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With urbanization accelerating electricity demand, advanced energy management is vital for building sus-
tainable cities. This paper presents a novel framework using real-world data from commercial, residential,
and industrial buildings over six years to optimize electricity consumption. The proposed RegClassXNet
model, integrating EfficientNet, Xception, and Swin-Transformer, performs multitask predictions for both
classification and regression objectives. Proportional Dynamic Cluster Adjustment (PDCA) is introduced
to address data imbalance, and a hybrid attribute refinement process synthesizes relevant features to en-
hance predictive accuracy. Our model achieves 95.0% R-squared, 2.1 MAE, 1.8 RMSE, and 3.2 MSE, sig-
nificantly outperforming existing methods such as CNN, LSTM, and RF. New stability metrics, including
Label Variability Consistency Index (LVCI), Temporal Prediction Stability Measure (TPSM), and Output
Correlation Coefficient (OCC), ensure robust and consistent predictions. The framework was evaluated
on a dataset comprising 500,000 energy consumption records, utilizing a distributed training approach
on a high-performance GPU cluster. Simulations illustrate the framework’s capability to optimize energy
usage across building types, adjust for environmental impacts, and support effective energy-saving strate-
gies. This work offers a transformative approach to sustainable energy management, paving the way for
adaptive, data-driven smart grid systems

Povzetek: Predstavljen je večopravilen okvir RegClassXNet za optimizacijo porabe energije v pametnih
omrežjih, ki s kombinacijo EfficientNet, Xception in Swin-Transformerja dosega visoko točnost in stabil-
nost napovedi.

1 Introduction

The rise in global energy demand, driven by urbanization
and population expansion, poses challenges to conventional
power grid systems. Smart Grids (SG) enhance energy
management by providing more reliability, efficiency, and
sustainability via integrating IoT, AI, and big data analytics
for real-time monitoring, demand response, and load fore-
casting. The intricacy of energy demand and urban density
hampers energy management. Advanced energy manage-
ment systems optimize power consumption and operational
efficiency, while predictive analytics improve energy uti-
lization in smart buildings for lighting, HVAC, and other re-
quirements [2]. The fluctuation of renewable sources such
as solar and wind exacerbates energy management chal-
lenges, necessitating effective load forecasting and storage
solutions [3, 4].
Intelligent energy management employs IoT devices, in-

cluding smart meters and sensors, to monitor and opti-
mize energy use. These devices enhance load forecasting
and demand-side management by gathering comprehensive
consumption data [5]. Artificial intelligence methodolo-
gies, including deep learning (DL) and machine learning

(ML), are used to predict energy usage, discern trends, and
recommend energy conservationmeasures [6, 7]. However,
managing extensive datasets and mitigating overfitting per-
sist in significant problems, underscoring the need for ef-
ficient feature selection and model optimization [8]. In
smart cities, energy management encompasses residential,
commercial, and industrial sectors, using energy-efficient
technology and renewable resources [9, 10, 11]. Smart
grids and microgrids improve resilience and enable local
energy trade. Load forecasting techniques, such as LSTM
networks, enhance prediction accuracy across various time
frames, adapting to swiftly evolving consumption patterns
[12].
AI-driven energy management may optimize the supply-

demand equilibrium via demand response tactics, hence
decreasing peak consumption [13, 14, 15]. Notwithstand-
ing progress, scalable and resilient solutions are crucial for
managing the fluctuation of renewable energy sources and
safeguarding data security and privacy in IoT systems [16].
Hybrid AI models, real-time algorithm optimization, and
edge computing are being investigated to address these dif-
ficulties. This article presents the following contributions.

1. Innovative Multilabel Framework for Energy Man-
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agement: Created a novel methodology that integrates
power consumption predictions, energy savings poten-
tial assessment, and other classification variables into
a multilabel classification and regression framework.
This comprehensive methodology elucidates the inter-
connections among many energy measures, yielding
enhanced insights for optimization and sustainability.

2. Innovative RegClassXNet Model for Multilabel Pre-
diction: Presented the RegClassXNet architecture,
which amalgamates EfficientNet, Xception, and Swin-
Transformer layers to manage both categorical and
continuous outputs. The model exhibits exceptional
efficacy in forecasting various energy-related results,
enhancing energy management tactics across several
building types and contexts.

3. Advanced Techniques for Data Balancing and Fea-
ture Engineering: Introduced the Proportional Dy-
namic Cluster Adjustment (PDCA) to tackle data im-
balance and a Hybrid Attribute Refinement and Syn-
thesis method for creating relevant features. These
strategies augment data quality and bolster themodel’s
predictive capability.

4. Implementation of Novel Assessment Metrics: In-
troduced three innovative metrics—Label Variability
Consistency Index (LVCI), Temporal Prediction Sta-
bility Measure (TPSM), and Output Correlation Co-
efficient (OCC)—to enhance the evaluation of multi-
label classification and regression tasks, focussing on
performance consistency, prediction stability, and out-
put interrelations.

5. This study integrates energy consumption forecast-
ing with carbon emission reduction analysis, provid-
ing practical information for sustainability initiatives.
It delineates essential characteristics and timeframes
for focused actions, facilitating demand response tech-
niques and activities to reduce environmental impact.

The remainder of the work follows: Section 2 presents
the literature overview and a summary of pertinent energy
management and predictive modeling research. Section 3
describes the suggested approach, the assessment criteria,
the RegClassXNet model, and data preparation. Section
4 addresses the simulation results and analysis, contrast-
ing the proposed strategy’s performance with current tech-
niques. The last part emphasizes results and possible paths
for further investigations.

2 Related work
Research on optimizing electricity consumption for power
use is crucial for intelligent energy management systems.
Many research studies have used machine learning (ML)
and deep learning (DL) to improve accuracy and efficiency
in predicting.

Author in [17, 18] presents a hybrid short-term load
forecasting technique combining FFNN, RNN, LSTM, and
SVR. The hybrid model outperformed separate models in
trials to increase electrical system prediction accuracy. The
hybrid system’s complexity may raise computing costs and
training time, rendering it unsuitable for real-time applica-
tions. [19] thoroughly reviewsmachine learning techniques
for load demand prediction. The goal was to find the best
load forecasting algorithms using LSTM, SVR, and Ran-
dom Forest. The research showed that machine learning
can forecast load demand, although data quality and pre-
processing affect accuracy. This vulnerability emphasizes
the need for proper data management in load forecasting re-
search. Another notable contribution is [20], which devel-
ops a DLSTM model for short-term load forecasting [21].
Weather-related characteristics are included in the model to
enhance Panama’s energy demand forecast [22]. The pa-
per indicates that the DLSTM improves accuracy but re-
quires significant training data, which may not be avail-
able in all locations. The work in [23] explores medium-
term regional electrical load forecasting utilizing RF and
LSTM ensemble learning approaches. A 12-year dataset is
used to assess model performance in this research. With a
MAPE of 6.46%, the LSTM model outperformed conven-
tional approaches. However, the model’s heavy use of his-
torical data raises questions about its applicability in data-
poor places.
Researchers in [24] introduced a novel multi-sequence

LSTM-RNN model optimized using metaheuristic algo-
rithms like GA and PSO. This research selected suitable hy-
perparameters to improve the LSTMmodel for electric load
forecasting. A multi-sequence LSTM model from meta-
heuristics outperformed benchmark models and other ma-
chine learning methods like SVR and ANN [25]. However,
hyperparameter adjustment remains difficult, which may
restrict the model’s real-world applicability. Research by
[26] highlights the effectiveness of CNN and LSTM deep
learning approaches for short-term load forecasting [27] .
Automation of load data breakdown was sought to increase
forecasting accuracy. While deep learning algorithms may
capture complicated energy use patterns, massive datasets
for training are a significant obstacle.
Using their strengths, the researcher in [28, 29] devel-

oped a hybrid model integrating LSTM and CNN for short-
term load forecasting. The hybrid model outperformed
standard approaches in the research, but its complexity may
raise training durations and computer resource demands,
making implementation difficult. The paper in [30, 31] ex-
plores AI-powered energy optimization in intelligent cities,
focussing on a framework integrating machine learning and
deep learning models for real-time load forecasting. The
recommended approaches increased energy efficiency sig-
nificantly [32]. Integrating models and data sources com-
plicates systemmanagement and operational efficiency [?].
Another research used machine learning for intelligent grid
short-term demand predictions. The goal was to assess the
accuracy of these approaches in predicting electricity con-
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sumption, considering environmental factors like Temper-
ature and humidity [34]. Machine learning enhanced pre-
dicting accuracy, but quality input data and feature selec-
tion remained challenges. The study in [35] created a hy-
brid load forecasting model combining LSTM and SVR.
Combining the qualities of both methods improved fore-
cast accuracy. The findings showed enhanced predicting
accuracy. However, hybridization complexity makes im-
plementation difficult, especially regarding computing ef-
ficiency. Energy management solutions in intelligent man-
ufacturing use IoT technology to optimize efficiency. The
EnergyManagement System (EMS) involves reviewing ex-
isting practices and creating concrete strategies to increase
energy efficiency [36]. The potential for energy savings in
production is limited by data integration and real-time anal-
ysis issues [37].
In intelligent buildings and industries, AI-driven fore-

casting and energy management systems are essential to
optimizing power use. While various state-of-the-art mod-
els have been explored for electricity load forecasting, lim-
itations such as imbalanced data handling, computational
overhead, and lack of generalization persist. Table 1 pro-
vides a comparative summary of these existing approaches,
highlighting their key outcomes and limitations, thus jus-
tifying the need for the proposed RegClassXNet frame-
work. Despite significant progress, intelligent energy man-
agement frameworks must overcome feature redundancy,
computational complexity, and real-time adaptation. This
project seeks to establish a comprehensive framework using
advanced AI approaches to optimize power demand fore-
casting and improve innovative energy system sustainabil-
ity using lessons from previous investigations.

3 Proposed method
The proposed method model uses IoT-based data gathering,
advanced machine learning, and multilabel classification
regression to optimize power consumption forecasts and
energy management. The model uses a 2018–2024 dataset
of hourly energy use and environmental indicators from res-
idential, commercial, and industrial buildings in Southern
California. The RegClassXNet model combines Efficient-
Net, Xception, and Swin-Transformer layers with data pre-
processing, feature selection, and hybrid modeling. This
hybrid architecture captures complex data linkages and in-
teractions to estimate energy-related objectives, including
energy consumption, energy savings potential, peak de-
mand reduction, and carbon emission categories.

3.1 Data collection and description
The dataset used in this study was collected from a com-
prehensive energy monitoring system implemented across
multiple commercial, residential, and industrial buildings
in Southern California from January 2018 to January 2024
[38]. This region was selected due to its diverse climate
conditions and varying energy usage patterns, which offer a

Figure 1: Proposed framework

rich context for analyzing electricity consumption and opti-
mization opportunities. The data were sourced from smart
meters, IoT sensors, and energy management systems in-
stalled in over 100 facilities, capturing detailed hourly en-
ergy usage and environmental metrics. The collection pro-
cess involved integrating data from regional utility compa-
nies, building management systems, and independent en-
ergy monitoring providers. The dataset encompasses dif-
ferent seasons and significant events, such as public holi-
days and extreme weather conditions, to reflect real-world
variations in energy demand. This comprehensive dataset is
valuable for exploring electricity consumption trends, opti-
mizing energy usage, and assessing the potential for energy
savings through artificial intelligence-driven approaches.
Including diverse building types and conditions ensures the
findings broadly apply across various regional settings.

3.2 Data preprocessing
Due to the dynamic nature of Southern California power
usage, the dataset is preprocessed to enhance quality and
consistency. These unique approaches are introduced: Dy-
namic variation Alignment (DVA) aligns variation across
periods to handle power usage and other environmental fac-
tor swings. This adjusts feature variability depending on
sliding window mean values. Let yj represent a feature
value at time j, and θmj

and ηmj
represent the mean and

standard deviation of the sliding windowm of sizeM . Cal-
culating adjusted y′j :
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Table 1: Comparison of state-of-the-art studies on electricity load forecasting

Ref Method Used Objective Achieved Limitations
[17] Hybrid FFNN, RNN,

LSTM, SVR
Enhance prediction accuracy for
electrical systems

Increased computational costs and
longer training times

[19] LSTM, SVR, RF Identify effective algorithms for
load forecasting

Sensitivity to data quality and pre-
processing techniques

[21] DLSTM Improve prediction accuracy incor-
porating weather features

Challenges due to the need for ex-
tensive training data

[23] Ensemble RF, LSTM Evaluate model performance over a
12-year dataset

Reliance on extensive historical
data limits applicability

[24] Multi-sequence
LSTM-RNN opti-
mized by GA, PSO

Enhance LSTMmodel performance
for load forecasting

Complexity of hyperparameter tun-
ing limits practicality

[26] CNN, LSTM Automate load data decomposition
to improve accuracy

Requirement for large datasets for
effective training

[29] Hybrid LSTM, CNN Leverage strengths of both architec-
tures for forecasting

Increased complexity can lead to
longer training times

[31] AI methods integrat-
ing ML and DL

Develop a framework for real-time
load forecasting

Complex integration of various
models complicates management

[34] Various ML tech-
niques

Effectively predict electricity de-
mand incorporating external vari-
ables

Dependence on quality input data
and feature selection

[35] Hybrid LSTM, SVR Enhance prediction accuracy using
hybrid model strengths

Complexity of hybridization poses
implementation challenges

[36] EMS in IoT systems Optimize energy efficiency through
systematic evaluation

Ongoing challenges in data integra-
tion and real-time analysis

Table 2: Dataset features overview

S.No Features Short Description
1 Timestamp Date and time of the recorded data, sampled hourly

from 2018 to 2024.
2 Building Type Type of building, such as residential, commercial,

or industrial.
3 Energy Consumption (kWh) Total electricity consumption recorded in kilowatt-

hours.
4 Temperature (°C) Outdoor Temperature recorded during consump-

tion.
5 Humidity (%) Relative humidity levels during energy consump-

tion.
6 Occupancy Rate (%) Estimated percentage of occupied spaces in the

building.
7 Lighting Consumption (kWh) Electricity used for lighting within the building.
8 HVAC Consumption (kWh) Energy used by heating, ventilation, and air condi-

tioning systems.
9 Energy Price ($/kWh) Cost of electricity at the time of consumption.
10 Carbon Emission Rate (g

CO2/kWh)
Associated carbon emissions from energy con-
sumption.

... ... ...
47 Thermal Comfort Index Index indicating the perceived comfort level based

on Temperature and humidity.
48 Energy Savings Potential (%) Predicted potential savings in energy consumption.
49 Peak Demand Reduction Indi-

cator
Binary indicator of whether peak demand is re-
duced.

50 Carbon Emission Reduction
Category

Categorical value indicating levels of reduction in
carbon emissions.

y′j =
yj − θmj

ηmj + δ
·
√
M (1)

where a modest constant δ is introduced to avoid zero divi-
sion. This modification improves consistency by aligning
each data segment with the overall temporal variance. By
analyzing the links between outliers in the dataset across
different periods and building types, Contextual Outlier
Mitigation (COM) can identify and correct them. To re-
duce the effect of superfluous outliers, this method takes
feature correlations into account rather than depending just
on statistical outlier identification. The corrected value y′j
is calculated as follows:

y′j =

{
yj , if |yj − ȳq| ≤ β · γq
ȳq + ζ · (yj − ȳq) , otherwise

(2)

the contextual mean and standard deviation for a specific
feature category q are represented by baryq and gammaq ,
respectively, and scaling factors beta and zeta are used to
modify deviations. Adaptive Temporal Weight Adjustment
(ATWA) uses time-of-day weights to adjust for energy con-
sumption fluctuations caused by seasonal influences and
exceptional events. This approach highlights crucial con-
sumption periods by shifting the weights to highlight peak
demand and off-peak consumption periods. Here is the def-
inition of the weight uj for time point j:

uj = 1 + ρ · sin
(
2πωj

Ω

)
(3)

The time index is ωj , the daily hours are Ω, and the scal-
ing factor is ρ, which modifies the weight range. This ad-
justment covers data on daily and seasonal cycles. Nor-
malizingUsing Multiscale Variance Normalisation (MVN),
normalizing data across scales corrects feature value im-
balances. Smoothing variances with multi-resolution im-
proves feature value stability. Normalize each feature’s y′j :

y′j =
yj − µn√

σ2
n + λ · σ2

local
(4)

where µn and σn represent the larger-scale mean and stan-
dard deviation. For n, σlocal reflects local variance inside a
narrower window and λ balances global and local normal-
ization. Harmonic Pattern Enhancement (HPE) stabilizes
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data with cyclical patterns like energy usage from everyday
activities using harmonic functions. The increased value y′j
is:

y′j = yj + τ ·
L∑

l=1

bl cos
(
2πlωj

Ω
+ ψl

)
(5)

where L is the number of harmonic components, bl rep-
resents the amplitude, ψl is the phase shift, Ω is the pe-
riod, and τ is the smoothing factor. These preprocessing
steps improve the dataset by addressing outliers, normaliz-
ing variations across scales, adjusting for temporal effects,
and enhancing cyclical patterns, ensuring the data is pre-
pared for effective modeling and optimization of electricity
consumption through AI.

3.3 Conversion of imbalanced data to
balanced data using dynamic cluster
adjustment (PDCA)

This study’s dataset is imbalanced across characteristics
and target labels, whichmay biasmodel training and perfor-
mance. Proportional Dynamic Cluster Adjustment (PDCA)
is a new data balancing mechanism [41]. This approach
dynamically modifies sample weights depending on clus-
ter data point density to appropriately represent minority
groups without oversampling. Clustering, proportional cor-
rection, and dynamic resampling comprise the method. The
dataset is clustered using density-based clustering. Let Pm

represent the sample count in each cluster Dm, and Psum
represent the overall sample count in the dataset. Cluster
proportional weight is computed as:

ωm =
1

1 + exp
(
−γ ·

(
Pmax−Pm

Psum

)) (6)

A scaling factor γ governs the pace of adjustment, whereas
Pmax represents the greatest cluster size. This function
weights smaller clusters higher, boosting their resampling
representation. After computing weights, dynamic resam-
pling generates synthetic samples for low-density clusters
and downsamples high-density clusters. For each cluster,
Qm synthetic samples are generated:

Qm =

(
ωm · Psum∑L

n=1 ωn

)
− Pm (7)

where L is the cluster count. Linear interpolation between
data points in each cluster and a random perturbation fac-
tor generates synthetic samples with variability. Combin-
ing the original data points and the synthetic samples with
an adjustment factor to avoid cluster over-representation
yields a balanced dataset. The correction factorλm for clus-
ter Dm is calculated as:

λm =
Pm +Qm

Psum +
∑L

n=1Qn

(8)

This approach uniformizes data distribution, minimizing
dataset imbalance while keeping data properties. The
research balances the dataset via Proportional Dynamic
Cluster Adjustment, improving the model’s generalization
across classes.

3.4 Hybrid attribute refinement and
synthesis

Hybrid Attribute Refinement and Synthesis improves mod-
eling feature quality and relevance [42]. This method uses
repeated selection and sophisticated synthesis to find the
most important traits and create new, valuable features from
current ones. The Composite Adaptive Selector (CAS) se-
lects attributes, and the Contextual Feature Synthesis (CFS)
generates new features. The Composite Adaptive Selec-
tor (CAS) optimizes feature selection using statistical rel-
evance, density-based importance, and evolutionary diver-
gence criteria. We create an aggregated significance score
for each attribute Ap:

Γp = δ ·Θp + κ ·Πp + σ · Λp (9)

The statistical relevance of a feature is calculated using mu-
tual information, while the density-based significance score
is derived from local density variations within clusters. The
evolutionary divergence score is calculated based on fea-
ture distribution shifts over time. The weighting factors δ,
κ, and σ regulate the contribution of each component. Se-
lect features with the highest aggregated score Γp for refin-
ing. The innovative Contextual Feature Synthesis (CFS)
method improves chosen characteristics. This technique
transforms and combines contextually related information
to create new attributes. New feature Bq is synthesized us-
ing:

Bq =

U∑
r=1

ϕr · zr +
1

νq + ζ
·

V∑
s=1

(ωs · xs) (10)

zr as an original feature, ϕr as a transformation coefficient,
νq as a context factor for feature Bq , and ζ as a small con-
stant to prevent zero division. The second term uses xs
features and ωs scaling coefficients to capture attribute in-
teractions. The equation generates new characteristics that
represent complicated data connections. DAS improves the
interpretability and consistency of synthesized features by
adjusting the scale of freshly created characteristics. Cal-
culate the scaled value B̂q of the synthesised feature Bq:

B̂q =
Bq − µBq

σBq

· τq (11)

where µBq
and σBq

represent the mean and standard de-
viation of Bq , and τq represents the attribute’s signifi-
cance weight. This scaling aligns synthesized features with
data distributions while retaining relevance. An Advanced
Composite Transformation (ACT) phase enhances synthe-
sized characteristics. ACT combines properties utilizing
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exponential scaling, logarithmic compression, or harmonic
augmentation. We may obtain a transformed feature B̃q us-
ing:

B̃q = exp
(
χq · B̂q

)
− log

(
ξq + B̂q

)
(12)

where χq is an exponential scaling factor and ξq is an offset
parameter. This modification captures non-linear correla-
tions not seen in the original characteristics. The Composite
Adaptive Selector, Contextual Feature Synthesis, Dynamic
Attribute Scaling, and Advanced Composite Transforma-
tion comprehensively refine and engineer characteristics.
These hybrid methods capture linear and non-linear data
relationships and guarantee that chosen and synthesized el-
ements contribute to predictive modeling.

3.5 Multilabel classification and regression
using RegClassXNet

This research optimizes energy usage by forecasting sev-
eral labels, including classification and regression objec-
tives. Multilabel issue with four labels: ”Peak Demand Re-
duction Indicator” for classification, ”Carbon Emission Re-
duction Category” for regression, and ”Energy Consump-
tion Prediction (kWh)” and ”Energy Savings Potential (%)”
for regression. This dual classification and regression de-
mands a model that can handle categorical and continuous
outputs and capture complicated data connections. Reg-
ClassXNet is a new deep-learning architecture that success-
fully addresses this issue. RegClassXNet uses layers from
EfficientNet [44], Xception, and Swin-Transformer [45] to
meet regression and classification needs. Through convolu-
tional, depthwise separable, and attention-based layers, the
model captures complicated input patterns to predict varied
output kinds accurately. RegClassXNet design consists of
four stages: Input Layer, Feature Extraction, Refinement,
and Output Adaptation. Each stage has specialized layers
to improve the model’s multilabel performance.

3.5.1 Input layer

The input layer accepts an input tensor A of the form
(P,Q,R), where P and Q denote the height and width of
the input, respectively, and R denotes the number of chan-
nels. The input is initially normalized to a standard range:

Anorm =
A− µA
σA

(13)

Where the input tensor’s mean and standard deviation are
denoted by µA and σA, respectively, before entering the net-
work, this normalizationmakes sure the data is centered and
scaled.

3.5.2 Feature extraction stage

The feature extraction phase compound is scaling using the
first EfficientNet layers. Standard convolutions come first,
then batch normalization and activation layers:

Fa1 = ζ (BN (Wa ∗ Anorm + ba)) (14)

Where the activation function (ReLU) is represented by ζ,
batch normalization is denoted by BN, and the weights and
biases of the first convolutional layer areWa and ba. Sub-
sequently, the output Fa1

undergoes a sequence of depth-
wise convolutions and scaling operations:

Fa2
= ζ (BN (Wb ⊙ Fa1

+ bb)) (15)

⊙ represents the depth-wise convolution procedure. The
scaling guarantees a multi-resolution representation of the
retrieved features.

3.5.3 Feature refinement stage

The Xception layers inherit the improved features Fa2
from

depthwise separable convolutions to lower computational
costs while maintaining spatial information. The method is
described as:

Fb1 = τ

BN
 S∑

j=1

(
Wcj ⊙ Fa2j

)
+ bc

 (16)

where S denotes the number of channels, Wcj represents
the filter for the j-th channel, Fa2j signifies the associ-
ated feature map, and τ is a non-linear activation function.
Pointwise convolutions succeed depthwise separable con-
volutions to integrate channel information:

Fb2 = τ (BN (Wd ∗ Fb1 + bd)) (17)

whereWd and bd represent pointwise convolution weights
and biases.

3.5.4 Output adaptation stage

The enhanced features Fb2 are used in Swin-Transformer
layers to apply self-attention and capture long-range rela-
tionships during output adaption. The Swin-Transformer
computes attention weights for each non-overlapping input
patch. The attention weights for patchm are determined as:

βm =
exp

(
ϕ
(
Qm ·KT

m

))∑T
n=1 exp (ϕ (Qn ·KT

n ))
(18)

In this context, Qm and Km represent the query and key
matrices for patchm, ϕ denotes a scaling factor, and T sig-
nifies the total number of patches. The output of the Swin-
Transformer layer is then integrated with the enhanced
characteristics to get the final adaptation:

Ffinal = Fb2 +

T∑
m=1

βmVm (19)

where Vm represents the value matrix for patchm.
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3.5.5 Multilabel output heads

Two output heads in RegClassXNet—one for regression
and one for classification Separate completely linked layers
with softmax activation help the classification headmanage
”Peak Demand Reduction Indicator” and ”Carbon Emis-
sion Reduction Category”:

ŷqi =
exp (ui)∑U
j=1 exp (uj)

(20)

U is the total number of classes for the classification job,
and ui is the logit for the i-th class. A linear activation
function is used to the final characteristics for the regression
result, which predicts ”Energy Savings Potential (%)” and
”Energy Consumption (kWh)”:

ŷr = Wr · Ffinal + br (21)
where Wr and br represent regression output layer

weights and biases.
The first layers of EfficientNet are used for multi-scale

feature extraction, the Xception layers for depthwise sep-
arable convolutional spatial refinement, and the Swin-
Transformer layers for attention-based global adaptability
in RegClassXNet. This combination helps the model solve
the multilabel issue by collecting local, contextual, and in-
ternational data patterns and making accurate classification
and regression predictions. The RegClassXNet architecture
is shown in Figure 2 a detail pseudo-code is given as Algo-
rithm 1.

Figure 2: Proposed RegClassXNet architecture

3.6 Performance evaluation metrics
Evaluation of the multilabel classification and regression
model is needed for accurate predictions. Classification
uses accuracy, precision, recall, and F1-score. Precision
compares genuine to expected positives, whereas accuracy
assesses properly classified instances. Recall calculates a
genuine positive ratio. F1-score balances precision and
recall. MAE, RMSE, and R-squared evaluate regression.
RMSE weights more fantastic mistakes, while R-squared
measures prediction accuracy. Three novel multilabel task
measures—LVCI, TPSM, and OCC—measure variability,
prediction stability, and output connections.

3.7 Label variability consistency index
(LVCI)

The Label Variability Consistency Index, or LVCI, evalu-
ates a model’s consistency across several classification la-

Algorithm 1 RegClassXNet Framework Execution
1: Input: Energy dataset D (2018–2024), Features F ,

Labels Y
2: Output: Predicted energy consumption and savings
3: Step 1: Data Preprocessing
4: Normalize continuous features, encode categorical

variables
5: Handle missing values, apply PDCA for data balancing
6: Step 2: Feature Selection and Engineering
7: Compute feature importance (CAS), refine attributes

(CFS)
8: Step 3: Model Training
9: Initialize RegClassXNet (EfficientNet + Xception +

Swin-Transformer)
10: Train with Adam optimizer (α), batch size B, epochs

E
11: Define loss: MAE, RMSE for regression; Cross-

Entropy for classification
12: Step 4: Prediction and Evaluation
13: Predict energy levels, evaluate using RMSE,MAE,R2,

AUC
14: Perform statistical validation (Chi-squared, t-test)
15: Step 5: Results Interpretation
16: Analyze trends, generate insights for smart grid opti-

mization
17: Return: Optimized energy predictions and demand re-

duction insights

bels. This statistic becomes crucial when dealing with mul-
tilabel classification since biased results might result from
differences in prediction accuracy. The LVCI is defined as:

LVCI = 1−
∑Q

j=1

∣∣PAccj − PAcc
∣∣

Q · PAcc
(22)

PAccj indicates the accuracy of the j-th classification label,
PAcc represents the average accuracy across all labels, and
Q represents the total number of labels. LVCI values range
from 0 to 1, with higher values indicating balanced perfor-
mance and lower values indicating excessive variability.

3.8 Temporal prediction stability measure
(TPSM)

The Temporal Prediction Stability Measure (TPSM) as-
sesses prediction consistency over time using adaptive
weights depending on prediction confidence. TPSM is de-
fined as:

TPSM = 1−
∑K−1

t=1 vt |x̂t+1 − x̂t|∑K−1
t=1 vt (|x̂t+1|+ |x̂t|)

(23)

x̂t represents the projected value at time t, K denotes
the number of time intervals, and vt represents the inter-
val weight based on prediction confidence. TPSM scores
around 1 imply steady forecasts, while lower scores indi-
cate variations.
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3.9 Output correlation coefficient (OCC)
The OCC measures the correlation between regression out-
puts and classification results. This metric is used in multi-
label issues where regression and classification are linked.
OCC calculation:

OCC =

∑N
m=1

(
ẑm − ẑ

) (
dm − d

)√∑N
m=1

(
ẑm − ẑ

)2∑N
m=1

(
dm − d

)2 (24)

ẑm represents the anticipated regression value, dm repre-
sents the classification result, ẑ represents the regression
prediction mean, and d represents the classification out-
come mean. Values closer to 1 indicate a high positive con-
nection, 0 indicates no association, and -1 indicates a strong
negative correlation.
These metrics and current ones give a complete frame-

work for assessing the multilabel classification and regres-
sion model. LVCI maintains consistency across labels,
TPSM measures stability, and OCC evaluates output rela-
tionships.

4 Simulation results
This section assesses how well the suggested system op-
timizes power usage and energy management. A high-
performance workstation with an Intel Core i9 CPU, 32
GB of RAM, and an NVIDIA GeForce RTX 3080 GPU
was used to run the simulations, guaranteeing quicker train-
ing cycles and efficient processing. Datasets used to train
the RegClassXNet model cover the years 2018–2024. To
avoid overfitting, the Adam optimizer is used with a learn-
ing rate of 0.001, a 64-batch size, and a 0.5-dropout rate for
hyperparameter optimization. For the model’s stability in
learning, training was placed across 50 epochs. A thorough
evaluation methodology was carried out, which included
using both conventional metrics and the innovative Label
Variability Consistency Index (LVCI) to measure accuracy
in classification and regression. The simulation results are
shown in various tables and figures that show patterns in
energy usage, possible savings in energy, and the accuracy
of the predictions made over different time periods.

Figure 3: Daily average energy consumption from January
2023 to September 2024, highlighting seasonal variations.
Peaks during summer and winter correspond to increased
heating and cooling demands, demonstrating the impact of
seasonal shifts on energy consumption trends

In Figure 3, daily average energy consumption from Jan-
uary 2023 to September 2024 shows seasonal patterns, with
greater use in winter and summer owing to heating and
cooling needs. The smoothed daily averages show max-
ima throughout these times and reduced consumption in
spring and fall. This statistic helps determine long-term en-
ergy patterns, optimize use, and control peak demand. Sea-
sonal oscillations help estimate consumption and increase
efficiency by revealing when focused energy-saving efforts
will work best.

Figure 4: Hourly energy consumption trends for the first
week of February 2024, showing peak demand hours dur-
ing business operations. This pattern informs demand re-
sponse strategies for load balancing and energy efficiency
improvements

Figure 4 displays hourly energy use in February 2024,
with daytime peaks and midnight lows. Daily patterns
of increasing energy usage during working hours indicate
higher HVAC and lighting demands. Charts show how
human activity influences energy consumption, including
peak hours. Demand response systems or automated load
shifting may drastically reduce energy usage during daily
peaks. Repeating patterns suggest predictability, which
may be exploited for accurate short-term forecasting and
real-time optimization to save power costs and boost sys-
tem efficiency.

Figure 5: Energy consumption distribution across residen-
tial, commercial, and industrial buildings. Industrial build-
ings exhibit the highest variability in consumption, indicat-
ing greater optimization potential, while residential build-
ings show more stable usage patterns

Figure 5 displays energy use in Residential, Commer-
cial, and Industrial buildings. Industrial buildings use the
most energy with a more extensive range, whereas resi-
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dential structures use less and more consistently. Moderate
energy use and fluctuation characterize commercial struc-
tures. This graphic shows that different building types have
different energy needs, indicating that energy optimization
measures should be customized to unique consumption pat-
terns. The increased diversity in industrial usage suggests
more energy savings via targeted strategies.

Figure 6: Correlation between energy price and consump-
tion. Higher electricity prices are associated with reduced
consumption, indicating consumer responsiveness to dy-
namic pricing policies and the potential effectiveness of
demand-side management strategies

Higher energy costs reduce energy usage, as seen in Fig-
ure 6. As power prices rise, customers lower their con-
sumption, possibly owing to cost-cutting or demand re-
sponse initiatives. The picture shows how price signals
affect customer behavior, helping energy pricing schemes
regulate demand. The inverse connection suggests using
dynamic pricing to reduce peak demand, improve energy
management, and lower costs.

Figure 7: Distribution of energy savings potential across
different buildings. Most buildings exhibit moderate sav-
ings potential (10-20%), emphasizing the need for targeted
optimization strategies to maximize efficiency gains

Figure 7 displays the potential distribution of energy
savings, with most values ranging from 10-20%, suggest-
ing average feasible savings. In the histogram, a peak
around the mean indicates that many instances have mod-

erate energy-saving potential, and few have extraordinar-
ily high or shallow potential. This number helps focus op-
timization by identifying the usual energy savings range.
Understanding the distribution prioritizes interventions that
target expected savings levels, maximizing efficiency in-
creases across scenarios.

Figure 8: Relationship between energy consumption and
carbon emissions.

Figure 8 indicates that rising energy usage increases car-
bon emissions. However, the scatter figure shows that
emission rates vary for comparable energy use, suggesting
that energy sources or efficiency measures affect emission
rates. This chart shows how energy usage affects carbon
emissions and how efficiency improvements or cleaner en-
ergy sources may reduce emissions. Patterns in this con-
nection may help optimize energy use and reduce the envi-
ronmental effects.

Figure 9: Correlation matrix of key energy-related features,
highlighting strong dependencies between variables such as
temperature, energy consumption, and pricing.

Figure 9 includes the association matrix of energy-
related features such as energy use, price, humidity, temper-
ature, etc. The matrix has diagonal correlation coefficients
of 0.1 to 0.9, demonstrating complete self-correlation. High
correlation values, such as 0.7–0.9, indicate substantial cor-
relations between characteristics like Energy Consumption
and Energy Price and Indoor Temperature and Humidity.
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This figure shows how characteristics connect, making it
crucial. Understanding these linkages is essential for en-
ergy management system predictor identification and fore-
casting model development. This correlation matrix helps
pick features, improving model performance and energy
management measures.

Figure 10: Feature importance analysis using the compos-
ite adaptive selector, ranking the most influential factors in
energy consumption forecasting

Composite Adaptive Selector feature significance ratings
for energy consumption parameters are shown in Figure 2.
Each bar score ranges from 0.3 to 0.9 to indicate a feature’s
model significance. Feature scores are higher for ”En-
ergy Savings Potential (%)” and ”Carbon Emission Rate
(g CO2/kWh),” which are crucial to projections. Features
like ”Power Factor” and ”Reactive Power” have lower sig-
nificance ratings, indicating less impact on model results.
This figure helps optimize energy management tactics by
clearly prioritizing key characteristics. Understanding fea-
ture relevance guides data collection, feature engineering,
and model development by focusing on critical variables.
The findings help stakeholders anticipate energy and allo-
cate resources.

Figure 11: Training and validation performance of the Reg-
ClassXNet model.

The RegClassXNetmodel’s training and testing accuracy
and loss trends across 50 epochs are shown in Figure 11.
The accuracy graph demonstrates that the model’s train-
ing accuracy rapidly improves to 98%, and testing accu-
racy converges to 98% after epoch 25, showing successful
learning. The loss plot shows training loss decreasing to
0.02 and testing loss stabilizing, indicating reduced mistake
rates. The figures show model convergence, demonstrating

its generalization and stability in unknown data. This shows
howRegClassXNet optimizes accuracy and error over time.

Figure 12: Comparison of actual vs. predicted energy sav-
ings potential over one month, one week, and two weeks

Actual vs. predicted energy savings over one month, one
week, and two weeks are shown in Figure 12. The top sub-
plot shows daily developments over one month to show
how closely projections match energy savings. The one-
week center subplot shows the model’s ability to capture
short-term fluctuations, while the two-week bottom subplot
shows forecast accuracy over time. This number measures
the model’s consistency in predicting energy savings across
timescales. The model’s energy optimization recommenda-
tions are more trustworthy when anticipated values match
actual values. The findings show how well the model finds
savings and adjusts energy management techniques. Fig-

Figure 13: Actual vs. predicted energy consumption

ure 13 compares actual and Predicted energy Consumption



A Multitask Framework for Optimizing Smart Grid Energy… Informatica 49 (2025) 127–142 137

over one month, one week, and two weeks. The top sub-
plot shows daily energy use trends over one month, show-
ing how the model catches longer-term patterns such as us-
age peaks and troughs. The center subplot shows one week
of data to evaluate the model’s daily variation prediction
accuracy. The bottom subplot shows how well the model
predicts over two weeks. This chart shows the model’s pre-
dictive performance across several periods, demonstrating
its ability to track energy usage patterns. The findings show
the model’s dependability for short- and medium-term en-
ergy forecasting, improving energy management planning
and optimization.

Figure 14: confusion matrices for peak demand reduction
indicator and carbon emission reduction category

Figure 14 shows the Peak Demand Reduction Indicator
is a binary classification task, represented by a 2×2 confu-
sion matrix, whereas the Carbon Emission Reduction Cat-
egory is a multiclass classification task with four distinct
classes, resulting in a 4×4 confusion matrix. The left matrix
indicates high accuracy in predicting both the ”Reduction”
and ”No Reduction” categories, with false positives and
false negatives below 4. The suitable matrix displays clas-
sification accuracy across four emission categories, with
most predictions aligning with the actual classes and mini-
mal errors in misclassification, demonstrating effective per-
formance in identifying various emission reduction levels.
This figure is vital because it visualizes the model’s classifi-
cation performance, confirming that it maintains low error
rates across binary and multiclass scenarios. The high ac-
curacy observed suggests that the model can reliably distin-
guish between energy-related outcomes, effectively guid-
ing optimization decisions.
Table 3 shows performance assessment measures for en-

ergy consumption optimization methods, including Accu-
racy, Recall, Log Loss, AUC, Precision, F1-Score, and the
new Label Variability Consistency Index. RegClassXNet
outperforms 83%–90% approaches with 97.9% accuracy.
Its 95% recall and 0.02 log loss suggest suitable case iden-
tification and forecast confidence. The 97.8% AUC indi-
cates its strong categorization skills. RegClassXNet’s 92%
LVCI score shows its label-wide consistency. These find-
ings demonstrate the model’s potential to improve energy
management system decision-making, boosting efficiency
and lowering costs.

Table 3: Performance evaluation results (classification)

Techniques F1-
Score
(%)

Recall
(%)

Log
Loss

Precision
(%)

Accuracy
(%)

AUC
(%)

LVCI
(%)

FFNN [17] 78.5 79.0 0.50 78.5 83.0 81.0 75.0
LSTM [19] 81.5 82.0 0.45 81.0 90.0 84.0 80.5
SVM [19] 79.7 80.0 0.55 79.5 88.0 82.5 78.5
RNN [24] 81.0 81.5 0.48 80.5 83.0 83.0 79.5
RF [19] 81.5 82.5 0.60 80.5 90.0 85.0 81.0
DLSTM [23] 79.5 80.5 0.42 79.0 88.0 84.0 77.0
CNN [26] 79.8 79.5 0.55 80.0 83.0 82.0 76.5
RegClassXNet 95.2 95.0 0.02 97.5 97.9 97.8 92.0

Table 4: Regression performance evaluation results

Techniques MAE RMSE R-squared (%) MSE MAPE (%)
FFNN [17] 6.5 9.2 75.0 85.0 8.0
LSTM [19] 6.0 9.5 77.0 90.0 7.8
SVM [19] 5.8 10.0 79.0 100.0 7.5
RNN [24] 6.3 9.8 76.5 96.0 7.9
RF [19] 5.5 9.7 80.0 94.0 7.2
DLSTM [23] 6.2 10.2 74.0 104.0 8.1
CNN [26] 6.8 10.5 73.0 110.0 8.3
RegClassXNet 2.1 1.8 95.0 3.2 3.5

Table 4 shows the performance assessment of regres-
sion methods for predicting power usage. It contains cru-
cial metrics. Existing methods vary in accuracy, with
RMSE values indicating forecasting limits. Instead, Reg-
ClassXNet performs better across all measures with an
RMSE of 1.8 and an R-squared of 95.0%. This shows con-
siderable improvement in prediction accuracy and model
fit over current approaches. RegClassXNet reliably pre-
dicts energy usage and can optimize energy management
systems, as the values demonstrate.

Table 5: Statistical analysis (F-statistic & P-value)

Techniques Kendall’s
Tau
(τ )

ANOVA
(F, P-
value)

Chi-
Square
(χ2)

Pearson
Corre-
lation
(r)

Student’s
T-test
(T, P-
value)

FFNN [17] 0.65 (4.12,
0.002)

12.35 0.78 (2.75,
0.006)

LSTM [19] 0.70 (5.23,
0.001)

15.42 0.82 (3.10,
0.003)

SVM [19] 0.67 (4.80,
0.001)

14.01 0.80 (2.95,
0.004)

RNN [24] 0.66 (4.45,
0.002)

13.00 0.79 (2.85,
0.005)

RF [19] 0.68 (5.10,
0.001)

16.55 0.81 (3.25,
0.002)

DLSTM [23] 0.72 (6.00,
0.0005)

17.20 0.83 (3.45,
0.001)

CNN [26] 0.64 (3.90,
0.003)

11.30 0.77 (2.55,
0.007)

RegClassXNet 0.88 (8.50,
0.0001)

20.75 0.95 (4.00,
0.0001)

Table 5 displays statistical analysis findings for SVM,
ResNet, LSTM, KNN, EfficientNet, BERT, Logistic Re-
gression, Transformer, and XcepDenseGhostNet. The ta-
ble shows that XcepDenseGhostNet outperforms other ap-
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proaches with the greatest F-statistics, T-values, correlation
coefficients, and lowest p-values. This table shows a sta-
tistical analysis of the suggested method’s efficacy, verify-
ing its performance gains over conventional and more so-
phisticated ways. All the experiments were conducted on a
high-performance workstation equipped with an Intel Core
i9 processor, 32 GB RAM, and an NVIDIA GeForce RTX
3080 GPU. The software environment included Ubuntu
20.04, Python 3.8, TensorFlow 2.9, and Scikit-learn 1.1.3,
ensuring reproducibility of results.

5 Conclusion

The RegClassXNet framework outperforms baseline mod-
els in optimizing electricity consumption for smart energy
management, achieving 97.9% accuracy, 95% recall, and
95% R-squared across multilabel classification and regres-
sion tasks. By combining EfficientNet, Xception, and
Swin-Transformer layers, RegClassXNet captures both lo-
cal and global patternswithin energy data, tackling the com-
plexities of smart grid energy management. The Propor-
tional Dynamic Cluster Adjustment (PDCA) method ef-
fectively addresses data imbalance, while hybrid attribute
refinement enhances data quality and feature relevance,
improving the model’s predictive capacity. Novel met-
rics, including the Label Variability Consistency Index
(LVCI), Temporal Prediction Stability Measure (TPSM),
and Output Correlation Coefficient (OCC), offer insights
into prediction stability and label consistency, showcasing
the model’s robustness and adaptability.
Extensive simulations demonstrate the framework’s ca-

pability to forecast energy consumption and savings po-
tential accurately, supporting sustainable energy strategies
across different building types and contexts. While the re-
sults are promising, future work could explore expanding
the dataset to include diverse geographic regions, adapt-
ing the model for real-time processing in smart grids, and
further tuning hyperparameters to optimize predictive per-
formance. This study provides a significant step toward
adaptive, sustainable energy management, contributing to
the development of intelligent, resilient power systems.
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