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This study proposes a malicious code detection model DTL-MD based on deep transfer learning, which 

aims to improve the detection accuracy of existing methods in complex malicious code and data scarcity. 

In the feature extraction process, the weighted sum method of GIST and LBP features is used to combine 

the advantages of the two features. Online transfer learning is used to reduce the data distribution 

difference between the target domain and the source domain. The model uses ResNet50V2 as the backbone 

network and combines SimAM to enhance the feature extraction and representation capabilities. In 

addition, in order to further improve the robustness of detection, GAN is used to generate malicious code 

variants and expand the training data set. In the experiment, the public CICIDS 2017 data set is used for 

model training and testing. The performance test results show that when the threshold is 0.7, the accuracy 

of DTL-MD is 95.8% and the F1 score is 0.93. In a performance test involving 30,000 samples, the 

throughput of the DTL-MD model under Trojans, viruses, worms, and adware is 11, 12, 11, and 12 tasks/s, 

respectively, and the inference time is 211, 225, 239, and 234 samples/s, respectively. Compared with 

GAN, DTL-MD increases the throughput by about 10% and the inference speed by about 15%. The 

research aims to provide new ideas for improving the intelligence and automation level of malicious code 

detection technology, which has certain application value and practical significance. 

Povzetek: A deep transfer learning-based model (DTL-MD) enhances malicious code detection using 

ResNet50V2, GAN-generated variants, and online learning, achieving 95.8% accuracy and improving 

detection speed and robustness against evolving threats. 

 

1 Introduction 
As the Internet becomes more widespread and 

information technology advances rapidly, the 

transmission routes of malicious code (MC) have 

become increasingly complex, and the impact of 

malicious software in modern society is becoming 

increasingly significant [1]. MC not only affects the 

security of personal information, but also poses a 

serious threat to the network environment of enterprises, 

government agencies, and society [2]. In recent years, 

the types of MC have increased exponentially, from 

traditional viruses, Trojans, and spyware to ransomware 

and worms in recent years, showing a trend of 

diversification and high complexity [3]. With the 

continuous advancement of MC attack technology, the 

existing signature matching-based detection methods 

have been unable to effectively cope with the challenges 

of variant MCs and new attacks [4]. Furthermore, as 

MC samples continue to pile up, the challenge lies in 

efficiently extracting discernible features from a vast 

array of samples and enhancing the model's ability to 

adapt to novel attack types via transfer learning. This 

has become crucial for boosting detection precision and 

tackling variant attacks effectively [5]. In this context, 

scholars have proposed various innovative methods for 

detecting MC to cope with the constantly changing MC  

 

environment. Kim proposed an MC detection technology 

combining dynamic and static analysis to address the 

diversification of MC propagation channels and the 

increasing intelligence of propagation technology. 

Through dynamic and static analysis of Trojan-type 

downloaders and MC of deliverers, the accuracy of 

detection was effectively improved [6]. Kim et al. raised 

an approach for detecting and classifying MC based on 

application programming interface sequences to address 

the problem of the proliferation and diversification of 

malware. Research showed that the proposed method 

showing high detection efficiency and accuracy [7]. Wang 

et al. proposed an efficient detection method combining 

CNNs and generative adversarial networks (GANs) to 

address the accuracy issues caused by the complexity of 

MC families and the rapid growth of variants in malware 

detection. Research showed that this method significantly 

improved detection accuracy by generating MC variants 

and performing lightweight classification [8]. Li et al. 

proposed an MC detection method based on feature fusion 

and machine learning. They extracted multidimensional 

features through static analysis and statistical analysis, 

extracted feature vectors using the n-gram model and TF-

IDF, selected the best feature vectors with the classifier, 

and finally built an automatic detection model. The results 

showed that the recognition accuracy of this method could 

reach 98.0%, with an F1 score of 0.969 [9]. 
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Online Transfer Learning (OTL) is a technique that 

combines the advantages of online learning and transfer 

learning. It improves the adaptability of models in 

dynamic environments by receiving new data in real 

time and using source domain knowledge to transfer to 

the target domain. Li et al. raised an evolutionary multi-

objective Bayesian optimization algorithm combined 

with multi-source OTL to address the challenge of 

limited fitness evaluation in multi-objective 

optimization problems. Through the comparison of 

multiple multi-objective optimization benchmark 

problems and real-world problems, it was proved that 

transfer learning could effectively improve the 

optimization performance of the problem [10]. Cherifi 

et al. proposed an automatic classification method for 

chest CT scans based on machine learning and deep 

learning. CT images were classified into COVID-19 or 

non-COVID-19 categories, and different machine 

learning models were used. The results showed that the 

accuracy of the ResNet50V2 model was 86.67% on a 

small data set and 97.52% on a large data set, 

demonstrating the potential of OTL in rapid detection [11]. 

Cui proposed a performance test of target detection and 

motion recognition algorithms in combination with OTL. 

In addition, the study also compared the recognition 

accuracy of 3D-CNN and dual-resolution 3D-CNN models 

under different video frames. The results showed that when 

the number of video frames was 20, the accuracy of the two 

algorithms in recognizing basic basketball movements was 

89.6% and 95.8%, respectively [12]. Qin et al. proposed an 

OTL-based estimation method to address the problem of 

data domain distribution differences caused by changes in 

temperature, aging, and other conditions in battery state of 

charge estimation. Through the design of a transfer 

conversion mechanism and a new Hoeffding-based 

extreme learning machine algorithm, research showed that 

this method could effectively reduce negative transfer and 

accurately estimate under complex conditions [13]. Table 

1 summarizes the above related studies, including the 

proposed models, key indicators, and limitations. 

Table 1: Literature review summary. 

Reference Method Key Results Limitations 

Kim [6] 

Combination of 

dynamic and static 

analysis 

Solve the problem of the 

diversification of the malware 

propagation method. 

Poor detection 

performance on complex 

malware. 

Kim, Lee [7] 
API aequence-based 

detection 

The more complex the malicious 

behavior, the higher the detection 

efficiency. 

Limited adaptability to 

large data sets 

Wang et al. [8] CNN + GAN Classification accuracy: 97.78% 
High computational 

complexity 

Li et al. [9] 
Feature fusion and 

machine learning 

Recognition accuracy: 98.0%,  

F1 score: 0.969,  

AUC: 0.973. 

More suitable for static 

samples 

Li et al. [10] 

Adaptive online 

multisource transfer 

learning method 

The performance gains brought by 

transfer learning are demonstrated on 

multiple benchmarks and real-world 

problems. 

Insufficient focus on the 

specific domain of 

malware detection 

Cherifi et al. 

[11] 

ResNet50V2 transfer 

learning 

The accuracy is 86.67%, sensitivity is 

93.94%, specificity is 81%, F1 score 

is 86% on the small dataset. 

Affected by 

hyperparameter adjustment 

Cui [12] 
SSD with 3D-CNN 

architecture 

The best recognition accuracy of 

95.8% was achieved using 3D-CNN 

at 20 video frames. 

Applicability needs to be 

verified 

Qin et al. [13] 
OTL framework and 

Hoeffding-based ELM 

Accurate SOC estimation results can 

be obtained even under complex 

application conditions. 

Target space differences 

lead to negative transfer 

According to Table 1, although existing MC 

detection methods have made some progress in the 

fields of static analysis and signature matching, 

traditional methods still have insufficient adaptability 

and detection accuracy when faced with rapidly 

increasing MC variants, complex attack patterns, and 

scarce target domain samples. Specifically, existing 

methods usually rely on fixed feature extraction rules 

and cannot effectively deal with new MC variants. In 

addition, the model has poor data adaptability in the 

target domain, resulting in reduced accuracy when 

migrating to new data sets. Due to limited training data, 

many methods have insufficient generalization capabilities 

and are difficult to meet actual application needs. To this 

end, a Deep Transfer Learning-based Malware Detection 

Model (DTL-MD) is proposed. The novel aspects of this 

research include the following. Firstly, by employing a 

feature selection strategy, the process of extracting features 

from MC samples is refined, thereby enhancing the 

model's discriminatory capabilities. Secondly, through 

OTL, the model can effectively cope with the situation of 

insufficient MC samples in the target domain and adapt to 
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new MC variants. The objective of this research is to 

offer a more efficient, intelligent, and adaptable solution 

for detecting MC. 

The contributions of the research are as follows: 

First, DTL-MD reduces the impact of sample scarcity in 

the target domain by introducing the OTL strategy. 

Second, an improved feature selection mechanism is 

designed to more effectively extract key features that 

are helpful for MC identification. Finally, DTL-MD 

improves detection speed and computational efficiency 

by optimizing the computational structure, combining a 

simplified attention mechanism and an efficient 

convolutional module. 

2 Methods and materials 

2.1 Design of visual texture feature 

extraction based on feature fusion 

It is assumed that OTL can effectively reduce the 

data distribution differences between the source domain 

and the target domain, thereby improving the adaptability 

of the model in the target domain, especially in the case of 

insufficient data. Meanwhile, feature selection is assumed 

to optimize feature extraction, remove redundant features, 

and improve model accuracy and robustness. Based on 

these assumptions, the DTL-MD model is designed, and 

the model construction and optimization process will be 

introduced in detail below. 

In MC detection, the visualization technology of MC 

based on image processing can provide powerful support 

for detection models by converting the binary data of MC 

into images and extracting texture features from them. 

Global Image Structure Feature (GIST) and Local Binary 

Pattern Feature (LBP) are two common texture features. 

GIST can capture the global structural information of an 

image, while LBP focuses on local texture details [14]. 

Therefore, a visual texture feature extraction scheme based 

on feature fusion is proposed, which combines GIST and 

LBP to better capture the multidimensional features of MC 

samples. First, the MC is converted from a byte stream to 

a visual image, as shown in Figure 1. 

(a) Bitstream data extraction from malicious code file

(b) Visualization process of malicious code bytestream

Malicious code file Bitstream data Bytestream data

Malicious code 

bytestream data

Binary unsigned 

integer data

Grayscale image 

pixel points

Convert byte data 

and arrange it

 

Figure 1: Visualization of MC. 

Figure 1(a) shows the extraction process of MC bit 

streams or byte streams. By extracting byte stream data 

from MC samples, their binary representations are 

obtained. These data reflect the basic structure and 

behavior patterns of the program. Figure 1(b) shows the 

process of further processing the byte stream data into a 

grayscale image. In the standardization process, each byte 

is mapped to a pixel value in the grayscale image, 

preserving the local features and global structural 

information in the MC. Therefore, the preprocessing 

process of MC detection combining the two is shown in 

Figure 2. 
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Figure 2: Detailed data preprocessing process in MC detection. 

As shown in Figure 2, after inputting MC, noise or 

irrelevant information is first removed through data 

cleaning. Next, byte stream extraction and 

normalization are performed to make the data format 

consistent. Then, the standardized byte stream data is 

converted into a grayscale image, with each byte 

corresponding to a pixel's grayscale value, completing 

the graphical representation of the data. First, a 

grayscale image is generated from the MC file, and 

GIST extracts the global structural information of the 

image through a Gabor filter. Gabor filter can 

effectively capture the local structure and texture 

information of the image. The expression is shown in 

equation (1) [15]. 
2 2 2
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In equation (1), x  and y  are the image 

coordinates.   is the the rotating angle of the filter.   

is the wavelength, and   is the spatial aspect ratio.   

is the standard deviation, and   is the phase offset. 

Applying multi-scale and multi-directional Gabor 

filtering to an image results in response maps for 

different directions and frequencies, reflecting the 

comprehensive texture information of the image. Next, 

the response map is subjected to pooling processing to 

extract features representing the global structure, as 

shown in equation (2). 

, ( , ) ( , ) ( , , , , , )F x y G x y x y=               (2) 

In equation (2), , ( , )F x y   is the filter response 

diagram. ( , )G x y  is a grayscale image.   indicates a 

convolution operation. Furthermore, in LBP extraction, 

the local texture information of the image is extracted 

by calculating the relationship between the gray value 

of each pixel and its neighboring pixels, as shown in 

equation (3). 
1

0

( , ) ( ) 2
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p
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p
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=

= −                   (3) 

In equation (3), pI  and cI  are the values of the 

neighboring pixels and the central pixel, respectively. 

( )s x  is a symbolic function. P  is neighboring pixel. 

By encoding the texture features of local images, each 

local region of the image is converted into a binary 

number, thereby extracting local texture features. In 

addition, in order to reduce the dimensionality of 

features and enhance the discriminative power of 

features, the information gain and L1 regularization 

strategies are introduced to construct a feature selection 

strategy. Information gain measures the contribution of 

a feature to the target class information. The calculation 

of information gain ( )iIG x  is shown in equation (4). 

( ) ( ) ( )i iIG x H y H y x= −                     (4) 

In equation (4), ( )H y  is the entropy of the target 

variable y . ( )iH y x  is the entropy of the target variable 

y under the given feature condition ix . Subsequently, 

Lasso regression selects features through the L1 

regularization term, thereby avoiding the interference of 

redundant features. For example, after L1 regularization, 

features with higher scores include certain image texture 

features, while features with a score of zero are excluded. 

Here is an example: After L1 regularization feature 

selection, the model selected feature 1 (score: 0.85), 

feature 2 (score: 0.72), and feature 4 (score: 0.91), 

excluding features with lower scores (such as feature 5, 

score: 0.02). The optimization objective of Lasso 

regression is given in equation (5). 

2

1 1

ˆ arg min ( )
pn

T

i i j

i j

y x
= =

 
= − + 

 
 


          (5) 

In equation (5), ix  is the eigenvector. j  is the 

weight coefficient of the feature.   is the regularization 

parameter, which controls the strictness of feature 

selection. Through Lasso regression, the unimportant parts 

of the feature weight coefficients will be compressed to 

zero, automatically selecting features with high 

discriminative power. During the feature selection process, 

the threshold of information gain was set to 0.05, and only 

features with information gain greater than this threshold 

were retained to remove low-contribution features. 

Subsequently, L1 regularization (  =0.01) further 

compressed the feature space, reducing the number of 

features from 512 to 128. 

After feature selection, GIST and LBP are fused. After 

feature fusion, the model selected fused features with high 

scores, such as GIST feature 1 (score: 0.88) and LBP 

feature 2 (score: 0.79), which played a key role in the 

classification of MC. To better combine the advantages of 

the two features, a weighted sum is used to obtain the final 

feature vector fusionF , as shown in equation (6). 

1 2fusion GIST LBPF F F =  +                   (6) 

In equation (6), GISTF  and LBPF represent the GIST 

and LBP vectors after feature selection. 1  and 2  are 

the feature weights, which are determined by cross-

validation and manual tuning. In the cross-validation 

process, the data set is divided into multiple subsets, and 

the model is evaluated on different training and validation 

sets to select the best weight combination. For certain 

specific weights, manual tuning is performed to optimize 

the model's performance in MC detection. Therefore, after 

the above calculations, a general framework for MC 

detection based on combined features is finally obtained, 

as shown in Figure 3. 
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Figure 3: A common framework for MC detection based on combined features. 

As shown in Figure 3, the first input MC file 

undergoes data cleaning and byte stream extraction, and 

after normalization processing, it is converted into a 

grayscale image, with each byte corresponding to a 

pixel's grayscale value. Subsequently, GIST and LBP 

are extracted from the generated grayscale image. Next, 

the study uses information gain screening and L1 

regularization to further complete feature selection and 

remove redundant features. Subsequently, the GIST and 

LBP are fused through weighted summation to form the 

final feature vector, which is then input into the 

detection model for MC detection. 

2.2 MC detection method based on OTL 

In the previous section, the feature extraction and 

fusion methods of MC provide important input data for 

subsequent detection tasks. OTL combines the 

advantages of online learning and transfer learning. It 

can receive new data in real time and use the source 

domain knowledge to optimize the target domain 

model. Specifically, online learning enables the model 

to be updated in real time and adapt to changing attack 

patterns and MC variants. Meanwhile, transfer learning 

can transfer knowledge from the rich data in the source 

domain to solve the problem of scarce samples in the target 

domain. In this way, OTL not only improves the 

generalization ability of the model, but also enhances its 

ability to respond to new attacks in practical applications. 

To guarantee the effectiveness of OTL, feature selection is 

crucial. Through the feature selection method in Section 

2.1, the GIST and LBP features are optimized to provide 

efficient input data. These refined features make the 

application of OTL in the target domain more efficient. 

Feature selection ensures that the OTL model can focus on 

the most discriminative features by removing redundant 

information, thereby improving detection accuracy and 

adaptability [16]. Therefore, the research attempts to 

propose an MC detection method based on OTL. By 

combining the advantages of online learning and transfer 

learning, it can achieve incremental updates when new 

samples arrive, and improve the detection accuracy of the 

target domain with the help of source domain knowledge. 

The framework of the two is shown in Figure 4 [17]. 

(a) Online learning (b) Transfer learning
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Figure 4: Schematic diagram of online learning and transfer learning. 

Figure 4(a) shows the online learning mechanism, 

which performs incremental updates by receiving 

training data streams in real time and performs real-time 

predictions on test data streams. In the transfer learning 

mechanism of Figure 4(b), the source domain model 

utilizes transfer learning to adapt to the target domain, 

addressing the issue of limited sample availability in the 

target domain. The essence of OTL lies in transferring 

knowledge from the source domain to the target domain. 

Assuming that the source domain data is 

( ) 
1

,
Sn

S S

S i i
i

D x y
=

=  and the target domain is 

( ) 
1

,
Tn

T T

T i i
i

D x y
=

= , where 
S

ix  and 
T

ix  represent the input 

data of the source and target domains, respectively. 
S

iy  
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and 
T

iy  are the corresponding labels. The goal is to 

optimize model performance in the target domain by 

minimizing the discrepancy in distribution between the 

source and target domains. The measurement method is 

the Maximum Mean Discrepancy (MMD), which 

quantifies the distribution difference between the source 

domain and the target domain, as shown in equation (7) 

[18]. 

1 1

1 1
( , ) ( ) ( )

S Tn n
S T

S T i i

i iS T H

MMD D D x x
n n

 
= =

= −     (7) 

In equation (7), ( )   is the mapping function. Sn  

and Tn  are the numbers of samples for the source 

domain and target domain. By minimizing MMD, OTL 

can minimize the difference between the source domain 

and the target domain, ensuring that the model can be 

transferred to the target domain. In the incremental 

learning and online updating steps, the model needs to 

gradually receive new data and continuously update. 

Assuming that the parameters of the model are  , in 

each step t , the goal of the model is to continuously 

update the parameters through incremental learning. 

Whenever new data arrives, assuming that the loss 

function of the current step is ( )tL  , the model is 

updated at time step t  as shown in equation (8) [19]. 

1 ( )t t t t tL+ = −                                       (8) 

In equation (8), t  is the learning rate, and ( )t tL   

is the gradient of the loss function with respect to the 

parameter  . Through this incremental update process, the 

model only updates the part related to the new data without 

retraining the entire model. This method ensures that OTL 

improves the adaptability of the target domain through 

local updates without retraining the entire model. The OTL 

framework is developed based on TensorFlow and Keras, 

combined with a custom gradient update rule to adapt to 

online incremental learning scenarios. In the domain 

adaptation process, OTL uses minimizing MMD as the 

objective function and adjusts model parameters in real 

time through back propagation. Existing experimental 

results showed that incremental updates had significant 

advantages in dynamic environments. Reference [20] 

proves that the incremental learning strategy can 

effectively improve the real-time update capability of the 

model and enhance performance and response speed. To 

further improve the performance of MC detection in the 

target domain within the OTL framework, a DTL-MD MC 

detection model is developed. It combines the GAN and 

the Residual Network (ResNet), while introducing the 

Group Convolution and the Simple Attention Module 

(SimAM). Group convolution improves computational 

efficiency by reducing model parameters, providing faster 

adaptation capabilities for fine-tuning in the target domain. 

SimAM further enhances the expression of key features 

and improves the detection performance on the target 

domain. Its structure is shown in Figure 5. 
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Figure 5 DTL-MD model structure.

As shown in Figure 5, the DTL-MD model first 

generates target domain data through GAN and inputs it 

into the model for processing together with the source 

domain data. Next, ResNet extracts features, which are 

then further processed and enhanced through Group 

Convolution and SimAM to finally generate detection 

results. The data generated by GAN is generated outside 

the model and then input into the model together with 

the source domain data, thereby improving the 

adaptability and detection capabilities of the target 

domain. In DTL-MD, the study combines grouped 

convolution to further improve computational 

efficiency and model performance, as shown in 

equation (9). 
1 1 / 1

, , , , , , ,

0 0 0

K K C G

i j k i p j q r p q r k

p q r

Y X W
− − −

+ +

= = =

=              (9) 

In equation (9), , ,i j kY is the k th channel at position 

( , )i j  in the output feature map. , ,i p j q rX + + is the 

convolution window value of the input feature map's r th 

channel. , , ,p q r kW  is the convolution and weight of the r th 

channel. C  and G  are the number of channels and the 

number of groups in the input feature map. Then, the 

SimAM attention mechanism is introduced to enhance the 

representation of important features by weighting the 

features of each channel. Furthermore, GAN enhances the 

diversity of target domain data by generating new MC 

samples. Compared with the original dataset, the samples 

generated by GAN are customized for specific MC 

categories, such as Trojans, viruses, and worms. The 

feature distribution of the generated samples is similar to 

that of the original dataset, aiming to supplement the lack 

of samples and improve the performance of the model in 

detecting specific categories of MC. OTL, by updating 
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model weights in real time, enables the model to quickly 

adapt to new feature distributions when receiving new 

target domain samples. 

DTL-MD employs transfer learning techniques to 

pre-train on source domain data to capture its 

underlying features, followed by fine-tuning on the 

target domain to align with its specific characteristics. 

The comprehensive loss function is outlined in equation 

(10) [21]. 

( ) ( ) ( , )total S T S TL L L MMD D D   = + +   (10) 

In equation (10), ( )SL   and ( )TL  are the loss 

functions of the source domain and target domain, 

respectively.   and   are hyper-parameters. The errors 

of the source domain and the target domain are calculated 

as the prediction errors of the source domain data and the 

target domain data, respectively. The MMD term is used 

to measure the distribution difference between the source 

domain and the target domain features. By minimizing the 

loss function, the model optimizes the source domain task 

while minimizing the MMD to minimize the difference 

between the source domain features and the target domain 

features, helping the model to better adapt to the target 

domain data. Therefore, the final framework of the DTL-

MD MC detection model is shown in Figure 6. 

Grayscale imageMalicious code file Feature selection Source data

Source domain

Target domain

Source domain Histogram relevance

Transfer learningMalicious code feature
Recognition and 

classification
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Figure 6: The framework of the DTL-MD MC detection model. 

As shown in Figure 6, in the DTL-MD MC 

detection model, the source domain and target domain 

data are processed in a hierarchical and parallel manner. 

After the source domain data undergoes feature 

selection, the importance of the features is evaluated 

through histogram correlation analysis, and features 

with strong task relevance are screened out to provide 

support for subsequent feature extraction. The target 

domain data is combined with new samples generated 

by GAN, and the feature distribution is optimized 

through transfer learning. Finally, the feature extraction 

module processes the source domain and target domain 

features in parallel, and Softmax generates the detection 

results. Finally, the pseudo code of DTL-MD is shown 

in Figure 7. 

Through this pseudo-code, the specific 

implementation methods of the model in data 

processing, feature extraction, feature fusion and OTL 

are more clearly understood, and the replicability and 

transparency of the model implementation are 

improved. 

3 Results 

3.1 Parameter impact analysis and 

ablation experiments 

To evaluate the effectiveness of the raised DTL-

MD MC detection model, the research built a hardware 

and software environment that meets the requirements of 

the experiment. The experimental platform uses the 

Ubuntu 20.04 operating system, the algorithm 

development language is Python, and the model 

construction and optimization are based on the TensorFlow 

and Keras frameworks. The hardware configuration 

includes an AMD Ryzen 7 5800H processor, an NVIDIA 

GeForce RTX 3070 graphics card, and 16 GB of memory. 

The experimental data is sourced from the publicly 

available MC dataset CICIDS 2017 dataset, which 

contains a variety of network attack types and malware 

samples and is suitable for malware classification and 

variant detection tasks. The dataset was divided into a 

training set (70%), a validation set (15%), and a test set 

(15%). The validation set was used to tune 

hyperparameters. There was no sample overlap between 

the training set and the test set to ensure the fairness of the 

model performance evaluation. In the experiment, MC 

samples and normal samples in the training data were 

evenly distributed. GAN-generated samples were used to 

enhance sample data of specific categories in the target 

domain, improving classification accuracy and the 

generalization ability of the model. 

First, the hyperparameters and in the loss function 

were jointly tuned, and the results are shown in Table 2. 
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# Pseudocode for DTL-MD Model

# Step 1: Data Preprocessing

def preprocess_data(file):

    byte_data = extract_byte_data(file)  # Extract byte data from the file

    normalized_data = normalize(byte_data)  # Normalize the data

    grayscale_image = convert_to_grayscale(normalized_data)  # Convert to grayscale image

    return grayscale_image

# Step 2: Feature Extraction

def extract_features(image):

    gist_features = extract_gist(image)  # Extract GIST features

    lbp_features = extract_lbp(image)  # Extract LBP features

    return gist_features, lbp_features

# Step 3: Feature Selection

def select_features(gist_features, lbp_features):

    selected_features = select_important_features(gist_features, lbp_features)  # Feature 

selection

    optimized_features = apply_regularization(selected_features)  # Apply L1 regularization

    return optimized_features

# Step 4: Feature Fusion

def fuse_features(gist_features, lbp_features, weights):

    fused_features = weights[0] * gist_features + weights[1] * lbp_features  # Feature fusion

    return fused_features

# Step 5: Online Transfer Learning

def online_transfer_learning(model, source_data, target_data):

    mmd_value = compute_mmd(source_data, target_data)  # Calculate MMD

    model.update_parameters(mmd_value)  # Update model parameters with new data

    return model

# Step 6: Train and Detect

def train_and_detect(model, train_data, test_data):

    model.train(train_data)  # Train model on the data

    detection_results = model.detect(test_data)  # Detect using the trained model

    return detection_results

# Main Execution

def main():

    input_file = "malicious_code_sample"

    

    # Step 1: Data Preprocessing

    image = preprocess_data(input_file)

    

    # Step 2: Feature Extraction

    gist, lbp = extract_features(image)

    

    # Step 3: Feature Selection

    selected_features = select_features(gist, lbp)

    

    # Step 4: Feature Fusion

    fused_features = fuse_features(gist, lbp, [0.7, 0.3])

    

    # Step 5: Online Transfer Learning

    model = initialize_model()  # Initialize the model

    model = online_transfer_learning(model, source_data, 

target_data)

    

    # Step 6: Train and Detect

    detection_results = train_and_detect(model, train_data, 

test_data)

    

    # Output final results

    print("Detection Results: ", detection_results)

if __name__ == "__main__":

    main()

 

Figure 7: Pseudocode of DTL-MD 

Table 2 Hyperparameter joint tuning experiment. 

    Accuracy (%) F1 Score (%) Training time (s) 

0.1 0.01 90.3 88.4 1117 

0.1 0.05 91.8 89.2 1162 

0.1 0.1 93.1 90.5 1213 

0.1 0.5 92.6 89.7 1263 

0.1 1.0 91.9 89.1 1318 

0.5 0.01 92.7 90.8 1214 

0.5 0.05 94.2 91.8 1267 

0.5 0.1 95.7 93.4 1316 

0.5 0.5 94.8 92.3 1374 

0.5 1.0 94.1 91.9 1427 

1.0 0.01 92.4 90.1 1263 

1.0 0.05 93.4 91.3 1311 

1.0 0.1 93.3 90.9 1373 

1.0 0.5 92.8 90.5 1426 

1.0 1.0 91.7 89.8 1482 
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From Table 2, when   was 0.5 and   was 0.1, 

the model had the best performance on the verification 

set, with an accuracy of 95.7%, an F1 of 93.4%, and a 

training time of 1316 s. Meanwhile, an excessively high 
  significantly increased the training time, while a low 

  might weaken the utilization efficiency of source 

domain features. 

Secondly, by testing the performance of a single 

feature and the fusion of the two features at different 

iteration times, the research analyzed the independent 

contribution of each feature and its performance 

improvement after fusion. The results are shown in Figure 

8. 
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Figure 8: Ablation experiment. 

As shown in Figure 8(a), when the number of 

iterations was 600, the detection accuracy of the fused 

feature reached 95.8%. The fused feature can more 

comprehensively characterize the characteristics of the 

MC sample. In Figure 8(b), when the number of 

iterations was 600, the training time of the fused feature 

was 932 s, which was about 200 s longer than that of the 

GIST and LBP features. Although the fused feature 

increased the training time, the improvement in its 

detection accuracy showed that this computational 

overhead was reasonable in MC detection tasks that 

required high precision. 

3.2 Performance test of DTL-MD MC 

detection model 

GAN, Extreme Gradient Boosting (XGBoost), and K-

Nearest Neighbors (KNN) are selected as comparison 

algorithms. First, the classification ability of the MC 

detection model was evaluated, and the results are shown 

in Figure 9. 
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Figure 9: Classification performance test results. 

Figures 9(a) and (b) show the accuracy and F1 score 

of each model as a function of the threshold value. The 

F1 score can balance the precision and recall, and is 

particularly suitable for MC detection in unbalanced 

data sets, ensuring fewer missed detections and false 

positives. In Figure 9(a), when the threshold was 0.7, the 

accuracy of GAN, XGBoost, KNN, and DTL-MD were 

91.2%, 91.3%, 87.9%, and 95.8%, respectively. In Figure 
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9(b), when the threshold value was 0.7, the F1 scores of 

each model were 92.1%, 91.9%, 85.9%, and 93.2% 

respectively. DTL-MD had the highest accuracy and F1 

score at high thresholds, effectively reducing false 

positives through strict classification criteria and 

avoiding erroneous classification of MC. In contrast, the 

accuracy and F1 score of XGBoost and GAN were 

similar, but slightly lower than that of the DTL-MD 

model, which was due to their conservative decision 

boundary at high thresholds. Although the number of false 

positives was reduced, some more complex malicious 

samples was missed. To ensure the reliability of the results, 

the standard deviation and 95% confidence interval of the 

accuracy and F1 score of each model at a threshold of 0.7 

were calculated, see Table 3. 

Table 3: Standard deviation and confidence interval of accuracy and F1 score. 

Model 
Accuracy 

/% 

F1 Score 

/% 

Accuracy 

Std Dev 

Accuracy 

confidence 

interval 

F1 Score 

Std Dev 

F1 Score 

confidence 

interval 

GAN 91.2 92.1 ±0.3 [90.9, 91.5] ±0.2 [91.8, 92.4] 

XGBoost 91.3 91.9 ±0.2 [91.1, 91.5] ±0.3 [91.6, 92.2] 

KNN 87.9 85.9 ±0.4 [87.5, 88.3] ±0.3 [85.6, 86.2] 

DTL-MD 95.8 93.2 ±0.2 [95.6, 96.0] ±0.2 [93.0, 93.4] 

According to Table 3, the DTL-MD model showed 

smaller fluctuations in the standard deviation and 

confidence interval of the accuracy and F1 score, 

indicating that it had higher stability under different 

experimental conditions, higher accuracy and smaller 

fluctuation range. 

Subsequently, the False Negative Rate (FNR) and 

training time of each model as a function of the number of 

iterations are shown in Figure 10. 

KNN

GAN XGBoost

DTL-MD

0.10

0.20

0.30

0.00

F
al

se
 n

eg
at

iv
e 

ra
te

 /
%

200100 300 400 600

(a) FNR test

Iterations
500

0.25

0.15

0.05

500

900

1300

100

T
ra

in
in

g
 ti

m
e 

/s

200100 300 400 600

(b) Training time test

Iterations
500

1100

700

300

KNN

GAN XGBoost

DTL-MD

 

Figure 10: FNR and training time test results. 

In Figures 10, the training time reflects the 

deployment efficiency of the model in practical 

applications, ensuring high accuracy while having good 

real-time and operability. In Figure 10 (a), when the 

number of iterations was 600, the false detection rates 

of each model were 0.10%, 0.08%, 0.16%, and 0.05%, 

respectively. In Figure 10 (b), when the number of 

iterations was 600, the training time of each model was 

1049 s, 1282 s, 901 s, and 1257 s respectively. As the 

number of iterations increased, the false detection rate of 

the DTL-MD model decreased from 0.12% to 0.05%. In 

terms of training time, the DTL-MD model required 1257 

seconds for training. More iterations of training improved 

the model's accuracy, but also led to an increase in 

computational overhead. Finally, the test results of each 

model under various sample sizes are in Table 4. 

Table 4: Test outcomes with various sample sizes. 

Model Sample size 
Samples per 

second 

Memory usage 

/MB 

Model size 

/MB 

Computational complexity 

/GFLOPS 

GAN 

5000 319.7 1603.5 134.8 47.2 

10000 310.3 1645.7 139.1 48.1 

15000 299.6 1697.4 144.5 50.2 

20000 289.8 1746.2 149.3 52.3 
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XGBoost 

5000 329.1 1449.3 124.6 42.8 

10000 314.7 1497.2 129.3 43.6 

15000 308.2 1547.6 134.9 45.1 

20000 299.4 1598.4 139.8 46.9 

KNN 

5000 229.4 1202.6 109.5 28.3 

10000 219.8 1246.5 113.6 29.5 

15000 209.3 1299.4 117.9 30.8 

20000 199.6 1349.8 122.1 31.9 

DTL-MD 

5000 199.7 1702.5 160.3 39.9 

10000 209.4 1804.6 164.2 41.8 

15000 219.8 1906.1 168.9 44.2 

20000 229.3 2008.3 173.4 47.1 

In Table 4, computational complexity measures the 

computational efficiency of the model in processing 

data in GFLOPS (billion floating-point operations per 

second), reflecting the computational resources required 

by the model to complete a specific task. This value is 

related to the model architecture and the size of the 

dataset. The computational complexity reflects the 

computing resources required by the model to process 

each task. A lower FLOPs value means that the model 

has better scalability and can run efficiently on large-

scale datasets or real-time applications. The processing 

speed of XGBoost reached 299.4 samples/second with 

a sample size of 20,000. In contrast, the processing 

speed of DTL-MD was relatively slow, especially at 

20,000 samples, which was only 229.3 samples/s. The 

complex deep learning structure required more 

computing time and resources to complete the detection 

of MC. In terms of memory usage, DTL-MD consumed 

2008.3 MB with a sample size of 20,000. In terms of 

model size, the size of DTL-MD remained at 160 MB. 

In terms of computational complexity, GAN reached 

52.3 GFLOPS at 20,000 samples, while DTL-MD had a 

computational complexity of 47.1 GFLOPS at 20,000 

samples, which is suitable for deployment in 

environments with sufficient computing resources. As 

the dataset increased, the processing speed of DTL-MD 

increased. For small datasets (such as 5,000 samples), its 

processing speed was slow, but the memory usage and 

computational complexity were low. As the sample size 

increased, although the training time and memory usage 

increased, DTL-MD still maintained high accuracy, 

especially in the 20,000 sample dataset, where it performed 

well and showed good generalization ability. 

3.3 MC detection simulation experiment 

based on DTL-MD model 

Furthermore, the research conducted simulation 

experiments on DTL-MD to test its practical application 

effect. The comparison models were selected from the 

more advanced models in the field, namely Malware GAN-

enhanced Network (MGANet), Sequence GAN for 

Malware Detection (SeqGAN-Malware), and Deep 

Reinforcement Learning for Malware Detection (DRL-

Malware). The research team constructed a self-built MC 

dataset containing 30,000 samples, of which 20,000 

malware samples covered various types such as Trojans, 

viruses, and ransomware, and 10,000 normal software 

samples were from commonly-used applications. Firstly, 

the throughput and inference speed results of each model 

under the detection of four types of MC, namely Trojans, 

viruses, worms, and adware, are shown in Figure 11. 
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Figure 11: Throughput and inference time tests under different attack types. 
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Figures 11 (a)-(d) show the throughput and 

inference time test results under different attack types. 

Throughput measures the task processing capability of 

the model, while inference speed reflects the single-

sample processing efficiency. Throughput is calculated 

as the number of tasks completed per second, while 

inference speed represents the number of samples 

processed per second. The two are closely related, 

because a task usually contains detection operations for 

multiple samples, so throughput is usually lower than 

inference speed. 

In Figure 11 (a), the throughput of MGANet under 

Trojans, viruses, worms, and adware was 12, 13, 11, and 

12 tasks/s, respectively, with an inference speed of 320 

to 330 samples/s. In Figure 11 (b), the throughput of 

SeqGAN-Malware under Trojan, virus, worm, and 

adware was 11, 12, 10, and 11 tasks/s, respectively. In 

Figure 11 (d), the throughput of the DTL-MD model 

under Trojan, virus, worm, and adware was 11, 12, 11, and 

12 tasks/s, respectively, and the inference time was 211, 

225, 239, and 234 samples/s, respectively. The large 

computational resources and complex network structure 

resulted in a heavy computational burden during the 

inference process, and the throughput performance was 

moderate. In Figure 11 (c), the inference speed and 

throughput of DRL-Malware were slightly lower. The 

training process of deep reinforcement learning required 

the model to optimize performance through continuous 

policy updates, and the limitations of the learning strategy 

led to a decrease in inference speed. Subsequently, the 

same test dataset was used, containing five main types of 

MC (Trojans, viruses, worms, adware, and ransomware), 

and 1,000 samples of each type were randomly selected. 

The corresponding robustness and processing delay results 

are shown in Figure 12. 
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Figure 12: Robustness and processing delay results. 

In Figure 12, the robustness of each type of MC was 

calculated through 10 experiments, and the standard 

deviation reflects the deviation between the 

experimental results and the average value. The smaller 

the standard deviation, the smaller the volatility of the 

model's detection results on the MC type, and the 

stronger the robustness. The robustness of DTL-MD 

under Trojan, virus, worm, adware, and ransomware 

code was 0.71, 0.79, 0.83, 0.72, and 0.80, respectively, 

indicating strong adaptability in the face of diverse MC. In 

terms of processing delay, the DTL-MD model had a 

longer inference time, with a response time of 172 ms 

under the worm type. Finally, the detection results of each 

model under different network bandwidths are shown in 

Table 5. 

Table 5: Detection effect under different network bandwidths. 

Network 

bandwidth 
Model 

Throughput 

(tasks/s) 

Latency 

variance 

/ms 

Computational 

efficiency 

(FLOPs/task) 

Stability 

/SD 

Low  

(100 Mbps) 

MGANet 11 23 1.5 0.7 

SeqGAN-Malware 10 27 1.8 0.8 

DRL-Malware 9 30 2.0 0.9 

DTL-MD 10 29 1.9 1.1 

Medium  

(500 Mbps) 

MGANet 13 18 1.3 0.5 

SeqGAN-Malware 11 21 1.6 0.6 
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DRL-Malware 10 23 1.8 0.7 

DTL-MD 11 22 1.7 0.8 

High 

bandwidth 

(1 Gbps) 

MGANet 14 15 1.2 0.4 

SeqGAN-Malware 12 17 1.5 0.5 

DRL-Malware 11 19 1.7 0.6 

DTL-MD 12 17 1.6 0.7 

In Table 5, the performance of the model in various 

practical applications can be evaluated by the 

throughput, latency fluctuation, computational 

efficiency, and stability under different bandwidths. 

Stability is measured by calculating the standard 

deviation of the inference latency. A lower SD value 

indicates a more stable performance of the model, 

especially under low bandwidth conditions. DTL-MD 

was 10 tasks/s at low bandwidth. In terms of latency 

fluctuation rate, the latency fluctuation rate of MGANet 

under high bandwidth conditions was only 15 ms. The 

delay fluctuation rate of DTL-MD was 17 ms. In terms of 

computational efficiency, DTL-MD had a computational 

efficiency of 1.6 FLOPs/task under low bandwidth 

conditions. Complex models can lead to higher 

computational costs and longer processing times. 

Finally, the study introduced the Deep Malware 

Detection Network (DMDN), Light Gradient Boosting 

Machine (LightGBM), and Adversarial Malware 

Detection Network (AMDN). The study also introduced 

the MalwareBazaar dataset and designed a cross-domain 

migration experiment. The results are shown in Table 6. 

Table 6: Performance comparison in diverse datasets and cross-domain migration tests. 

Dataset Model Precision (%) Recall (%) 

Robustness 

(Standard 

deviation) 

Detection rate 

(Tasks/s) 

MalwareBazaar 

DTL-MD 91.8 92.3 0.73 12 

DMDN 89.7 90.5 0.81 10 

LightGBM 87.4 88.2 0.86 14 

AMDN 88.9 89.8 0.79 11 

CICIDS 2017 

DTL-MD 90.2 91.0 0.75 11 

DMDN 87.6 88.8 0.84 9 

LightGBM 85.3 86.5 0.89 13 

AMDN 86.7 87.9 0.82 10 

Cross-domain 

Test 

DTL-MD 88.3 89.7 0.75 10 

DMDN 85.9 87.0 0.81 8 

LightGBM 84.1 85.2 0.85 12 

AMDN 86.7 87.9 0.80 9 

In Table 6, the Precision and Recall of DTL-MD on 

the MalwareBazaar dataset reached 91.8% and 92.3% 

respectively. Meanwhile, in the cross-domain migration 

experiment, the Recall of DTL-MD remained at 89.7% 

with a standard deviation of 0.75, which proved its 

robustness in dealing with changes in data distribution. In 

contrast, DMDN and AMDN performed second best in 

robustness, and although LightGBM had an advantage in 

detection rate, its detection accuracy was relatively low. 

4 Discussion 
In order to improve the accuracy of MC detection, the 

study designed a detection model DTL-MD based on OTL 

and tested its performance. Compared with the model 

proposed by Kim et al. in the literature [6], although it 

performed well in the accuracy of MC detection, it was 

relatively slow in processing speed and was suitable for 

relatively static scenarios. In the DTL-MD performance 

test, when the threshold was 0.7, the accuracy of DTL-MD 

was 95.8% and the F1 score was 93.2%. Although DTL-

MD was slower than XGBoost and KNN in inference 

speed, its high accuracy made it more advantageous in MC 

detection tasks that require high reliability. In particular, 

on the 20,000 sample dataset, the memory usage of DTL-

MD was 2008.3 MB and the computational complexity 

was 47.1 GFLOPS, showing its ability in computationally 

intensive tasks. The feature fusion-based method proposed 

by Wang et al. in the literature [8] showed a high accuracy 

in MC detection, but its computational complexity was 

high and the training and inference speeds were slow. In 

contrast, DTL-MD optimized computational complexity 

while maintaining high accuracy, making it still scalable 

in large data sets and real-time detection scenarios. In 

application tests, DTL-MD also performed well in the 

robustness of MC types such as Trojans, viruses, worms, 

and adware. Especially in low-bandwidth environments, 

DTL-MD had a throughput of 10 tasks/s and a latency 

fluctuation of only 15 ms, which was suitable for real-time 

MC detection. 
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The advantage of DTL-MD is that it is highly 

adaptable and can handle small data sets. It can also 

maintain good detection performance when there are 

fewer samples, showing strong generalization ability. 

5 Conclusion 
The study proposed an MC detection model DTL-MD 

that combines OTL and optimized feature selection 

strategies, and verified its effectiveness in MC detection. 

However, the model's throughput and latency volatility are 

high, and its real-time performance is poor in low-resource 

environments. In addition, its high computing 

requirements make its application on large-scale data sets 

face computing cost issues. In the future, the study will 

explore lightweight models, optimize the calculation 

process, and improve its computing efficiency through 

efficient feature extraction and pruning techniques to 

solve the problem of high computing overhead in large-

scale data sets. Meanwhile, the experiment used a data set 

containing many known malicious samples. In the future, 

the study will introduce new MC samples to further verify 

the model's capabilities, especially its performance when 

detecting new samples. 
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