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The apple picking robot makes use of a number of technologies, one of which is the apple target 

identification algorithm. When it comes to automated apple picking, the robots' optical systems are 

crucial. Generally speaking, it finds ripe apples by taking photographs of its environment, processing 

them, and then analyzing the findings. The inability of traditional vision algorithms to process complex 

backdrops hinders the efficiency of harvesting robots. The continuous development and refining of the 

CNN have led to a substantial improvement in its efficacy in target identification during the last 

several years. The current crop of apple recognition algorithms struggles to tell the difference between 

partially obscured apples and ones entirely concealed by tree branches. Direct use of the algorithm 

endangers the harvesting robot's mechanical arm, apples, as well as gripping end-effector. In 

response to this real-world issue, we provide a lightweight apple targets identification approach for 

picking robots based on enhanced YOLOv5s. This method can automatically identify which apples in 

an apple tree picture are graspable and which ones are not. This method is able to circumvent the 

impact of light transformation, in contrast to the conventional segmentation approach. When there is 

a lot of resemblance between the fruit and the backdrop, though, it becomes more challenging to get 

strong recognition results. With a recall rate of 98%, a detection speed of 47 f/s, and a mAP (mean 

Average Precision) of apple detection of 98.13%, the findings demonstrate that the YOLO v5 network 

has perfect properties. The YOLO v5 is able to simultaneously fulfill the accuracy and speed criteria 

of apple identification, in contrast to more conventional network models like Faster R-CNN and YOLO 

v4. The experiment culminates with the employment of the apple-harvesting robot that the researcher 

developed themselves. Results demonstrate that the robot has a harvesting success rate of 99.2% in 

9.5 seconds. Because of these improvements in accuracy and speed, the suggested apple detecting 

approach is preferable. Innovative concepts for intelligent agriculture and apple-harvesting robotics 

may emerge from it. 

Povzetek: Prispevek predstavlja izboljšan model YOLOv5s z zasukanim okvirjem za kvalitetno in hitro 

zaznavo jabolk v realnem času v neurejenih sadovnjakih za uporabo na robotskih obiralcih. 

 

 

1 Introduction 
An ever-increasing quantity of undeveloped rural property 

has contributed to China's "rural labor shortage" in recent 

years, as the country's youth have flocked to urban centers 

in search of employment. A growing need for agricultural 

robots was caused by China's rapidly aging population and 

the decline of the country's agricultural workforce. As 

farming gear and automation technologies have advanced 

at a fast pace, so too have agricultural robots [1]. Because 

of the dramatic drop in agricultural manpower, robotic 

harvesting is now a must for the growth of the apple sector. 

It is still very difficult to use robots to pick apples in 

unstructured orchards [2]. The modern apple industry has 

progressed thanks to the standard apple orchard approach, 

which promotes the growing of apple trees with a spindle 

form. While picking fruit from trees, the robotic arm might 

snag on branches or other impediments if an adequate 

obstacle avoidance route isn't in place, which could ruin 

the fruit, harm the tree, or both [3]. Optimal scheduling, 

selection allowing, increased operation efficiency, and 

decreased labor expenses may all be achieved with robotic 

harvesting. Because of these features, robot harvesters help 

farmers make the most of their harvests [4]. Horticulture 

and farming are two of the cornerstones of every economy. 

The atomization of agriculture has been aided by a number 
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of new technologies that have emerged as a consequence 

of recent technological developments. Apple picking is a 

common agricultural task in Italy that is mostly reliant on 

human labor but is amenable to automation because to the 

prevalence of apple orchards [5]. The most popular 

alternative to the inefficient and costly human apple 

harvester is a robot that picks the apples. Recent studies on 

apple-picking robots have shown promising results in the 

lab, but their poor apple-positioning performance makes 

them impractical for use in real orchards. There is 

currently no widely-used, precise technique for placing 

apples for an apple-picking robot. Some orchards were 

able to achieve satisfactory results using positioning 

approaches that used detection-based deep learning [6]. 

The process of citrus fruit picking requires a lot of time 

and effort. Labor expenditures are increasing due to the 

world's aging population. Hence, both the corporate and 

academic sectors have shown significant interest in the 

citrus-harvesting robot [7]. The drastic reduction in 

agricultural manpower has made robot harvesting an 

absolute need in the apple business.  

Apple Harvesting Dataset

Loading

Data Preprocessing

Augmentation

YoloV5

Accuracy Precision Recall F-score Time Error

Generate

Analyze

 

Figure1: General model for apple harvesting robot 

A lot of people are interested in harvesting robots because 

of the potential benefits of using multiple robotic arms to 

increase industrial applications and operational efficiency. 

Despite significant advancements in the field, multi-arm 

harvesting robots have not yet seen widespread use in 

orchard production due to issues with operating efficiency 

and fruit positioning accuracy [8]. The angle at which the 

end controller holds the apple and the method it uses to 

spin apart the apples have a significant influence on the 

picking outcome of the apple harvesting robot [9]. 

Research on automating and intelligent systems via the 

integration of machine vision and image processing has 

recently attracted a lot of attention. Intelligent 

management improves the effectiveness of planting, 

harvesting, as well as picking fruits and vegetables while 

simultaneously reducing the intensity and amount of work 

required. Before feature extraction can take place, the 

dataset must be checked for errors, low-quality pictures 

and labels removed, image sizes adjusted, color spaces 

transformed, denoising applied, and normalization applied 

[10]. Feature extraction will improve along with the 

dataset's size and variety. An enhanced apple picture 

segmentation method built on the Deeplabv3 framework is 

presented here as AppleDNet. Its goal is to help the apple 

harvesting robot choose apples appropriately by 

differentiating them from their complex natural 

environment backdrops. You may get better and quicker 

segmentation results using the well-known Deeplabv3 

approach [11]. It uses Atrous convolution, Depthwise 

separated convolution, and transfer learning. Due to the 

worsening labor shortage that has persisted since the rapid 

outbreak, fruit picking has become more problematic. 

Robotic harvesting has focused on the autonomous 

collection of fruits, such as apples. When it comes to apple 

orchards, however, current robots aren't very useful 

because to their inefficient robotic grippers [12]. The 

collective demand for agricultural harvests necessitates the 

use of more efficient equipment and the guarantee of a 

more affordable energy supply. Robots that collect fruit are 

becoming more common as AI makes it easier and faster 

to select fruits, which means more orange fruit exports. 

However, an efficient and inexpensive energy source is 

required to guarantee the fruit harvesting robot's successful 

operation [13]. Due to their stringent demand for well-

manicured canopies to work consistently, specific apple 

harvesting robots have not yet found widespread 

implementation [14]. Picking fruit by hand is a tedious and 

time-consuming process. Despite their high prices and 

limited efficiency, robots can automate fruit harvesting to 

a large extent, drastically cutting down on manpower 

needs [15]. Robots can now accurately perceive depth, 

analyze scenes, and identify objects in real time thanks to 

AI-powered visual systems. From healthcare gadgets and 

driverless cars to drones and factory robots, these skills are 

crucial. 

2 Related works 
A new apple-harvesting robot was introduced and its field 

assessment detailed in [16]. The primary parts of the robot 

include a vision component that was specifically created 

for it, a manipulator with four degrees of freedom, a soft 

end effector that is upgraded and based on vacuum 

technology, and a dropping/catching element that can 

accept and transfer fruits that have been collected. For 

effective, automated apple harvesting in difficult orchard 

settings, software algorithms are created to allow hardware 
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components to work together synergistically. In order to 

accomplish accurate localization and strong apple 

recognition, a new perception method is created by 

combining algorithms for processing and analyzing 

images with modified triangulation. New planning and 

control systems lead the robot to its intended destinations. 

Field tests were conducted in two apple orchards that had 

various tree layouts with leaf conditions to assess the 

robotic system's effectiveness. The robot had a harvest 

success rate of 82.4% even while working with new, well-

pruned trees in the orchard. Despite the dense foliage and 

closely packed branches of an older orchard, the robot 

managed a 65.2% success rate. 

Using the standard genetic algorithm as a foundation, the 

researchers of [17] provide a new encoding technique and 

an improved double-encoding GA. Although the crossover 

link employs that new encoding method, the mutation link 

keeps using the route node sequencing encoding 

methodology. It is possible to put the selection process 

after the mutation and speed up convergence by doing 

merging sorting while elitist selecting the parent, 

crossover, as well as mutation populations prior to 

selection. We construct a three-dimensional route for the 

apple-harvesting robot using the enhanced GA; along the 

way, we consist of an adaptive adjustment mechanism. 

The results of the experimental simulations demonstrate 

that the mobile robot's enhanced GA-based three-

dimensional route planning has the ability to reduce the 

number of pathways and loops while effectively meeting 

the robot's operating needs. 

By studying the current apple-picking behavior, the 

authors of [18] create a novel design for the flexible three-

fingered end-effector. We observe an alternate method of 

selecting apples by encircling the end-effector and 

lowering it first. Additionally, there are two different ways 

to hold an apple with three fingers: one is horizontal, such 

as a ruler, and the other is vertical, such as your fingers. 

Researching the effects of different apple plucking 

methods led to the development of a simulation model 

including branches, stems, and apples. The ideal angle of 

circular movement among the force needed to make it 

happen may be determined by conducting simulations that 

take into consideration all the potential limitations, such as 

the angle that separates the apple stem as well as the 

vertical direction, the root impulse, the apple's rate of 

motion, and so on. At last, we experimented with several 

apple-picking methods using the bendable three-fingered 

end-effector. Using the circular-pull-down movements 

separation approach, the trial results showed that an angle 

between 15° and 20° was optimal for apple selection. 

Describes a way to pick apples with both hands at the same 

time while concentrating on solving problems with 

eyesight, posture, and dual-arm stability [19]. The article 

begins by outlining the robot's software and hardware 

systems, their integration, procedures, and control 

structure. It then moves on to discuss the systems 

themselves. In addition, the research employs a multi-task 

network framework to identify and locate fruits by 

combining a dual-vision perception method with a 

frustum-based fruit localization strategy. Lastly, a multi-

arm work planning approach using evolutionary 

algorithms is used to optimize the goal harvesting 

frequency for each limb, leading to greater teamwork. An 

orchard was the site of many field experiments designed to 

determine the robot system's overall efficacy. The total 

success rate of the robot system in field testing was 

76.77%, indicating good performance. On average, it took 

7.29 seconds to pluck fruit and only dealt 5.56% damage. 

The authors of [20] propose a YOLOv5-RACF algorithm 

that can detect apples and determine their diameter as a 

solution to the problem of automated apple harvesting in 

orchards. This kind of software might automate apple 

sorting by directing the robot's navigation, robotic arm 

posture, locomotion framework, Lidar mapping, and 

gripping actions via the operating system. This trial took 

place in a genuine orchard. Our results for apple 

recognition using the algorithm model were 91.02% 

accuracy (mAP@0.5:0.95) and 99.88% accuracy (the 

mAP@0.5:0.95). Using a measurement accuracy of 1-3 

mm, finding the apple's diameter would take a mere 0.13 

seconds. The robot typically requires nine seconds to get 

an apple and put it back where it came from. In real-world 

agricultural settings, these results demonstrate the system's 

dependability and effectiveness. 

If you're selecting apples from the spindle-shaped trees 

that are common in modern apple orchards, this study 

suggests a three-dimensional path-planning approach to 

avoid these problems utilizing full-field fruit avoidance. 

Using the free spindle, raised spindle, and thin spindle as a 

starting point, a three-dimensional spatial representation of 

fruit tree branches was built. These tree topologies are 

often seen in apple trees. Creating a setting representation 

obstacle map based on grids was the subsequent stage for 

the apple tree models. The next stage was to enhance the 

original pheromones by dispersing them in a non-uniform 

manner using the first ant colony approach. By 

incorporating a biomimetic optimization strategy into the 

antenna system of the beetle and decreasing the need for 

pheromone updates, they improved both the stability and 

the speed of route finding. We used a cubic B-spline curve 

to smooth out the robotic arm's anticipated path, making 

its harvesting technique more successful and reducing the 

likelihood of unexpected halt or twists. An improved ant 

colony optimization algorithm was used to simulate three 

types of spindle-shaped apple trees for the purpose of 

three-dimensional route planning in order to avoid 

obstacles. Based on the findings, free-spindle-shaped trees 

had a 96% success percentage, high-spindle-shaped trees 

86%, and slender-spindle-shaped trees 92% when it came 

to obstacle avoidance route planning. 

In [22], a robotic grasping device was introduced that 

integrates tactile detecting, deep learning, with soft robots. 
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Limit the amount of mechanical harm to fruits that you 

can. Robots equipped with fin-ray fingers, integrated 

tactile sensor arrays, and special perception algorithms can 

detect and deal with branch interference throughout 

harvesting. A strong strategy for limiting interference and 

a test validation success rate of 83.3-87.0% have been 

shown in relation to understanding status identification. 

The proposed grasping technique has potential for usage in 

a variety of robotic grasping tasks where the handling of 

undesirable foreign items is required. 

Agricultural combine harvesting machinery often pauses 

between rows of apple trees while working in single 

master-slave navigation setting, as described in [23]. 

Depending on the distances estimated from ground-based 

GPS stations, the transportation as well as pickup robots 

might switch between various navigation modes. A cloth-

simulated filter with a random sample agreement 

mechanism were used to produce the inter-row waypoints. 

While the turn waypoints for the master were determined 

using a kinematic model, those for the slave were manually 

picked using GNSS data. At last, they accomplished 

master-slave navigation by ground head master-slave 

command routing by relentlessly pursuing these waypoints 

using a pure pursuit algorithm. The results of the testing 

demonstrate that the robot satisfies the requirements for 

robot orchard communication, as it can communicate with 

an information loss rate of fewer than 1.2% despite being 

near 50 meters of an orchard row. The master-slave robot 

satisfies the requirements of cooperative orchard 

harvesting by completing sequential pauses made possible 

by its follow navigation abilities. 

In [24], a new approach to apple identification in orchards 

in Kashmir was shown. It comprised YOLOv8's deep 

learning algorithm, an Apple Harvester Robot, and a 

RealSense camera. The proposed method aims to enhance 

the precision and effectiveness of apple harvesting by 

considering the unique challenges posed by different 

lighting conditions, vegetation, and apple varieties, shapes, 

and colors. The state-of-the-art object identification 

method known as YOLOv8 is used to locate apples in their 

natural habitat. To ensure that the YOLOv8 algorithm can 

accurately recognize apples in their entire splendor 

regardless of lighting or weather, they trained it using a 

vast collection of annotated photographs shot in Kashmir 

orchards. They used bounding boxes to not only identify 

apples, but also to locate their precise position, so the 

robot's manipulator could treat the fruit with care. Their 

proposed approach has, on average, yielded 91.2% 

success. They achieved a recall of 98% and an accuracy of 

93.9%. Every classifier in the dataset was correct about 

one instance's prediction. 

By outlining a plan for improving the design of 

configurations with two manipulators, the researchers of 

[25] met the R&D demands of a robot that could efficiently 

pick apples. The "high spindle," a typical Chinese tree 

form, was used to demonstrate their argument. From the 

characteristics of the geographical placement of fruits 

under a typical dwarf and close-planted canopy, a three-

degree range of motion, two types of vertically 

synchronous processes, and a Cartesian coordinate dual-

manipulator were constructed. The plucking robotic arm 

can adapt its movement to the height of the tree thanks to 

its two-stage telescopic components, that may be powered 

by gas or electricity. A model for optimizing the critical 

configuration parameters is developed through integrating 

a quantitative account of the operational setup to the dual-

manipulator configuration parameters. We provide a 

technique for comprehensive assessment of the CRITIC- 

TOPSIS integrated dual-manipulator system. There should 

be 1119.3 mm and 39.4° in the upper telescopic portion of 

the dual-manipulator, and 898.7 mm and 26° and 755.3 

mm in the lower telescopic section, respectively. In 

addition, you need to find the exact distance between the 

tree trunk's center and its attached base of the highest 

frame.

Table 1: Comparison of the proposed and existing methods 

Reference Method Result Remarks 

[16] Automated apple 

harvesting 

two apple orchards 

 

65.2% success rate The primary parts of the robot 

include a vision component that 

was specifically created for it, a 

manipulator with four degrees of 

freedom, a soft end effector that is 

upgraded and based on vacuum 

technology, and a 

dropping/catching element that 

can accept and transfer fruits that 

have been collected. 

[17] Standard genetic 

algorithm 

improved double-

encoding GA 

75% accuracy We construct a three-dimensional 

route for the apple-harvesting 

robot using the enhanced GA; 

along the way, we consist of an 

adaptive adjustment mechanism. 
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[18] We construct a three-

dimensional route for 

the apple-harvesting 

robot 

enhanced GA; along 

the way, we consist 

of an adaptive 

adjustment 

mechanism; 78% 

accuracy 

The ideal angle of circular 

movement among the force 

needed to make it happen may be 

determined by conducting 

simulations that take into 

consideration all the potential 

limitations, such as the angle that 

separates the apple stem as well as 

the vertical direction, the root 

impulse, the apple's rate of 

motion, and so on. 

[19] Dual-Vision 

Perception Method 

The total success rate 

of the robot system in 

field testing was 

76.77%, indicating 

good performance. 

On average, it took 

7.29 seconds to pluck 

fruit and only dealt 

5.56% damage. 

An orchard was the site of many 

field experiments designed to 

determine the robot system's 

overall efficacy. 

[20] YOLOv5-RACF 

algorithm 

Our results for apple 

recognition using the 

algorithm model 

were 91.02% 

accuracy 

(mAP@0.5:0.95) and 

99.88% accuracy (the 

mAP@0.5:0.95). 

Using a measurement 

accuracy of 1-3 mm, 

finding the apple's 

diameter would take 

a mere 0.13 seconds. 

The robot typically 

requires nine seconds 

to get an apple and 

put it back where it 

came from. In real-

world agricultural 

settings, these results 

demonstrate the 

system's 

dependability and 

effectiveness. 

This kind of software might 

automate apple sorting by 

directing the robot's navigation, 

robotic arm posture, locomotion 

framework, Lidar mapping, and 

gripping actions via the operating 

system. 

[21] We used a cubic B-

spline curve to smooth 

out the robotic arm's 

anticipated path, 

making its harvesting 

technique more 

successful and 

reducing the 

likelihood of 

unexpected halt or 

twists. 

Based on the 

findings, free-

spindle-shaped trees 

had a 96% success 

percentage, high-

spindle-shaped trees 

86%, and slender-

spindle-shaped trees 

92% when it came to 

obstacle avoidance 

route planning. 

The next stage was to enhance the 

original pheromones by dispersing 

them in a non-uniform manner 

using the first ant colony 

approach. By incorporating a 

biomimetic optimization strategy 

into the antenna system of the 

beetle and decreasing the need for 

pheromone updates, they 

improved both the stability and 

the speed of route finding 

[22] Robotic Grasping 

Device 

A strong strategy for 

limiting interference 

and a test validation 

success rate of 83.3-

87.0% have been 

Robots equipped with fin-ray 

fingers, integrated tactile sensor 

arrays, and special perception 

algorithms can detect and deal 
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shown in relation to 

understanding status 

identification. The 

proposed grasping 

technique has 

potential for usage in 

a variety of robotic 

grasping tasks where 

the handling of 

undesirable foreign 

items is required. 

with branch interference 

throughout harvesting. 

[23] Agricultural combine 

harvesting machinery 

The results of the 

testing demonstrate 

that the robot satisfies 

the requirements for 

robot orchard 

communication, as it 

can communicate 

with an information 

loss rate of fewer 

than 1.2% despite 

being near 50 meters 

of an orchard row. 

The master-slave 

robot satisfies the 

requirements of 

cooperative orchard 

harvesting by 

completing sequential 

pauses made possible 

by its follow 

navigation abilities. 

A cloth-simulated filter with a 

random sample agreement 

mechanism were used to produce 

the inter-row waypoints. While 

the turn waypoints for the master 

were determined using a 

kinematic model, those for the 

slave were manually picked using 

GNSS data 

[24] Apple identification in 

orchards in Kashmir 

Their proposed 

approach has, on 

average, yielded 

91.2% success. They 

achieved a recall of 

98% and an accuracy 

of 93.9%. Every 

classifier in the 

dataset was correct 

about one instance's 

prediction. 

The state-of-the-art object 

identification method known as 

YOLOv8 is used to locate apples 

in their natural habitat. 

[25] CRITIC- TOPSIS 

integrated dual-

manipulator system 

There should be 

1119.3 mm and 39.4° 

in the upper 

telescopic portion of 

the dual-manipulator, 

and 898.7 mm and 

26° and 755.3 mm in 

the lower telescopic 

section, respectively. 

In addition, you need 

to find the exact 

distance between the 

tree trunk's center and 

its attached base of 

the highest frame. 

From the characteristics of the 

geographical placement of fruits 

under a typical dwarf and close-

planted canopy, a three-degree 

range of motion, two types of 

vertically synchronous processes, 

and a Cartesian coordinate dual-

manipulator were constructed. 
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3 Research method 
In order for robots to gather apples autonomously, real-

time recognition of apples in their natural environments is 

essential. This technology is also crucial for predicting 

orchard productivity and managing fines. The detection 

performance of YOLO v5 is superior than that of the 

existing popular methods. Nevertheless, the robot's 

picking efficiency will be diminished by YOLO v5's 

intricate network architecture. To solve the problem of 

automated apple harvesting in orchards, we provide an 

Improved Multi-Rotated Box Algorithm for apple 

identification and diameter calculation. An apple-

harvesting robot that utilizes many technologies is 

suggested in this research. Radar, inertial measurement 

units (IMUs), and vision sensors are among the many 

sensors used by the robot. When the robot's sensors share 

data, it may reach a higher degree of automation, allowing 

it to harvest crops without human intervention. The robot's 

arm position, navigation, Lidar mapping, and locomotion 

structure are all controlled by this software via the robot 

operating system (ROS); it then uses these to achieve 

autonomous apple harvesting and placing. An authentic 

orchard setting served as the testing ground. In terms of 

speed and accuracy, Des-YOLO v5 outperforms more 

conventional network models like YOLO v5 or Faster R-

CNN when it comes to apple identification. One apple's 

diameter could be accurately measured within a margin of 

error of 1-3 mm in about 0.12 seconds. Picking up an apple 

and getting back into its starting position takes the robot, 

on average, nine seconds. The system's efficiency and 

dependability in actual agricultural contexts are shown by 

these outcomes. 

RGB image Apple Detection
Apple 

segmentation

Apple Size 

Calculation

Depth image
Depth To Apple 

Estimation 

(YOLOV5)

 

Figure 2: Flow model for apple harvesting 

3.1 Dataset description  
The data used in this research came from two places: the 

internet and the actual circumstances in the orchard. We 

chose 2044 high-quality photographs of apples taken in a 

variety of settings from varied perspectives and in a range 

of lighting conditions from various web sources. We used 

the JPG format to save these pictures. In July 2024, more 

data was gathered from the orchard base at Jilin Farming 

Institute in Changchun, Jilin Province, China, to enhance 

the dataset and fulfill the requirements of accurate 

identification in intricate agricultural situations. An iPhone 

13 smartphone was used for data gathering, and it 

produced JPG photos having a resolution of 4096 × 3072 

pixels. In a complicated orchard setting, 1026 photographs 

of orchard apples were captured from a variety of angles, 

sizes, and degrees of occlusion and backdrops to guarantee 

the images' unpredictability and diversity. 

Table 1: The apple dataset in all its detail 

Label Original 

Image 

Data 

Validation Training Augment

ed Image 

Data 

goodapple 3122 994 8834 6945 

 

3.2 Data augmentation 
To further enhance the dataset and make the algorithm 

more robust, we divided it in a 9:1 ratio. This helped to 

boost recognition accuracy. Some of the enhancements are 

shown in Figure 3. Improvements to the image's 

brightness, histogram equalization for better recognition in 

varying lighting, vertical and horizontal image inversion 

for wider viewing angles, and the use of Gaussian and salt-

and-pepper noise to simulate camera shake blur are all part 

of the process. The dataset now includes 9934 apple photos 

after augmentation. We decided to partition the dataset 

before augmenting it in order to lower the frequency of 

overfitting. Furthermore, in order to lessen the 

resemblance to the initial dataset, every augmentation 

makes use of two distinct data augmentation techniques 

concurrently. Furthermore, we tagged the original 

photographs by hand and gave them the moniker 

goodapple. Table 1 displays the specifics of the program. 

To train a YOLO neural network, additional practice sets 

are often required. To improve the network model's 

generalizability, it may be helpful to apply more training 

sets. This will help the neural network understand the 

apple picture attributes to a sufficient degree. On the other 

hand, gathering a plethora of training resources is a 

genuine challenge when it comes to limited material 

collecting capabilities. It is also challenging to fully extract 

the form properties of the fruit since apples have a unique 

growing posture and a severe overlap phenomenon. Hence, 

prior to YOLO training, the apple picture must be 

preprocessed. The initial information set is processed 

using Matlab in this research to obtain the impact of data 

improvement. 

• To create additional training sets, the picture is either 

vertically or horizontally rotated at a predetermined angle, 

and its aspect ratio is altered. 

• Image processing methods such as median filtering, 

histogram equalization, and saturation/hue adjustment 

improve the data. 

• The Mosaic data enhancement approach is used to 

randomly trim four photos and combine them into one 
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image for the purpose of training the model. This improves 

the model's capacity to generalize.  

3.3 Apple localization 
Before you can set up your D435i depth camera on a ROS 

system, you must install the packages and drivers. Using 

the depth camera to focus on the apple aim is the next step. 

Next, we'll put the trained YOLOv5 algorithm to work 

identifying apples. Pixel values ("min, y min") are shown 

in the bottom-left corner of the bounding box, whereas 

xmax and ymax are shown in the bottom-right corner. The 

center pixel's position (px, py) is retrieved when the apple 

focus has been identified. These may only be obtained by 

those who have subscribed to the subject on the camera's 

built-in features. Two sets of properties inherent to the 

camera are the focal length (fx, fy) with the image center 

coordinates (ppx, ppy). We can determine the two-

dimensional positions of the apple (x, y) using the camera's 

orienting mechanism. When the camera's technology 

obtains the pixel location at the center of the apple through 

subscription (z), it combines these two-dimensional 

coordinates with the apple's coordinates to produce its 

three-dimensional geographical position. Using the centers 

of the pixels and the following calculations, we can find 

the apple's three-dimensional location: 

px = (xmin + xmax)/2

py = (ymin + ymax)/2
x = (px − ppx)/fx × z

y = (py − ppy)/fy × z

     (1) 

The final set of coordinates is obtained by averaging the 

three-dimensional geographic position of the apple over 10 

frames, starting with the current frame. By reducing the 

effect of noise in each frame and smoothing out short-term 

measuring changes, this approach improves localization 

accuracy and makes the results more reliable. For 

computations, the following equations are utilized: 

x =
1

10
∑  t

1=𝑡−9  x1

y =
1

10
∑  𝑡

1−t−9   y1

z =
1

10
∑  t

1−𝑡−9  zt

                     (2) 

where x ‾, ¯y, and ¯z Averaging the apples organizes—

which are saved as x_i, y_i, and z_i in each frame—results 

in, where x_i is the index of the current frames. 

By modifying YOLOv5, we were able to pinpoint Apple 

targets. The newest network in the YOLO series, 

YOLOv5, offers better detection accuracy than its 

predecessors (YOLOv4) and a smaller model that saves 

processing resources, creating it perfect for mobile 

positioning.   

 

3.4 Improved multi-rotated box algorithm 
In order to find the ships' targets, we obtained the 

convolutional feature maps and then placed the rotated 

previous boxes on each feature map point. Figure 2 shows 

the blue-colored rotated preceding boxes. We may 

anticipate the target's class name and position data in 

different orientations using the rotating preceding boxes. 

Before calculating the loss during network training, we get 

the positive sample information by matching the previous 

boxes with the ground-truth bounding boxes. 

00

450

900

1350

(a)

(b) (c)

 

Figure 3 

We input 600 × 600-pixel pictures into the network after 

dividing the large-scale image. The previous box's 

dimensions are {32, 64,128,256} {32,64,128,256}, and its 

aspect ratio is 5:1, yielding {71,142,284,568} 

{71,142,284,568} for the long side h. The box's step size 

is 16. The multi-scale targets may be more accurately 

detected with the help of multi-scale previous boxes. When 

the ship's size is tiny, it is difficult to determine the head 

or tail direction, therefore the rotation angle is set as {0, 

45,90,135} {0,45,90,135}. Figure 3 displays the earlier 

boxes that have been rotated by one scale. These settings 

are selected according to the network architecture and the 

features of the ships that are targets in the dataset. 

Rotated box matching 

When selecting positive samples for training, 

implementing nonmaximum suppression in evaluation, 

and determining whether it is the correct detection in 

evaluation, rotated box matching is an essential component 

of target detection. Here we'll pretend that two boxes, 

labeled box _1 and box _2, have been rotated. To capture 

the box, we use a matrix that contains only zeros outside 

of the box region. By adding up the matrix components, 
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we can calculate the box's size. The entries for the two 

matrix are I_1 and I_2. Box x_2's area and box _1's area 

are both documented as Area_1 with Area 2, respectively. 

We get the overlap zone by multiplying I_1 and I_2 

together. Matrix I_3 is the output, and Area _n is the total 

of the components that make up the overlap area. So, we 

can determine the degree to which the two boxes match by 

matching degree =
 Area ∩

 Area 𝑈
=

 Area ∩

 Area 1+ Area 2− Area 𝑛
            (3) 

 It will take a lot of computation to match the rotating 

boxes because of the calculation among each preceding 

box. Therefore, we need to focus our selecting efforts first. 

After deciding on a range of values for t_c, we measure the 

distance among the two centers d_c=‖(x_1^c,y_1^c )-

(x_2^c,y_2^c )‖, where (x_1^c,y_1^c ) and (x_2^c,y_2^c ) 

are the center point coordinates of the two boxes. If 

d_c<t_c, For the purpose of determining the matching 

degree, we choose a preceding box whose angle is closest 

to that of the ground-truth box. The calculating amount is 

drastically cut by using these procedures. 

Focus

Conv

C3

Conv

C3

Conv

C3

Conv

SPP

C3

Upsample

Conv

Concat

Upsample

Conv

Concat

Upsample

Conv

Concat

Conv

C3

Conv

Concat

Conv

Concat

Input image

C3+CBAM

C3+CBAM

C3+CBAM C3+CBAM

C3+CBAM

Conv2D

Conv2D

Conv2D

Conv2D

160x160x18

80x80x18

40x40x18

20x20x18
Backbone Neck Detect

 

Figure 4: YoloV5 modified model 

3.5 Improvement of fusion feature layer 

The target detection network's identification performance 

may be greatly enhanced by merging feature maps of 

varying sizes. A more discriminating feature than the input 

features is what feature fusion is all about. Combining 

characteristics obtained from pictures creates this feature. 

In addition to greater resolution, the lower-level feature 

map includes more exact location data and detailed item 

descriptions. The convolutional layer did not extract 

enough features, which leads to a low-level feature map 

with poor semantics and extraneous noise. Although the 

high-level feature map contains a wealth of semantic 

information, the feature map precision is poor, and the 

capacity to perceive picture details is rather inadequate. 

Improving the model's detection performance relies on the 

successful integration of low-level and high-level 

information. 

3.6 Apple size calculation method 

In order to plan for harvesting labor, fruit box needs, and 

storage space, growers rely on precise estimates of fruit 

size and quantity. Classification of quality according to 

various sizes is also made possible by it. Finding out how 

big apples are will help autonomous harvesting robots 

adjust the opening and closing angles of their grippers in 

future research, which in turn reduces mechanical damage 

when picking apples. Importantly, segmenting the apple 

targets is the first step before getting the apple sizes. A lot 

of people have put a lot of time and energy into studying 

target segmentation. An Enhanced Multi-Rotated Box 

Algorithm was used in this study. In order to plan for 

harvesting labor, fruit box needs, and storage space, 

growers rely on precise estimates of fruit size and quantity. 

Classification of quality according to various sizes is also 

made possible by it. Finding out how big apples are will 

help autonomous harvesting robots adjust the opening and 

closing angles of their grippers in future research, which in 

turn reduces mechanical damage when picking apples. 

Importantly, segmenting the apple targets is the first step 

before getting the apple sizes.  

Here is the representation of the circle's equation: 

(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑟2     (4) 

where (a, b) is the point where the two lines meet, besides 

r is its radius. 

A minimum of three points are required to establish a 

circle. So, consider these (x_1, y_1), (x_2, y_2), and (x_3, 

y_3) The structure that follows of linear equations may be 

used to reach the solution: 

AX = B

 A = [

x1 y1 1
x2 y2 1
x3 y3 1

] , B = [

x1
2 + y1

2

x2
2 + y2

2

x3
2 + y3

2

]   (5) 

The answer X, obtained by solving the aforementioned 

system of linear formulas, is given by: 

X = [
Dx

Dy

C

]                                 (6) 

After that, we may express the center (a, b) besides radius 

r as follows: 

a =
Dx

2
, b =

Dy

2
, r = √C + a2 + b2   (7) 



200   Informatica 49 (2025) 191-204         W.J. Feng et al. 
 

For each point (x_i, y_i), The following is how we get its 

distance from the fitted circle's center (a, b): 

d1 = √(x1 − a)2 + (y1 − b)2    (8) 

If |d_i-r|<ϵ, at this stage, we believe the point to be a viable 

fitting point. We employ a bespoke nonlinear function for 

exact fitting after repeating the procedure 1000 times. 

Points with activation levels higher than 0.5 are retained 

by this function, which allocates distinct weights to fitted 

points and outliers. Let me give you the formula: 

𝑌 =
1

1+𝑒𝑎(𝑑1−𝑟)              (9) 

where d_i thus, where d is the distance from every point to 

the center of the circle, r is the radius of the corresponding 

circle, while an is the steepness of the function. 

3.7 Model training and tuning  
The procedure for training and fine-tuning the model is 

described in this section. Partitioning the training dataset 

is the first topic covered, followed by the platforms and 

models used for training. After these prerequisites were 

met, we set up a performance baseline and fine-tuned it 

from there. When a machine learning algorithm is trained 

using data, this procedure is called model training. 

Conversely, hyperparameter tuning is choosing the 

combination of hyperparameters that yields the greatest 

effect on the validation set. Importantly, hyperparameters 

are not learnt from the data but rather defined before 

training begins. Critical to the operation and output of a 

machine learning model are these configuration options, 

called hyperparameters. Model training is concerned with 

getting the model to perform well on the training 

information, while hyperparameter tuning is all about 

getting the hyperparameters just right so the model can 

perform its best on new, unknown data. 

3.8 The harvesting robot's navigation method 

integration  
As seen in Figure 8, two primary communication channels 

are available in ROS. A publisher disseminates messages 

to certain topics on a regular basis according to the 

message transmission model. The subject is the medium 

via which the publisher along with subscribers convey 

messages to one another. In order to get the messages that 

the publisher publishes, users must subscribe to the 

subject. Thanks to this technique, nodes may communicate 

with one another in an asynchronous fashion, meaning that 

publishers and subscribers can both send and receive 

messages at any time. This study primarily uses it for 

collecting data from sensors and providing status updates, 

tasks that do not need quick answers. Asynchronous 

communication, however, does not ensure that subscribers 

will get all messages. A customer may also submit a 

service request as another way to communicate. After the 

service gets the request, it sends it on to the server. The 

client is notified of the result of the request by the server, 

which processes it and delivers a response. The client 

sends the request and then waits for the server to respond 

in order to ensure the service request was properly 

executed; this is an example of synchronous 

communication. The overall testing tests of the harvesting 

robot make use of this synchronous communication 

approach to coordinate the operations of numerous 

components. This system makes sure that everything runs 

well, which allows autonomous navigation, identification 

while localization, and harvesting to be done efficiently. 

For instance, when a client asks for directions to a certain 

place, the server plans the route and then gives the 

navigation result. The server performs the client's request 

and provides the result when the image processing 

component is asked to find and identify apples. Just like a 

robotic arm, when a client asks it to harvest, the server 

organizes the arm's joint motions to accomplish the task 

and gives a response showing whether or not it was 

successful. 

4 Evaluation metrics 
In this work, we employ a number of metrics for assessing 

models: GFLOPS, model variable count, mean average 

precision, recall, as well as precision. Two measures of a 

test's efficacy compare the ratio of expected positive 

testers to the proportion of real positive samples; these are 

recall (R) and precision (P). The mAP is just the sum of 

the areas under the recall PR and accuracy PR curves, 

expressed simply. The total amount of parameters and the 

computing cost of the model are also provided. The second 

unit is gigaflops, which stands for giga computations 

performed in a second. The research assessed the efficacy 

of the trained apple objects recognition algorithm using 

objective evaluation metrics including recall (2), precision 

(1), mAP (3), and F1 score (4). Here are the equations for 

the calculation: 

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃

 Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁

𝑚𝐴𝑃 =
1

𝐶
∑  𝑁

𝐾−1  𝑃(𝑘)Δ𝑅(𝑘)

𝐹1 =
2

1

𝑃rectstom 
+

1

𝑅coall 

                  (10) 

where TP is the number of successful identifications of two 

apple types; FP indicates the number of false positives for 

apple targets in the background; An integer representation 

of the total amount of apple objects that have not been 

recognized is FN. With "C" representing the entire 

assortment of apple consumption categories, N 

representing the total amount of IOU thresholds, K 
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representing the IOU threshold itself, P(k) representing the 

recall, and R(k) representing the accuracy. 

Table 2: Examination of the outcomes of apple diameter 

measurements 

Object Variance/

mm2 

Standard 

Deviation

/mm 

Actual 

Measureme

nt 

Value/mm 

Camera 

Measurement 

Value/mm 

Apple1 8.933321 4.126392 86.66 92.792459 

Apple2 4.255878 2.367900 79.18 75.823300 

Apple3 1.324617 4.113411 78.44 79.812499 

Apple4 7.268401 3.262963 81.53 69.320226 

Table 2 uses standard deviation as well as variance to 

compare the uniformity and precision of diameter 

measurements made using actual and camera methods for 

different apple varieties grown in orchards. The variance 

shows how the camera's measurement results are 

distributed relative to the actual measurement values, 

while the standard deviation shows how much the actual 

measurement values vary from the camera's measuring 

values. With inaccuracies ranging from 1.13 mm to 3.14 

mm, measurements taken by camera tend to be more 

accurate than those taken by hand. 

 

(a) Precision 

 

(b) Recall 

 

(c) F1-Measure 

Figure 5: Comparative analysis on various measures 

4.1 Results discussion 
Depending on the specifics of their project, users can select 

the model that works best for them in terms of creation and 

usage size. Our primary objective in developing and 

implementing the recognition approach for this research 

was to achieve real-time fruit targets detection. This 

capability will subsequently be included into our apple 

picking robot. A detection framework based on updated 

YOLOv5s is a good choice for inclusion into integrated 

components of choosing robot vision systems because to 

the properties of the YOLOv5s system, such as its quick 

detection speed and low simulation size. Consequently, the 

expenses of implementing the recognition model will 

decrease. 

Among the various benefits of the offered apple detection 

technique are: The first thing it can do is recognize apple 

objectives in images, whether they are graspable or not. 

The second advantage is its high detection efficiency; the 

picking robot can identify apples in real time with ease 

thanks to the enhanced YOLOv5s model. Finally, 

hardware devices might make advantage of the proposed 

detecting designs because of how little and light they are. 

Given that bigger models need more setup and processing 

power, this is relevant to both the algorithm's broad 

applicability and the visual system cost of the selecting 

robot. 

5 Conclusion  
Our research focused on an apple-harvesting robot that 

used the ROS framework in conjunction with image 

processing and deep learning. This apple-harvesting robot 

can navigate itself around orchards, identify apples in real 

time, and measure their diameter with pinpoint accuracy. 

Automated apple harvesting is now within reach, thanks to 

this robotic technology, which is a huge step forward in 

agricultural automation that will help with manpower 

shortages and boost production efficiency. Having said 

that, the experiment still has a few holes and might need 

some further investigation. In complicated orchard 

settings, for example, navigation precision is lacking. 
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Obstacles to autonomous apple picking by agricultural 

robots include unsteady light intensity, branches and 

leaves getting in the way, and occlusion of the fruit by 

other objects. So, improving the apple-harvesting robot's 

ability to navigate and recognize targets in cluttered 

environments may be the focus of future research into 

making the robot more robust and adaptable to more 

complex agricultural settings. Our investigation centred on 

a robotic apple harvester that integrated deep learning, 

image processing, and the ROS platform. This apple-

harvesting robot can navigate itself around orchards, 

identify apples in real time, and measure their diameter 

with pinpoint accuracy. Automated apple harvesting is 

now within reach, thanks to this robotic technology, which 

is a huge step forward in agricultural automation that will 

help with manpower shortages and boost production 

efficiency. Having said that, the experiment still has a few 

holes and might need some further investigation. In 

complicated orchard settings, for example, navigation 

precision is lacking. Obstacles to autonomous apple 

picking by agricultural robots include unsteady light 

intensity, branches and leaves getting in the way, and 

occlusion of the fruit by other objects. In order to create 

the apple-harvesting robot more resilient and suitable for 

more complicated agricultural settings, future research 

might concentrate on developing better navigation 

algorithms and increasing the detection of apple targets in 

obstructed situations. In future work, such as processing 

times under various conditions and the challenges posed 

by the physica constraints of the robots. 
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