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The global pandemic caused by the novel coronavirus SARS-CoV-2 has prompted extensive research into 

its genetic diversity to support drug development and vaccination strategies. In this study, we analyze the 

genetic similarity patterns of SARS-CoV-2 genome sequences from six severely affected nations: USA, 

Italy, Spain, France, Germany, and the UK. A total of 359 complete human host SARS-CoV-2 genome 

sequences, ranging from 29,538 to 29,987 base pairs, are processed using k-mer representation, with k = 

2 (dinucleotides) and k = 3 (codons). These representations are converted into 50-dimensional feature 

vectors. To identify intrinsic patterns within this high-dimensional dataset, we apply agglomerative 

hierarchical clustering using average linkage. A Silhouette score of 0.48 and a Hopkins statistic of 0.85 

indicate moderate clustering tendency and structure. Four primary clusters are identified, highlighting 

notable genomic similarities. Specifically, sequences from the USA, Spain, and Italy predominantly group 

together, suggesting shared genetic traits. To further aid interpretation, we apply dimensionality 

reduction techniques—Principal Component Analysis (PCA) and t-Distributed Stochastic Neighbor 

Embedding (t-SNE)—which project the high-dimensional feature vectors into 2-dimensional space. 

Visualizations confirm the clustering structure, with USA, Spain, and Italy forming a distinct and tight 

cluster, while sequences from France, Germany, and the UK show more dispersed patterns. This study 

provides a quantitative and visual understanding of SARS-CoV-2 genetic diversity across heavily 

impacted nations. The combination of k-mer-based feature encoding, hierarchical clustering, and 

dimensionality reduction offers actionable insights that may inform more targeted therapeutic and vaccine 

design strategies. 

Povzetek: Študija primerja mehki adaptivni krmilni sistem s tradicionalnim PID krmilnikom za 

večdimenzionalno regulacijo temperature v električni opremi. Novi adaptivni sistem je zmanjšal 

temperaturna nihanja in izboljšal energetsko učinkovitos, saj je ohranjal temperaturo znotraj intervala 

kljub motnjam.

1 Introduction 
Coronaviruses (CoVs) belong to the Orthoradial 

Kingdom, Class Pisoniviricetes, Order Nidovirales, and 

Family Coronaviridae. Among the four subfamily 

Orthocoronavirinae genera, alpha(α)-CoV and beta(β)-

CoV affect animals, while gamma(γ)-CoV and delta(δ)-

CoV target fowls. Within beta(β)-CoV, four lineages (A, 

B, C, and D) exist. Recent decades have witnessed 

outbreaks caused by these β-CoVs [1,2]. In 2002, severe 

acute respiratory syndrome (SARS), linked to β-CoV 

lineage B, emerged in China's Guangdong area, affecting 

29 countries with a fatality rate of 11% [3,4]. SARS-CoV 

likely originated in Chinese horseshoe bats, possibly 

transmitted to humans through palm civets [5,6]. In 2012, 

Middle East Respiratory Syndrome (MERS), caused by β- 

 

CoV lineage C, emerged in Saudi Arabia, resulting in a 

37% mortality rate across 27 countries [7,8,9]. MERS- 

CoV possibly originated in bats, transmitted through 

dromedary camels [10,11]. 

The novel coronavirus SARS-CoV-2 belongs to β-

CoV lineage B. Responsible for Coronavirus Disease 

2019 (COVID-19), it was first identified in Wuhan, China, 

in December 2019 [12,13,14]. Due to its rapid 

transmission and severity, the World Health Organization 

declared COVID-19 a pandemic and a global health 

emergency on January 30, 2019 [15,16]. By May 5, 2020, 

it had spread to 180 countries and 33 territories, causing 

millions of cases, deaths, and recoveries [17,18]. SARS-

CoV-2's genome shares similarities of 96% with bat CoVs 

and 92.4% with pangolin CoVs [19,20]. Despite these 
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similarities, the exact source of infection remains 

unknown [21]. 

In light of these past outbreaks and the ongoing global 

COVID-19 pandemic, understanding the genetic diversity 

and evolution of SARS-CoV-2 is paramount. The 

identification of mutation patterns and genetic similarities 

among different regions can provide critical insights into 

the virus's transmissibility, virulence, and potential drug 

and vaccine targets. Such knowledge is pivotal for 

devising effective strategies to combat the spread of the 

virus and mitigate its impact on public health. 

Genome sequencing, a cornerstone of virology 

research, deciphers nucleic acid sequences. Our study 

focuses on SARS-CoV-2 genome sequences from 

profoundly affected countries: USA, France, UK, 

Germany, Spain, and Italy. These sequences, obtained 

from the GISAID gene bank, are represented as k-mers—

subsequences of 'K' length with adenine (A), guanine (G), 

cytosine (C), and thymine (T) bases [22,23]. 

The k-mer-represented genome sequences are 

transformed into 50-dimensional numeric vectors. These 

vectors undergo unsupervised machine learning via 

agglomerative hierarchical clustering to group similar 

genomes [24,25]. Dimensionality reduction techniques, 

such as Principal Component Analysis (PCA) and t-

Distributed Stochastic Neighbor Embedding (t-SNE), 

further transform the clustered high-dimensional genome 

sequence vectors into a more manageable 2-dimensional 

space [26-28]. This visualization enables an understanding 

of genome similarities among different countries, which 

vary due to mutations affecting SARS-CoV-2's severity 

and spread [29,30]. 

High-dimensional genetic data poses challenges in 

visualization and interpretation. To address this, we 

employ dimensionality reduction techniques, notably 

Principal Component Analysis (PCA) and t-Distributed 

Stochastic Neighbor Embedding (t-SNE). PCA, a linear 

technique, reduces data while maximizing captured 

variance across uncorrelated principal components. This 

simplifies visualization and uncovers hidden patterns in 

lower-dimensional space. 

PCA's reduction of complex data into informative 

components enables the identification of regions with 

shared genetic traits. It aids in recognizing potential 

clusters and insights into virus transmission and evolution. 

Additionally, agglomerative hierarchical clustering 

groups genome sequences with similar attributes, 

enhancing our grasp of genetic relationships among 

nations. 

Identifying patterns in SARS-CoV-2 genetic diversity 

could inform vaccine and drug development targets. Our 

study aims to uncover clusters of genome sequence 

similarity, potentially aiding decisions on medication and 

attenuated vaccines [31]. The global impact of the 

COVID-19 pandemic underscores the urgency of 

understanding the genetic diversity of the SARS-CoV-2 

virus to devise effective interventions. Genome 

sequencing has provided us with a wealth of data, offering 

insights into the virus's evolution and transmission 

patterns. However, interpreting these extensive datasets is 

challenging due to their high dimensionality. 

This study's motivation lies in harnessing advanced 

data analysis techniques to decipher the intricate genetic 

relationships within SARS-CoV-2 genomes from severely 

affected nations. By identifying clusters of similar genome 

sequences, we aim to achieve two critical goals: aiding in 

the development of targeted drugs and vaccines, and 

providing actionable insights for public health strategies. 

Clustering results hold immense significance in 

guiding our response to the pandemic. These results 

translate into tangible strategies for combatting COVID-

19. Identifying clusters reveals groups of genome 

sequences that share distinct genetic characteristics, 

shedding light on how the virus evolves and spreads. Such 

insights can inform the development of tailored 

medications and vaccines that target specific clusters, 

optimizing their efficacy. 

Moreover, the clustering outcomes provide vital 

information for public health officials. By pinpointing 

regions with shared genetic traits, we can trace the virus's 

path and understand how it has been transmitted between 

different nations. This knowledge aids in devising targeted 

containment measures and travel restrictions, ultimately 

curbing the virus's spread. By focusing on regions 

profoundly impacted by the pandemic, we aim to enhance 

our understanding of the virus's spread within these 

contexts. Ultimately, we strive to offer actionable insights 

to inform researchers, healthcare professionals, and 

policymakers in crafting targeted strategies to control the 

pandemic and mitigate its societal and public health 

repercussions. 

 

The characterization and clustering of SARS-CoV-2 

genomic data require a multidisciplinary approach, 

integrating methods from bioinformatics, genomics, and 

data science. Recent advancements in sequencing 

technologies, such as next-generation sequencing (NGS), 

have enabled rapid and high-throughput decoding of viral 

genomes, significantly advancing the understanding of 

viral evolution and mutation patterns (Behjati & Tarpey, 

2013). Studies on coronavirus origin and transmission 

have highlighted the zoonotic potential of bats and 

pangolins, supporting the theory of cross-species 

transmission events that contributed to the emergence of 

SARS-CoV-2 (Banerjee et al., 2019; Lam et al., 2020). 

For effective analysis and categorization of genomic 

data, various computational and statistical methods have 

been adopted. Dimensionality reduction techniques like 

Principal Component Analysis (PCA) (Hotelling, 1933; 

Jolliffe & Cadima, 2016) and visualization approaches 

such as t-SNE (van der Maaten & Hinton, 2008) facilitate 

the interpretation of high-dimensional genetic datasets. 

Clustering methods, particularly hierarchical clustering 

(Bouguettaya et al., 2015) and its validation metrics like 

the Hopkins statistic (Banerjee & Davé, 2004) and 

ClValid package (Brock et al., 2008), are crucial in 

uncovering patterns and structure within viral genome 

sequences. Moreover, embedding models such as dna2vec 

(Ng, 2017) and word2vec (Mikolov et al., 2013) provide 

meaningful vector representations of nucleotide sequences 

for advanced data-driven analysis. 
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Comprehensive analysis of coronavirus genomes has 

also revealed important features related to codon usage 

bias (Hershberg & Petrov, 2008), dinucleotide patterns 

(Karlin, 1998), and structural properties of viral spike 

proteins that influence host specificity and viral entry 

mechanisms (Lu et al., 2015). The emergence of recurrent 

mutations and genomic diversity across variants further 

underscores the importance of continuous phylogenetic 

and comparative studies (Van Dorp et al., 2022). Table 1 

summarizes key studies addressing methodologies and 

biological insights relevant to SARS-CoV-2 genome 

analysis, clustering, and evolution. 

 

 

Table 1: Summary of key contributions 

Reference Methodology/Focus Key Findings/Applications 

Banerjee A, Davé RN 

(2004) 

Hopkins Statistic for 

cluster validation 

Introduced a method to validate clusters based on spatial 

data distributions, crucial for genomic data clustering. 

Banerjee A, Kulcsar K, 

Misra V, et al (2019) 

Bats and Coronaviruses Examined the zoonotic transmission of coronaviruses from 

bats, providing insight into SARS-CoV-2's origin. 

Behjati S, Tarpey PS 

(2013) 

Next-generation 

sequencing (NGS) 

NGS technologies enable comprehensive analysis of viral 

genomes, aiding the detection of mutations. 

Bouguettaya A, Yu Q, 

Liu X, et al (2015) 

Hierarchical Clustering Provided efficient clustering algorithms for large datasets, 

applicable to genomic data grouping. 

Brock G, Pihur V, Datta 

S, Datta S (2008) 

ClValid package for cluster 

validation 

Introduced a method for validating clustering methods with 

a focus on genomic data, ensuring reliable analysis results. 

Compeau PEC, Pevzner 

PA, Tesler G (2021) 

De Bruijn Graphs for 

Genome Assembly 

Discussed the application of de Bruijn graphs for efficient 

genome assembly, an essential step in viral genome 

sequencing. 

Hotelling H (1933) Principal Component 

Analysis (PCA) 

PCA for reducing dimensionality in large genomic datasets, 

enhancing the interpretation of complex data. 

Karlin S (1998) Dinucleotide Signatures Identified dinucleotide biases in genomes, aiding in the 

study of viral genomic features and evolutionary patterns. 

Lu G, Wang Q, Gao GF 

(2015) 

Host Jump Mechanism in 

Coronaviruses 

Examined the spike protein features in coronaviruses, 

explaining the host jump from bats to humans. 

Van Dorp L, Acman M, 

Richard D, et al (2022) 

Genomic Diversity and 

Mutations 

Studied the recurrent mutations and diversity of SARS-

CoV-2, contributing to the understanding of viral evolution 

and resistance. 

. The primary objective of this study is to identify and 

analyze clusters of genetically similar SARS-CoV-2 

genomes from highly affected countries using advanced 

machine learning and data visualization techniques. This 

is achieved by transforming viral genome sequences into 

k-mer-based numerical vectors, which are then subjected 

to unsupervised learning through agglomerative 

hierarchical clustering. To address the challenge of high 

dimensionality in genetic data, we employ Principal 

Component Analysis (PCA) and t-distributed Stochastic 

Neighbor Embedding (t-SNE) to project the data into two 

dimensions for easier interpretation and visual cluster 

identification. 

By linking our research goals to experimental 

procedures, this study seeks to: 

• Uncover distinct clusters of SARS-CoV-2 

genome sequences across regions such as the 

USA, France, UK, Germany, Spain, and Italy. 

• Understand the evolutionary and transmission-

related genetic similarities among these clusters. 

• Generate actionable insights that can guide 

targeted drug and vaccine development by 

identifying common mutation patterns. 

• Provide public health authorities with genomic-

level evidence to support region-specific 

pandemic response strategies. 

 

2   Materials and methods 
2.1 Genome sequences and their K-mers 

In this study, we collected genome sequences of the 

human host SAR-CoV-2 virus from various countries 

highly affected by the COVID-19 pandemic, including the 

United States of America (USA), France, United Kingdom 

(UK), Germany, Spain, and Italy. The lengths of the 

collected genome sequences range from 29,538 to 29,987 

base pairs. The distribution of genome sequences obtained 

from each country as of April 16, 2020, is summarized in 

Table 2 below.  

 

Table 2: Country-wise distribution of collected 

genome sequences 

Countries Number of Genome Sequences 

obtained 

USA                85 

France             72 

UK     67 

Germany            59 

Spain              43 

Italy              33 

 

Genome sequence of length x will have x − k + 1 k-

mers. The following Table 3 describes the k-mers 

sequences corresponding to the genome sequence. 
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Table 3: Sample genome sequence and its k-mers 

 

Sample Genome 

Sequence 

k-values k-mers 

ATTAAAGGTT 2 AT, TT, TA, AA, 

AA, AG, GG, 

GT, TT 

3 ATT, TTA, TAA, 

AAA, AAG, 

AGG, GGT, GTT 

 

We have considered 2-mer and 3-mer sequence for 

each genome sequence in our study. K-mers sequence 

generated with k=2 reveals the dinucleotide biases which 

remain constant throughout the genome. Since we look for 

similarity in genome sequences, dinucleotide biases act as 

a distance measure between phylogenetically alike 

genomes. The genomes of organisms that are related to 

each other, shares more alike dinucleotide biases, than 

more differently related organism [32]. An amino acid can 

be uniquely represented by 64 distinct 3-mers present in 

DNA. Codons are non-overlapping 3-mers present in a 

genome sequence. Each codon or 3-mer maps itself to only 

one amino acid. Multiple codons are required to represent 

each amino acid [33]. Therefore, K-mer sequence 

generated with k=3 expresses the internal codons present 

in the genome sequence. The steps for the implemented K-

mers sequence generation is given in algorithm1: 

Algorithm 1: K-mers sequence generation. 

   Input: Genome Sequence (seq), 

   Input: k-value (k), 

   Output: k_mers 

   Begin:  

      x = length(seq) 

      n = x-k+1 

      for 𝑖 = 0 to 𝑛 do 

             j = i 

             j = j+k 

             temp = seq.substring(i,j) 

             k_mers  = k_mers + temp 

      end 

      return k_mers 

   end 

The methodology involves generating k-mers 

sequences from collected genome data, representing these 

sequences as numerical vectors using a skip-gram neural 

network, and ultimately obtaining gene2vec 

representations for further analysis. The methodology 

flow diagram (Figure 1) visually summarizes the steps 

outlined. 

 
Figure 1: Flow diagram 

 

2.2 K-mers sequences to numerical vector 

representation 
Genome sequence to numeric vector representation 

(gene2vec) uses a shallow 2-layer neural network to train 

k-mers of the genome sequence. There are two options to 

perform gene2vec. The first procedure is the continuous 

bag of words (CBOW), which deduce the focus word 

given the surrounding terms, while the second procedure 

called skip-gram auspicate the surroundings terms given 

the focus word. Skip-gram performs better, even with 

fewer data and infrequent words [34]. We use skip-gram 

procedure in our experimentation. 

The neural network takes one hot encoded 2-mer 

(dinucleotide) or 3-mer (codon) into a 50-dimensional 

hidden layer with linear activations. The hidden layer is 

fully connected to the softmax output layer, which gives a 

numeric vector for each dinucleotide or codon. Finally, 

gene2vec of the genome sequence is given as average 

gene2vec of each dinucleotide or codon. We have selected 

hierarchical softmax optimization, which uses a binary 

tree to represent all 2-mer or 3-mer in the sequence. The 

2-mer or 3-mer are leaves in the binary tree. The unique 

path from the root to each leaf is used to calculate the 

probability of the 2-mer or 3-mer represented by the leaf. 

We have implemented the skip-gram model using gensim 

[35] python library.  
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2.3 Evaluating clustering tendency 
The clustering analysis process starts with assessing 

the clustering tendency of the dataset. It is essential to 

check whether the data comprises of meaningful clusters 

or not, before applying the clustering techniques to ensure 

the feasibility for performing cluster analysis. We have 

used Hopkins statistic [36,37] to assess the clustering 

tendency of both 2-mers and 3-mers numeric vector 

dataset (D containing n datapoints). For every datapoint ri 

∈ D, obtain its nearest neighbor rj, then calculate the 

distance between ri and rj, which is denoted as Xi = dist (ri, 

rj). Generate a simulated observations or dataset 

(simulatedD) drawn from a random uniform distribution 

with n points (s1, s2, s3, …, sn) with the same variations as 

D (original dataset). For every datapoint si ∈ simulatedD, 

obtain its nearest neighbor sj in D, then calculate the 

distance between si and sj, which is denoted as Yi = 

dist(si,sj). The Hopkins statistic (H) is computed as the 

mean nearest neighbor distance in the simulatedD dataset 

upon the sum of the mean nearest neighbor distances in D 

and across the simulatedD dataset i.e., given in equation 1 

 

 
𝐻 =  

∑ 𝑌𝑖
𝑛
𝑖=1

∑ 𝑋𝑖 +  ∑ 𝑌𝑖
𝑛
𝑖=1   𝑛

𝑖=1

 
 
(1) 

 

The value of H about 0.5 indicates that there no 

intrinsic clusters present in the dataset because the value 

of ∑ 𝑌𝑖
𝑛
𝑖=1  and ∑ 𝑋𝑖

𝑛
𝑖=1  become close to each other. If the 

value H is close to 0, then the dataset contains significant 

clusters. The Hopkins statistic value   H = 0.01031 for 2-

mers dataset and H = 0.01608 for 3-mers dataset 

concludes that there are useful clusters present in our data. 

 

2.4 Optimal number of clusters (k) 
The total intra-cluster disparity or total within-cluster 

sum of square (WSS) assesses the density of the 

agglomeration and it is recommended to be as low as 

possible. The Elbow method considers the total WSS as a 

tool to determine the number of clusters. The value for 

which the total WSS does not improve by adding another 

cluster is regarded as the number of clusters value ‘k’.  The 

position of a bend (elbow) in the graph (Figure 2) usually 

indicates the appropriate number of clusters.  

 

 
(a) Elbow method plot on 2-mers numeric vector 

dataset indicates k=4. 

 

 
(b) Elbow method plot on 3-mers numeric vector 

dataset shows k=4. 

Figure 2: Optimal ‘k’ using Elbow method 

Figure 3: Optimal ‘k’ using the AS method 

 
(a) AS method plot on 2-mers numeric vector dataset 

indicates k=4. 

 
(b) AS method plot on 3-mers numeric vector dataset 

shows k=4. 
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The Average Silhouette (AS) approach is used to 

ascertain how well each datapoint is positioned within its 

group. A high AS width value suggests a useful 

agglomeration/clustering. The AS method calculates the 

AS of data points for dissimilar ‘k’ values. The preferred 

number of clusters ‘k’ is the value that has a high AS 

among a scope of possible ‘k’ values, as shown in Figure 

3. 

 

2.5 Selecting best clustering algorithm 
The clustering algorithms such as hierarchical, 

kmeans and Partition Around Medoids (PAM) are 

selected. Their internal measures such as connectivity, 

Dunn index and Silhouette coefficient are computed. 

Stability measures such as Average Proportion of Non-

overlap (APN), Average Distance (AD), Average 

Distance between Means (ADM) and Figure of Merit 

(FOM) are also calculated (Brock et al. 2008). On the basis 

of values obtained from above measures, a suitable 

clustering algorithm is preferred. Connectivity explains 

the extent of datapoints positioned in the same group as 

their nighest neighbors in the data space. The connectivity 

has a value lies between 0 and ∞ . Minimized connectivity 

value is preferred.  The Dunn index is computed using 

equation 2. 

 
𝐷 =  

𝑚𝑖𝑛. 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛

𝑚𝑎𝑥. 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟
  

(2) 

Where ‘D’ is the Dunn index, min.separation 

indicates the minimal pairwise distance between the data 

points of inter-cluster. The value max.diameter specifies 

the maximal pairwise distance between datapoints of 

intra-cluster.  Maximized ‘D’ value is preferred because 

the dataset, which comprises compact and well set-apart 

clusters, has small max.diameter value and large 

min.separation value. Silhouette width 𝑆𝑖 of the datapoint 

‘i’ is given by equation 3. 

 

 
𝑆𝑖 =  

(𝑞𝑖 − 𝑝𝑖 )

𝑚𝑎𝑥 (𝑝𝑖, 𝑞𝑖)
 

 
(3) 

 

Where 𝑝𝑖  is the average dissimilarity between i and 

other data points present in the same group and 𝑞𝑖 is the 

minimum average dissimilarity between i and data points 

belonging to different group. The datapoint with 𝑆𝑖 value 

close to 1 are correctly clustered, negative 𝑆𝑖 value 

indicates wrongly clustered data point and 𝑆𝑖 value around 

0 indicates that the data point halts between two clusters.  

Table 3 shows the calculations of all the measures 

mentioned above on 2mers and 3mers numerical vector 

datasets. The optimal scores in Table 3 conclude 

hierarchical clustering as a suitable clustering technique 

for our datasets. 

.  

Table 4: Calculation of internal and stability clustering measures 

 

Clustering 

algorithms 

 

Measures 

Cluster Size 

K=4 K=5 K=6 

2-mers 

Dataset 

3-mers 

Dataset 

2-mers 

Dataset 

3-mers 

Dataset 

2-mers 

Dataset 

3-mers 

Dataset 

 

 

Hierarchical 

Clustering 

Connectivity 6.2496 6.1829 8.6980 9.2091 14.0222 14.8468 

Dunn  0.2014 0.2379 0.0260 0.0253 0.0349 0.0347 

Silhouette 0.6732 0.6726 0.7043 0.6991 0.6350 0.6329 

APN 0.0000 0.0000 0.0000 0.0327 0.0017 0.1009 

AD 0.0213 0.0217 0.0089 0.0099 0.0083 0.0091 

ADM 0.0000 0.0000 0.0000 0.0014 0.0000 0.0022 

FOM 0.0022 0.0021 0.0010 0.0010 0.0009 0.0008 

 

 

Kmeans 

Clustering 

Connectivity 9.9143 11.6202 10.9143 12.6202 12.5075 12.9976 

Dunn  0.0232 0.0208 0.0264 0.0234 0.0295 0.0314 

Silhouette 0.0295 0.7045 0.7034 0.6988 0.7487 0.7332 

APN 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AD 0.0090 0.0094 0.0089 0.0092 0.0048 0.0053 

ADM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

FOM 0.0010 0.0010 0.0010 0.0010 0.0006 0.0006 

 

 

PAM 

Clustering 

Connectivity 8.6484 10.0341 18.4726 18.8817 12.2706 17.7635 

Dunn  0.0067 0.0076 0.0046 0.0037 0.0034 0.0070 

Silhouette 0.7521 0.7355 0.7236 0.7039 0.7112 0.6849 

APN 0.0000 0.0000 0.0001 0.0025 0.0002 0.0009 

AD 0.0054 0.0059 0.0045 0.0049 0.0039 0.0044 

ADM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

FOM 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 
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2.6 Agglomerative hierarchical clustering 
Agglomerative Nesting (AGNES), commonly known 

as agglomerative hierarchical clustering, is used to cluster 

data points on the basis of their similarity. It operates in a 

bottom to top manner, i.e., a data point at first taken as a 

single-element group. At every move of the algorithm, 

couple of most similar groups are merged into a new large 

cluster. The first step is to calculate (dis)similarity 

information (Euclidean distance) between each pair of 

data points in the dataset, followed by joining together the 

data points or clusters that are nearest in proximity using 

the linkage function. Average or mean linkage function is 

used in our implementation. In the case of average linkage 

function, the interval between two groups is determined as 

the average distance interval between the data points in 

batch 1 and the data points in batch 2. After connecting the 

data points in a data set into a hierarchical cluster tree, it 

is significant to evaluate that the distances (heights) in the 

tree resemble the original distances precisely. This is 

achieved by computing the correlation between the 

cophenetic distance interval and real distance interval. The 

clustering is valid only if the connecting data points in the 

cluster tree has a firm correlation with the distances 

interval between data points in the original distance matrix 

[38-43]. The cophenetic correlation coefficient value close 

to 1 reflects better clustering of the data. The correlation 

between cophenetic distance and the original distance for 

2mers and 3mers datasets are found to be 0.9069 and 

0.9071, respectively. 

3  Results analysis 
The hierarchically clustered 2mers and 3mers data 

contains a 50-dimensional numeric vector for each 

genome sequence, which is beyond the scope of 

visualization due to its high dimensions. Visualization of 

analyzed data is essential to interpret and derive 

knowledgeable insights. Transformation or 

dimensionality reduction should be applied to the data to 

ensure visualization in 2-dimensional space. PCA is an 

unsupervised linear dimensionality reduction technique, 

which is based on eigen vectors. PCA tries to reduce the 

dimensions of feature space by preserving the utmost 

amount of variance of the given data. It is computed using 

eigen values. The objective of PCA is to recognize a set of 

uncorrelated characteristics or features called Principal 

Components (PCs). PC1 retains the maximum amount of 

diversity of the given data, whereas PC2 reserves the 

second maximum measure of diversity and so forth. The 

first few 'm' PCs maintain the most substantial measure of 

the variance of the given data and thus reduces the 

dimensions of data from 'n' to 'm'. Only salient PCs 

retaining maximum information are used to project data in 

2-dimension or 3-dimension (low dimensional space). 

Figure 4 shows a 2-dimensional projection of clustered 

numerical vectors using PCA.  

.  

 

 
(a) Visualization of 2mers numerical vectors 

dataset using PCA 

 
(b) visualization of 3mers numerical vectors dataset 

using PCA 

Figure 4: 2-Dimensional projection using PCA 

 

t-SNE is a nonlinear dimensionality reduction algorithm 

appropriate for embedding high-dimensional data into 2-

dimensional or 3-dimensional space, making data feasible 

for visualization. The most significant characteristic of t-

SNE is that it specifically transforms data points of high 

dimensions into low-dimensional space in such a way that 

similar and dissimilar data points in high-dimensional 

space are also reflected and retained in low-dimensional 

space.  This transformation is achieved by assigning a high 

probability for similar data points and a very low 

probability for dissimilar data points. Further, it minimizes 

the Kullback–Leibler divergence among high and low 

dimensional space with respect to positions of the data 

points. Since it deals with high-dimensional data, it leads 

to crowding problem, which is skillfully handled by 

employing Cauchy distribution or Student t-distribution. 

Perplexity is the most essential hyperparameter, which is 

defined as an effectual number of neighbors for a data 

point. The recommended value for perplexity lies between 

5 and 50. Figure 5 depicts the 2-dimensional visualization 

of clustered numerical vectors using t-SNE. 
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(a) Visualization of 2mers numerical vectors dataset 

using t-SNE 

 

(b) visualization of 3mers numerical vectors dataset 

using t-SNE 

Figure 5: 2-Dimensional projection using t-SNE with perplexity = 42 

 

4  Discussion 
The clustering results in this study have been 

compared with the state-of-the-art (SOTA) methods from 

recent literature. In particular, the application of 

dimensionality reduction techniques like PCA and t-SNE, 

followed by clustering methods such as K-means, has 

shown promising results for the analysis of genomic data. 

Notably, Hozumi et al. (2021) employed UMAP-assisted 

K-means clustering for analyzing large-scale SARS-CoV-

2 mutation datasets, achieving meaningful insights into 

viral evolution. Similarly, Achtman et al. (2022) utilized 

hierarchical clustering for bacterial genomes, 

demonstrating the power of such methods in structuring 

vast amounts of genomic data into relevant species, 

subspecies, and populations. In comparison to these 

studies, the clustering results in this paper exhibit some 

differences. For example, our study employed traditional 

PCA and t-SNE dimensionality reduction techniques 

before performing K-means clustering, whereas Hozumi 

et al. (2021) utilized UMAP, a non-linear dimensionality 

reduction technique, which may offer more accurate 

representations of complex, high-dimensional datasets. 

While both PCA and UMAP are effective in reducing 

dimensionality, UMAP tends to preserve local structures 

better, which could be beneficial in certain contexts. 

However, PCA remains a powerful and efficient 

technique, especially when computational resources are 

limited. The choice of dimensionality reduction method 

could explain some differences between our results and 

those observed by Hozumi et al. (2021). The novelty of 

our work lies in the application of these well-established 

clustering and dimensionality reduction techniques in 

virology and genomics, particularly in genomic sequence 

analysis. This approach is crucial for visualizing high-

dimensional data from genomic sequences, such as 2mers 

and 3mers, which are commonly encountered in viral and 

bacterial genomics. As demonstrated by Achtman et al. 

(2022), hierarchical clustering has been instrumental in 

analyzing large genomic datasets, providing insights into 

the hierarchical relationships between bacterial genomes. 

By using PCA and t-SNE for dimensionality reduction and 

K-means for clustering, we further refine these established 

techniques for the visualization and interpretation of viral 

genome sequences. One of the key advantages of our 

methodology is its simplicity and accessibility for 

researchers with limited computational resources. While 

UMAP may offer more complex representations, the 

combination of PCA and t-SNE provides a clear, 

interpretable view of the clustered data, with minimal 

computational overhead. Moreover, our method is 

applicable to a wide variety of genomic studies, including 

the analysis of SARS-CoV-2 mutations and bacterial 

genomics, as shown by the cited works. 

 

 5  Conclusion 
In our comprehensive analysis of SARS-CoV-2 

genome sequences from multiple nations, we employed 

advanced computational techniques to unravel genetic 

diversity patterns with significant implications for 

virology, drug development, and vaccination strategies. 

We compiled genome sequences from heavily impacted 

nations including the USA, France, UK, Germany, Spain, 

and Italy. These sequences were transformed into 50-

dimensional numerical vectors through our gene2vec 

approach, facilitating quantitative genetic analysis. The 

crux of our analysis lay in agglomerative hierarchical 

clustering, unveiling hidden relationships within genome 

sequences. By rigorously assessing clustering tendency, 

identifying optimal cluster numbers using the Elbow and 

Average Silhouette methods, and employing internal and 

stability measures, we identified hierarchical clustering as 

the most effective algorithm. Utilizing dimensionality 

reduction techniques like Principal Component Analysis 

(PCA) and t-Distributed Stochastic Neighbor Embedding 

(t-SNE), we visualized the high-dimensional data. The 

PCA projection showed 2-dimensional cluster patterns, 

while t-SNE revealed intricate similarities in a reduced 

dimensionality. Numerical results indicated clustering 

tendencies with Hopkins statistic values of H = 0.01031 

for 2-mers and H = 0.01608 for 3-mers, signifying 

meaningful clusters. Both Elbow and Average Silhouette 

methods suggested optimal cluster numbers of k = 4 for 

both datasets. In conclusion, our analysis demonstrated the 

genetic diversity of SARS-CoV-2 across nations. 
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Clustering patterns suggested shared genetic features 

among countries, impacting vaccine and therapeutic 

strategies. This study underscores computational 

methodologies in understanding complex biological 

phenomena, contributing to preparedness against 

emerging infectious diseases and advancements in 

genomics research. 
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