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With the rapid development of solar power generation technology, chalcogenide battery materials are 

becoming more and more important. However, there are many combinations of chemical formulae for 

chalcogenide materials, and the traditional calculation methods are too costly in terms of labor and time. 

Therefore, an artificial neural network-based prediction model for the band gap and stability of 

halogenated double chalcogenide (A2B1+B3+X6) is proposed in the study. The structural features of the 

material are extracted using the Voronoi diagram method. The sparrow search algorithm is improved by 

using the chaotic number generator, stochastic difference variant, dynamic allocation strategy, and 

nonlinear inertia factor. The number of algorithmic populations is set to 50. The maximum and minimum 

values of the ratio of discoverers and joiners are 3:7 and 1:9 respectively. The learning factor is 1 and 

the warning value is 0.5. The improved algorithm is used to optimize the artificial neural network. 

Experiments show that the optimal fitness value of the improved algorithm is 145, 128, and 53 lower than 

that of GBR, SVR, and XGBoost, and the running time is 0.035 s, 0.127 s, 0.022 s, and 1.212 s lower than 

that of GBR, SVR, and XGBoost respectively, indicating that the improved algorithm performs better in 

optimization problems. The root mean square error is 0.053, which is lower than SSA, GBR, SVR, and 

XGBoost algorithms by 0.036, 0.019, 0.101 and 0.038 respectively. The mean absolute error and root 

mean square error of the model are 0.0217 and 0.0354 lower than that of the XGBoost model, respectively, 

and the coefficient of determination is 5.46% higher. The mean absolute error and root mean square error 

distributions of the model are lower than that of the XGBoost model by 0.0217 and 0.0354, and the 

coefficient of determination is higher by 5.46%. The six A2B1+B3+X6 mines selected for the study meet the 

requirement of band gap between [1.3, 1.4], the band gap prediction error between [-0.047, 0.009], and 

the stability indexes of five of the materials meet the requirement of less than 0.05. It can be concluded 

that the study can effectively improve the screening speed of chalcogenide materials, reduce the screening 

cost, and provide more promising new materials for solar power generation. 

Povzetek: Raziskava predstavlja izboljšan nevronski model ISSA-BP za napoved pasovnega prepovednega 

območja in stabilnosti A₂B₁⁺B₃⁺X₆ perovskitov, ki z Voronoi značilkami dosega visoko kvaliteto in hitro 

konvergenco. 

 

1 Introduction 
As society continues to evolve, there is a growing 

demand for energy among people, and various traditional 

fossil fuels are widely used in various industries due to 

their huge reserves and ease of exploitation [1]. However, 

fossil fuels produce large amounts of greenhouse gases 

and pollutants such as sulfur dioxide during combustion, 

leading to climate problems such as global warming and 

acid rain [2]. Meanwhile, due to the non-renewable nature 

of traditional fossil fuels, relying solely on fossil fuels will 

only lead to energy depletion and ultimately result in an 

energy crisis [3]. Clean renewable energy such as solar 

energy is an effective solution to the energy problem, and 

chalcogenide material is an efficient alternative to 

traditional crystalline silicon solar cells, which can 

effectively improve the efficiency of solar power  

 

generation due to its high light absorption coefficient, 

adjustable bandgap, and low preparation cost [4]. The  

laboratory photoelectric conversion efficiency of 

chalcogenide solar cells can reach 25.7%, the theoretical 

efficiency of a single layer can reach 33%, and the double-

layer material can reach more than 45% [5]. Moreover, the 

preparation process of chalcogenide cells is simpler, 

requiring only 5 or 6 procedures. The processing 

temperature is lower, which can effectively reduce its 

production cost. However, chalcogenide batteries suffer 

from poor stability in various environments, making them 

prone to decomposition. Controlling the preparation 

process over large areas is challenging, and the presence 

of lead in the material poses a risk of environmental 

pollution. To address these issues, halide bilayer 

chalcogenide emerges as an effective alternative to 

ordinary chalcogenide materials [6]. However, the 
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traditional screening methods for chalcogenide materials, 

such as high-throughput screening, first-principle 

calculations, and experimental trial and error, often 

consume excessive time and material costs. Alternatively, 

machine learning (ML) methods are used to assist the 

screening, but the ordinary ML methods require high data 

quality and quantity, and there is a risk of overfitting. Hu 

et al. proposed a new ML framework to further assess the 

ion adsorption of A2B1+B3+X6. This framework used first 

principles calculations to protect a dataset of 640 ions, 

sorted the Pearson correlation of their output values, 

evaluated them comprehensively using multiple feature 

selection methods, and then screened the virtual space 

predicted by ML. Experiments showed that the gradient 

boosting decision tree algorithm had the highest prediction 

accuracy in this framework [7]. Zhao et al. raised a new 

ML-based screening approach to improve the screening 

speed of perovskite and reduce screening costs. This 

method extracted important features grounded on the 

constraints of charge neutrality and Goldschmidt tolerance 

factor, extracted 16 out of 21 features to describe known 

perovskite compounds, and trained perovskite formability 

and stability models. Experiments showed that the 

accuracy and recall of the two models were 0.983 and 1.00 

and 0.971 and 0.943, respectively, which could distinguish 

between perovskite and non-perovskite [8]. Wu et al. 

proposed a new framework combining high-throughput 

experiments, subgroup discovery, and support vector 

machines for predicting the properties and structures of 

material synthesis. This framework integrated multiple 

ML techniques to reveal hidden structural property 

relationships in high-throughput experiments and quickly 

screen materials with high synthesis feasibility. 

Experiments showed that this framework had a 40% 

higher success rate in the synthesis of inorganic hybrid 

perovskites compared to traditional methods [9]. 

Selvaratnam et al. proposed a new method for 

determining independent screening and sparse operators 

in order to develop interpretable ML models. This method 

used domain overlap as a criterion to find the descriptor 

with the highest information content in classification 

problems, and proposed the hypothesis of using decision 

trees as scoring functions to find the best descriptor, which 

could improve prediction performance. The experiment 

showed that this method could improve the accuracy of 

the test set by 0.86 [10]. Zhu et al. proposed an ML-based 

thermodynamic stability prediction model for perovskite 

materials in order to find highly stable materials. The 

model utilized four classification and four regression ML 

algorithms, and its performance was assessed through a 

five-fold cross-validation approach. Experiment outcomes 

indicated that the model effectively predicted the stability 

of perovskite and identified 23 compounds with 

appropriate band gaps [11]. Sharma et al. proposed a new 

method combining first principles calculations and ML 

algorithms to obtain low bandgap perovskite materials. 

This method identified and predicted the optimal dopant 

for BaZrS3 perovskite for photovoltaic devices, reducing 

the material bandgap. Experiments showed that this 

method could reduce the bandgap of materials from 1.75 

eV to 1.26 eV, and doping Ca at the Ba point was superior 

to doping Ti at the Zr point [12]. Mattur et al. raised a 

novel ML approach based on the random forest algorithm 

to reduce the computational difficulty of material bandgap 

values and properties. The study used 5329 types of 

perovskite oxides and employed the random forest 

algorithm to predict the properties and bandgap values of 

the materials. The experiment indicated that the prediction 

accuracy of this approach reached 91%, and the prediction 

speed was significantly improved, which could quickly 

discover new materials in the perovskite family [13]. Yuan 

et al. raised a novel self-built ML assisted prediction 

method for predicting the structural dimension of 

perovskite materials. This method divided the dimensions 

of materials into zero dimensional, one-dimensional, and 

two-dimensional dimensions, and used the optimal K-

nearest neighbor model to predict the dimensionality of 

low dimensional perovskite materials. Experiments 

showed that the method could achieve 92.3% prediction 

accuracy in the test set, and the key factor determining the 

structural dimension was found, namely, ATSC1pe and 

SlogP_VSA2 related to the surface polarity and 

electrostatic potential of the organic interlayer Vander 

Waals [14]. 

In summary, experts and scholars explored the 

bandgap and stability prediction of perovskite from 

multiple perspectives, and achieved certain research 

results. However, existing methods paid less attention to 

A2B1+B3+X6, and it was difficult to find new A2B1+B3+X6 

materials through experiments, which required a lot of 

cost and time. To improve the screening efficiency of 

chalcogenide materials, the band gap prediction error was 

reduced to within ±0.05. Therefore, the study proposed an 

A2B1+B3+X6 bandgap and stability prediction model with 

an improved artificial neural network (ANN). The 

Voronoi diagram approach was innovatively used to 

extract material structural features, and the sparrow search 

algorithm (SSA) was improved using a chaotic number 

generator, random difference mutation, dynamic 

allocation strategy, and nonlinear inertia factor. The 

improved algorithm was then used to optimize the ANN. 

The research aimed to reduce the excavation cost of 

perovskite new materials, improve calculation speed, and 

search for more stable new materials. 

Based on the above related studies, Table 1 

summarizes the research methodology, root mean square 

error (RMSE), calculation time, and shortcomings of the 

related studies.
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Table 1 Summary of relevant information of relevant studies 

Author Research methods RMSE Calculation time (ms) Insufficient 

Literature [7] 
First principle 

computing and ML 
0.103 1073.5 Calculation time too long 

Literature [8] 
ML and Goldschmidt 

tolerance factors 
0.072 237.4 

Not applicable to covalent 

compounds 

Literature [9] 

Subgroup discovery and 

support vector machines 

combined 

0.098 186.5 
Higher requirements for 

parameterization 

Literature [10] 
Decision trees and 

sparse operators 
0.105 98.8 

Difficult to handle high-

dimensional sparse data 

Literature [11] 
Four regression ML 

algorithms 
0.087 109.2 Easy to ignore important features 

Literature [12] 

First principle 

computing and ML 

combined 

0.095 983.7 
High computational cost and 

difficult to get high quality data 

Literature [13] 
Random forest 

algorithms 
0.142 153.6 

Need to traverse all decision 

trees to make predictions 

Literature [14] 

Self-constructed ML-

assisted prediction 

methods 

0.085 105.3 

Noise, missing values or bias in 

the data can degrade the 

performance of the model. 

This text 
Voronoi diagrams and 

ANNs 
0.068 58.7 / 

In Table 1, although the existing studies are able to 

achieve certain results in the face of chalcogenide material 

screening, their performance in terms of RMSE and 

computational efficiency is still unsatisfactory, and the 

requirements on data and model parameters are also more 

demanding. Therefore, the study innovatively proposes an 

ANN-based prediction model for the band gap and 

stability of halogenated bicalcite, which effectively 

improves the screening speed and accuracy of 

chalcogenide materials. The proposed method performs 

well in terms of the RMSE of the prediction results and 

the calculation time. 

2 Methods and materials 

2.1 Material structure feature extraction 

and model selection based on voronoi 

diagram method 

A2B1+B3+X6 is a variant of perovskite structure, 

composed of two halide ions arranged in reverse. Its 

structural formula is A2B1+B3+X6, where A represents an 

alkali metal cation, two Bs are filled with monovalent and 

trivalent metal cations, and X is a halide anion [15]. The 

elements and their arrangement at each point of 

A2B1+B3+X6 are shown in Figure 1. 
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Figure 1 Specific structure of A2B1+B3+X6 

In Figure 1, orange nodes represent alkali metal 

cations, green nodes represent halide anions, and blue 

nodes represent monovalent and trivalent metal cations. 

Different ions can form thousands of elemental structures, 

and the stability evaluation factors and tolerance factors of 

the perovskite structure are calculated as shown in 

Equation (1) [15]. 
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In Equation (1), t  represents the tolerance factor, Ar  

represents the ionic radius of the element at the A-site, Xr  

represents the ionic radius of the element at the X position, 

1B
r +  is the ionic radius of the element at the 1B + site, and 

3B
r +  represents the ionic radius of the element at the 3B +

site. The calculation of octahedral factor is shown in 

Equation (2) [16]. 
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In Equation (2),   represents the octahedral factor. 

Equations (1) and (2) were chosen for the study to 

calculate the octahedral factor and tolerance factor of the 

material to characterize the structure of the chalcogenide 

material, which is suitable for evaluating the predicted 

properties of the material. In response to the problem that 
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traditional ML methods can only learn element features, 

this study adopts the Voronoi diagram method to extract 

the structural features of materials, further improving the 

accuracy of the model's bandgap prediction. The Voronoi 

diagram method can individually correspond all atoms in 

a material to polyhedra, and can perceive subtle changes 

in the material structure with low computational cost [17]. 

Compared to the traditional method, this approach 

enhances the material's feature extraction capabilities by 

simulating its microstructure, extracting geometric 

features, and analyzing mechanical properties. This not 

only provides robust support for the research and 

application of chalcogenide materials but also reduces 

computational complexity. The effective coordination 

number calculation of the Voronoi diagram method is 

shown in Equation (3). 
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In Equation (3), VN  represents the effective 

coordination number, iS  means the size of the i th side of 

the polyhedron, and the average bond length is calculated 

as shown in Equation (4). 
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In Equation (4), x  represents the average bond 

length, ir  means the position of the atom on the i th side, 

and jr  means the position of the central atom. In the 

Voronoi diagram structure, adjacent atoms have the 

greatest impact on the effective coordination number and 

average bond length. The calculation of the nearest 

neighbor order parameter for Voronoi diagram is shown 

in Equation (5). 
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In Equation (5),   represents the nearest neighbor 

order parameter,   represents the Dirac function, and tC  

represents the concentration of t  atoms in the structure. 

The study uses Equations (3)-(6) for Voronoi diagram 

feature extraction, which can enhance the feature 

extraction ability of the model for materials and is suitable 

for material data processing. The nearest neighbor order 

parameter represents the degree of order of the system 

during the phase transition process. When the atomic 

arrangement in the structure is disordered, the order 

parameter is infinitely close to zero. When the atomic 

arrangement is ordered, the order parameter is one. The 

calculation of the local environmental differences of 

atoms in the structure is shown in Equation (6). 
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In Equation (6), e  represents local environmental 

differences, ie  represents the physical quantity of the 

atom on the i th side, and e  means the physical quantity 

of the central atom. The local environmental differences 

are solved by weighted summation of polyhedral areas, 

and the closer the distance between adjacent atoms and the 

central atom, the greater the impact on their environmental 

differences. Due to the unequal and large number of atoms 

in A2B
1+B3+X6 composed of all ions, the structural features 

generated by the four Voronoi diagram methods 

mentioned above cannot be directly used to train ANN 

models. After obtaining the data of the four structural 

features of all the atoms through the Voronoi diagram 

method, the study calculates the range of values, the 

average value, and the average absolute deviation value of 

all the structural features, which are used to train the 

corresponding ML models. ANNs, as a type of ML, have 

strong data processing capabilities and are widely used in 

various fields. Backpropagation neural networks 

(BPNNs), as one of the types of ANN networks, have 

excellent nonlinear data processing capabilities and can 

continuously optimize the model through error feedback 

during training to improve its predictive ability [18]. The 

BPNN has the superiority of low computational 

complexity and strong nonlinear mapping ability. Figure 

2 illustrates the detailed training procedure.
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Figure 2: Specific training process of BPNN 

 

The initialization of the neural network's weights and 

thresholds is depicted in Figure 2. Using the input data and 

the desired output, the outputs of each neuron in the 

hidden layer (HL) and output layer (OL) are computed 

separately. Depending on the discrepancy between the 

OL's result and the target value, a decision is made on 

whether to terminate the iteration. If the termination 

criteria are met, the training concludes. If not, the error 

values and gradients for the HL are computed, and the 

neural network's weights and thresholds are adjusted 

accordingly. The number of HLs and neurons in a BPNN 

greatly influences its computational power and prediction 

accuracy. It can effectively optimize the performance of 

the network and improve the prediction accuracy of the 

model, and the adjustment of the weights and thresholds 

are adjusted using the gradient descent method. A limited 

number of HL neurons may hinder the network's ability to 

fully capture data information, potentially leading to 

suboptimal solutions. Conversely, an excessive number of 

neurons can elevate model complexity, prolonging the 

training period. According to studies, a neural network 

with a single HL can approximate any function, and the 

optimal number of HL neurons is determined by Equation 

(7). 

 h i j a= + +   (7) 

 

In Equation (7), h  means the number of HL nodes, i  

means the number of input layer nodes, j  means the 

number of OL nodes, and a  means a random integer 

between [1, 10]. The research focuses on addressing the 

issue of ordinary BPNNs being prone to falling into local 

optima. To improve this, the SSA is employed. 

Additionally, to further enhance the operational efficiency 

and accuracy of the SSA, a multi-strategy approach is 

utilized for its refinement. 

2.2 Optimization of ANN model based on 

improved SSA 

When using BPNN for bandgap prediction and 

stability analysis of A2B
1+B3+X6, issues such as non-

convex optimization and initial parameter selection may 

lead to gradient disappearance or guarantee, resulting in 

local optima. Therefore, the study adopts an improved 

SSA for parameter optimization of BPNN, solves the 

problem of local optima, and improves prediction 

accuracy. In the SSA, sparrow populations can be divided 

into discoverers, joiners, and vigilantes, and individuals 

are classified according to their fitness values. Individuals 

with higher fitness values are called discoverers, who are 

responsible for searching for food in different areas. After 

discovering food, discoverers guide joiners to search for 

food. When danger is detected, discoverers also switch to 

alert other individuals in the population and move to safe 

areas to continue foraging [19]. During the ongoing 

iterative optimization of the sparrow population, if the 

fitness of a joiner surpasses that of a discoverer, the joiner 

transitions into a discoverer role. The updated position 

calculation for the discoverer is provided in Equation (8). 
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In Equation (8), 
1

,

x

i jS +
 represents the updated position 

of the discoverer, ,i jS  means the position information of 

sparrow individual i  in the j th dimension,   

represents a random number between 0-1, maxit  

represents the max number of iterations, R  represents the 

alert value between 0-1, ST  represents the safety value 

between 0.5-1, Q  represents a random number, and L  

represents a matrix with a length of 1 and a width of 

dimensionality, all of which are 1. The detailed steps of 

the SSA are illustrated in Figure 3.
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Figure 3: Specific flow of SSA 
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In Figure 3, the population is initialized first to 

determine the relevant algorithm parameters, including the 

number of populations, the maximum number of 

iterations, the ratio of discoverers and joiners, the learning 

factor and the warning value, etc. Reasonable parameter 

settings can effectively improve the algorithm's search 

efficiency, the speed of convergence, and the ability of the 

global search to avoid the problem of local optimization. 

Then the size of the fitness value of the individual is 

calculated and sorted according to the size. The population 

is categorized into discoverers and joiners in a ratio of 2:8, 

with the top 20% being designated as discoverers. The 

current optimal and worst positions and their fitness 

values are calculated, the positions of discoverers, joiners, 

and alert individuals are updated based on relevant 

formulas, new fitness values are calculated, and reordering 

is done. The joiners with high fitness values are 

transformed into discoverers. The determination of 

whether the iteration termination condition has been met 

is made, and the current optimal position is output. 

Although the SSA has high global search ability and fast 

search speed, its local search ability is weak. The code of 

individual identity in SSA is shown in Figure 4.  

sorted_indices = np.argsort(fitness)

discoverers = population[sorted_indices[:num_discoverers]]

followers = population[sorted_indices[num_discoverers:]]

 

Figure 4 Code of individual identity in SSA 

The study addresses the problem that the random 

generation of the initial population affects the search 

accuracy by using a chaotic number generator, which 

generates pseudo-random numbers by means of chaotic 

properties. These numbers have good randomness and 

traversal, which can optimize the random operation in the 

algorithm and thus improve the global search ability and 

convergence speed of the algorithm. The one-dimensional 

mapping random allocation method of the chaotic model 

is shown in Equation (9). 
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In Equation (9), 1ns +  means the position of the 1n+

th individual, ns  represents the position of the n th 

individual, and ns  is not equal to 0 to ensure that no 

constant points are generated within the interval. To 

expedite the algorithm's search speed and enhance its 

global search capability in the initial stages and local 

search capability in the later stages, the population's 

proportion of discoverers and joiners is dynamically 

adjusted. In the early stages, the algorithm boosts the 

number of discoverers to broaden the search scope, while 

in the later stages, it increases the number of joiners to 

intensify local search and elevate calculation precision. 

The allocation ratio of the sparrow population 

progressively decreases as the iteration count rises, with 

the decreasing trend calculated as shown in Equation (10). 
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max max min

t
R R R R
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In Equation (10), R  represents the current allocation 

ratio between discoverers and joiners, maxR  represents 

the set max allocation ratio, minR  represents the set min 

allocation ratio, t  means the current iteration count, and 

T  means the max iteration count. The study addresses the 

issue of individual sparrow discoverers becoming trapped 

in local optima. To increase their likelihood of escaping 

these local optima, it introduces a random difference 

variant. Specifically, for the first half of the individuals, 

Gaussian distribution perturbation is applied to their 

fitness values. This high-speed distribution perturbation 

aids the individuals in jumping out of local extreme points, 

thereby enhancing their diversity. Simultaneously, it 

boosts the algorithm's local search capability, as outlined 

in Equation (11). 

 

 ( )0,1t t tX X N X = +    (11) 

 

In Equation (11), 
tX 

 means the position of the 

individual after mutation, tX  means the position of the 

individual before mutation, and ( )0,1N  means a 

random number that follows a normal distribution 

between 0-1. Individuals with fitness values in the bottom 

half are perturbed with a Cauchy distribution, which can 

mutate individuals to produce random numbers far from 

the origin and enhance their global search ability, as 

calculated in Equation (12). 

 

 ( )0,1t tbest tX X cauchy X = +    (12) 

 

In Equation (12), tbestX  represents the optimal 

position found by the discoverer, and ( )0,1cauchy  

represents the standard Cauchy distribution. In the SSA, 

the discoverer sends a signal to summon the joiners after 

finding the area where food exists. The joiners then 

conduct a more accurate search within the reduced area to 

obtain the global optimal solution. However, when the 

joiner moves towards the area where the discoverer is 

located, the directional coefficients of traditional 

algorithms are only 1 and -1, which results in insufficient 

search of local areas and reduces search accuracy. 

Therefore, the study introduced a nonlinear inertia weight 

factor to optimize the position update direction of the 

joiner, as calculated in Equation (13). 
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In Equation (13), w  represents the nonlinear inertia 

weight factor, maxw  means the max value of the nonlinear 

inertia weight factor, and minw  means the min value of 

the nonlinear inertia weight factor. The updated position 

of the fitness value of the individual after improvement in 

the first half of the population is shown in Equation (14). 
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In Equation (14), wS  represents the individual 

farthest from the center in the population, and 2i  means 

the square of the index of the i th sparrow in the current 

iteration. The position update of the individual fitness 

value of the joiner in the latter half of the population is 

shown in Equation (15). 
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In Equation (15), bS  represents the individual closest 

to the center in the population, L  represents a matrix 

with a length of 1 and a width of dimensionality, and the 

number in the matrix is a random number of -1 or 1. The 

study uses Equations (9)-(15) for SSA improvement to 

enhance its search speed and local search accuracy, which 

is suitable for model optimization processing. The 

improved SSA runs as shown in Figure 5. 
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Figure 5: Operation flow of the improved SSA 

In Figure 5, the study first uses a chaotic number 

generator to initialize the population after replacing the 

original population processing, sets the maximum value of 

the allocation ratio of discoverers and joiners to 3: 7 and 

the minimum value to 1: 9, and calculates the fitness of all 

individuals and ranks them. The position of the discoverer 

is updated, and likewise, the position of the joiner is 

adjusted using a nonlinear inertia weight factor to broaden 

the algorithm's local search capabilities. Additionally, 

stochastic differential variation is applied to the discoverer 

to prevent it from getting stuck in a local optimum. Once 

the position update is complete, all individuals' positions 

and fitness values are recalculated. Subsequently, it is 

determined whether the termination conditions have been 

met, and if so, the relevant results are outputted. The 

improved SSA has faster search speed in the early 

iteration, higher search accuracy in the late iteration, and 

is not easy to fall into local optimal solutions. The ISSA-

BP model prediction process based on improved SSA 

optimized BPNN is shown in Figure 6.
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Figure 6: Prediction flow of optimized BPNN based on improved SSA

In Figure 6, the ISSA-BP model initially optimizes the 

SSA by setting its corresponding parameters. Specifically, 

the algorithm population is set to 50, with the ratio of 

discoverers to joiners ranging from a minimum of 1: 9 to 

a maximum of 3: 7. The learning factor is set to 1, and the 

early warning value is set to 0.5, among other 

configurations. Moreover, the optimized algorithm is used 

to obtain the optimal weights and optimal thresholds of the 

BPNN and set the corresponding desired output targets. 

The study calculates the error between the output value of 

the output layer and the desired output value, updates the 

weights and thresholds, determines whether the desired 
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output value is satisfied, and calculates the error gradient 

if it is not satisfied, and adjusts the weights and thresholds 

according to the gradient. The modulation of weights and 

thresholds can effectively optimize the performance of the 

network and improve the prediction accuracy of the 

model, both of which are adjusted using the gradient 

descent method. Until the desired output is satisfied or the 

maximum number of iterations is reached, the final output 

value is the bandgap prediction value of the chalcogenide 

material. 

The study adopts the Voronoi diagram method to 

extract the structural features of the material to further 

improve the band gap prediction accuracy of the model. 

The Voronoi diagram method uniquely maps each atom in 

the material to individual polyhedra, enabling the 

detection of subtle structural changes with minimal 

computational expense. This provides robust support for 

the research and application of chalcocite materials. The 

study adopts chaotic number generator, nonlinear inertia 

weight factor and random difference variation to improve 

the SSA, which can effectively improve the global search 

speed and local search accuracy of the SSA. Then the 

improved algorithm is used to optimize the ANN, and the 

optimized ANN is used to carry out the prediction and 

analysis of the new materials of chalcocite. Finally the best 

new materials of chalcocite were obtained. 

3 Results 

3.1 Performance analysis of improving 

sparrow algorithm 

The algorithm ran in an Intel Core i7-12600 K 

environment with a frequency range of 3.7 GHz-4.9 GHz, 

a GeForce GTX 3060 GPU, and 16 GB of memory. The 

max number of iterations for the algorithm was set to 200, 

and the comparative algorithms used in the experiment 

included Gradient Boosting Regression (GBR), Support 

Vector Regression (SVR), and Extreme Gradient Boosting 

(XGBoost). The comparison of optimization curves for 

different algorithms is shown in Figure 7.
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Figure 7: Comparison of optimal fitness value finding curves for different algorithms

In Figure 7 (a), the optimization curve of the 

improved SSA decreased the fastest, completing most of 

the optimization tasks in 0-30 iterations. The fitness value 

decreased from 870 to 84, a decrease of 786. The other 

three algorithms reached their optimal fitness values after 

123, 104, and 197 iterations, respectively. The optimal 

fitness values of the improved SSA were 145, 128, and 53 

lower than the other three algorithms, respectively. In 

Figure 7 (b), the optimization curve of the improved SSA 

slowed down and reached the optimal fitness value only 

after 154 iterations. The fitness value decreased from 1294 

to 136, a decrease of 1158, while the optimization speed 

of the other three algorithms decreased even faster. The 

study selected common single-mode and multi-mode test 

functions for the performance check of the algorithms. 

The single-mode test function has only one globally 

optimal solution, and the multi-mode test function has 

multiple locally optimal solutions and one globally 

optimal solution. The complexity comparison of different 

algorithms is shown in Table 2.

Table 2: Compares the complexity of different algorithms 

Test function Algorithm Number of iterations Run time (s) RMSE 

Single module test 

function 

Improved SSA 28 0.037 0.048 

SSA 84 0.072 0.074 

GBR 123 0.164 0.065 

SVR 104 0.059 0.127 

XGBoost 197 1.249 0.073 
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Multimode test 

function 

Improved SSA 154 0.204 0.053 

SSA 214 0.427 0.089 

GBR 174 0.875 0.072 

SVR 322 1.537 0.154 

XGBoost 259 5.624 0.091 

In Table 2, among different test functions, improving 

SSA required fewer iterations, with 56 and 60 fewer 

iterations respectively compared to before optimization. In 

the single-mode test function, the improved SSA reduced 

the running time by 0.035 s, 0.127 s, 0.022 s, and 1.212 s 

compared to SSA, GBR, and XGBoost algorithms, 

respectively. In the multi-mode test function, the 

improved SSA's running time increased by 0.167 s, while 

the running time of other algorithms increased faster. The 

RMSE of the improved algorithm was 0.053, which was 

lower than the other four algorithms, 0.036, 0.019, 0.101, 

and 0.038, respectively. Ablation experiments were 

performed on the SSA and the comparison results are 

shown in Table 3.

Table 3: SSA ablation experiments 

Test function Algorithm Number of iterations Run time (s) RMSE 

Single module test 

function 

Improved SSA 28 0.037 0.048 

Remove Chaotic Number 

Generator 
105 0.104 0.184 

Removal of Random 

Difference Anomalies 
117 0.157 0.143 

Remove dynamic 

allocation 
95 0.095 0.357 

BPNN 76 0.125 0.236 

In Table 3, upon removing the optimization module 

from the improved SSA, the algorithm's performance 

improved across all cases. Additionally, removing the 

chaotic number generator, random difference anomalies, 

and dynamic allocation increased the RMSE of the 

algorithm by 0.136, 0.097, and 0.309, respectively. 

Notably, the improved SSA's RMSE was 0.188 lower than 

that of the standard BPNN model. 

3.2 A2B1+B3+X6 belt conveyor and fixed 

value prediction analysis 

The study obtained the corresponding molecular 

expressions of A2B1+B3+X6 from existing literature, and 

composed an experimental dataset of important features, 

including the bandgap characteristic atomic radius, 

potential occupancy rate, and highest and lowest 

molecular orbitals of each ion. This data acquisition 

method can effectively enhance the richness and diversity 

of the dataset, while the literature data have been 

rigorously experimentally validated and peer-reviewed, 

with high quality and reliability. After the element 

combination is completed, the existing perovskite 

compound data was deleted in the study. The comparison 

of bandgap prediction results after five fold cross 

validation using different algorithms is shown in Figure 8.
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Figure 8: Comparison of bandgap prediction 5-fold cross-validation results for different algorithms

In Figure 8, the 5-fold cross-validation was to divide 

the dataset into five parts, four of which were used as the 

training set and one as the test set. The test was repeated 

five times, each subset was used as the test set, and the 

average of the results of the five tests were took. The data 

points indicated the predicted values of the model, and the 
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predicted values of the ISSA-BP model all converged near 

the diagonal of the horizontal and vertical coordinates, and 

there were no prediction points with large deviations. The 

closer the predicted values of the model were to the 

diagonal line, the higher the consistency between the 

predictions and the actual values, indicating a high 

prediction accuracy of the model. The mean absolute error 

(MAE), RMSE and coefficient of determination of the 

ISSA-BP model were 0.0524, 0.0683, and 98.87%, 

respectively, of which the distribution of the MAE and the 

RMSE were lower than that of the XGBoost model by 

0.0217 and 0.0354, and the coefficient of determination 

was lower than the XGBoost model by 0.0217, 0.0354, 

and 0.0354, respectively. The coefficient of determination 

was 5.46% higher than that of the XGBoost model. The 

ISSA-BP model had a better prediction effect without 

underfitting or overfitting linearity, and the P-value of 

both models was less than 0.05, and the results were 

statistically significant. The relationship between the 

octahedral factor, tolerance factor, and bandgap of 

perovskite is shown in Figure 9.
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Figure 9: Effect of octahedral factor and tolerance factor on band gap in chalcogenide materials

In Figure 9 (a), the octahedral factor affected the 

bandgap mainly by changing the octahedral tilt and lattice 

distortion, while the tolerance factor affected the bandgap 

by regulating the stability of the structure and the phase 

transition. Both the octahedral factor and the tolerance 

factor showed a certain linear relationship with the 

bandgap value of the material, and the distribution of the 

octahedral factor was more dispersed in the training set, 

but most of them were distributed between 0.3-0.6 Of in 

the test set. In Figure 9 (b), the majority of samples in the 

test set were distributed between 0.9-1.2 Tf. The 

comparison of stability prediction results after five fold 

cross validation is shown in Figure 10.
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Figure 10: Comparison of 5-fold cross-validation results of different algorithms for stability prediction of 

chalcogenide materials

In Figure 10, the data points were the predicted values 

of the model for the stability of the material, and the 

diagonal line was the true value. Stability indicated the 

ability of the chalcogenide material to keep its intact 

structure and properties unchanged under different 

conditions. The ISSA-BP model fitted better, and most of 

the predicted values converged around the diagonal line, 

and only individual predictions were far from the diagonal 

line. The MAE and RMSE of the stability prediction of the 

model were lower than that of XGBoost by 0.0182 and 

0.0154, respectively, and the coefficient of determination 

of the model was 1.42% higher than that of XGBoost, and 
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the ISSA-BP model was better in predicting the stability 

of chalcocite samples. A comparison of the band gap value 

prediction results of the ISSA-BP model for chalcogenide 

materials in different data sets is shown in Table 4.

Table 4: Comparison of band gap value prediction results of ISSA-BP model for chalcogenide materials in different 

datasets 

Dataset Model MAE RMSE Coefficient of determination (%) 

Perovskite Database 
ISSA-BP 0.0531 0.0627 97.62 

XGBoost 0.0947 0.1025 90.58 

Materials Project 
ISSA-BP 0.0582 0.0695 97.05 

XGBoost 0.1072 0.1254 91.37 

In Table 4, the MAE, RMSE, and coefficient of 

determination of the ISSA-BP model in the Perovskite 

Database dataset were 0.0531, 0.0627, and 97.62%, 

respectively, which were lower than those of XGBoost by 

0.0416, 0.0398, and -7.04%, respectively. The ISSA-BP 

model still had a high prediction performance in the more 

complicated Materials Project dataset, with an RMSE of 

only 0.0695. The comparison of the importance of each 

feature on the model prediction outcomes is shown in 

Figure 11.
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Figure 11: Comparison of the degree of influence of different features on band gap prediction of chalcogenide 

materials

In Figure 11 (a), B-γ denotes the electronegativity of 

the B ion, X-r denotes the radius of the X-site ion, Of 

denotes the octahedral factor, B-r denotes the radius of the 

B ion, X-p denotes the number of outermost orbital 

electrons, A-H denotes the ordinal number of the A-site 

ion, Tf denotes the tolerance factor, A-r denotes the radius 

of the A-site ion, B3-r denotes the radius of the B3-site 

ion, and B3-γ denotes the electronegativity of the B3-site 

ion. The electronegativity of the B atom had the greatest 

impact on the predicted bandgap of the model, with an 

importance of 2.62. The X-site ion radius, octahedral 

factor, B-site ion radius, and outermost orbital electrons 

had importance above 0.5. In Figure 11 (b), those with an 

importance of 2.5 or above included the A-site ion radius 

and tolerance factor, while those with an importance of 1 

or above included the B3 ion radius and B atom 

electronegativity. The predicted bandgap and stability of 

different perovskite samples by the model are shown in 

Table 5.

Table 5: Bandgap prediction results of different perovskite samples 

Sample 

chemical 

formula 

pbe_bandgap 

(eV) 

ml_bandgap 

(eV) 

Error value 

(eV) 

pbe_Ehull 

(eV/atom) 

ml_Ehull 

(eV/atom) 

Error value 

(eV/atom) 

K2NaTiI6 1.378 1.374 0.004 0.086 0.094 -0.008 

Rb2LiIrI6 1.384 1.391 -0.007 0.028 0.034 -0.006 

Rb2NaAmI6 1.351 1.372 -0.021 0.021 0.027 -0.006 

Cs2LiSbBr6 1.358 1.365 -0.007 0.023 0.025 -0.002 

Cs2NaCoI6 1.304 1.351 -0.047 0.042 0.057 -0.015 

Cs2TlAsBr6 1.317 1.308 0.009 0 0.012 -0.012 

In Table 5, pbe_bandgap (eV) denotes the value of 

material bandgap calculated by density flood theory, i.e., 

the actual bandgap value, ml_bandgap (eV) denotes the 

value of material bandgap predicted by the model, 

https://www.baidu.com/s?rsv_dl=re_dqa_generate&sa=re_dqa_generate&wd=Perovskite%20Database&rsv_pq=b15471d700033983&oq=%E9%92%99%E9%92%9B%E7%9F%BF%E6%95%B0%E6%8D%AE%E9%9B%86%E6%9C%89%E5%93%AA%E4%BA%9B&rsv_t=9049MUuxSmIrfyow7YVTMvwY0cldblKmK4PqbMTTapHpJT5lc6DJiXAYy4druPBW91LOAsM&tn=34046034_10_dg&ie=utf-8
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pbe_Ehull (eV/atom) denotes the value of energy of the 

material above the convex packet, i.e., it denotes the 

stability of the material calculated by density flood theory, 

ml _Ehull (eV/atom) denotes the energy value of the 

material energy above the convex packet obtained by 

model prediction. The ISSA-BP model had a predicted 

bandgap error of [-0.047, 0.009] for different A2B1+B3+X6 

mineral samples, which was within the allowable range. 

According to relevant studies, the optimal bandgap for 

solar cell materials was 1.34 eV, so the best bandgap was 

between [1.3, 1.4]. The six selected A2B1+B3+X6 in the 

study all met the requirements. The evaluation index for 

material stability was usually expressed as Energy above 

the convex hull (Ehull), and relevant studies showed that 

Ehull values below 0.05 met the requirements. In the 

experiment, except for K2NaTiI6, all other samples met the 

requirements. A histogram of the model's predictions of 

bandgap and stability for different chalcocite samples is 

shown in Figure 12.
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Figure 12: Histogram of model predictions of band gap and stability for different chalcocite samples

4 Discussion 
This paper presented a prediction model of band gap 

and stability of perovskite materials based on improved 

SSA and improved ANN. The model was applied to the 

actual analysis of perovskite materials, and the validity of 

the prediction model was verified by relevant 

experimental analysis. Isa-bp model had faster 

convergence rate on both single-mode and multi-mode test 

functions, and the final convergence value was smaller 

than other methods, because the chaotic number generator 

and dynamic allocation strategy could effectively improve 

the search speed and search accuracy of the model in the 

early stage. Compared with the improved methods of Hu 

[7] and Zhao [8], this method could significantly improve 

the calculation speed while ensuring the prediction 

accuracy. The RMSE and coefficient of determination of 

band gap prediction of ISA-BP model were better than 

those of other methods, and the predicted value was more 

consistent with the real value, and the prediction accuracy 

was higher than that of ML model of Wu [9]. In cross-

validation, the MAE and RMSE of stability prediction of 

ISA-BP model were lower than that of XGBoost by 

0.0182 and 0.0154 respectively, which could meet the 

requirements related to prediction error. Compared with 

Selvaratnam [10], the proposed method could effectively 

improve the computational efficiency. The cost of 

screening new materials was reduced. ISSA-BP model 

could effectively improve the discovery speed of new 

perovskite materials through its powerful predictive 

analysis ability, and quickly identify material 

combinations with potential high performance. This will 

effectively promote the rapid development of new energy 

power generation technology. 

5 Conclusion 
A prediction model based on ANN A2B1+B3+X6 is 

proposed to address the high trial and error costs and time-

consuming nature of perovskite new materials. The 

experiment showed that the optimal fitness values of 

improved SSA were 145, 128, and 53 lower than SSA, 

GBR, and XGBoost algorithms, respectively, and the 

optimization speed was faster. The running time was 

0.035 s, 0.127 s, 0.022 s, and 1.212 s lower than the other 

three algorithms, respectively. In bandgap prediction, the 

MAE and RMSE distribution of the ISSA-BP model were 

0.0217 and 0.0354 lower than those of the XGBoost 

model, and the coefficient of determination was 5.46% 

higher than that of the XGBoost model. The octahedral 

factor and tolerance factor showed a certain linear 

relationship with the bandgap, and were distributed 

between 0.3-0.6 Of and 0.9-1.2 Tf in the test set, 

respectively. In stability prediction, the MAE and RMSE 

of the model were 0.0182 and 0.0154 lower than 

XGBoost, respectively, and the coefficient of 

determination was 1.42% higher than XGBoost. The B 

atom electronegativity and A-site ion radius had the 

greatest impact on the predicted bandgap and stability of 

the model, with importance values of 2.62 and 2.81, 

respectively. The six selected A2B1+B3+X6 minerals in the 
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study all met the requirements, with bandgap prediction 

errors between -0.047 and 0.009. Among them, the 

stability indicators of five materials met the requirements. 

There are still some problems in this research, for 

example, only the first principle was used in the validation 

to check the difference between the actual bandgap and 

stability of the material and the predicted value, and there 

was still some error between the bandgap value calculated 

by the first principle and the actual bandgap value, and the 

experimental synthesis can be added subsequently to 

enhance the persuasive power of the model. Meanwhile, 

the ISSA-BP model needs to be optimized and trained 

through many iterations, and the computational cost is 

high when dealing with large-scale datasets, and the fusion 

model can be simplified subsequently. 

List of abbreviations 

t : Tolerance factor 
 : Octahedral factor 

VN : Effective coordination number 

x : Average key length 
 : Nearest neighbor order parameter 
 : Mirac function 

tC : Concentration of t atoms in the structure 

e : Local environmental differences 

BPNN: Backpropagation Neural Network 

R : Discoverer and accession distribution ratio 

maxR : Maximum distribution ratio 

minR : Minimum Distribution Ratio 

tbestX : Discoverer searches for the optimal position 

( )0,1cauchy : Standard Cauchy distribution 

w : Nonlinear inertia weighting factors 

SSA: Sparrow Search Algorithm 

ISSA-BP: Improved Sparrow Search Algorithm 

Backpropagation 

SVR: Support Vector Regression 

XGBoost: Extreme Gradient Boosting 

GBR: Gradient boosting regression 
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