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The global pandemic caused by the novel coronavirus SARS-CoV-2 has prompted extensive research into
its genetic diversity to support drug development and vaccination strategies. In this study, we analyze the
genetic similarity patterns of SARS-CoV-2 genome sequences from six severely affected nations: USA,
Italy, Spain, France, Germany, and the UK. A total of 359 complete human host SARS-CoV-2 genome
sequences, ranging from 29,538 to 29,987 base pairs, are processed using k-mer representation, with k =
2 (dinucleotides) and k = 3 (codons). These representations are converted into 50-dimensional feature
vectors. To identify intrinsic patterns within this high-dimensional dataset, we apply agglomerative
hierarchical clustering using average linkage. A Silhouette score of 0.48 and a Hopkins statistic of 0.85
indicate moderate clustering tendency and structure. Four primary clusters are identified, highlighting
notable genomic similarities. Specifically, sequences from the USA, Spain, and Italy predominantly group
together, suggesting shared genetic traits. To further aid interpretation, we apply dimensionality
reduction techniques—Principal Component Analysis (PCA) and t-Distributed Stochastic Neighbor
Embedding (t-SNE)—which project the high-dimensional feature vectors into 2-dimensional space.
Visualizations confirm the clustering structure, with USA, Spain, and Italy forming a distinct and tight
cluster, while sequences from France, Germany, and the UK show more dispersed patterns. This study
provides a quantitative and visual understanding of SARS-CoV-2 genetic diversity across heavily
impacted nations. The combination of k-mer-based feature encoding, hierarchical clustering, and
dimensionality reduction offers actionable insights that may inform more targeted therapeutic and vaccine
design strategies.

Povzetek: Studija primerja mehki adaptivni krmilni sistem s tradicionalnim PID krmilnikom za
vecdimenzionalno regulacijo temperature v elektricni opremi. Novi adaptivni sistem je zmanjsal
temperaturna nihanja in izboljsal energetsko ucinkovitos, saj je ohranjal temperaturo znotraj intervala
kljub motnjam.

Introduction

CoV lineage C, emerged in Saudi Arabia, resulting in a

Coronaviruses (CoVs) belong to the Orthoradial
Kingdom, Class Pisoniviricetes, Order Nidovirales, and
Family Coronaviridae. Among the four subfamily
Orthocoronavirinae genera, alpha(a)-CoV and beta(p)-
CoV affect animals, while gamma(y)-CoV and delta(s)-
CoV target fowls. Within beta(3)-CoV, four lineages (A,
B, C, and D) exist. Recent decades have witnessed
outbreaks caused by these B-CoVs [1,2]. In 2002, severe
acute respiratory syndrome (SARS), linked to B-CoV
lineage B, emerged in China's Guangdong area, affecting
29 countries with a fatality rate of 11% [3,4]. SARS-CoV
likely originated in Chinese horseshoe bats, possibly
transmitted to humans through palm civets [5,6]. In 2012,
Middle East Respiratory Syndrome (MERS), caused by 3-

37% mortality rate across 27 countries [7,8,9]. MERS-
CoV possibly originated in bats, transmitted through
dromedary camels [10,11].

The novel coronavirus SARS-CoV-2 belongs to B-
CoV lineage B. Responsible for Coronavirus Disease
2019 (COVID-19), it was first identified in Wuhan, China,
in December 2019 [12,13,14]. Due to its rapid
transmission and severity, the World Health Organization
declared COVID-19 a pandemic and a global health
emergency on January 30, 2019 [15,16]. By May 5, 2020,
it had spread to 180 countries and 33 territories, causing
millions of cases, deaths, and recoveries [17,18]. SARS-
CoV-2's genome shares similarities of 96% with bat CoVs
and 92.4% with pangolin CoVs [19,20]. Despite these
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similarities, the exact source of infection remains
unknown [21].

In light of these past outbreaks and the ongoing global
COVID-19 pandemic, understanding the genetic diversity
and evolution of SARS-CoV-2 is paramount. The
identification of mutation patterns and genetic similarities
among different regions can provide critical insights into
the virus's transmissibility, virulence, and potential drug
and vaccine targets. Such knowledge is pivotal for
devising effective strategies to combat the spread of the
virus and mitigate its impact on public health.

Genome sequencing, a cornerstone of virology
research, deciphers nucleic acid sequences. Our study
focuses on SARS-CoV-2 genome sequences from
profoundly affected countries: USA, France, UK,
Germany, Spain, and ltaly. These sequences, obtained
from the GISAID gene bank, are represented as k-mers—
subsequences of 'K' length with adenine (A), guanine (G),
cytosine (C), and thymine (T) bases [22,23].

The k-mer-represented genome sequences are
transformed into 50-dimensional numeric vectors. These
vectors undergo unsupervised machine learning via
agglomerative hierarchical clustering to group similar
genomes [24,25]. Dimensionality reduction techniques,
such as Principal Component Analysis (PCA) and t-
Distributed Stochastic Neighbor Embedding (t-SNE),
further transform the clustered high-dimensional genome
sequence vectors into a more manageable 2-dimensional
space [26-28]. This visualization enables an understanding
of genome similarities among different countries, which
vary due to mutations affecting SARS-CoV-2's severity
and spread [29,30].

High-dimensional genetic data poses challenges in
visualization and interpretation. To address this, we
employ dimensionality reduction techniques, notably
Principal Component Analysis (PCA) and t-Distributed
Stochastic Neighbor Embedding (t-SNE). PCA, a linear
technique, reduces data while maximizing captured
variance across uncorrelated principal components. This
simplifies visualization and uncovers hidden patterns in
lower-dimensional space.

PCA's reduction of complex data into informative
components enables the identification of regions with
shared genetic traits. It aids in recognizing potential
clusters and insights into virus transmission and evolution.
Additionally, agglomerative hierarchical clustering
groups genome sequences with similar attributes,
enhancing our grasp of genetic relationships among
nations.

Identifying patterns in SARS-CoV-2 genetic diversity
could inform vaccine and drug development targets. Our
study aims to uncover clusters of genome sequence
similarity, potentially aiding decisions on medication and
attenuated vaccines [31]. The global impact of the
COVID-19 pandemic underscores the urgency of
understanding the genetic diversity of the SARS-CoV-2
virus to devise effective interventions. Genome
sequencing has provided us with a wealth of data, offering
insights into the virus's evolution and transmission
patterns. However, interpreting these extensive datasets is
challenging due to their high dimensionality.
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This study's motivation lies in harnessing advanced
data analysis techniques to decipher the intricate genetic
relationships within SARS-CoV-2 genomes from severely
affected nations. By identifying clusters of similar genome
sequences, we aim to achieve two critical goals: aiding in
the development of targeted drugs and vaccines, and
providing actionable insights for public health strategies.

Clustering results hold immense significance in
guiding our response to the pandemic. These results
translate into tangible strategies for combatting COVID-
19. Identifying clusters reveals groups of genome
sequences that share distinct genetic characteristics,
shedding light on how the virus evolves and spreads. Such
insights can inform the development of tailored
medications and vaccines that target specific clusters,
optimizing their efficacy.

Moreover, the clustering outcomes provide vital
information for public health officials. By pinpointing
regions with shared genetic traits, we can trace the virus's
path and understand how it has been transmitted between
different nations. This knowledge aids in devising targeted
containment measures and travel restrictions, ultimately
curbing the virus's spread. By focusing on regions
profoundly impacted by the pandemic, we aim to enhance
our understanding of the virus's spread within these
contexts. Ultimately, we strive to offer actionable insights
to inform researchers, healthcare professionals, and
policymakers in crafting targeted strategies to control the
pandemic and mitigate its societal and public health
repercussions.

The characterization and clustering of SARS-CoV-2
genomic data require a multidisciplinary approach,
integrating methods from bioinformatics, genomics, and
data science. Recent advancements in sequencing
technologies, such as next-generation sequencing (NGS),
have enabled rapid and high-throughput decoding of viral
genomes, significantly advancing the understanding of
viral evolution and mutation patterns (Behjati & Tarpey,
2013). Studies on coronavirus origin and transmission
have highlighted the zoonotic potential of bats and
pangolins, supporting the theory of cross-species
transmission events that contributed to the emergence of
SARS-CoV-2 (Banerjee et al., 2019; Lam et al., 2020).

For effective analysis and categorization of genomic
data, various computational and statistical methods have
been adopted. Dimensionality reduction techniques like
Principal Component Analysis (PCA) (Hotelling, 1933;
Jolliffe & Cadima, 2016) and visualization approaches
such as t-SNE (van der Maaten & Hinton, 2008) facilitate
the interpretation of high-dimensional genetic datasets.
Clustering methods, particularly hierarchical clustering
(Bouguettaya et al., 2015) and its validation metrics like
the Hopkins statistic (Banerjee & Davé, 2004) and
Clvalid package (Brock et al., 2008), are crucial in
uncovering patterns and structure within viral genome
sequences. Moreover, embedding models such as dna2vec
(Ng, 2017) and word2vec (Mikolov et al., 2013) provide
meaningful vector representations of nucleotide sequences
for advanced data-driven analysis.
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Comprehensive analysis of coronavirus genomes has
also revealed important features related to codon usage
bias (Hershberg & Petrov, 2008), dinucleotide patterns
(Karlin, 1998), and structural properties of viral spike
proteins that influence host specificity and viral entry
mechanisms (Lu et al., 2015). The emergence of recurrent
mutations and genomic diversity across variants further

Informatica 49 (2025) 273-282 275

underscores the importance of continuous phylogenetic
and comparative studies (Van Dorp et al., 2022). Table 1
summarizes key studies addressing methodologies and
biological insights relevant to SARS-CoV-2 genome

analysis, clustering, and evolution.

Table 1: Summary of key contributions

Reference Methodology/Focus Key Findings/Applications
Banerjee A, Davé RN Hopkins Statistic for Introduced a method to validate clusters based on spatial
(2004) cluster validation data distributions, crucial for genomic data clustering.

Banerjee A, Kulcsar K, | Bats and Coronaviruses

Misra V, et al (2019)

Examined the zoonotic transmission of coronaviruses from
bats, providing insight into SARS-CoV-2's origin.

Behjati S, Tarpey PS
(2013)

Next-generation
sequencing (NGS)

NGS technologies enable comprehensive analysis of viral
genomes, aiding the detection of mutations.

Bouguettaya A, Yu Q,
Liu X, et al (2015)

Hierarchical Clustering

Provided efficient clustering algorithms for large datasets,
applicable to genomic data grouping.

Brock G, Pihur V, Datta
S, Datta S (2008)

ClValid package for cluster
validation

Introduced a method for validating clustering methods with
a focus on genomic data, ensuring reliable analysis results.

Compeau PEC, Pevzner
PA, Tesler G (2021)

De Bruijn Graphs for
Genome Assembly

Discussed the application of de Bruijn graphs for efficient
genome assembly, an essential step in viral genome
sequencing.

Hotelling H (1933) Principal Component

Analysis (PCA)

PCA for reducing dimensionality in large genomic datasets,
enhancing the interpretation of complex data.

Karlin S (1998) Dinucleotide Signatures

Identified dinucleotide biases in genomes, aiding in the
study of viral genomic features and evolutionary patterns.

Lu G, Wang Q, Gao GF | Host Jump Mechanism in

Examined the spike protein features in coronaviruses,

(2015) Coronaviruses explaining the host jump from bats to humans.
Van Dorp L, Acman M, | Genomic Diversity and Studied the recurrent mutations and diversity of SARS-
Richard D, et al (2022) | Mutations CoV-2, contributing to the understanding of viral evolution

and resistance.

. The primary objective of this study is to identify and
analyze clusters of genetically similar SARS-CoV-2
genomes from highly affected countries using advanced
machine learning and data visualization techniques. This
is achieved by transforming viral genome sequences into
k-mer-based numerical vectors, which are then subjected
to unsupervised learning through agglomerative
hierarchical clustering. To address the challenge of high
dimensionality in genetic data, we employ Principal
Component Analysis (PCA) and t-distributed Stochastic
Neighbor Embedding (t-SNE) to project the data into two
dimensions for easier interpretation and visual cluster
identification.

By linking our research goals to experimental
procedures, this study seeks to:

e Uncover distinct clusters of SARS-CoV-2

genome sequences across regions such as the
USA, France, UK, Germany, Spain, and Italy.

e Understand the evolutionary and transmission-

related genetic similarities among these clusters.

e Generate actionable insights that can guide

targeted drug and vaccine development by
identifying common mutation patterns.

e  Provide public health authorities with genomic-

level evidence to support region-specific
pandemic response strategies.

2 Materials and methods
2.1 Genome sequences and their K-mers

In this study, we collected genome sequences of the
human host SAR-CoV-2 virus from various countries
highly affected by the COVID-19 pandemic, including the
United States of America (USA), France, United Kingdom
(UK), Germany, Spain, and Italy. The lengths of the
collected genome sequences range from 29,538 to 29,987
base pairs. The distribution of genome sequences obtained
from each country as of April 16, 2020, is summarized in
Table 2 below.

Table 2: Country-wise distribution of collected
genome sequences

Countries Number of Genome Sequences
obtained
USA 85
France 72
UK 67
Germany 59
Spain 43
Italy 33

Genome sequence of length x will have x — k + 1 k-
mers. The following Table 3 describes the k-mers
sequences corresponding to the genome sequence.
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Table 3: Sample genome sequence and its k-mers

Sample Genome k-values k-mers
Sequence

ATTAAAGGTT 2

AT, TT, TA, AA,
AA, AG, GG,
GT, TT

3 ATT, TTA, TAA,
AAA, AAG,
AGG, GGT, GTT

We have considered 2-mer and 3-mer sequence for
each genome sequence in our study. K-mers sequence
generated with k=2 reveals the dinucleotide biases which
remain constant throughout the genome. Since we look for
similarity in genome sequences, dinucleotide biases act as
a distance measure between phylogenetically alike
genomes. The genomes of organisms that are related to
each other, shares more alike dinucleotide biases, than
more differently related organism [32]. An amino acid can
be uniquely represented by 64 distinct 3-mers present in
DNA. Codons are non-overlapping 3-mers present in a
genome sequence. Each codon or 3-mer maps itself to only
one amino acid. Multiple codons are required to represent
each amino acid [33]. Therefore, K-mer sequence
generated with k=3 expresses the internal codons present
in the genome sequence. The steps for the implemented K-
mers sequence generation is given in algorithm1:

Algorithm 1: K-mers sequence generation.
Input: Genome Sequence (seq),
Input: k-value (k),

Output: &£ _mers
Begin:
x = length(seq)
n=x-k+1
fori = 0tondo
j=i
J=jtk
temp = seq.substring(i,j)
k _mers =k _mers + temp
end
return k_mers
end

The methodology involves generating k-mers
sequences from collected genome data, representing these
sequences as numerical vectors using a skip-gram neural
network, and ultimately  obtaining  gene2vec
representations for further analysis. The methodology
flow diagram (Figure 1) visually summarizes the steps
outlined.

Venkataramanan et al.

Genome Sequences
and K-mers

K-mers Generation

VAN

K-mers K-mers Sequence
Characteristics Generation (Algorithm 1)

K-mers to Numerical
Vector Representation

Hierarchical Softmax
Optimization
and Implementation

Figure 1: Flow diagram

2.2 K-mers sequences to numerical vector

representation

Genome sequence to numeric vector representation
(gene2vec) uses a shallow 2-layer neural network to train
k-mers of the genome sequence. There are two options to
perform gene2vec. The first procedure is the continuous
bag of words (CBOW), which deduce the focus word
given the surrounding terms, while the second procedure
called skip-gram auspicate the surroundings terms given
the focus word. Skip-gram performs better, even with
fewer data and infrequent words [34]. We use skip-gram
procedure in our experimentation.

The neural network takes one hot encoded 2-mer
(dinucleotide) or 3-mer (codon) into a 50-dimensional
hidden layer with linear activations. The hidden layer is
fully connected to the softmax output layer, which gives a
numeric vector for each dinucleotide or codon. Finally,
gene2vec of the genome sequence is given as average
gene2vec of each dinucleotide or codon. We have selected
hierarchical softmax optimization, which uses a binary
tree to represent all 2-mer or 3-mer in the sequence. The
2-mer or 3-mer are leaves in the binary tree. The unique
path from the root to each leaf is used to calculate the
probability of the 2-mer or 3-mer represented by the leaf.
We have implemented the skip-gram model using gensim
[35] python library.



Hierarchical Clustering and Dimensionality Reduction for SARS..

2.3 Evaluating clustering tendency

The clustering analysis process starts with assessing
the clustering tendency of the dataset. It is essential to
check whether the data comprises of meaningful clusters
or not, before applying the clustering techniques to ensure
the feasibility for performing cluster analysis. We have
used Hopkins statistic [36,37] to assess the clustering
tendency of both 2-mers and 3-mers numeric vector
dataset (D containing n datapoints). For every datapoint r;
€ D, obtain its nearest neighbor r; then calculate the
distance between riand r;, which is denoted as X; = dist (r;,
r). Generate a simulated observations or dataset
(simulatedp) drawn from a random uniform distribution
with n points (Sg, S2, S3, ..., sn) With the same variations as
D (original dataset). For every datapoint s; € simulatedp,
obtain its nearest neighbor s; in D, then calculate the
distance between s; and s;, which is denoted as Yi =
dist(si;s)). The Hopkins statistic (H) is computed as the
mean nearest neighbor distance in the simulatedp dataset
upon the sum of the mean nearest neighbor distances in D
and across the simulatedp dataset i.e., given in equation 1

0.3

)

Total within sum of square

1 2 3 4 5 6 7 8 9 10
Number of clusters ‘K’

(a) Elbow method plot on 2-mers numeric vector
dataset indicates k=4.
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The value of H about 0.5 indicates that there no
intrinsic clusters present in the dataset because the value
of ¥, Y; and 1=, X; become close to each other. If the
value H is close to 0, then the dataset contains significant
clusters. The Hopkins statistic value H = 0.01031 for 2-
mers dataset and H = 0.01608 for 3-mers dataset
concludes that there are useful clusters present in our data.

2.4 Optimal number of clusters (k)

The total intra-cluster disparity or total within-cluster
sum of square (WSS) assesses the density of the
agglomeration and it is recommended to be as low as
possible. The Elbow method considers the total WSS as a
tool to determine the number of clusters. The value for
which the total WSS does not improve by adding another
cluster is regarded as the number of clusters value ‘k’. The
position of a bend (elbow) in the graph (Figure 2) usually
indicates the appropriate number of clusters.

0.1

Total within sum of square

i 2 3 % 5 6 7 8 9 a0

Number of clusters 'k’
(b) Elbow method plot on 3-mers numeric vector
dataset shows k=4.

Figure 2: Optimal ‘k’ using Elbow method
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(a) AS method plot on 2-mers numeric vector dataset
indicates k=4.
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Number of clusters ‘k’
(b) AS method plot on 3-mers numeric vector dataset

shows k=4.

Figure 3: Optimal ‘k’ using the AS method
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The Average Silhouette (AS) approach is used to
ascertain how well each datapoint is positioned within its
group. A high AS width value suggests a useful
agglomeration/clustering. The AS method calculates the
AS of data points for dissimilar ‘k’ values. The preferred
number of clusters ‘k’ is the value that has a high AS
among a scope of possible ‘k’ values, as shown in Figure
3.

2.5 Selecting best clustering algorithm

The clustering algorithms such as hierarchical,
kmeans and Partition Around Medoids (PAM) are
selected. Their internal measures such as connectivity,
Dunn index and Silhouette coefficient are computed.
Stability measures such as Average Proportion of Non-
overlap (APN), Average Distance (AD), Average
Distance between Means (ADM) and Figure of Merit
(FOM) are also calculated (Brock et al. 2008). On the basis
of values obtained from above measures, a suitable
clustering algorithm is preferred. Connectivity explains
the extent of datapoints positioned in the same group as
their nighest neighbors in the data space. The connectivity
has a value lies between 0 and oo . Minimized connectivity
value is preferred. The Dunn index is computed using
equation 2.

min.separation
max. diameter (2)
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Where ‘D’ is the Dunn index, min.separation
indicates the minimal pairwise distance between the data
points of inter-cluster. The value max.diameter specifies
the maximal pairwise distance between datapoints of
intra-cluster. Maximized ‘D’ value is preferred because
the dataset, which comprises compact and well set-apart
clusters, has small max.diameter value and large
min.separation value. Silhouette width S; of the datapoint
‘i’ is given by equation 3.

o (qi —D; )
' max (p,q,) (3)

Where p; is the average dissimilarity between i and
other data points present in the same group and g; is the
minimum average dissimilarity between i and data points
belonging to different group. The datapoint with S; value
close to 1 are correctly clustered, negative S; value
indicates wrongly clustered data point and S; value around
0 indicates that the data point halts between two clusters.
Table 3 shows the calculations of all the measures
mentioned above on 2mers and 3mers numerical vector
datasets. The optimal scores in Table 3 conclude
hierarchical clustering as a suitable clustering technique
for our datasets.

Table 4: Calculation of internal and stability clustering measures

Cluster Size
Clustering Measures K=4 K=5 K=6
algorithms 2-mers | 3-mers | 2-mers 3-mers 2-mers 3-mers
Dataset | Dataset | Dataset Dataset Dataset Dataset
Connectivity | 6.2496 | 6.1829 8.6980 9.2091 14.0222 14.8468
Dunn 0.2014 | 0.2379 0.0260 0.0253 0.0349 0.0347
Hierarchical Silhouette | 0.6732 | 0.6726 0.7043 0.6991 0.6350 0.6329
Clustering APN 0.0000 | 0.0000 0.0000 0.0327 0.0017 0.1009
AD 0.0213 | 0.0217 0.0089 0.0099 0.0083 0.0091
ADM 0.0000 | 0.0000 0.0000 0.0014 0.0000 0.0022
FOM 0.0022 | 0.0021 0.0010 0.0010 0.0009 0.0008
Connectivity | 9.9143 | 11.6202 10.9143 12.6202 12.5075 12.9976
Dunn 0.0232 | 0.0208 0.0264 0.0234 0.0295 0.0314
Kmeans Silhouette | 0.0295 | 0.7045 0.7034 0.6988 0.7487 0.7332
Clustering APN 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000
AD 0.0090 | 0.0094 0.0089 0.0092 0.0048 0.0053
ADM 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000
FOM 0.0010 | 0.0010 0.0010 0.0010 0.0006 0.0006
Connectivity | 8.6484 | 10.0341 18.4726 18.8817 12.2706 17.7635
Dunn 0.0067 | 0.0076 0.0046 0.0037 0.0034 0.0070
PAM Silhouette | 0.7521 | 0.7355 0.7236 0.7039 0.7112 0.6849
Clustering APN 0.0000 | 0.0000 0.0001 0.0025 0.0002 0.0009
AD 0.0054 | 0.0059 0.0045 0.0049 0.0039 0.0044
ADM 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000
FOM 0.0009 | 0.0009 0.0008 0.0008 0.0008 0.0008
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2.6 Agglomerative hierarchical clustering

Agglomerative Nesting (AGNES), commonly known
as agglomerative hierarchical clustering, is used to cluster
data points on the basis of their similarity. It operates in a
bottom to top manner, i.e., a data point at first taken as a
single-element group. At every move of the algorithm,
couple of most similar groups are merged into a new large
cluster. The first step is to calculate (dis)similarity
information (Euclidean distance) between each pair of
data points in the dataset, followed by joining together the
data points or clusters that are nearest in proximity using
the linkage function. Average or mean linkage function is
used in our implementation. In the case of average linkage
function, the interval between two groups is determined as
the average distance interval between the data points in
batch 1 and the data points in batch 2. After connecting the
data points in a data set into a hierarchical cluster tree, it
is significant to evaluate that the distances (heights) in the
tree resemble the original distances precisely. This is
achieved by computing the correlation between the
cophenetic distance interval and real distance interval. The
clustering is valid only if the connecting data points in the
cluster tree has a firm correlation with the distances
interval between data points in the original distance matrix
[38-43]. The cophenetic correlation coefficient value close
to 1 reflects better clustering of the data. The correlation
between cophenetic distance and the original distance for
2mers and 3mers datasets are found to be 0.9069 and
0.9071, respectively.
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3 Results analysis

The hierarchically clustered 2mers and 3mers data
contains a 50-dimensional numeric vector for each
genome sequence, which is beyond the scope of
visualization due to its high dimensions. Visualization of
analyzed data is essential to interpret and derive
knowledgeable insights. Transformation or
dimensionality reduction should be applied to the data to
ensure visualization in 2-dimensional space. PCA is an
unsupervised linear dimensionality reduction technique,
which is based on eigen vectors. PCA tries to reduce the
dimensions of feature space by preserving the utmost
amount of variance of the given data. It is computed using
eigen values. The objective of PCA is to recognize a set of
uncorrelated characteristics or features called Principal
Components (PCs). PC1 retains the maximum amount of
diversity of the given data, whereas PC2 reserves the
second maximum measure of diversity and so forth. The
first few 'm' PCs maintain the most substantial measure of
the variance of the given data and thus reduces the
dimensions of data from 'n' to 'm'. Only salient PCs
retaining maximum information are used to project data in
2-dimension or 3-dimension (low dimensional space).
Figure 4 shows a 2-dimensional projection of clustered
numerical vectors using PCA.
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Figure 4: 2-Dimensional projection using PCA

t-SNE is a nonlinear dimensionality reduction algorithm
appropriate for embedding high-dimensional data into 2-
dimensional or 3-dimensional space, making data feasible
for visualization. The most significant characteristic of t-
SNE is that it specifically transforms data points of high
dimensions into low-dimensional space in such a way that
similar and dissimilar data points in high-dimensional
space are also reflected and retained in low-dimensional
space. This transformation is achieved by assigning a high
probability for similar data points and a very low
probability for dissimilar data points. Further, it minimizes
the Kullback—Leibler divergence among high and low

dimensional space with respect to positions of the data
points. Since it deals with high-dimensional data, it leads
to crowding problem, which is skillfully handled by
employing Cauchy distribution or Student t-distribution.
Perplexity is the most essential hyperparameter, which is
defined as an effectual number of neighbors for a data
point. The recommended value for perplexity lies between
5 and 50. Figure 5 depicts the 2-dimensional visualization
of clustered numerical vectors using t-SNE.
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Figure 5: 2-Dimensional projection using t-SNE with perplexity = 42

4 Discussion

The clustering results in this study have been
compared with the state-of-the-art (SOTA) methods from
recent literature. In particular, the application of
dimensionality reduction techniques like PCA and t-SNE,
followed by clustering methods such as K-means, has
shown promising results for the analysis of genomic data.
Notably, Hozumi et al. (2021) employed UMAP-assisted
K-means clustering for analyzing large-scale SARS-CoV-
2 mutation datasets, achieving meaningful insights into
viral evolution. Similarly, Achtman et al. (2022) utilized
hierarchical  clustering  for  bacterial  genomes,
demonstrating the power of such methods in structuring
vast amounts of genomic data into relevant species,
subspecies, and populations. In comparison to these
studies, the clustering results in this paper exhibit some
differences. For example, our study employed traditional
PCA and t-SNE dimensionality reduction techniques
before performing K-means clustering, whereas Hozumi
et al. (2021) utilized UMAP, a non-linear dimensionality
reduction technique, which may offer more accurate
representations of complex, high-dimensional datasets.
While both PCA and UMAP are effective in reducing
dimensionality, UMAP tends to preserve local structures
better, which could be beneficial in certain contexts.
However, PCA remains a powerful and efficient
technique, especially when computational resources are
limited. The choice of dimensionality reduction method
could explain some differences between our results and
those observed by Hozumi et al. (2021). The novelty of
our work lies in the application of these well-established
clustering and dimensionality reduction techniques in
virology and genomics, particularly in genomic sequence
analysis. This approach is crucial for visualizing high-
dimensional data from genomic sequences, such as 2mers
and 3mers, which are commonly encountered in viral and
bacterial genomics. As demonstrated by Achtman et al.
(2022), hierarchical clustering has been instrumental in
analyzing large genomic datasets, providing insights into
the hierarchical relationships between bacterial genomes.
By using PCA and t-SNE for dimensionality reduction and
K-means for clustering, we further refine these established

techniques for the visualization and interpretation of viral
genome sequences. One of the key advantages of our
methodology is its simplicity and accessibility for
researchers with limited computational resources. While
UMAP may offer more complex representations, the
combination of PCA and t-SNE provides a clear,
interpretable view of the clustered data, with minimal
computational overhead. Moreover, our method is
applicable to a wide variety of genomic studies, including
the analysis of SARS-CoV-2 mutations and bacterial
genomics, as shown by the cited works.

5 Conclusion

In our comprehensive analysis of SARS-CoV-2
genome sequences from multiple nations, we employed
advanced computational techniques to unravel genetic
diversity patterns with significant implications for
virology, drug development, and vaccination strategies.
We compiled genome sequences from heavily impacted
nations including the USA, France, UK, Germany, Spain,
and Italy. These sequences were transformed into 50-
dimensional numerical vectors through our gene2vec
approach, facilitating quantitative genetic analysis. The
crux of our analysis lay in agglomerative hierarchical
clustering, unveiling hidden relationships within genome
sequences. By rigorously assessing clustering tendency,
identifying optimal cluster numbers using the Elbow and
Average Silhouette methods, and employing internal and
stability measures, we identified hierarchical clustering as
the most effective algorithm. Utilizing dimensionality
reduction techniques like Principal Component Analysis
(PCA) and t-Distributed Stochastic Neighbor Embedding
(t-SNE), we visualized the high-dimensional data. The
PCA projection showed 2-dimensional cluster patterns,
while t-SNE revealed intricate similarities in a reduced
dimensionality. Numerical results indicated clustering
tendencies with Hopkins statistic values of H = 0.01031
for 2-mers and H = 0.01608 for 3-mers, signifying
meaningful clusters. Both Elbow and Average Silhouette
methods suggested optimal cluster numbers of k = 4 for
both datasets. In conclusion, our analysis demonstrated the
genetic diversity of SARS-CoV-2 across nations.
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Clustering patterns suggested shared genetic features
among countries, impacting vaccine and therapeutic

strategies.

This study underscores computational

methodologies in understanding complex biological

phenomena,
emerging

contributing to preparedness against
infectious diseases and advancements in

genomics research.
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