN-ECA had the 

best prediction performance in the dataset Avazu. Set 

Avazu had the best prediction performance, higher AUC 

value than the commonly used CTR prediction model, and 

better performance than the classical deep learning 

prediction model. In Criteo, Avazu and Movielens-1M 

datasets, the DNN-ECA and the commonly used CTR 

prediction model were subjected to log-loss experiments. 

Table 4 lists the specific data. 

 

Table 4: Performance comparison of various models on the dataset 

Model 
Criteo Avazu Movielens-1M 

LogLoss LogLoss LogLoss 

LR 0.4756 0.1679 0.4416 

CIN 0.4695 0.1598 0.4269 

AutoInt 0.4560 0.1581 0.4273 

AFN 0.4471 0.1569 0.4149 

DCN 0.4416 0.1589 0.4035 

DeepFM 0.4511 0.1588 0.3891 

Fi-CIN 0.4483 0.1544 0.3843 

DNN-ECA 0.4462 0.1539 0.3795 

From Table 4, the LogLoss of the proposed model on 

the Criteo dataset was 0.4462, which was 0.0294 lower 

than that of the LR model. The LogLoss on the Avazu 

dataset was 0.1539, which was 0.005 lower than the DCN 

model. The LogLoss on the Movielens-1M dataset was 

0.3795, which was 0.024 lower than the DeepFM model. 

To further investigate the impact of the number of input 

fields on the performance of DNN-ECA, the Criteo dataset 

was used to compare DNN-ECA with DeepFM. The 

experimental results are shown in Figure 10. 
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Figure 10: Influence of different contextual numbers on the model. 

 

From Figure 10 (a), the LogLoss value of the 

proposed DNN-ECA model was consistently lower than 

that of the DeepFM model under different input field 

quantities. When the number of input fields was 8, the 

LogLoss of the model was the lowest, which was 0.4654. 

The highest LogLossof the DeepFM model was 0.4675, 

and the lowest LogLoss was 0.4656. From Figure 10 (b), 

the lowest AUC value of the DNN-ECA model was 0.7862, 

and the highest AUC value was 0.7879. Under different 

input field quantities, the AUC value of the DNN-ECA 

model was consistently higher than that of the DeepFM 

model. It demonstrates that the DNN-ECA has more 

learning ability and is better for the evaluation of 

prediction. To investigate the impact of ECANet on model 

performance, ECANet was removed from the DNN-ECA 

model and the AUC values of the complete model and the 

model were compared with ECANet removed in four 

datasets. The results are shown in Figure 11. 
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Figure 11: Impact of ECANet on model performance. 

 

From Figure 11, in all four datasets, the AUC values 

of the complete model were higher than those of the model 

with ECANet removed, indicating that ECANet can 

effectively improve the CTR prediction performance of the 

model. 

4.2 Validation of the effectiveness of DNN-

ECA CRT Prediction 

To verify the practical application effect of the proposed 

DNN-ECA model, data collection was conducted on the 

campus forum network of Sichuan Agricultural University. 

Information was collected from 200 users and 500 posts 

from October 1, 2024 to October 31, 2024. The collected 

data were stored in a MySQL database. Duplicate user and 

post information were removed through unique identifiers 

such as user ID and post ID. Operations such as word 

segmentation, stem extraction, and morphological 

restoration were performed on post and comment content 

to extract meaningful features. The DNN-ECA model was 

compared with four commonly used deep learning models: 

Factorization-machine supported Neural Networks (FNN), 

Neural Factorization Machines (NFM), Wide and Deep 

Learning Model (Wide&Deep), and DeepEM. The FNN 

model consisted of a factorization machine (FM) and an 

MLP, and has good feature cross expression ability. The 

NFM model integrated FM and DNN through a dual line 

interactive pooling layer. The Wide&Deep model 

combined LR and DNN for learning. The comparison 

results of the indicators of the five models are shown in 

Figure 12. 
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Figure 12: Comparison between DNN-ECA model and deep learning model. 

 

From Figure 12(a), results indicated that the highest 

and lowest AUC value of the DNN-ECA and FNN were 

0.7379 and 0.7286. For the traditional DeepFM for CTR 

prediction, the AUC value was 0.7361. It was 0.011 lower 

than that of the AUC of the DNN-ECA. The DNN-ECA 

had the best performance and higher accuracy of CTR 

prediction compared to the rest of the deep models. In 

Figure 12(b), the DNN-ECA model had the lowest 

LogLoss value of 0.3119, which was 0.349% lower than 

that of the DeepFM, and 0.547% lower than NFM model. 

It indicated that the proposed DECA performed better 

compared to other deep learning models commonly used 

for CTR prediction. The DNN-ECA model could 

simultaneously perform the fusion of learning different 

higher and lower-order features. The comparison of CTR 

prediction of different models on KDD12 dataset is in 

Figure 13.  



Click-Through-Rate Prediction Using Deep Neural Networks and… Informatica 49 (2025) 21–36 33 

0.7860

0.7865

0.7870

0.7875

0.7880

0.7885

0.7890

A
U

C

L
o

g
lo

ss

0.430

0.435

0.440

0.445

0.450

0.455

0.460

0.465

AUC

Logloss

 

Figure 13: Comparison of CTR prediction of models on KDD12. 

 

In Figure 13, when different models were used for 

CTR prediction on the KDD12 dataset, the LRM had the 

worst CTR prediction performance, with an AUC value of 

0.7866 and a LogLoss value of 0.4587. The DeepFM had 

a better CTR prediction performance compared to the rest 

of the commonly used prediction models, with an AUC of 

0.7876 and a LogLoss value of 0.4529. The DNN-ECA 

had the best CTR prediction performance with an AUC of 

0.7879 and a LogLoss value of 0.4478. Compared to the 

LRM, the AUC value improved by 0.0013 and the 

LogLoss value reduced by 0.24%. Compared with the 

DeepFM, the AUC increased by 0.003 and the LogLoss 

value decreased by 0.19%. To further validate the 

superiority of the proposed model, the KDD12 dataset was 

used to compare the prediction accuracy of the DNN-ECA 

model with three advanced models: Automatic Feature 

Interaction (AutoInt), Feature Importance Bilinear Feature 

Interaction (FiBiNet), and Decision context interaction 

network (DCINet). The results are shown in Figure 14. 
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Figure 14: Comparison of prediction accuracy among four models.

 

From Figure 14, among the four models, the DNN-

ECA model proposed by the research had the highest 

accuracy, at 96.89%. Next was the AutoInt model, while 

the DCINet model had the lowest accuracy, but still above 

90%. The results indicated that the proposed DNN-ECA 

model had a high prediction accuracy and certain 

superiority. 

 

5 Discussion 
To optimize the accuracy of advertisement CTR prediction, 

the study proposed a method grounded on the fusion of 

DNN and ECANet for CTR prediction. The results 

demonstrated that on different datasets, when the 

embedding dimension of the model was 32, the AUC value 

of the model was the highest and the prediction 

performance was the best. Continuing to increase the 
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embedding dimension, the AUC value of the model began 

to decrease. This meant that the model could achieve good 

performance at lower embedding dimensions. Continuing 

to increase embedding dimensions may cause the model to 

start memorizing specific samples in the training data 

instead of learning generalized feature representations, 

resulting in overfitting and high complexity, which can 

affect its generalization ability. In addition, the DNN-ECA 

model proposed by the research performed better on the 

Criteo dataset, possibly because the Criteo dataset 

typically contains a large number of sparse features. When 

the embedding dimension was 32, the model had sufficient 

feature representation ability to capture complex 

relationships between sparse features. 

The DNN-ECA had a lower LogLoss compared to the 

LRM. In the Avazu dataset, the LogLoss of the DNN-ECA 

was 0.014 lower than the LRM and 0.005 lower than the 

DCN, and the AUC value was 0.017 higher than the LRM 

and 0.0061 higher than the DCN. Under different input 

field quantities, the LogLoss value of the DNN-ECA 

model was consistently lower than that of the DeepFM 

model. When the number of input fields was 8, the 

LogLoss of the model was the lowest, which was 0.4654. 

In the KDD12 dataset, the AUC value of the DNN-ECA 

model was 0.7879, and the LogLoss value was 0.4478. 

Compared to the LR model, the AUC value increased by 

0.0013 and the LogLoss value decreased by 0.24%. DNN-

ECA model proposed by the research had the highest 

accuracy, at 96.89%. Next was the AutoInt model, while 

the DCINet model had the lowest accuracy, but still above 

90%. The DNN-ECA model proposed by the research 

exhibited excellent performance compared to traditional 

LR [7], DeepFM [8], and DCN [9], mainly due to the 

model's use of DNN, ECANet, and channel attention to 

achieve cross level feature interaction fusion. In addition, 

the attention mechanism adopted by the DNN-ECA model 

adaptively captured the dependencies between channels 

through one-dimensional convolution, without the need 

for dimensionality reduction or enhancement, preserving 

the information integrity of the original channel features 

and reducing model complexity and computational burden. 

6 Conclusion 
In summary, the study’s proposed DNN-ECANet method 

for advertisement CTR prediction can improve the 

prediction accuracy and help the long-term development 

of the advertising industry in the Internet environment. The 

DNN-ECA model proposed in the study has great potential 

for application in niche markets and specific time 

environments, and is expected to provide more accurate 

advertising strategies for advertisers and platforms. 

Specifically, in niche markets, advertisers often face issues 

such as small data volumes and specific user groups. By 

optimizing feature engineering and introducing 

multimodal data, the DNN-ECA model can better adapt to 

the needs of niche markets and improve the accuracy of 

advertising placement. In addition, user behavior patterns 

may change during specific time periods, and the DNN-

ECA model can optimize advertising placement in real-

time and improve CTRs by introducing time series features 

and dynamically adjusting strategies. Although the DNN-

ECA model proposed in the study can effectively capture 

higher-order and lower-order feature interactions, thereby 

improving CTR prediction performance, the complexity of 

the model is also high, resulting in longer training and 

inference times, and requiring a large amount of training 

data to achieve optimal performance. Therefore, in future 

research, methods for dynamically adjusting the learning 

rate, such as gradient descent-based dynamic adjustment 

strategy or learning rate annealing strategy, can be further 

explored to improve the convergence speed and stability of 

the model, or to further enhance the prediction 

performance by integrating multiple deep learning models. 
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