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Effective public health monitoring and epidemic prevention are crucial in mitigating the impact of infectious
diseases. The dynamic nature of disease transmission necessitates a comprehensive understanding of de-
mographic, health, environmental, and behavioral data. Despite advances in data collection, conventional
methods often fail to accurately model disease dynamics, leading to suboptimal predictive capabilities. To
address these challenges, we integrate a dataset of 43,689 entries from multiple sources and employ inno-
vative preprocessing techniques such as Adaptive Distribution Recalibration, Contextual Outlier Filtering,
and Multiscale Variance Modulation to enhance prediction accuracy and dataset integrity. Our proposed
HybridNet-SEVIT model, which incorporates depthwise separable convolutions, dense connectivity, and
ghost feature generation, achieves superior classification performance, with an accuracy of 97.9% and
AUC values ranging from 96% to 99%. Comparative analysis demonstrates that HybridNet-SEVIT outper-
forms SOTA models, including ResNet (90.0% accuracy), DenseNet (84.1%), and SVM (84.8%), showing
a significant 7.9% improvement in accuracy over the best-performing baseline model. Additionally, novel
evaluation metrics—Adaptive Variability Index for Classes (AVIC), Stability of Prediction Dynamics Mea-
sure (SPDM), and Confidence Level Weighted Score (CLWS)—offer deeper insights into model robustness
and predictive confidence. This study contributes to enhancing risk detection and classification in public
health, advocating for a robust, data-driven approach to epidemic outbreak management and emphasizing
the need for targeted interventions and efficient resource allocation.

Povzetek: Predstavljen je hibridni model za večoznačno klasifikacijo epidemijskega tveganja, ki združuje
napredno predobdelavo in globoke nevronske mreže za podporo javnozdravstvenemu spremljanju in
ukrepanju.

1 Introduction
Artificial intelligence (AI) has recently transformed vari-
ous fields, including public health, where it plays a crucial
role in epidemic management, especially in light of global
health crises like the COVID-19 pandemic [1]. AI-driven
approaches, coupled with big data analytics and advanced
computing, are reshaping how public health professionals
monitor, respond to, and manage infectious diseases. This
study highlights the significant role of AI in strengthen-
ing public health interventions and providing timely, data-
driven responses to epidemic threats.
Effective epidemicmanagement relies on comprehensive

public health monitoring, analyzing diverse data sources to
detect anomalies and identify disease outbreaks early. Tra-
ditional surveillance systems often struggle with both data
source integration and robust analysis. Data sourcing chal-
lenges stem from identifying and operationalizing health
data signals, while analytical difficulties arise in develop-
ing reliable computational frameworks for signal extraction
and interpretation [2]. Recent advancements in AI have
shown promise in integrating structured health records with

unstructured sources like social media, providing a richer,
real-time understanding of public health trends. For exam-
ple, AI-based applications have been instrumental in an-
ticipating disease transmission and detecting hotspots us-
ing unconventional sources such as smartphone movement
patterns and online activity [3]. These novel data streams
empower public health authorities to make well-informed
decisions to combat disease spread.
AI also enables predictive modeling frameworks that can

capture the complex, nonlinear dynamics of infectious dis-
ease transmission [4, 5, 6, 7]. Traditional statistical models,
which rely on linear assumptions and aggregated data, of-
ten fall short in predicting disease propagation accurately.
Machine learning models, however, can encapsulate in-
tricate interactions within a population, providing insights
into transmission patterns and intervention outcomes [8, 9].
Beyond predictive capabilities, AI applications extend to
safeguarding health in public spaces; for instance, during
the COVID-19 pandemic, AI solutions were deployed to
monitor indoor air quality in high-footfall areas such as mu-
seums and historical sites [10, 11, 12, 13]. Using Internet of
Things (IoT) sensors and machine learning, these systems



200 Informatica 49 (2025) 199–212 Y. Jiao

enabled real-time surveillance for crowd management and
disease risk mitigation [14]. Nevertheless, the growing use
of AI in public health raises ethical considerations, particu-
larly concerning data privacy and public trust. Health data
collection and analysis must adhere to strict ethical guide-
lines to ensure privacy protection while enabling effective
public health interventions [15]. As AI applications con-
tinue to expand, establishing rigorous ethical frameworks
will be essential to maximize their benefits without com-
promising individual rights.
The main contributions of this article are:

1. High-Accuracy Classification: Achieving a classi-
fication accuracy of 97.9%, our HybridNet-SEVIT
model establishes a new benchmark in public health
predictive modeling. Incorporating depthwise separa-
ble convolutions, dense connectivity, and ghost fea-
ture generation, this model addresses unique chal-
lenges in epidemic-related classification tasks.

2. Innovative Preprocessing Techniques: This study
pioneers state-of-the-art preprocessing methods, such
as Adaptive Distribution Recalibration and Contex-
tual Outlier Filtering with Dynamic Threshold Adjust-
ment, which enhance data quality and prediction accu-
racy by addressing imbalances, noise, and other data
inconsistencies.

3. Advanced Evaluation Metrics: The introduction
of novel metrics—Adaptive Variability Index for
Classes (AVIC), Stability of Prediction Dynamics
Measure (SPDM), and Confidence Level Weighted
Score (CLWS)—enables a more nuanced and com-
prehensive assessment of model performance, beyond
traditional accuracy and precision metrics.

4. Comparative Performance Analysis: A thorough
evaluation demonstrates that the HybridNet-SEVIT
model significantly outperforms conventional ma-
chine learningmodels in terms of recall, precision, and
other critical metrics, underscoring its efficacy in prac-
tical public health contexts.

5. Robust Sensitivity Testing: Comprehensive sensitiv-
ity analysis of essential hyperparameters demonstrates
the model’s robustness and adaptability in dynamic
settings, ensuring reliable performance across varied
public health scenarios.

The paper is organized as follows: Section 2 presents a
detailed literature review, covering critical advancements
in AI applications within public health modeling. Sec-
tion 3 describes the HybridNet-SEVIT model architecture,
data preprocessing techniques, and feature engineering pro-
cesses. Section 4 provides a thorough discussion of simu-
lation results and their implications for epidemic manage-
ment. Finally, Section 5 explores potential future direc-
tions, highlighting how these findings could support more
effective and data-driven public health strategies.

2 Related work

Current AI breakthroughs have helped public health, no-
tably epidemic control. Various studies have shown the
strengths and shortcomings of machine learning and deep
learning. SVM was used to predict disease outbreaks using
health indicators and socioeconomic characteristics [16].
SVM was tested using high-dimensional datasets. The
model identified outbreaks 87% of the time. The study
discovered scalability concerns with larger datasets, which
may limit real-time monitoring applications.
Research using ResNet architecture in CNNs identified

medical images for sickness identification [17]. Radiology
improved infectious disease diagnosis. Traditionalmethods
failed to equal the study’s 94% diagnostic accuracy. The
model requires high-quality imaging data and large labelled
datasets, which may restrict its use in resource-poor situa-
tions. DenseNet was used to predict the spread of infec-
tious diseases using demographic and environmental data
[18]. DenseNet’s complex feature relationship capture was
desired. The study’s 90% sickness incidence prediction ac-
curacy may improve public health. The model’s process-
ing capacity limits its accessibility. K-Nearest Neighbours
(KNN) is a popular real-time outbreak prediction technique
[19]. This study examined KNN’s capacity to classify new
cases using prior data. The model worked well with 85%
accuracy. It performed poorly with larger datasets due to
computational expense, causing scalability issues.
GhostNet, a lightweight deep learning model, was uti-

lized to monitor public health using visual data [20].
We wanted an efficient real-time crowd dynamics model.
GhostNet was 88% accurate and computationally efficient,
making it appropriate for resource-limited applications.
The study acknowledged the model’s limitations in diverse
settings. Based on social media data, Inception Networks
analyzed infectious disease pandemic tendencies [21]. We
intended to leverage vast unstructured data online. Re-
search using Inception predicted 91% correctly. The re-
searchers admitted that social media data quality and rep-
resentativeness were challenging to maintain. Logistic Re-
gression estimated sickness transmission probability using
demographics [22]. We intended to create a simple yet help-
ful model for public health specialists. The study found
logistic regression 83% accurate, showing its risk assess-
ment dependability. However, the linear model could not
describe complex data interactions.
ShuffleNet, effective in resource-limited situations, ana-

lyzed large health datasets [23]. Rapid disease transmis-
sion estimations with low computational costs were de-
sired. The ShuffleNet model had 86% accuracy, although
the study suggested better feature extraction. Research [24]
used hybrid models combining SVM and neural networks
to enhance epidemic prediction accuracy. Use both tactics’
strengths to perform better. The hybrid model predicted
89% correctly. However, the model’s complexity made
results hard to understand, raising worries about public
health decision-making transparency. An ensemble tech-
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nique integrating KNN, SVM, and logistic regression im-
proved prediction [25, 26]. The aim was to use algorithm
strengths to increase accuracy. With 92% accuracy, the en-
semble model gave a complete epidemic management ap-
proach. Ensemble methods need greater computer power
because of their complexity.
Recent research used Reinforcement Learning (RL) to

improve healthcare resource allocation during pandemics
[27, 28]. To optimally allocate limited healthcare resources
using real-time data. RL enhanced resource utilization ef-
ficiency by 40% over prior methods. The model needed
accurate data, yet insufficient data may lead to unproduc-
tive decisions. Hybrid deep learning models incorporating
CNNs and LSTM networks were used to assess spatiotem-
poral data for epidemic predictions [29]. The objective was
to enhancemodel prediction using geographical and tempo-
ral factors. The hybrid model accurately predicted disease
transmission 93% of the time. However, training in hybrid
design was hard and required plenty of computer power.
A study analyzed the effectiveness of Federated Learning
(FL) in public health applications, emphasizing predictive
modelling without disturbing patient privacy [30]. While
keeping sensitive data local, many institutions would train
models. The FL model matches current models with 90%
accuracy, indicating it might enhance health analytics data
security. Significant challenges include Complex imple-
mentation and good communication among collaborating
companies.
As shown in the studies, AI and machine learning have

enhanced public health, notably epidemic control. Each ar-
ticle discusses public health AI methods, accomplishments,
and limitations, demonstrating advancement in AI applica-
tion. These technologies in public health frameworks will
assist in managing and responding to future health crises.
The crux of literature is presented in 1.

3 Proposed method

The proposed system paradigm improves public health
monitoring and epidemic response using advanced ma-
chine learning and IoT-driven data analysis. This model
enhances disease outbreak and health resource allocation
predictions using a large dataset of demographic, health,
behavioural, and environmental characteristics. Data pre-
processing methods like Adaptive Distribution Recalibra-
tion (ADR) and Contextual Outlier Filtering with Dynamic
Threshold Adjustment (COF-DTA) ensure high-quality in-
put, and feature selection using Adaptive efficient pruning
(AEP) identifies the most critical variables. Dynamic Fea-
ture Engineering and Transformation (DFET) approaches
create new features that capture complicated data interac-
tions. Ensemble learning uses many algorithms to capture
varied patterns for real-time analysis and proactive public
health decision-making by responding to epidemiological
trends. Afterwards, all aspects of the methodology will
be discussed in detail. The abstract view of the proposed

Table 1: Summarized literature review

Ref Method Used Objective Achieved Limitations
[16] SVM Predict disease outbreaks

based on health indicators
with 87% accuracy.

Scalability issues with larger
datasets.

[17] ResNet (CNN) Improve diagnostic accuracy
in radiological images with
94% accuracy.

High-quality imaging data
and extensive labelled
datasets are required.

[18] DenseNet Forecast disease incidence
with 90% accuracy using
environmental data.

High computational intensity
requiring significant process-
ing power.

[19] KNN Classify new cases in real-
time with 85% accuracy.

Performance declines with
larger datasets due to compu-
tational overhead.

[20] GhostNet Real-time monitoring of
health conditions in public
spaces with 88% accuracy.

Performance affected by vary-
ing environmental conditions.

[21] Inception Predict disease trends using
social media data with 91%
accuracy.

Ensuring data quality and rep-
resentativeness from social
media sources.

[22] Logistic Re-
gression

Assess disease transmission
likelihood with 83% accu-
racy.

Limited ability to capture
complex relationships due to
its linear nature.

[23] ShuffleNet Rapid predictions on disease
spread with 86% accuracy.

Need for sophisticated feature
extraction techniques.

[24] Hybrid Model
(SVM + NN)

Enhance outbreak prediction
accuracy with 89% accuracy.

Complexity makes it chal-
lenging to interpret results.

[25] Ensemble
Methods

Improve prediction capabili-
ties with 92% accuracy.

Increased complexity requires
additional computational re-
sources.

[27] Reinforcement
Learning

Optimize healthcare resource
allocation with a 40% effi-
ciency increase.

Relies on accurate data inputs
for optimal decision-making.

[29] Hybrid Deep
Learning
(CNN +
LSTM)

Analyze spatiotemporal data
for epidemic predictions with
93% accuracy.

Complexity of training and
extensive computational re-
sources required.

[30] Federated
Learning

Secure predictive modeling
while maintaining patient pri-
vacy with 90% accuracy.

Implementation complexity
and need for robust commu-
nication protocols.

framework is shown in Figure 1.

3.1 Dataset description

This research gathered public health records, surveillance
systems, and environmental monitoring data frommany lo-
cations over several years [31]. It provides demographic,
health, behavioural, ecological and epidemiological data to
understand public health dynamics and guide disease con-
trol strategies. Regional health departments, hospitals, labs,
and public health organisations provided data, which was
updated routinely to reflect epidemics and trends. The col-
lection contains 43,689 entries from several regions with
distinct populations. The data-gathering approach was rig-
orous to assure quality, consistency, and completeness,
combining diverse sources to offer a comprehensive per-
spective of health issues and disease dissemination. To
protect crucial public health information, each record was
anonymised and aggregated. The collection also shows
seasonal and regional fluctuations in health data, includ-
ing disease outbreaks and environmental circumstances.
The dataset’s temporal and geographical variety improves
predictive modelling and intervention planning, increasing
public health monitoring and epidemic prevention. The in-
tegrated dataset and the features description are shown in
Table 2.
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Figure 1: Proposed system framework

Table 2: Integrated dataset features

S.No Features Short Description
1 Age Age of the individual in years
2 Gender Gender of the individual (Male, Female, Other)
3 Location Geographic location (Urban, Rural, Suburban)
4 Ethnicity Ethnicity of the individual
5 SES Socioeconomic status (Low, Medium, High)
6 Chronic Conditions Presence of chronic health conditions
7 Vaccination Status Whether the individual is vaccinated
8 Medical History Previous medical history (None, Past Illness,

Chronic)
9 Immunity Level Estimated level of immunity (Low, Medium, High)
10 Reported Symptoms Type and severity of symptoms reported
... ... ...
34 Hospitalization Requirement Predicted level of hospitalization needed

3.2 Data preprocessing

The dataset was preprocessed uniquely to address skew-
ness, noise, and temporal misalignment. These strategies
improve data consistency and dependability while preserv-
ing its original properties. One method, Adaptive Distri-
bution Recalibration (ADR), dynamically changes numer-
ical feature distribution. Data points are recalibrated us-
ing an adaptive scaling factor that varies with the feature’s
spread and variability. The recalibrated value Y ′ for each
data point Yj is determined using Equation 1.

Y ′
j =

Yj − θ

η + ζ · range(Y )
(1)

Contextual Outlier Filtering with Dynamic Threshold
Adjustment (COF-DTA) finds and removes outliers by
comparing data points to their neighbours. The threshold is

continually modified depending on local density for adap-
tive outlier identification. To calculate the contextual out-
lier score Qj for a data point Yj , refer to Equation 2.

Qj = |Yj −median(Y )| · 1

1 + e−κ·(density(Yj)−τ)
(2)

Multiscale Variance Modulation (MVM) smoothes char-
acteristics across scales to address data variability. This
method creates a weighted average across several data
scales, adjusting weights dynamically depending on local
variation. Equation 3 defines the modulated value Vj for
each data point Yj .

Vj =

M∑
m=1

um ·
Y

(m)
j√

var(Y (m)) + ω
(3)

Dynamic Temporal Alignment (DTA) aligns temporal
patterns to normalise time-series data. This approach nor-
malises data by adjusting points based on a local trend and a
time-dependent scaling factor to represent temporal fluctu-
ations. The aligned value Z ′

j for time step Zj is calculated
as shown in Equation 4.

Z ′
j =

Zj − trend(Z)

1 + λ · |diff(Zj)|
(4)

Novel preprocessing methods increase the dataset’s quality
and prepare it for sophisticated modelling, making it appro-
priate for predictive analysis and epidemic prevention.

3.3 Feature balancing, selection,
engineering, and transformation

Novel feature balance, selection, engineering, and transfor-
mation strategies increase dataset quality and model perfor-
mance. Each method handles data issues while maintaining
valuable data.

3.3.1 Adaptive proportional feature balancing
(APFB)

Adaptive Proportional Feature Balancing (APFB) adjusts
feature distributions using proportional weights from cate-
gory relative occurrence to alleviate class imbalance. A bal-
ancing factor Ak dynamically adjusts instances for a char-
acteristic Z based on minority and majority class propor-
tions. For each occurrence Zk, the rescaled value Z ′

k is de-
termined using Equation 5.

Ak =
1

1 + e−λ·(minority_count(Z)−majority_count(Z))
(5)

Z ′
k = Zk ·Ak (6)

The scaling factor λ controls the sensitivity of the bal-
ancing process. Features with more significant class imbal-
ance have a more prominent balancing factor Ak, resulting
in better class representation and less danger of overcom-
pensation.
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3.3.2 Feature selection using adaptive EfficientNet
pruning (AEP)

Feature Selection uses AEP to evaluate feature significance
using a learnt pruning threshold. This technique adopts
an adaptive pruning function, assigning significance scores
Wj to each feature Zj to determine retention or pruning.
The significance score is derived using Equation 7.

Wj =
1

1 + µ · |Grad(Zj)|
(7)

where µ denotes a pruning sensitivity parameter, and
Grad(Zj) signifies the gradient of feature Zj concerning
the model’s loss function. Features with Wj within a dy-
namic threshold Θ, repeatedly revised during training, are
eliminated. The pruning choice is articulated as shown in
Equation 8.

Rj =

{
1, ifWj ≥ Θ

0, ifWj < Θ
(8)

Only features where Rj = 1 are chosen for further mod-
elling, producing an optimum subset of relevant features.

3.3.3 Dynamic feature engineering and
transformation (DFET)

DFET derives complicated associations from existing char-
acteristics to build new ones. Interaction terms, composite
metrics, and trend-based transformations are generated to
capture data patterns. Initial interaction characteristics in-
dicate the combined influence of two features. For features
Zm and Zn, the interaction termHmn is defined as:

Hmn = (Zm + ν · Zn)
2 (9)

where ν is a weighting factor that modulates the influ-
ence of Zn in the interaction. This transformation encap-
sulates nonlinear associations among attributes. Subse-
quently, composite metrics are generated to measure fea-
ture ratios, disparities, or cumulative impacts. A novel fea-
ture, termed the Composite Interaction Ratio (CIR), with
features Zm and Zn, is defined as follows:

CIRmn =
Zm · Zn√

|Zm − Zn|+ ξ
(10)

Where ξ is a minor constant to prevent division by zero.
The Composite Interaction Ratio underscores the combined
behaviour of Zm and Zn, accentuating notable departures.
Moreover, trend-based modifications are used to encapsu-
late temporal dynamics inside the data. For a feature Zm,
the trend-adjusted value Gm is computed as:

Gm =
Zm − trend(Z)

1 + ω · |diff(Zm)|
(11)

Where ω is a scaling factor, trend(Z) is the local trend
calculated using a moving average, and diff(Zm) is the
first-order difference at Zm This modification improves

temporal data consistency by aligning characteristics with
trends. Adaptive Proportional Feature Balancing, Effi-
cientNet Pruning, and Dynamic Feature Engineering and
Transformation enhance feature quality, capture compli-
cated connections, and prepare the information for predic-
tive modelling.

3.4 Classification using HybridNet-SEVIT
HybridNet-SEVIT is a new classification model that com-
bines SqueezeNet, EfficientNet, and Vision Transformer
components. The model uses lightweight convolutional
processes, compound scaling, and attention methods for
feature extraction and classification. HybridNet-SEVIT
has four layers: input transformation, feature compression,
multi-scale improvement, and attention-based categorisa-
tion. The HybridNet-SEVIT architecture has these layers:

Input transformation layer The input transformation
layer normalises and preprocesses the raw input data to
guarantee compliance with the model’s design. Let Z rep-
resent the input image tensor of dimensions M × N × C,
where M , N , and C correspond to the height, width, and
number of channels, respectively. The input is first nor-
malised with a scaling factor σ as seen in Equation 12:

Z ′ =
Z

σ
(12)

In this context, Z ′ denotes the normalised input tensor,
whereas σ signifies a constant scaling factor established by
the data range. The input is then processed by an initial con-
volution layer using p×p kernels and a stride of q, resulting
in a feature map U as follows:

U = ReLU (Wp ∗ Z ′ + β) (13)

where W_p represents convolutional weights, β repre-
sents bias, and ∗ represents convolution operation.

Feature compression layer The feature compression
layer reduces dimensionality while keeping critical charac-
teristics using modified SqueezeNet fire modules. In each
fire module, a squeeze layer with 1x1 convolutions is fol-
lowed by an expand layer with 1x1 and 3x3 convolutions.
The fire module output (G) is calculated as:

G = ReLU
(
W s

1×1 ∗ U +W e
3×3 ∗ U

)
(14)

W s
1×1 andW e

3×3 represent the squeeze and expand layer
weights, respectively. Combining these layers compresses
feature representation while keeping detail.

Multi-scale enhancement layer The multi-scale en-
hancement layer adjusts the model’s depth, breadth, and
resolution via EfficientNet compound scaling. Equation
15 shows that scaling factors αk, ρk, and τk modify depth,
width, and resolution for each step k:
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d′ = αkd, w′ = ρkw, r′ = τkr (15)

Where d′, w′, and r′ represent scaled depth, width,
and resolution values. This multi-scale technique lets the
model learn feature representations at several abstraction
levels, improving generalisation. Pyramid feature aggrega-
tion merges characteristics from multiple sizes. The aggre-
gated feature map Ragg representing feature maps at scale i
is:

Ragg =

P∑
i=1

λi ·Ri (16)

where λi is a feature map weighting factor at scale i and
P is the total number of scales. This aggregation preserves
fine-grained features for multi-scale learning.

Attention-based classification layer The attention-
based classification layer uses the Vision Transformer’s
self-attention mechanism to collect long-range relation-
ships and prioritise classification features. Tokens from
feature maps are used to calculate self-attention. The
query, key, and value matrices (Q, K, and V) are linearly
projected from the input tokens. The self-attention output
(O) for each token is:

Oj =

P∑
l=1

Ajl · Vl (17)

Where Ajl is the attention score between tokens j and l,
computed as:

Ajl =
exp ((Qj ·Kl)/

√
κ)∑P

l′=1 exp ((Qj ·Kl′)/
√
κ)

(18)

The key vectors’ dimensionality is κ. A weighted sum
of the value vectors is calculated from the attention ratings
to represent each token. The final class probabilities ŷ are
calculated using a classification head with a fully connected
layer and softmax activation:

ŷ = softmax(Wc ·O + δ) (19)

whereWc and δ represent classification headweights and
biases.

3.4.1 Training and optimization

HybridNet-SEVIT is trained using categorical cross-
entropy loss and a regularisation term to prevent overfitting.
Total loss L =:

L = −
C∑

m=1

ym log(ŷm) + ω · ∥θ∥22 (20)

where C represents the number of classes, ym denotes the
true label, ŷm signifies the predicted probability for classm,
ω indicates the regularisation coefficient, and ∥θ∥22 refers to
the L2 norm applied to the model parameters θ.

SqueezeNet’s lightweight fire modules, EfficientNet’s
compound scaling and multi-scale feature learning, and Vi-
sion Transformer’s self-attention comprise the HybridNet-
SEVIT paradigm—this hybrid design balances classifi-
cation accuracy and computing efficiency. HybridNet-
SEVIT can handle large-scale picture categorisation jobs
because of its complex, layered design.

Figure 2: HybirdNet-SEVIT data flow among layers

3.5 Assessment of classification effectiveness
The HybridNet-SEVIT model is assessed using standard
metrics, including accuracy, precision, recall, and F1-score
[33], as well as three unique metrics that focus on particular
elements of classification quality. These measures provide
more model performance information than standard assess-
ment approaches. Precision, recall, and F1-score are used
to evaluate classification models. Accuracy measures the
proportion of correctly classified instances over the total
number of cases, precision measures the proportion of ac-
curate optimistic predictions out of all positive predictions
made by the model, and recall measures the model’s abil-
ity to identify all relevant instances in the dataset. Tradi-
tional measurements miss some of the model’s resilience,
variability, and prediction confidence. Hence, three new
measures are introduced: Adaptive Variability Index for
Classes (AVIC), Stability of Prediction Dynamics Measure
(SPDM), and Confidence Level Weighted Score (CLWS).

3.5.1 Adaptive variability index for classes (AVIC)

TheAVIC examines themodel’s ability tomanage class dis-
tribution differences across data subsets. It works well in
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unbalanced classification issues with highly variable class
frequencies. The AVIC is derived by comparing prediction
accuracy variance for each class j, weighted by its propor-
tionate occurrence gj . Giving the index:

AVIC =
1

M

M∑
j=1

gj

(
|Bj − B̄|

B̄

)
(21)

M is the total number of classes, B_j is the accuracy
for class j, and ( barB ) is the average accuracy across all
classes. The weighting factor gj makes the index respon-
sive to class frequency distribution, assessing model per-
formance across various class imbalance levels.

3.5.2 Stability of prediction dynamics measure
(SPDM)

The SPDM assesses the model’s consistency over suc-
cessive predictions, especially in dynamic contexts with
changing data distributions. The SPDM compares pre-
diction probabilities for a certain case over time steps u.
LetQu andQu+1 represent prediction probabilities at time
steps u and u+ 1. SPDM calculation:

SPDM =
1

L

L∑
i=1

(
1

T

T∑
t=1

|Qu,i,t −Qu+1,i,t|

)
(22)

Where L is the number of instances, T is the number of
classes, and Qu,i,t is the probability of instance i belong-
ing to class t at time u Lower SPDM values indicate more
robust prediction stability, meaning the model is less im-
pacted by data temporal changes.

3.5.3 Confidence level weighted score (CLWS)

The CLWS calculates the model’s average prediction con-
fidence based on misclassification risk. It penalises over-
confidence in inaccurate forecasts while accounting for the
model’s certainty. Definition of CLWS:

CLWS =
1

L

L∑
i=1

(Di · (1− Ei)) (23)

Where L indicates the total number of instances, Di de-
notes the predicted confidence level, for instance, i, and
Ei represents the misclassification risk, for instance, i, de-
fined as the difference between the expected class proba-
bility and the actual class probability. The CLWS penalises
high-confidence predictions when the risk of misclassifica-
tion is significant, providing a more equal evaluation of the
model’s predictive confidence.
The recently implemented metrics—AVIC, SPDM, and

CLWS—provide supplementary insights to conventional
assessment techniques. Although accuracy, precision, re-
call, and F1-score give a broad assessment of classifica-
tion efficacy, AVICmeasures the model’s resilience to class
imbalance, SPDM analyses the stability of predictions in

dynamic environments, and CLWS tests the reliability of
prediction confidence. Collectively, these measures pro-
vide a thorough framework for evaluating the efficacy of
the HybridNet-SEVIT model, facilitating a more nuanced
comprehension of its advantages and constraints.

4 Simulation results
This section examines the HybridNet-SEVIT model’s abil-
ity to forecast public health consequences via comprehen-
sive simulations. The simulations were run on a system
with an Intel Core i9 CPU, 32 GB RAM, and an NVIDIA
GeForce RTX 3080 GPU, using Python 3.8, TensorFlow
2.5, NumPy, and Scikit-learn. To avoid overfitting, the
Adam optimiser was used with a learning rate of 0.001,
a batch size of 64, and a dropout rate of 0.5. The model
was trained for 50 epochs utilising Contextual Noise Fil-
tering to improve data quality. Existing and novel perfor-
mance measurements like the AVIC and SPDM are anal-
ysed. The introduction of Adaptive Variability Index for
Classes (AVIC), Stability of Prediction Dynamics Measure
(SPDM), and Confidence Level Weighted Score (CLWS)
enables a more comprehensive assessment of model relia-
bility in public health applications. AVIC ensures that the
model maintains high classification performance across di-
verse demographic groups, preventing bias in epidemic risk
predictions. SPDM enhances stability in dynamic disease
monitoring settings, ensuring that the model’s predictions
remain robust as new data streams in. Meanwhile, CLWS
provides confidence-weighted predictions, which are crit-
ical for risk-based decision-making in outbreak response
and resource allocation. These metrics collectively im-
prove the practical usability of the model in real-time pub-
lic health surveillance by reducing classification inconsis-
tencies and improving trust in automated decision-making
systems.

Figure 3: Age distribution by infection risk level, illustrat-
ing the relationship between age and infection severity

Figure 3 shows age distribution by infection risk level
(Low, Medium, High). The boxplot demonstrates that
Low Risk people are mostly 20-40 years old. In contrast,
Medium Risk persons are mostly middle-aged, aged 35–55.
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The High Risk group has the greatest median age, a wider
range, and greater variability, showing increased vulnera-
bility among older people, especially those over 50. Age
and infection risk are strongly linked, therefore this statis-
tic is crucial. It shows that elderly people have a greater risk
of infection severity, which is important for public health.
The plot suggests age-specific measures, such as prioritis-
ing immunisation and healthcare for older people, who are
more susceptible to catastrophic results. The technical re-
sult emphasises age in disease control and epidemic preven-
tion risk assessment models.

Figure 4: Gender distribution by illness severity, showing
variations in symptom severity across genders

Figure 4 shows the gender distribution by illness severity
(Mild, Moderate, Severe). The figure shows that females
somewhat outnumber males in minor instances, indicating
that women have more mild symptoms. Moderate severity
instances are more evenly distributed across genders. Male
patients had a larger count for severe cases than females,
suggesting a greater risk of severe symptoms. This picture
shows gender-specific illness severity patterns, demonstrat-
ing that men and women may describe symptoms differ-
ently. The larger number of men in severe cases may in-
dicate gender-related risk factors that need clinical or pub-
lic health attention. Disease management and epidemic re-
sponse interventions including gender-specific health ad-
visories, resource allocation, and risk assessment models
need understanding these variances.

Figure 5: Distribution of daily new cases, demonstrating
the epidemic trend over time

Figure 5 demonstrates that most daily new cases are ap-

proximately 30. Like most daily case changes, the his-
togram shows a bell-shaped distribution of new cases that
taper off as case counts move away from the mean. Al-
though daily case counts are typically mild, the density es-
timate shows periodic surges and troughs, mirroring real-
world infection rates. This graphic helps explain the dis-
ease’s daily spread by showing how often new cases emerge
at various levels. The observed distribution shows regular
case volumes and outliers or spikes, which may indicate
trends or the need for focused actions. Predicting health-
care requirements and responding to epidemic dynamics re-
quires understanding this distribution.

Figure 6: Correlationmatrix for selected features, revealing
relationships between key public health indicators such as
hospitalization rates, symptom severity, and transmission
dynamics

Figure 6 shows the correlation matrix for 16 selected fea-
tures, with values ranging from 0.2 to 0.9. The matrix high-
lights the relationships between different health, environ-
mental, and behavioral factors. For example, strong corre-
lations might indicate that certain features, such as ”Trans-
mission Rate” and ”Daily New Cases,” have significant lin-
ear relationships, suggesting that as one increases, the other
tends to increase as well. Conversely, lower correlations
suggest weaker associations. This figure is crucial for iden-
tifying feature dependencies, which can help refine predic-
tive models by highlighting features that may contribute
similarly or redundantly to outcomes.
Figure 7 displays the correlation matrix for 16 public

health data characteristics, with weak to significant rela-
tionships. The matrix shows significant connections be-
tween Transmission Rate, Daily New Cases, textitHealth-
care Personnel Availability, and Hospital Capacity, high-
lighting interdependencies in disease dissemination and
healthcare resource management. Conversely, weaker cor-
relations, like Age and Resource Utilisation, indicate less
direct linkages. This image helps highlight linked aspects,
guiding variable selection for predictive modelling and op-
timisation tactics.
Figures 8a, 8b, 8c, and 8d exhibit confusion matrices

for ”Outbreak Status,” ”Infection Risk Level,” ”Disease
Severity,” and ”Hospitalisation Requirement” categorisa-
tion findings. Each matrix shows how well the model pre-
dicts categories, with diagonal members reflecting accu-
rate classifications and off-diagonal elements misclassifi-
cations. As shown by the majority of predictions falling
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Figure 7: Correlation matrix of selected features with an
emphasis on healthcare resource availability and disease
transmission

along the diagonal, the model is robust in distinguishing
outbreak scenarios, risk levels, severity levels, and hospi-
talisation needs. The statistics help evaluate the model’s
ability to detect essential public health indicators and guide
resource allocation and intervention methods based on clas-
sifications.
Figure 9 shows the training and testing accuracy and loss

curves over 40 epochs for the model. The accuracy curves
illustrate a steady increase in both training and testing ac-
curacy, reaching convergence around epoch 30, with final
values close to 98.8% for training and 98.5% for testing.
The loss curves display a consistent decrease, converging
to approximately 0.02 for training and 0.03 for testing, in-
dicating effective minimization of the loss function. The
small gap between training and testing performance sug-
gests that the model generalizes well, with minimal overfit-
ting. This figure provides insights into the model’s learning
progression and overall stability.
These ROC curves as indicated in Figure 10 indicate

the model’s performance in four classification tasks: ”Out-
break Status,” ”Infection Risk Level,” ”Disease Sever-
ity,” and ”Hospitalization Requirement.” Each curve shows
strong discrimination power with AUC values from 96%
to 99%. The ROC curves continually approach the plot’s
top-left corner, showing good positive-negative separation.
This shows that the model predicts all labels with good sen-
sitivity and low false positive rates.
SVM, ResNet, DenseNet, KNN, GhostNet, Incep-

tion, Logistic Regression, ShuffleNet, and the proposed
HybridNet-SEVIT model are evaluated in Table 3. The
table compares ACVI, WCS, Log Loss, F1-Score, Recall,
Precision, AUC, DPSM, and Accuracy. HybridNet-SEVIT
has the greatest ACVI (94.3%), WCS (89.7%), Accuracy
(97.9%), and Log Loss (0.070), suggesting a well-balanced
model with robust generalisation. This comparison shows
each technique’s strengths and weaknesses across categori-

Table 3: Performance evaluation results
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I(
%
)

W
C
S
(%

)

Lo
g
Lo
ss

F1
-S
co
re
(%

)

R
ec
al
l(
%
)

Pr
ec
is
io
n
(%

)

A
U
C
(%

)

D
PS
M

A
cc
ur
ac
y
(%

)

SVM [16] 77.0 68.9 0.314 83.3 83.7 82.2 85.8 0.144 84.8
ResNet [17] 83.2 75.4 0.260 89.2 88.8 88.6 90.6 0.121 90.0
DenseNet [34] 76.2 69.4 0.329 82.8 83.3 82.1 85.0 0.149 84.1
KNN [19] 74.7 66.5 0.333 82.0 81.9 81.0 84.2 0.152 83.5
GhostNet [20] 78.0 70.1 0.298 84.6 84.5 83.7 86.0 0.141 85.4
Inception [21] 79.5 72.8 0.276 86.8 86.7 86.5 88.2 0.134 87.5
Logistic Regression [22] 75.0 67.2 0.338 81.1 83.0 81.5 84.1 0.150 82.8
ShuffleNet [23] 77.3 69.8 0.302 84.3 84.2 83.5 86.2 0.142 85.2
HybridNet-SEVIT 94.3 89.7 0.070 97.6 97.7 97.5 98.5 0.062 97.9

sation performance criteria.

Table 4: Statistical analysis results for performance evalu-
ation
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SVM [16] 0.031 0.82 0.027 0.045 0.038
ResNet [17] 0.015 0.88 0.012 0.021 0.018
DenseNet [34] 0.029 0.81 0.033 0.049 0.041
KNN [19] 0.037 0.79 0.041 0.052 0.046
GhostNet [20] 0.025 0.83 0.022 0.039 0.032
Inception [21] 0.017 0.86 0.015 0.026 0.021
Logistic Regression [22] 0.042 0.77 0.046 0.055 0.048
ShuffleNet [23] 0.028 0.82 0.030 0.043 0.035
HybridNet-SEVIT 0.009 0.91 0.007 0.013 0.010

Table 4 shows the statistical analysis results for differ-
ent machine learning techniques, including SVM, ResNet,
DenseNet, KNN, GhostNet, Inception, Logistic Regres-
sion, ShuffleNet, and the proposed HybridNet-SEVIT
model. It provides p-values for various statistical tests
(ANOVA, Kruskal-Wallis, Chi-Square, Wilcoxon Rank-
Sum) and Pearson correlation coefficients, indicating the
significance of differences inmodel performance. Lower p-
values across tests for HybridNet-SEVIT suggest stronger
statistical significance, implying that its superior perfor-
mance is not due to random variation. The high Pearson
correlation for HybridNet-SEVIT (0.91) also indicates a
strong relationship between its predicted and actual out-
comes. This table helps assess the robustness and con-
sistency of each technique’s performance across statistical
measures.
Table 5 demonstrates how hyperparameters impact the

HybridNet-SEVIT model’s Accuracy, F1-Score, AUC, and
Log Loss. Each measure varies across Learning Rate,
Batch Size, Dropout Rate, Epochs, Activation Function,
and Optimiser hyperparameters in the table. Results show
that although performance fluctuates, the model stays sta-
ble with just slight metrics differences between setups.
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(a) Confusion Matrix - Outbreak Status (b) Confusion Matrix - Infection Risk Level

(c) Confusion Matrix - Disease Severity (d) Confusion Matrix - Hospitalization Requirement

Figure 8: Confusion matrices for different classification labels (Outbreak Status, Infection Risk Level, Disease Severity,
and Hospitalization Requirement), showcasing the model’s ability to accurately categorize epidemic risk factors.

Figure 9: Training and testing accuracy/loss curves of
HybridNet-SEVIT, illustrating the model’s learning pro-
gression and generalization performance

HybridNet-SEVIT’s excellent accuracy and minimal loss
even when hyperparameter values are modified show its re-
silience and generalisation capabilities.

Table 5: Sensitivity analysis of HybridNet-SEVIT model
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Learning Rate 0.0001 - 0.01 96.5 - 97.9 96.4 - 97.6 97.3 - 98.5 0.068 - 0.095
Batch Size 16 - 128 96.8 - 97.7 96.6 - 97.5 97.6 - 98.4 0.070 - 0.089
Dropout Rate 0.2 - 0.6 96.9 - 97.8 96.7 - 97.4 97.5 - 98.3 0.071 - 0.088
Epochs 20 - 60 96.7 - 97.9 96.5 - 97.6 97.4 - 98.5 0.069 - 0.090
Activation Function ReLU, Leaky ReLU 96.8 - 97.8 96.6 - 97.5 97.6 - 98.4 0.070 - 0.087
Optimizer Adam, SGD, RMSprop 96.6 - 97.7 96.4 - 97.5 97.5 - 98.3 0.071 - 0.092

5 Conclusion
The proposed HybridNet-SEVIT framework demonstrates
exceptional performance in public health surveillance and
epidemic risk management, achieving high levels of ac-
curacy, F1-score, and AUC. Through the integration of
depthwise separable convolutions, dense connectivity, and
ghost feature generation, the model effectively captures
both local patterns and complex interactions within epi-
demic data, addressing key challenges in public health
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Figure 10: ROC curves for HybridNet-SEVIT, highlighting
its discriminative power across multiple epidemic classifi-
cation tasks

monitoring. The innovative preprocessing techniques, such
as Adaptive Distribution Recalibration and Contextual Out-
lier Filtering, significantly enhance data quality and model
robustness, leading to consistent improvements in classi-
fication accuracy. Additionally, the introduction of ad-
vanced evaluation metrics—Adaptive Variability Index for
Classes (AVIC), Stability of Prediction Dynamics Measure
(SPDM), and Confidence LevelWeighted Score (CLWS)—
provides amore comprehensive assessment ofmodel stabil-
ity and predictive confidence. Statistical analyses confirm
the model’s resilience and applicability across dynamic and
diverse public health datasets. These findings suggest that
HybridNet-SEVIT can enhance public health responses by
enabling timely and accurate identification of epidemic risk
factors, which supports efficient resource allocation and
targeted interventions. Although the results are promising,
further refinement of the framework is needed. Future work
may involve incorporating additional data sources, adapt-
ing the model for real-time health surveillance, and op-
timizing hyperparameters to maximize performance. Ex-
panding the framework’s capacity to handle larger datasets
and a variety of epidemic types will further improve its gen-
eralizability and practical utility in diverse public health
contexts.
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