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Detecting plant diseases is critical in maintaining food security worldwide and contributing to the United 

Nations Sustainable Development Goal (SDG) 2: Zero Hunger. In traditional agricultural settings, 

farmers identify diseases manually, often inaccurate and time-consuming, highlighting the need for 

advanced automated solutions. Current deep learning methods face challenges such as scalability 

limitations, imbalanced training datasets, and suboptimal feature extraction, reducing their effectiveness 

in real-world applications. This study introduces LDDNet, a novel deep-learning model designed to 

overcome these limitations by incorporating a custom Inception layer for efficient multi-scale feature 

extraction and Global Average Pooling (GAP) layers to improve generalization and reduce overfitting. 

The model was trained and evaluated using the PlantVillage dataset, with advanced preprocessing 

techniques, including augmentation and Region of Interest (ROI) extraction to ensure high-quality inputs. 

Experimental results demonstrate that LDDNet significantly outperforms state-of-the-art models, 

including VGG16, InceptionV3, and ResNet50, achieving an accuracy of 97.54% and an F1-score of 

96.13%, with enhanced robustness under varied real-world conditions. The custom Inception layer allows 

LDDNet to effectively capture varying disease patterns across multiple crops, contributing to its superior 

performance. Furthermore, LDDNet’s architecture is inherently flexible, supporting deployment on high-

performance servers and resource-constrained edge devices, making it suitable for diverse precision 

agriculture scenarios. This adaptable and efficient framework offers a reliable solution for early and 

accurate disease identification, reducing crop losses and promoting sustainable farming practices, 

enabling resource-optimized farming by reducing unnecessary treatments and minimizing crop losses.  

Povzetek: Članek predstavi model LDDNet s prilagojeno plastjo za večdimenzijsko zaznavanje bolezni 

na listih, kar omogoča visoko točnost v kmetijstvu. 

 

1 Introduction 

Feeding the world is one of the most significant issues we 

face today, particularly with a growing global population 

and finite agricultural space. Diseases in the leaves have a 

considerable influence on crop yields, causing economic 

losses and threatening the food supply chain. Conventional 

procedures in plant disease identification are laborious and 

dependent on human expertise, and they cannot often 

identify initial signs of infections. To address these 

limitations, advanced technologies, such as deep learning, 

have emerged as practical solutions for detecting diseases 

in precision agriculture, helping advance SDG 2: Zero 

Hunger, a Sustainable Development Goal of the UN (Fig 

1). 

DL models have recently been proven to be the most 

appropriate choice for identification of plant diseases. 

Sharma et al. Fine-tuned convolutional neural networks 

(CNNs), such as MobileNetV2, have been proven to work 

better than other classical ML classifiers in multi-class 

plant disease classification [1]. Rajpal et al. [2] established 

that detecting leaf diseases using Inception-ResNet-V2 

appears robust with reasonable accuracy. However, these 

models are typically very hard to scale and inefficient 

when dealing with unbalanced datasets. Traore et al. [3] 

current architectures cannot remedy feature 

extraction/generalization issues. Additionally, Singh et al. 

4 Solindis et al. introduced transformer-based hybrid 

models, but their computational cost needed to be lowered. 

Such results emphasize the necessity of designing new 

architectures suited to the agricultural domain. This study 

proposes a robust deep learning framework (LDDNet 

model) that utilizes a custom Inception layer for multi-

dimension feature extraction, a GAP layer for dimension 

reduction, and dropout layers for regularization.  

The term robust in this paper indicates that the model can 

maintain high classification accuracy over diverse plant 

species, diverse disease patterns, and noisy or imbalanced 

datasets, indicating high generalization performance. 

Likewise, “efficient” implies an equilibrium between 
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classification performance and the expenses incurred in 

computing—namely, how well the model can be deployed 

onto limited-context scenarios whilst maintaining 

predictive quality. 

This study introduces LDDNet, a CNN-based deep 

learning model integrating a modified Inception layer for 

enhanced multi-scale feature extraction. Unlike 

conventional Inception modules, the proposed custom 

Inception layer combines depthwise separable 

convolutions, asymmetric kernel structures (1×3 and 3×1 

convolutions), and channel attention mechanisms, 

optimizing feature representation while reducing 

computational overhead. This work contributes the 

following: 

1. A deep learning framework to detect leaf disease 

for precision agriculture optimization 

2. We propose a new architecture called LDDNet 

for identifying plant leaf diseases. 

3. A solid pre-processing pipeline and 

hyperparameter tuning for better performance. 

This paper has the following structure: Section 2 presents 

a thorough literature evaluation highlighting relevant 

publications and research needs. Section 3 covers the 

materials and procedures, such as the dataset, pre-

processing, and the LDDNet architecture. Section 4 shows 

the experimental findings, demonstrating the effectiveness 

of the model. Section 5 provides a detailed discussion, 

comparing LDDNet with existing models and analyzing its 

practical implications. Section 6 wraps up the work and 

suggests areas for further investigation to enhance 

precision agriculture. 

 2 Related work 

 Agriculture is essential to the world's food security and 

economic growth. Leveraging advanced technologies like 

AI and deep learning enhances sustainability, efficiency, 

and precision in farming. Researchers focus on addressing 

challenges such as disease detection, crop management, 

and resource optimization, highlighting the transformative 

potential of AI-driven solutions for precision agriculture. 

Luo et al. [1] state that agriculture is critical in integrating 

technology to solve sustainability, efficiency, and 

adaptation for food security and economic expansion. In 

addition to supporting geographical and economic 

searches, the system guarantees scalability and quick data 

input. Deep learning algorithms and big data technologies 

for precision agriculture are areas of future research. Cina 

et al. [2] tackled environmental issues and the world's food 

requirements by AI revolutionizing agriculture. 

Productivity, sustainability, and profitability are all 

increased by intelligent farming, which combines robots 

and IoT. Researchers utilize sensors and AI technology for 

better crop management and seeds to investigate uses of 

Predictive analytics, soil monitoring, and agricultural AI 

robots—future research on safe, climate-aware, and 

sustainable. The study provides information on current AI 

applications in intelligent farming and insights and 

recommendations for researchers working on the subject. 

Ahmad et al. [3] used cutting-edge precision instruments 

to classify crop kinds and estimate crop production 

remotely. With spatial filtering and pre-processing, the 

fuzzy ensemble technique outperforms individual methods 

by 13–24 percent and achieves unbiased crop 

classification. The suggested design enhances yield 

estimates and facilitates lightweight categorization on 

distant devices—Su [4] deled with growing labor expenses 

and weeds resistant to herbicides. Crop plant signaling 

promises precise automatic plant recognition while 

assisting in the detection of weeds. Traore et al. [5] 

Agriculture is changing due to recent communication and 

linked items developments. Precision agricultural 

difficulties benefit from deep learning. Cooperation 

improves autonomous robots, drones, and vision-based 

systems for targeted therapies. Future research investigates 

Vision Transformer about sustainable agriculture. 

Pavithra et al. [6] Advanced disease detection is necessary 

for plant phenotyping and precision agriculture. The DL-

APDDC model employs XGBoost for classification, 

Squeeze Net as a feature extractor, and U2Net for region 

extraction. Improved results are verified using benchmark 

datasets. Sharma et al. [7] that reliable picture recognition 

is aided by computer vision. With a record-breaking, this 

article presents EfficientNetB4 for tomato fault separation. 

Similar performance is shown by other models, 

encouraging further uses. Sun et al. [8] Affected diseases 

yield to tomato crop—imbalanced datasets impact 

benchmark performance. A possible substitute for 

traditional CNNs is SSNet, a lightweight CNN. Naresh et 

al. [9] state that for crops to be productive, soil—made up 

of organic and mineral elements—needs the right amount 

of moisture. Soil moisture is accurately predicted using 

decision tree models. Rajpal et al. [10] suggested that the 

method accurately identifies plant diseases and evaluates 

their severity utilizing DWT, PCA, and DNNs. 

Karim et al. [11], cutting-edge technologies like IoT, AI, 

and robots are integrated with smart agriculture to improve 

farming efficiency while tackling adoption issues in the 

future. Durai et al. [12] state that the growth of agriculture 

is essential. Traditional techniques need to be more 

accurate, which reduces output. By utilizing cutting-edge 

technologies, precision farming increases productivity and 

forecasts results. Balog et al. [13], using cutting-edge 

technologies, smart farming solves problems in agriculture 

and focuses on improving methods for effective and 

sustainable crop production. Gupta et al. [14] Identify 

tomato crop diseases using a lightweight Convolution 

Neural Network model that outperforms pre-trained and 

traditional machine learning models. The identification of 

severity and extension to other crops are areas of future 

exploration. Sharma et al. [15] Convolutional Neural 

Network (CNN) training on segmented photos leads to 

unknown data, considerably improving illness 

identification. 

Yu et al. [16] suggest a very effective CNN design for 

potato disease diagnosis that achieves accuracy while 

consuming the fewest resources possible. Anand et al. [17] 

demonstrated two CNN architectures for identifying 

diseases of tomato leaves. With the integration of an 

attention mechanism, the second design achieves. Gole et 
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al. [18] suggested merging convolutional neural networks 

(CNN) with convolutional autoencoders (CAE) to create a 

hybrid model to identify plant diseases. Training time is 

decreased because the model uses fewer parameters to 

attain high accuracy. Saba et al. [20] are accurate by 

concentrating on practical machine vision for the early 

identification and categorization of illnesses affecting 

apples and bananas.  

Mishra et al. [21] identified maize leaf diseases with a real-

time deep neural network that has an accuracy of 88.46%. 

Gajjar et al. [22] suggested using an Nvidia Jetson TX1 

deep CNN to identify real-time agricultural diseases. 

Surpasses current designs with 96.88% accuracy in illness 

categorization and demonstrates resilience in field testing. 

Devi et al. [23] discussed plant biosecurity and suggested 

a CNN model combined with loss to diagnose plant 

diseases efficiently. The model's suitability under different 

circumstances requires more research. Brohi et al. [24] 

highlight how vital plants are for nourishment and energy. 

It shows that DL (VGG-16) outperforms ML approaches 

by 89.5% for citrus plant disease identification. For better 

outcomes, future strategies call for combining bio-inspired 

techniques, cloud computing, and IoTs. Kaur et al. [25] 

discussed the expanding population and scarce agricultural 

land worldwide, focusing on creative methods for raising 

crop productivity. Regarding illness classification, a deep 

CNN model powered by Bayesian methodology achieves 

98.9% accuracy, indicating efficiency and less overfit. The 

use of nanomaterial improves diagnostic instruments.  

Xie et al. [26] discussed the difficulties in identifying 

agricultural diseases in the wild and suggested an Internet 

of Things system that uses the Multi-Context Fusion 

Network. Outperforming state-of-the-art techniques, 

MCFN leverages contextual information for robust 

recognition with accuracy. Pradhan et al. [27] examined 

the usage of the Spectral Disease Index (SDI) in the 

context of plant disease diagnosis when applying Neural 

Network (NN) applications for hyperspectral data. Future 

trends and challenges are examined. Gupta et al. [28] 

presented a hybrid method that combines autoencoders and 

convolutional neural networks to identify agricultural 

diseases. High across several epochs and filter sizes was 

attained. He et al. [29] described a technique that achieves 

excellent accuracy and short identification times for 

effective rice disease diagnosis using Faster R-CNN fusion 

and FCM-KM. Further research will focus on broader 

applicability and real-time dynamic detection. Reddy et al. 

[30] outperform pre-trained models in their effective CNN 

model for recognizing field agricultural insects. High 

accuracy of 96.75%, 97.47%, and 95.97% was attained for 

several insect datasets.  

Sharma et al. explored fine-tuned deep learning models 

like VGG16, AlexNet, ResNet18, and MobileNetV2, 

achieving a 94.4% accuracy with MobileNetV2 on a 

collection of 39 leaf classifications, both healthy and ill, 

demonstrating its effectiveness for diverse plant diseases 

[31]. Pascal et al. systematically reviewed 160 studies, 

highlighting advancements in early-stage plant disease 

detection through deep learning models trained on large, 

high-quality datasets, emphasizing their precision and 

reliability [32]. Aldakheel et al. employed YOLOv4 on the 

Plant Village dataset, achieving a near-perfect 99.99% 

accuracy in identifying leaf diseases, showcasing its 

applicability for real-time precision agriculture [33]. 

Rajpal et al. used the Inception-ResNet-V2 model on the 

PlantVillage dataset, achieving a 10-fold cross-validation 

accuracy of 99.91%, outperforming other architectures in 

leaf disease classification [34]. Yao et al. evaluated CNN, 

YOLO, and SSD models for crop disease detection, 

achieving recognition accuracies exceeding 90% and 

highlighting the suitability of these methods for tropical 

agriculture [35]. Qian et al. investigated transfer learning 

strategies for leaf disease detection, enhancing 

performance by leveraging pre-trained models on small 

agricultural datasets with limited annotated samples [36].  

Table 1: Comparison of state-of-the-art (SOTA) deep 

learning models for leaf disease detection, highlighting 

their key findings, limitations, and research gaps 

Refer

ence 

Method Key 

Finding

s 

Limitati

ons 

Researc

h Gap 

Sharm

a et al. 

[7] 

Efficient

NetB4 

High 

tomato 

disease 

classific

ation 

accuracy 

No multi-

scale 

feature 

extractio

n 

Need for 

CNN 

models 

with 

multi-

scale 

capabilit

ies 

Sun et 

al. [8] 

SSNet 

(Lightwe

ight 

CNN) 

Good 

perform

ance on 

imbalan

ced data 

Limited 

real-

world 

evaluatio

n 

Robust 

models 

with 

real-

world 

applicab

ility 

Rajpal 

et al. 

[10] 

DWT, 

PCA, 

DNNs 

Accurate 

plant 

disease 

detectio

n 

High 

computat

ional 

complexi

ty 

Lightwe

ight 

architect

ures for 

efficient 

detectio

n 

Gupta 

et al. 

[14] 

Lightwei

ght CNN 

Better 

than 

tradition

al ML 

models 

Limited 

dataset 

evaluatio

n 

Need for 

extensiv

e dataset 

validatio

n 

Yu et 

al. 

[16] 

Efficient 

CNN for 

Potato 

Disease 

Achieve

s high 

accuracy 

with low 

computa

Limited 

to 

specific 

crop 

diseases 

Generali

zable 

models 

for 
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tional 

cost 

multiple 

crops 

Saba 

et al. 

[20] 

Machine 

Vision 

for Apple 

& 

Banana 

Disease 

Detection 

Early 

and 

accurate 

disease 

classific

ation 

Limited 

interpreta

bility 

Explain

able AI 

for plant 

disease 

models 

Gajjar 

et al. 

[22] 

Deep 

CNN on 

Nvidia 

Jetson 

TX1 

96.88% 

accuracy

, real-

time 

classific

ation 

Hardware

-

dependen

t model 

Flexible 

deploym

ent 

solution

s 

Xie et 

al. 

[26] 

IoT-

based 

Multi-

Context 

Fusion 

Network 

Robust 

disease 

detectio

n 

High 

complexi

ty 

Lightwe

ight yet 

robust 

architect

ures 

Aldak

heel et 

al. 

[33] 

YOLOv4 

on 

PlantVill

age 

99.99% 

accuracy 

Lack of 

model 

generaliz

ability 

Models 

applicab

le to 

diverse 

datasets 

Singh 

et al. 

[37] 

CNN + 

Transfor

mer 

Hybrid 

Superior 

perform

ance in 

multi-

class 

tasks 

Increased 

complexi

ty 

Efficient 

hybrid 

architect

ures 

 

Singh et al. proposed a hybrid approach integrating CNN 

and transformer models, achieving superior performance 

in complex multi-class leaf disease detection tasks [37]. 

Zhang et al. developed a lightweight CNN architecture 

optimized for mobile platforms, ensuring efficient disease 

detection in resource-constrained environments [38]. Li et 

al. analyzed the role of attention mechanisms in deep 

learning, proposing an attention-guided model for fine-

grained leaf disease detection with increased accuracy and 

robustness [39]. Ahmed et al. focused on explainable AI, 

integrating saliency maps with CNN models to provide 

interpretable insights into leaf disease classification, 

aiding practical deployment [40]. Table 1 presents a 

summary of the research findings. Despite exploring many 

deep learning models in the detection of plant diseases, 

such as VGG16, ResNet50, EfficientNet, and transformer-

based hybrid methods, each model has its limitations, 

making them not applicable to precision agriculture. 

Though they suit multi-class classification, transformer-

based models are also computationally expensive, 

hindering deployment in resource-constrained 

environments. LDDNet tackles this with a custom 

Inception layer that employs depthwise separable 

convolutions and asymmetric kernels, which promote 

multi-scale feature extraction but incur much lower 

computational overhead. Despite being efficient, 

lightweight CNNs such as MobileNetV2 frequently 

compromise feature extraction granularity, resulting in 

errors when differentiating visually alike types of disease. 

LDDNet has bridged this gap by ensuring the network is 

computationally efficient while not compromising 

classification accuracy, allowing it to seamlessly work 

across high-performance serverless edge-device 

deployment throughout precision agricultural 

environments. Based on the Global Average Pooling 

(GAP) layers and the attention mechanisms on the 

channels, LDDNet determines the problems of overfitting 

and generalization performance in many existing models. 

The architectural design of LDDNet directly addresses 

and overcomes the limitations found in existing literature, 

offering a practical and scalable solution for agricultural 

disease detection in the field. 

3 Materials and methods 

The suggested LDDNet model for leaf disease detection 

was developed and tested methodically, as detailed in this 

section. The baseline dataset used for testing and training 

is PlantVillage, which has many diverse images of leaves. 

Data was normalized and augmented to validate the 

models. The LDDNet architecture contains convolutional 

layers, modules for specific Inception types, and fully 

connected layers that have been tuned for classifications of 

diseases. We have used Bayesian optimization-based 

tuning of hyper-parameters & ensured the model quality 

with vital evaluation metrics. This part closely examines 

the tools, methods, and processes used. 

3.1 Methods 

This study proposes implementing a state-of-the-art CNN-

based deep learning model (LDDNet) for accurate and 

efficient leaf disease recognition of crops. This study 

proposes to improve categorization accuracy in a CNN 

architecture via the custom Inception layer, enabling 

spectral feature extraction on varied spatial scales and 

aiding in generalized learning of features found in different 

disease presentations. Furthermore, while there have been 

promising results surrounding the use of Global Average 

Pooling (GAP) layers, this study will aim to address 

whether including GAP layers leads to a reduction in 

overfitting without negatively impacting model 

performance. The expected results are higher classification 

accuracy, better robustness to real-world environmental 

conditions, and lower computational complexity than 

current deep learning-based models. 

An essential part of this research design is the 

preprocessing of the data set, which has a vital role in 

enhancing the generalization ability of LDDNet. Gaussian 

smoothing is applied to minimize noise and make features 

as similar as possible to recognize disease patterns across 

varying lighting conditions and different leaves' textures. 
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Image augmentations like rotation, flipping, contrast 

changes, and zoom transformations are also introduced to 

add variations to the data to simulate real-life 

environments. In addition to avoiding overfitting, these 

data augmentation strategies render LDDNet less 

sensitive/less rigid to the diversity of agricultural settings; 

this is important in our case since disease symptoms vary 

on each plant species and under different Field conditions. 

The dataset was split into training (70 %), validation (15 

%), and testing (15 %) sets, with exponential class balance 

representation for each disease class in each split, thereby 

further strengthening the model's generalization 

capabilities. 

Considering DL, this section will describe the framework 

of leaf disease detection, starting with data collection from 

the PlantVillage dataset. Data is pre-processed to 

guarantee true feed-ins and then goes through the step 

when features are extracted and classified utilizing the 

LDDNet model. The framework includes training, 

hyperparameter tuning, and evaluation to optimize 

performance and make accurate predictions built into a 

scalable detection pipeline. 

Figure 1: Proposed deep learning framework for optimized leaf disease detection towards precision agriculture 

In Figure 1, we have given a general system in precision 

agriculture for DL, which is used to identify leaf disease.  

Your training data extends only to October 2023, so the 

new entry starts with a description of the PlantVillage 

dataset, an extensive collection of annotated images 

showcasing a variety of leaf conditions, ranging from 

healthy to diseased. The first step involves pre-processing 

the data, and significant noise reduction steps are used to 

increase clarity so that unrelated artifacts do not affect the 

model's performance. Normalization makes the pixel 

intensity values belong to a scale so that it helps during the 

learning process. Furthermore, image augmentation 

methods (such as rotations, flips, and zooms) artificially 

increase the dataset, allowing the model to generalize well 

for all conditions. After pre-processing, the dataset is 

divided into training and testing subsets to validate 

performance and evaluate the learning of unseen data. The 

LDDNet model — an enhanced CNN designed explicitly 

for leaf disease image recognition — is configured in the 

model setup phase. This includes defining architecture and 

compiling the model with suitable loss functions, 

optimizers, and evaluation metrics. After setting up the 

training process, the execution begins, allowing the model 

to learn the disease features by updating the model 

hyperparameters multiple times. 

In particular, hyperparameter tuning is a critical step in this 

framework since model performance can be highly 

dependent on the tuning of hyperparameters (for example, 

learning rate, batch size, number of convolutional filters, 

etc.) This tuning process guarantees that mission capability 

from the LDDNet model reaches its full capability and 

maintains the balance between accuracy and performance. 

After the training, the optimized model detects the leaf 

disease, yielding exact outcomes for further insights. The 

last phase involves run-time evaluation and alert 

generation. Analyzing accuracy, precision, recall, and F1-

score performance measures is necessary to determine the 

model's efficacy. Alerts are generated based on these 

results, which facilitate timely interventions for disease 

management. Finally, Performance evaluations are used to 

communicate the findings, statistics, and detection results, 

showing the effectiveness of the proposed system in 

promoting precision agriculture. Overall, this framework 

provides a powerful method for applying deep learning to 

solve pressing problems in agricultural sustainability and 

productivity. 
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3.2 Proposed LDDNet model 

The suggested model shown in Figure 2, the LDDNet 

architecture, is an enhanced DL model designed to detect 

leaf diseases accurately and efficiently. The model starts 

with an input layer that takes images of a specific size 

corresponding to the preprocessed PlantVillage dataset. 

Then, a chain of convolutional layers is used with max-

pooling operations to take the input photos and extract 

their hierarchical characteristics [16]. Thirty-two filters 

and a 3x3 kernel size are used in the first convolutional 

layer, applying the ReLU activation function to learn basic 

features. The successive layers in the stack double the 

number of filters to 64 and 128, respectively, enabling the 

network to pick up increasingly intricate and abstract 

patterns relevant to identifying leaf diseases. This helps 

reduce the size of input data transfer to the subsequent 

network tiers and reduces computational complexity while 

retaining important information. The max-pooling layers 

also used a pool size of 3x3 between convolutional layers. 

 

Figure 2: Proposed deep learning model known as LDDNet 

A dropout layer is added after the third convolutional block 

to prevent overfitting, where 20% of the neurons are 

deactivated during training at random. The model's 

uniqueness has been the implementation of a custom 

Inception layer that computes multiple scales of a feature 

simultaneously using a series of parallel convolutional 

operations with varying kernel sizes plus the pooling 

operations. This allows the model to recognize different 

features of leaf diseases (i.e., local spots or broader color 

change), making it more robust. Global Average Pooling 

(GAP) is used at the top of the Inception layer to reduce 

dimensionality further while preserving some spatial 

information. The dense layer further consolidates the 

extracted features, preparing the output using 256 neurons 

and ReLU activation functions for classification. A second 

0.5 dropout layer rate is beneficial to increase 

generalization. The last output layer uses the softmax 

activation function to predict probabilities of each class, 

representing features of different leaf diseases or healthy 

states—integration of LDDNet in the proposed system. 

The proposed system demonstrates the final step for 

optimized leaf disease detection in India. It hooks onto the 

data pre-processing pipeline to process the images and 

uses hyperparameter-tuned configurations to maximize 

performance. The model's output is the basis for producing 

actionable insights for precision agriculture, facilitating 

timely detection and intervention. LDDNet, with its 

combination of efficient architecture and powerful feature 

extraction and classification capabilities, serves as the 

basis of the system to tackle potential challenges in 

agricultural sustainability. 

3.3 Preprocessing 

The data preprocessing pipeline for this dataset was one of 

the most critical steps in our study because it was required 

to prepare the PlantVillage dataset to be used efficiently in 

training the LDDNet model. The preprocessing steps were 

taken to improve input image quality, extract consistent 

information, and increase the dataset to increase the ability 

for model generalization. In preprocessing, the first step 

was reducing any image noise. Therefore, we applied 

Gaussian smoothing to smooth the images and eliminate 

any noise or unwanted artifacts.  

Gaussian smoothing was applied to the input images to 

reduce noise and improve feature consistency with a 

kernel size 3×3 and standard deviation (σ) of 1.0. Gaussian 

smoothing has been selected to smooth out less relevant 

variations and background noise, which could render the 

model unable to focus on base disease features. More 

    Conv2D (32, (3, 3), activation='relu') 

    Conv2D (64, (3, 3), activation='relu') 

    Conv2D(128, (3, 3), activation='relu') 

 

 

Maxpooling2D (pool_size=(3, 3) 

Maxpooling2D (pool_size=(3, 3) 

Maxpooling2D (pool_size=(3, 3) 

 

InceptionLayer(32) Dropout (0.2) 

Dropout (0.5) 

 

GlobalAveragePooling2D() Dense(256, activation='relu') 

Class 1 

Class 2 

Class 3  

… 

Class n 
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specifically, as it smoothens the image and reduces noise 

without substantially blurring the disease patterns, 

Gaussian filtering helps the model extract clean and 

consistent features and thus increases generalization. The 

3×3 kernel and σ=1.0 were empirically selected; 

preliminary experiments had found that larger kernels 

caused too much loss of detail, and smaller kernels had 

little effect on reducing noise. 

This essential process assisted in remembering the leaf 

patterns and disease features by clearing the background 

changes, which can otherwise misguide the training 

model. After eliminating noise, we normalize all images' 

pixel intensity values into the [0,1] range. During this step, 

scaling the input data must possess a zero mean and one 

standard deviation, ensuring that the data was on the same 

scale and making it easier for the model to train. 

Normalization also helped reduce the effects of variations 

in lighting conditions across the dataset, allowing the 

LDDNet model to learn disease-relevant features rather 

than external variations. 

Afterward, we applied augmentations to artificially 

increase the data and add variety, an essential aspect of 

enabling the model to generalize to fresh or untested inputs 

more effectively. This augmentation includes random 

rotation, horizontal and vertical flipping, zooming, and 

random cropping. These techniques mimic practical 

situations, like differences in leaf orientation, size, and 

location, and improve the robustness of the LDDNet 

model. With these pre-processing steps, we obtain a 

dataset of high-quality diversified images. Thus, this 

repeated process made its training meaningful and 

focused, and it provided concise input as per the working 

model LDDNet, which helped the model detect and 

classify leaf disease with higher potency and accuracy. 

Different data augmentation techniques were implemented 

in the training stage to improve the model's generalization 

ability and decrease overfitting. The augmentation 

techniques applied were random rotation between -30° and 

+30°, horizontal and vertical flipping, brightness change 

between -20% and +20%, and zoom from 0.8× to 1.2×. 

These augmentations were sampled with a 50% 

probability for all tested images, meaning that the 

specification was guaranteed to ensure that the model 

would be exposed to both original and augmented image 

types during training. 

The augmentation techniques are chosen based on 

considerations of a real-world agriculture scenario. Field 

conditions might have left indifferent orientations; 

therefore, rotation and flipping allow the model to become 

invariant to positional differences. Likewise, agricultural 

fields' lighting conditions are often inconsistent, caused by 

sunlight, shadow, and cloud; thus, brightness adjustments 

are made to simulate these variations. Zoom 

transformations are valuable in ensuring no excessive 

variability in the distance from the camera and resolution,  

which is essential when images are taken using different 

devices, like drones or handhelds. 

Tests were performed to see how effective the 

augmentation strategies were. They ran training with and 

without augmentation to show that applying these 

augmentations results in a measurable improvement in 

your model performance! That is, augmentation improved 

the model with 3.2% and 2.8% in validation accuracy and 

F1-score, respectively, suggesting a positive impact on 

generalization. On the other hand, aggressive 

augmentation, like not effectively handling very high 

rotations, i.e., > 45 degrees or zoom beyond reasonable 

limits, harmed the model's performance by losing critical 

disease features. Hence, augmentation parameters were 

deliberately chosen to ensure diversity without 

compromising data integrity. These results validate the 

crucial impact of the augmentation techniques selected on 

the robustness of LDDNet, enabling the model to 

generalize to diverse real-world scenarios while 

maintaining its classification performance. 

All images were resized to 224×224 pixels, and pixel 

values were normalized in the range of [0,1] by dividing 

by 255. To enhance the generalization performance of the 

model, data augmentation methods were applied, such as 

random rotation (±30°), flipping (horizontal and vertical), 

brightness variation (among ±20% of brightness) as well 

as zoom (0.8× to 1.2×), as shown in the following images. 

The noise was reduced by Gaussian smoothing (3×3 

kernel). We use Adam optimizer with an initial learning 

rate of learns in 0.0001 (reduce it by a factor of 0.1 

obtained on every 10 epochs), batch size of 32, and 50 

epochs to train the model. To avoid overfitting, dropout 

(0.5) and regularization (λ = 0.0001) were applied, and 

categorical cross-entropy was used as the loss function. All 

experiments were run on an NVIDIA Tesla V100 GPU 

(32GB VRAM) using TensorFlow 2.9.1 & Python 3.8.10. 

We used OpenCV 4.5.3 for image processing functions 

and, again, used Albumentations 1.1.0 to call all our 

augmentations to make all the code reproducible. 

3.4 Model setup 

The LDDNet network structure comprises multi-level 

feature extraction using multiple convolution layers 

capable of processing low-level and high-level texture 

information complementary to disease classification. 

Here, "most important profiles" means that discriminatory 

characteristics like irregularities in leaf texture, shapes of 

lesions, colors, and patterns of spots according to diseases 

play vital roles in precise disease identification. Our 

custom Inception layer, which uses depthwise separable 

convolutions and asymmetric kernels, ensures that the 

network effectively focuses on disease-specific profiles by 

enhancing its ability to capture multi-scale and orientation-

invariant features. 

Global Average Pooling (GAP) layers were added after 

the last convolution layers to avoid overfitting and 

promote generalization. GAP layers down-sample the 

spatial dimensions of feature maps while maximizing the 

retained salient information, thus constraining the model 

from relying too much on positional information. GAP 

layers have been validated effectively to prevent 

overfitting by checking for gaps between training and 

validation metrics of accuracy and loss. As observed in our 

experiments, we saw a considerable divergence of training 

and validation curves after 30 epochs for models without 
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GAP. Still, those for models with GAP remained very 

close, indicating that overfitting was significantly reduced. 

We selected the Adam optimizer because of its adaptive 

learning rate mechanism, which dynamically adjusts the 

learning rate for each parameter based on the first and 

second moments of gradients. This allows much faster 

convergence and training stabilization in the presence of 

noisy gradients, which are highly likely in datasets like 

PlantVillage. However, through empirical tests, we 

showed that Adam converges faster and is more robust 

than classic optimizers, such as SGD. 

3.5 Hyperparameter tuning 

Specifically, the hyper-parameter tuning scheme was 

devised to maximize LDDNet performance without 

sacrificing computational efficiency. The search spaces 

for individual hyperparameters were established by 

considering benchmarks from the literature, empirical 

testing, and the plant disease classification task 

requirements. For example, the learning rate search space 

was defined between 0.0001 and 0.01 since low learning 

rates are generally more stable for convolutional-based 

architectures that have to deal with high-resolution 

imagery. After finding out that using more significant 

learning rates caused the training to become too unstable, 

teaming it with smaller ones and slowing it down (the 

preliminary runs), this range was decided on. 

The batch size ranged between 16 and 64 strikes, enabling 

a tradeoff between memory usage and gradient stability, 

considering available GPU resources. The dropout was 

similarly tuned from a range of 0.3 to 0.6 to help prevent 

overfitting but not overly penalize the network’s ability to 

learn11. Finally, L2 regularization (λ) between 0.00001 

and 0.001 was sufficient for regularizing the weights 

without preventing the model from learning. Training was 

limited to 50 epochs, with early stopping implemented 

when validation loss was unchanged for 10 epochs. 

The ranges were selected based on preliminary grid search 

experiments showing that extreme values (e.g., overly 

high dropout or too small learning rates) lead to 

underfitting or redundant computational effort. The best 

hyperparameter configuration was chosen based on 

convergence behavior in which consistently increasing and 

stabilizing training and validation accuracy was observed. 

This means the model converged in about 35 epochs with 

a slight difference and fluctuation for training and 

validation accuracy. The convergence was consistent on 

these two different metrics, even leading to. 

Table 2: Details of hyperparameter tuning 

Hyperparameter Search 

Space 

Final Value 

Learning Rate 0.0001 – 

0.01 

0.0001 

Batch Size 16 – 64 32 

Dropout Rate 0.3 – 0.6 0.5 

L2 Regularization 0.00001 – 

0.001 

0.0001 

Number of 

Epochs 

Up to 50 50 (early stopping 

applied) 

 

Table 2 tuning process enhanced LDDNet’s generalization 

ability, achieving higher accuracy and faster convergence 

while minimizing overfitting. 

3.6 Model training and fine-tuned leaf disease 

detection 

Based on the PlantVillage benchmark database (a high-

quality database of diseased and healthy leaves), the 

LDDNet model was trained using their training set. The 

dataset used for training was augmented with rotation, 

flipping, and zooming to introduce more variability and aid 

generalization. Normalization (Convert all Pixels Value 

Between 0 to 1) Resizing (All Images to the Same Size). 

To facilitate computational training, the images were fed 

to the model in batches of 32. To avoid local minima and 

achieve faster convergence, we employed the Adam 

optimizer, which dynamically modifies the learning rate 

during training. The discrepancy between the actual and 

expected class probabilities was quantified with 

categorical cross-entropy as the loss function. The test set 

performance was assessed at each epoch to monitor and 

prevent overfitting during the model's 50 total training 

epochs. Remarkably, 20 epochs were sufficient for the 

LDDNet model to converge with stable validation 

accuracy. However, training through to 50 epochs was 

conducted to assess robustness and prevent overfitting 

across multiple passes through the dataset. Early stopping 

was used to stop training once validation performance 

plateaued to reduce unnecessary computation. The model's 

novelty here is layered Inception, which extracts features 

at different scales on the data at once. This change in 

architecture helps the model learn how to recognize the 

various patterns of diseases, be it a small isolated spot or 

overall color changes. LDDNet’s robustness and 

competitiveness over various disease symptoms heavily 

rely on the custom Inception layer. After the training stage, 

the model is serialized (using HDF5 format) for real-time 

applications. This persisted model was plugged into an 

optimized leaf disease detection pipeline to perform 

accurate and scalable predictions and an alert generation 

mechanism for timely alerts to farmers. 

To evaluate LDDNet’s robustness under real-world 

conditions, we emulated dynamic streaming data by 

sequentially feeding batches of test images in varying 

orders and time intervals. Although real-time streaming 

was not implemented on physical sensors, this emulation 

effectively simulates fluctuating data input, reflecting 

practical deployment scenarios. 
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3.7 Mathematical model of LDDNet 

The convolution technique itself forms the basis of a 

convolution layer. Assume you possess an input image, a 

feature map is a matrix I am using H by W measurements, 

where H stands for height and W for width. A smaller 

matrix K with dimensions F×F, where F is the filter size 

(e.g., 3×3). Element-wise multiplication occurs when the 

filter is moved over the input picture during the 

convolution process, and the outputs are added together. 

Calculating the production at location (i, j) in the resultant 

feature map () mathematically given an input picture I and 

a filter K is as in Eq. 1. 

𝑂(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 + 𝑢, 𝑗 + 𝑣) ∙𝐹−1
𝑢−0

𝐹−1
𝑢−0

𝐾(𝑢, 𝑣)     (1) 

In the input image, i and j represent the filter's current 

position, while u and v represent the coordinates inside the 

filter. A filter is applied to the input image, and the stride 

controls how many pixels the filter travels at each stage. 

For example, a stride of s=1 moves the filter one pixel at a 

time, while a larger stride skips pixels, decreasing the size 

of the produced feature map. The factors expressed in Eq. 

2 and Eq. 3 influence the size of the generated feature map.  

𝐻𝑜𝑢𝑡 =
𝐻−𝐹+2𝑃

𝑠
+ 1              (2) 

𝑊𝑜𝑢𝑡 =
𝑊−𝐹+2𝑃

𝑠
+ 1            (3) 

Where 𝐻𝑜𝑢𝑡  and 𝑊𝑜𝑢𝑡 Indicate the output feature map's 

width and height, whereas P indicates the padding size. By 

adding extra material around the edge of the source image, 

padding allows you to change the size of the output feature 

map. The purpose of padding is to guarantee that the output 

and input sizes are equal. The padding P for stride s and 

F×F filter is provided in Eq. 4.  

𝑃 =
(𝑠−1)∙𝐻−𝑠+𝐹

2
             (4) 

Following the convolution computation, as in Eq. 5, each 

value in the output feature map is increased by a bias term 

b.  

𝑂(𝑖, 𝑗) = 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝐼, 𝐾)(𝑖, 𝑗) + 𝑏  (5)  

Lastly, non-linearity is introduced by using an activation 

function ∅ as in Eq. 6.  

𝑂(𝑖, 𝑗) = ∅(𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝐼, 𝐾)(𝑖, 𝑗) + 𝑏)              

(6) 

Rectified Linear Unit (ReLU) is one functional that is 

frequently activated, where ∅(𝑥) = 𝑚𝑎𝑥(0, 𝑥). When 

max pooling is used, the feature map is separated into 

regions, or non-overlapping windows, of a specific size. 

After that, each part undergoes a max operation. We 

choose the maximum value inside each zone. This 

decreases the feature map's size and increases the 

network's resistance to input distortions and tiny 

translations. The expressions in Eq. 7 and Eq. 8 are given 

an input feature map of size H×W, a pooling window of 

size F×F, and a stride of s to determine the dimensions of 

the output feature map (). 

 

𝐻𝑜𝑢𝑡 =
𝐻−𝐹

𝑠
+ 1                (7) 

𝑊𝑜𝑢𝑡 =
𝑊−𝐹

𝑠
+ 1              (8) 

Where 𝐻𝑜𝑢𝑡  and 𝑊𝑜𝑢𝑡 Separately represent the output 

feature map's height and breadth. Dropout is a 

regularization approach to keeping neural networks from 

overfitting. The main idea is to randomly "drop out" (set to 

zero) some neurons during training. This reduces the 

network's reliance on individual neurons, which improves 

generalization. This is how dropout is calculated and 

handled. Dropout layers randomly deactivate 50% of 

neurons during training, forcing the model to learn 

redundant feature representations. This regularization 

technique enhances generalization by reducing reliance on 

specific neurons. 

The likelihood of putting a neuron's output to zero is 

represented by the hyperparameter p, also known as 

dropout_rate. Each neuron, for instance, has a 50% 

probability of being dropped out if p=0.5. In the training 

process, a binary mask M is made for each training 

example, in which the sample for each entry M_i 

(corresponding to neuron i) comes from a Bernoulli 

distribution with parameter 1-p. Accordingly, every 

neuron is retained with probability 1-p and eliminated with 

probability p. When the layer is being trained; its output is 

provided in Eq. 9. 

𝑂𝑖 = 𝑀𝑖 ∙ 𝑋𝑖                (9) 

When dropout is applied, the neuron's output is 

represented by 𝑂𝑖 , whereas 𝑋𝑖 Represents its output before 

dropout. The activations are scaled by 
1

1−𝑝
To maintain the 

expected value of activations as in Eq. 10.  

𝑂𝑢𝑡𝑝𝑢𝑡𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑂𝑖

1−𝑝
            (10) 

Dropout impacts the distribution of activations, making 

this sailing crucial. Through scaling, the network's 

activations during training correspond with the anticipated 

activations during inference. An ultimately linked layer 

known as a "dense" layer has links among each neuron in 

the layer above it. A dense layer's mathematical operation 

can be described in Eq. 11. 

𝑍 = 𝑊 ∙ 𝑋 + 𝑏                        (11) 

Where 𝑋 is the input vector to the dense layer, W is the 

weight matrix, and b Z is the bias vector and the output 

vector prior to activation. The "softmax" activation 

function converts the raw output scores (logits) into 

probabilities that add up to one. This is helpful in multi-

class classification situations when the objective is to 

classify inputs into multiple categories. Eq. 12 defines the 

softmax function. 
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𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑖𝑗
               (12) 

Where 𝑧𝑖 is the score (logit) for the class 𝑖 And the total of 

the test results' exponentials for each class makes up the 

denominator. Calculate the likelihood for each class I by 

dividing the score's exponential by the total of the 

exponentials, as in Eq. 13.  

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 =
𝑒

𝑧𝑗

𝑠𝑢𝑚_𝑒𝑥𝑝
          (13) 

In implementing the LDDNet model, the custom Inception 

layer was a pivotal enhancement, enabling the extraction 

of multi-scale features critical for detecting diverse leaf 

disease patterns. This layer processes input data using 

parallel convolutional operations with different kernel 

sizes and a pooling operation. For an input Iature map 𝐼 

with dimensions 𝐻 ×  𝑊. The output of the Inception 

layer was calculated as the concatenation of feature maps 

produced by kernels of sizes 1 x 1, 3 x 3,5 x 5, and a max-

pooling operation. Mathematically, the output feature map 

𝑂 It was computed as in Eq. 14.  

𝑂 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐶𝑜𝑛𝑣(𝐼, 𝐾1×1), 𝐶𝑜𝑛𝑣(𝐼, 𝐾3×3),  

𝐶𝑜𝑛𝑣(𝐼, 𝐾5×5), 𝑃(𝐼))         (14) 

The model's robustness and adaptability to changes in 

disease symptoms were enhanced by this setup, enabling it 

to capture fine-grained and large-scale aspects of leaf 

disease patterns. We employed the Adam optimizer to 

optimize the model during training, which efficiently 

updates the model's weights using adaptive learning rates. 

Adam dynamically adjusts learning rates using gradient 

history, stabilizing training and ensuring faster 

convergence, which is crucial for LDDNet's deep 

architecture. The weights at time step 𝑡, denoted 𝑤𝑡 , were 

updated as in Eq. 14.  

𝑤𝑡+1 = 𝑤𝑡 − 𝜂 ∙
𝑚𝑡

√𝑣𝑡+𝜖
           (14)   

where 𝑤𝑡  and 𝑣𝑡the estimations of the slopes at the first 

and second moments are computed as in Eq. 15. 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 , 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2   

(15) 

Here, 𝑔𝑡 represents the gradient of the loss function at 𝑡, 

𝛽1 and 𝛽2 Are decay rates, 𝜂 is the learning rate and 𝜖 is a 

small constant for numerical stability. This approach 

ensured faster convergence and stability, as observed 

during the model training when LDDNet reached optimal 

performance within 20 epochs. These enhancements 

highlight LDDNet's technical sophistication, ensuring its 

effectiveness in detecting diverse leaf diseases. 

3.8 Proposed algorithm  

This algorithm, LbOLDD (Learning-based Optimized 

Leaf Disease Detection using LDDNet model), with 

application in crop leaf diseases, will now be proposed as 

a solid alternative that can develop a robust and efficient 

model. More specifically, it is designed to solve source 

problems like unbalanced datasets, low feature extraction, 

and scaling for high accuracy and reliability. The 

algorithm enables early disease detection, which 

minimizes crop loss and promotes precision agriculture 

methods. Utilizing hyper-parameter tuning, advanced pre-

processing, and a layer Inception designed explicitly for 

the study provides a scalable framework for automated 

systems such as drone or IoT-based systems, further 

analyzing its practical application to large-scale farming 

systems. The alignment of the LbOLDD algorithm Zero 

Hunger, the second Sustainable Development Goal (SDG) 

of the UN, improving sustainable farming practices & food 

security through effective disease management. Deep 

learning has potential in the agri-sphere, leading to real-

time and scalable automated solutions to monitoring crops 

and their health. 

Algorithm: Learning-based Optimized Leaf Disease 

Detection (LbOLDD) 

Input: PlantVillage dataset D 

Output: Leaf disease detection results R, performance 

statistics P 

 

1. Begin 

2. D'PreprocessData(D) 

3. (T1, T2)DataPreparation(D') 

4. Configure LDDNet model m (as in Figure 2) 

5. Compile m 

6. Update the model with hyperparameter tuning  

7. m'TrainLDDNet(m, T1) 

8. Persist m' 

9. Load m' 

10. RLeafDiseaseDetection(m', T2) 

11. PEvaluateLDDNet(R, ground truth) 

12. Print R 

13. Print P 

14. End  

Algorithm 1: Learning-based optimized leaf disease 

detection (LbOLDD) 

LbOLDD algorithm for leaf disease detection orienting the 

novel model LDDNet is trained to utilize the PlantVillage 

dataset. A series of pre-processing steps will be taken to 

convert our dataset (D) into a higher-quality dataset (D′), 

in which images are normalized and resized to the same 

input (height x width), as well as the application of 

Techniques for augmenting data are used, including 

zooming, flipping, and rotation. This will keep your 

dataset consistent and diverse and is critical in creating 

generalizations in the model. Two subsets {T1, T2} are 

made from the dataset D', with T1 as the training set and 

T2 as the testing set. By dividing the data into training and 

testing sets, the LDDNet model can learn its disease 

features from the training set and be validated on data that 

would not otherwise be displayed. Set up the LDDNet 

model (m) according to its architecture using 

convolutional layers, max-pooling layers, an Inception 

module, a softmax output layer, etc. We assembled the 

model using the Adam optimizer with accuracy as the 

evaluation measure and categorical cross-entropy as the 

loss function. Hyperparameter adjustment is done to 
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optimize the model. T1 → [m'] trains the tuned model's 

(m) performance. This trained model is persistent in a 

serializable manner. For detection, (m′) is loaded to 

classify the leaf images in (T2) and obtain the detection 

results (R). Performance metrics (P), including accuracy, 

precision, recall, and F1-score, are produced by comparing 

the model's performance (R) with the ground truth labels. 

At last, detection results (R) and performance statistics (P) 

provide evidence of the capability of the LbOLDD 

algorithm for detecting leaf diseases, which will be a step 

toward precision agriculture. It is a structured process that 

can be relied upon at scale with excellent detection. 

3.8 Dataset details 

PlantVillage dataset [41] is another commonly used 

benchmark dataset for classifying and identifying plant 

diseases. Over 87,000 photos of healthy and sick plant 

leaves from 38 classes—representing 14 crop species, such 

as maize, tomato, and potato—are included. This dataset 

contains images marked with labels for specific diseases, 

making it well-suited for supervised learning tasks. It has 

images in RGB and grayscale forms, which helps 

experiment with different preprocessing techniques. It has 

various environmental conditions and visual scenes, 

enabling powerful model training. PlantVillage, due to its 

size and diversity, is an essential resource for machine 

learning model development and evaluation for precision 

agriculture. 

3.9 Evaluation methodology  

We evaluated our methodology using metrics obtained 

using the confusion matrix, supervised learning, and other 

learning-based methods, as shown in Figure 3.   

 

Figure 3: Confusion matrix 

Based on the confusion matrix, we get performance 

statistics by comparing the ground truth with the 

anticipated labels of our algorithm. Equations 1 through 4 

represent several measures that are employed in 

performance evaluation. 

Precision (p) = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                          

(1) 

Recall (r) = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                               (2) 

F1-score = 2 ∗
(𝑝∗ 𝑟)

(𝑝+𝑟)
                                                                            

(3) 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                   

(4) 

The outcome of the performance evaluation metrics is a 

value between 0 and 1. Machine learning research 

extensively uses these metrics.  

Although accuracy, precision, recall, and an F1 Score were 

provided, the F1 Score was favored because it strikes an 

optimal balance between precision and recall. Therefore, 

minimizing false positives and negatives is critical while 

detecting plant disease. As there is a minor class imbalance 

in the dataset, the F1 Score was a more robust performance 

measure than accuracy alone, as it assured that each 

disease category was evaluated relatively. 

4   Experimental results 

The experimental results section presents the concert 

evaluation of the suggested LDDNet model for leaf disease 

detection using cutting-edge DL models (such as VGG16, 

InceptionV3, and ResNet50). These models were chosen 

as they have been found to provide optimal results for 

image classification tasks and are also the most commonly 

used networks in plant disease detection studies. The 

model's performance can be evaluated in detail using F1-

score, accuracy, precision, and recall metrics. Experiments 

were performed in a controlled environment using Python 

TensorFlow and Keras frameworks. We used a PC with an 

Intel Core i7 CPU, 16GB of RAM, and an NVIDIA 

GeForce RTX2080 GPU for faster computation. The 

PlantVillage dataset, including images of healthy and 

injured leaves, was used to train, verify, and test the model. 

A series of solid pre-processing and data augmentation 

steps were taken to provide high-quality inputs. LDDNet 

significantly outperformed the state-of-the-art models in 

this section and could be developed into an enhanced 

version for implementation into a scalable disease 

detection platform for precision agriculture. 

 

Figure 4: Frequency of various diseases found in the 

benchmark dataset PlantVillage 
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The PlantVillage benchmark dataset evenly covers various 

diseases, as shown in Fig. 4. The x-axis represents the 

multiple categories of diseases, whereas the y-axis denotes 

the respective frequencies. The figure represents all of the 

diseases in the dataset; each disease is represented by a 

separate bar whose height indicates the number reached. 

As shown in Figure 4, different disease categories cover 

distinct ranges of frequencies. Some sicknesses have 

higher frequencies, like "Apple scab" or "Apple Black rot." 

So, these diseases must have a greater spread or have been 

better reported within PlantVillage. Meanwhile, diseases 

such as "Apple_Cedar_apple_rust" and "Cherry (including 

sour) Powdery mildew" have a low frequency, which 

would indicate that they are primarily less common or 

underrepresented entities in the dataset itself, not 

commonly occurring. As shown in Figure 4, the frequency 

of different plants can also bring insight into the diversity 

of plant narcissism in the created dataset. It can aid 

researchers and practitioners in characterizing disease 

prevalence and incidence, motivating research efforts, and 

focusing on disease management. 

    

Figure 5: Healthy and diseased samples of Apple crop 

In this section, we compare healthy vs diseased apple 

leaves in Figure 5 to visually understand differences in 

features due to various apple diseases. The leaf on the far 

left shows symptoms of apple scab. Fungal infections in 

the form of dark, velvety lesions can be seen on the upper 

or lower surfaces of the leaves. The lesions typically begin 

small and round but can expand and merge, ultimately 

warping and browning the leaves. The second leaf shows 

symptoms of Apple Black Rot. This fungal disease is 

characterized by small spots that are dark brown or black 

with concentric rings. These regions can grow and 

gradually combine, resulting in the death of the infected 

tissues. The entire leaf will turn brown and dry up in 

extreme situations. The leaf in the third position depicts the 

effects of Apple Cedar Apple Rust. This fungal disease 

produces bright orange, powdery pustules under the 

foliage. These pustules cast spores to infect nearby cedar 

trees, thus closing the disease cycle. Yellow or reddish 

spots may form across the leaf's top surface, corresponding 

to the pustules on the underside. The fourth leaf is a 

healthy apple leaf. The foliage is shiny green in color, 

smooth in texture, and does not display any disease or 

damage. This picture comparison shows that apple 

diseases should be detected and managed early to have 

healthy and productive apple orchards. 

  
Figure 6: Healthy and diseased samples of cherry crop 

Figure 6 The comparison of leaflet healthy cherry and 

powdery mildew lettuce is shown in Fig. 6. A healthy leaf 

is colored bright green and has a thick, shiny surface. It 

looks thick and clear and has no visible imperfections or 

warps. By comparison, the healthy leaf keeps disease 

symptoms focused on powdery mildew. The most visible 

symptom of powdery mildew is the appearance of a 

powdery, white coating on the leaf surface. This is a layer 

of fungal hyphae and spores. Besides, the infected leaf may 

also look distorted or ruffled and have yellow or brown 

spots. Many types of fungi treat many groups of plants, 

including cherries, and powdery mildew is one of the more 

well-known ones. It loves warm, humid weather, which 

can devastate the plant’s health and yield. To avoid further 

spread of this disease and ultimately protect cherry 

production, petal fall and other stages that improve 
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physical access to nuclear fragments for air currents are 

crucial for early detection/sampling and proper disease 

management. 

    
Figure 7: Healthy and diseased samples of Corn_(Maize) crop 

Figure 7: Comparison of healthy and infected corn (maize) 

leaves showing the visual characteristics of different corn 

diseases. The first leaf exhibiting signs of common leaf 

diseases starting from the left is CERCOSPORA LEAF 

SPOT and GRAY LEAF SPOT. These fungi cause small, 

circular spots or lesions on the leaf's surface. These spots 

start light brown or tan but can darken and grow larger over 

time. In extreme instances, these spots might merge, 

creating large patches of necrotic tissue. Common Rust is 

evident on 2nd leaf. The fungal disease appears as tiny, 

reddish-brown pustules on the leaf surface. These bumps 

may be solitary or clustered together and will burst, 

shedding spores that can infect other leaves. The third leaf 

refers to a healthy corn leaf. It should be a bright green 

color, feel firm to the touch, and have no signs of illness or 

harm visible anywhere on it. The last leaf is the effect of 

the Northern Leaf Blight. This fungal disease produces 

long, grayish-brown lesions with a golden aura around the 

color of the leaf surface. The lesions can grow and join 

together, ultimately killing the infected tissues. This image 

comparison demonstrates the importance of detecting and 

treating corn infections as soon as feasible to protect the 

health and productivity of corn crops. 

    
Figure 8: Healthy and diseased samples of Grape crop 

To distinguish between healthy and diseased grape leaves, 

a comparison of grape leaves is in Figure 8, which visually 

differentiates grape diseases. The leaf on the left shows 

symptoms of black rot. On the foliage, this fungus disease 

results in tiny, dark brown or black dots. These spots may 

grow and fuse until they cover considerable leaf surface 

areas. Leaves that become infected may also distort and 

brown. Leaf two shows symptoms of Esca (Black 

Measles). This fungus disease results in characteristic 

brown or black streaks or spots upon the leaves, often 

resembling a measles-like pattern. A yellowing or 

browning of the leaf tissue may also accompany the 

lesions. The third leaf is the image of a healthy grape leaf. 

It is bright green and smooth with no signs of disease or 

damage. Lastly, the last leaf depicts the effect of Leaf 

Blight (Isariopsis Leaf Spot). This fungal disorder 

produces small, round spots that appear among the leaves. 

These lesions are initially brown but might eventually turn 

gray or white. In extreme cases, the lesions can coalesce, 

creating large wounds of dead skin. This visual 

comparison shows that it's critical to identify and treat 

grape illnesses early in maintaining healthy and productive 

grapevines. 
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Figure 9: Healthy and diseased samples of Potato crop 

The potato diseases, Early Blight and Late Blight2,3, are 

seen in a side-by-side comparison, as shown in Figure 9, 

where healthy and diseased potato leaves were compared 

visually. Starting from the left, the first leaf shows Early 

Blight symptoms. Small, brown, or black spots on the 

leaves manifest this leaf fungus. Those spots might enlarge 

and merge, eventually covering the leaf surface over large 

areas. Infected leaves can also become distorted and 

brown. The leaf in the second image is an example of a 

healthy potato leaf. It should be bright green, smooth, and 

free of spots or signs of disease. Lastly, the third leaf 

presents the effect of Late Blight. This fungal ailment 

creates large leaves with dark brown and black markings. 

These lesions can increase and be extensive, covering large 

parts of the leaf surface. Leaves that become infected may 

be distorted and turn brown or black. In extreme cases, 

whole plants can become compromised, and yields can be 

drastically affected. As can be noticed, timely and 

effective identification and management of potato illnesses 

is necessary to maintain potato crops' health and 

productivity. 

 

Figure 10: Healthy and diseased samples of Tomato crop 

A complete visualization comparison of healthy and 

diseased tomato foliage, identifying the visual variations 

of viruses and pests that may affect tomatoes, is provided 

in Figure 10. The first leaf from the upper left shows 

Bacterial Spot symptoms. This bacterial disease appears as 

small, dark brown or black spots with a yellow halo. These 

spots can grow and coalesce, ultimately covering the entire 

leaf surface. Affected leaves can also become stunted and 

brown. The second leaf shows initial signs of Early Blight. 

The fungal disease produces large, dark brown or black 

lesions with concentric rings on the leaves. These lesions 

are often large and rapidly expand over leaf areas. Infected 

leaves may also become distorted, and color may turn 

brown or black. This leaf is a well-developed tomato leaf. 
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Its vivid green color, firm body, and apparent lack of 

disease and injury are all signs of healthy produce. In the 

second row, the fourth leaf is the effect of Late Blight. This 

fungal disease results in large dark brown or black lesions 

on the leaves, sometimes with a fluffy white growth 

underneath. Infected leaves will likely become distorted 

and turn brown or black. Leaf Mold showing on 5th leaf. 

This fungal disease produces little yellow or dark patches 

on the leaf's top surface. These spots can expand and 

coalesce into large areas of the leaf surface. On the 

underside of the infected leaves comes a white, powdery 

growth. On the sixth leaf, you can see the effects of the 

Leaf Spot for Septoria. This fungus causes tiny, round 

lesions that are black in color centers and light brown or 

tan borders. These lesions may coalesce and form large 

confluent areas of necrotizing tissue. Row 3: Leaf 7: 

Spider Mites (Two-Spotted Spider Mite) These minuscule 

pests feed from the undersides of leaves, making them 

yellow or bronzed and giving them a stippled look. The 

leaves may also become distorted and fall early. The eighth 

leaf shows the presence of Target Spot. This fungal disease 

causes small, round spots with emphasized rings on Green 

leaves. These lesions can grow and coalesce, ultimately 

encompassing large areas of the leaf's surface. Infected 

leaves may also curl and brown. Finally, the ninth leaf 

demonstrates the Tomato Mosaic Virus. This viral disease 

can cause various symptoms, including leaves turning 

yellow, mottled and distorted. Infected plants can also 

display wilting, early leaf drop, and reduced growth and 

fruit production. This comparison is done visually so that 

we can easily distinguish between tomato diseases and 

tomato pests for better management of tomato diseases and 

pests to keep our tomato plants healthy and productive. 

 

Figure 11: LDDNet model performance as measured by recall (bottom right), accuracy (top right), precision (bottom 

left), and loss (top left). 

A comparison of metrics, including loss, accuracy, 

precision, and recall of LDDNet under dynamic streaming 

data, is presented in Figure 11. It shows the training and 

validation loss throughout 14 epochs of the top left plot. 

When training loss consistently decreases, the model 

learns and improves its predictions. Yet the validation loss 

stabilizes after a couple of epochs, so you might be facing 

overfitting. The plot in the top right only shows training 

and validation accuracy curves. Here, too, both the curves 

are increasing. The training accuracy is around 0.95, and 

the value accuracy is around 0.85. It shows how well the 

model adapts to new data. Precision is the only plot in the 

lower left corner, representing the ratio of accurate 

optimistic forecasts to all positive predictions. The 

precision curves for training and validation demonstrate a 

continuously growing pattern as well — training precision 

advances to nearly 0.975, and validation precision levels 

off around 0.925. This is a sign that the model correctly 

predicted positive events. The plot in the bottom right 

corner of plotrec.py shows the recall curves, which are the 

true positives as a function of the false negatives. The 

recall curves for training and validation indicate stability 

with a similar shape in the "train" and "valid" curves; the 

train recall curve is approaching 0.9, and the valid recall 

curve stabilizes above 0.8. This indicates that our model is 

capturing most of the positives. The general accuracy, 
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precision, and recall performance in the LDDNet model 

are relatively strong. Overfitting would be indicated by the 

loss curve on the validation set, so more investigation is 

needed, for example, to find a regularization technique to 

improve the generalization ability. 

Figure 11 shows a disparity between training and 

validation accuracy at later epochs, which suggests 

possible overfitting. Although L2 regularization (λ = 

0.0001) and dropout (0.5) were implemented to prevent 

this, exploring further generalization methods, including 

data augmentation, early stopping, and adaptive learning 

rate decay, would be beneficial. Subsequent improvements 

can be made using weight normalization and stochastic 

depth techniques, which have also shown success in deep 

CNN architectures due to eliminating over-emphasizing a 

particular feature representation. 

 

Figure 12: Confusion matrix for multi-class classification 

performance of LDDNet model 

In summary, the confusion matrix in Figure 12 gives a 

more detailed overview of the class-wise classification 

performance of the model for each type of leaf disease. The 

diagonal values represent the number of correctly 

classified instances, whilst the off-diagonal elements 

represent the cases misclassified between disease classes. 

The confusion matrix for leaf disease classification 

specifically allows us to understand which diseases the 

model can tell apart well and which it confuses. It can be 

observed from the model that it classifies different diseases 

with very high precision, with the actual positive values 

for corn leaf Blight and tomato mosaic virus being very 

high. 

The matrix also identifies misclassifications due to 

visually similar diseases like Potato Early Blight and 

Potato Late Blight, in which the overlapping symptoms 

(e.g., spots and discoloration) may be a source of 

confusion. It also elucidates the benefits of the model in 

identifying diseases with distinct visual manifestations 

and aspects in which more granular feature extraction or a 

diverse data set may assist in further refining the 

differentiating ability. In summary, the confusion matrix 

substantiates the high overall performance of LDDNet, 

showing minor misclassification for most disease classes, 

proving the robustness of the proposed architecture in 

realistic agricultural conditions. 

The confusion matrix shows how the model does not 

classify the visually similar disease categories. The model 

shows greater cross-risk between some fungal and 

bacterial infections as they share similar features such as 

spot-like lesions and color gradation. A more nuanced 

examination suggests that Potato Late Blight is commonly 

mistaken for Bacterial Wilt, which points to the need for 

fine-grained feature extraction or attention-based 

mechanisms (i.e., self-attention modules) within the model 

to discriminate across individual classes. This allows the 

model to learn on the case level based on all the instance 

samples, but also, a class-specific loss function or focal 

loss could be introduced to alleviate the underrepresented 

rare disease classes. 
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Figure 13: Visualization of the suggested LDDNet model's multi-class classification performance 

Figure 13 shows a performance comparison of several 

classes on LDDNet. The F1-score, recall, and precision 

metrics are shown by class in the chart. Because it also 

accounts for erroneous positives and false negatives. 

Compared to accuracy alone, the F1-Score, the balanced 

mean of precision and recall, offers a more accurate 

evaluation of the model. A higher F1 score indicates better 

overall performance. Recall: This measure calculates the 

proportion of a class's accurate optimistic predictions to 

the sum of its true positive and erroneous pessimistic 

predictions. According to the theory, a higher recall means 

the model catches more real positive examples. For a given 

class, the precision metric determines the ratio of correct 

positive predictions to all optimistic predictions.  

High precision means a low false positive rate. It is 

demonstrated in the chart that the LDDNet model returns 

high F1 scores, recall, and precision results for most of the 

classes representing plant diseases. This means the model 

works well in recognizing and labeling various plant 

illnesses. A few classes with slightly lower performance 

indicate opportunities for improvement. As noted, the 

LDDNet model achieves an exact accuracy of 99% low 

release; the feature map low release is good and can 

accurately perform the plant disease classification. It 

showcases that scholar know the model's advantages and 

disadvantages so they may further optimize and improve 

it.  

 

Figure 14: Performance of LDDNet (Proposed) model 

compared against state-of-the-art 

Four DL models, VGG16, InceptionV3, ResNet50, and 

our proposed model, LDDNet results, are compared in 

Figure 14 for leaf disease detection. We shall compare 

these with four metrics: F1-score, accuracy, recall, and 

precision. Precision: The proportion of accurate positive 

predictions among all optimistic predictions (TP / (TP + 

FP)) generated by the model for that class A model that has 

a higher precision is making fewer false positive errors—

recall: the ratio of all occurrences of favorable conditions 

to actual optimistic forecasts. A high recall means that the 
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model captures most real positive cases. F1 Score: Recall 

and accuracy harmonic means are the F1 score. It takes 

false negatives and false positives into consideration. In 

the future, you will receive training on data through 

October 2023. The bar chart shows that LDDNet (our 

approach) performs better out of the three suggested 

models. Offers this table's highest precision, recall, F1-

score, and total accuracy, significantly outperforming 

others in leaf disease detection. These results reflect that 

the LDDNet model is adaptable to this task and can 

efficiently differentiate between various plant diseases and 

healthy leaves. So, it becomes a potential solution for fast 

and accurate plant disease identification. 

The latest result shows that LDDNet outperforms the state-

of-the-art models with 97.54% accuracy and 96.13% F1-

score. However, there is some variation in performance 

among different disease categories, with Corn diseases 

achieving the highest accuracy (98.12%) and Potato 

diseases the lowest (94.37%). This discrepancy is due to 

the datasets' inherent characteristics, disease manifestation 

patterns, and differences in image quality for various types 

of crops. 

One of the characteristics of plant-pathogen interaction is 

that corn leaf diseases usually have recognizable visual 

symptoms, like spots and color changes, thus adapting to 

LDDNet's multi-scale feature extraction. On the other 

hand, the initial potato disease detection task has more 

subtle leaf texture and color variation features that may 

need feature information that is much finer than the 

receptive fields used in the current Inception-based 

architecture. This model performance difference can also 

be attributed to the imbalance of the dataset, as Corn 

disease images are relatively well-represented in the 

dataset than a few underrepresented Potato disease 

categories. 

We conducted statistical significance testing through 95% 

CI (confidence interval) and paired t-tests on per-class 

accuracies to confirm the observed results. The confidence 

intervals for Corn disease classification are [97.80%, 

98.42%], and [93.85%, 94.89%] for Potato diseases, 

indicating that the performance difference is statically 

significant. A paired t-test of disease accuracies between 

Corn and Potato showed p < 0.05, which suggested that 

the model does show a difference in performance on this 

category. These findings underscore room for additional 

architectural improvement (e.g., more advanced attention 

mechanisms or extra feature extraction layer) to strengthen 

classification robustness for visually complex disease 

types in Table 3. 

Table 3: Ablation study showing the effect of key 

components on LDDNet model accuracy 

Configurati

on 

Custom 

Inceptio

n Layer 

GAP 

Laye

r 

Dropo

ut 

Accura

cy (%) 

Full 

LDDNet 

(Proposed) 

✓ ✓ ✓ 97.54% 

Without 

Dropout 
✓ ✓ ✗ 95.60% 

Without 

GAP Layer 
✓ ✗ ✓ 95.85% 

Without 

Custom 

Inception 

Layer 

✗ ✓ ✓ 93.80% 

Baseline 

CNN 
✗ ✗ ✗ 91.50% 

 

Table 4: Performance comparison of LDDNet with 

existing deep learning models for plant disease 

classification 

Refer

ence 

Model/

Method 

Datase

t 

Accu

racy 

(%) 

Key 

Features/Li

mitations 

Sharm

a et al. 

(2024

) [31] 

Fine-

tuned 

MobileN

etV2 

PlantVi

llage 

94.4

% 

Lightweight 

efficient but 

shows 

overfitting in 

minority 

classes 

Zhang 

et al. 

(2024

) [38] 

Lightwei

ght CNN 

PlantVi

llage 

96.2

% 

Mobile-

optimized but 

struggles 

with complex 

disease 

patterns 

Pavith

ra et 

al. 

(2023

) [6] 

DL-

APDDC 

(XGBoos

t + 

Squeeze

Net + 

U2Net) 

Bench

mark 

dataset

s 

95.8

% 

It uses 

ensemble 

techniques, 

but 

scalability 

and 

complexity 

pose 

challenges. 

Mishr

a et al. 

(2020

) [21] 

Real-

time 

DNN 

Corn 

leaves 

88.46

% 

Real-time 

capable but 

relatively 

lower 

classification 

accuracy 

Sujath

a et al. 

(2021

) [24] 

VGG-16 Citrus 

dataset 

89.5

% 

Standard 

CNN model, 

but 

outperformed 
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by newer 

architectures 

Propo

sed 

LDD

Net 

(This 

Study

) 

Custom 

Inception

-based 

CNN 

PlantVi

llage 

97.54

% 

High 

accuracy, 

efficient 

feature 

extraction, 

reduced 

overfitting 

 

Table 4 The accuracy of several standard models 

(MobileNetV2 [31], Lightweight CNNs [38], and 

ensemble-based ones like the DL-APDDC [6]) is also 

reported for comparison with the proposed LDDNet. 

According to Table X, the proposed LDDNet achieves an 

accuracy of 97.54%, the highest among the established 

models. Some lightweight models, while efficient, show a 

slight degradation of classification accuracy when 

classifying difficult or visually similar disease classes. In 

contrast, this new LDDnet achieves a balance of accuracy 

vs efficiency through its custom INception layer and 

regularization strategies. Moreover, earlier versions like 

VGG-16 [24] and real-time DNNs [21] report relatively 

lesser accuracy than LDDNet, verifying its capacity for 

plant disease detection. 

5   Discussion 

The growing push for sustainability in the agricultural 

sector and the need for greater crop yields have highlighted 

the necessity of precise and affordable plant disease 

detection techniques. Usually, these approaches depend on 

manual inspection, which is time-consuming and 

subjective, so they are not feasible for large-scale 

agriculture applications. Deep learning methods have 

recently attracted attention in this area, mainly thanks to 

their ability to automatically recognize and retrieve 

characteristics from intricate picture data. Existing 

methods still need to be addressed by imbalanced datasets, 

poor generalization, and the capacity to model multi-scale 

features of disease diversity. However, cutting-edge 

techniques such as those suggested in MobileNetV2 [1] 

and Inception-ResNet-V2 [2] are limited to specific cases 

of binary classification, do not scale well, and do not detect 

minor differences between different diseases on the same 

leaf. Traore et al. [3] stressed the need for architectures 

that combine multi-scale feature extraction to improve 

generalization. However, due to the inherent gaps 

indicated in these datasets, there is a demand for new deep-

learning methods dedicated to agricultural datasets. 

To tackle these issues, the proposed LDDNet model brings 

different novelties. They are focusing on its multi-scale 

feature extraction capability through a custom Inception 

layer, capturing both localized and widespread patterns of 

leaf disease. Global Average Pooling (GAP) helps reduce 

overfitting, which also helps preserve spatial information. 

Data augmentation and ROI extraction are also essential 

pre-processing techniques to avoid problems in data 

variability established in agricultural data. Experimental 

results verified that LDDNet attained an accuracy of 

97.54%, far exceeding the existing models. The innovation 

of the architecture and tuning methodology also translates 

directly to the great degree of precision and efficiency of 

the model. LDDNet overcomes the limitations of existing 

deep learning approaches and offers a scalable and 

effective means for rapidly detecting early signs of disease 

in precision agriculture. Findings from this study could 

have significant impacts on sustainable agriculture 

practices. Diseases are responsible for significant crop 

losses, and timely diagnosis can make a difference, leading 

to reduced losses, increased productivity, and efficient use 

of resources, thereby supporting precision agriculture's 

objectives and ensuring the world's food security. 

Results in Figure 14 show that the proposed LDDNet 

model achieves excellent performance in classifying 

images of leaves with or without the disease above other 

state-of-art models as ResNet50 with 94.01% accuracy, 

InceptionV3 with 91.67% accuracy, and EfficientNetB4 

with 89.32% accuracy. LDDNet’s personalized Inception 

layer contributes to these improvements by enabling more 

effective multi-scale feature extraction without the risk of 

losing details from small disease-affected regions. 

ResNet50 is a deep residual learning model, but it does not 

perform well on imbalanced datasets, which leads to 

inefficient and fine-grained features that are not good for 

generalization. Likewise, InceptionV3 employs factorized 

convolutions for efficiency. Still, it does not implement 

multi-scale receptive field adaptation, which prevents the 

model from encoding local and global disease features in 

parallel as the network grows. However, LDDNet 

addresses the limitations of previous approaches by 

harnessing its parallel multi-scale feature processing for 

improved robustness under varying environmental 

conditions. 

Although LDDNet has better classification accuracy, its 

computation cost is slightly higher than that of ResNet50 

and InceptionV3. And this is a trade-off due to the above 

mention custom Inception layer where it processes the 

multi-scale features in parallel which demands more 

computational capacity. Additionally, introducing Global 

Average Pooling (GAP) layers and dense connections 

enhances feature representation but adds to model 

complexity. Although EfficientNetB4 improves efficiency 

with depth scaling, it does not achieve fine-grained feature 

recognition, and its classification performance is slightly 

inferior. Although LDDNet has increased computational 

costs, it provides stronger generalization ability, thus it is 

more suitable for high-precision agricultural disease 

monitoring rather than for real-time end system 

applications. 

LDDNet performs better than other encoder-decoder 

models mainly because the custom Inception layer allows 

multi-scale feature extraction to extract disease patterns in 

multiple receptive fields. In contrast to traditional CNN 

architectures that employ fixed kernel sizes, the Inception 

layer improves disease pattern differentiation, enabling 

precise classification between low and high-level 

infections. One rationalization behind this mechanism 

derives from improved able means to address intricate leaf 
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textures as well as non-homogeneous disease dominantly 

appearances, substantially promoting robust disease 

differentiation across distinct datasets. Moreover, with 

reasonable control of overfitting and diversity of features, 

and through the parameter reduction abilities of LDDNet, 

it exhibits superior generalization and, as such, is a much 

less costly model for use in real-world applications in 

precision agriculture. 

Despite the recent hybrid models based on transformers 

exhibiting very high performance on multi-class 

classification tasks, they also have much greater 

computational costs that preclude their use in real-time for 

applications such as in-field detection of agricultural 

diseases. On the other hand, lightweight CNNs like 

MobileNetV2, designed for efficiency on edge devices, 

often miss fine-grained features and misclassify similar 

visual disease classes. By incorporating a custom 

Inception layer into its architecture, LDDNet addresses 

this gap with a dual aim of efficient, multiscale feature 

extraction. While transformers depend on self-attention 

mechanisms that grow quadratically with the input size, 

LDDNet demands much less training and inference time 

than the architecture, preserving better or similar accuracy. 

In general, compared with MobileNetV2 and most 

lightweight CNN, LDDNet can retain high-resolution 

feature representation, leading to better classification 

performance in disease categories with minor visual 

differences. LDDNet's well-judged balance of 

performance and efficiency enables it to excel in precision 

agriculture applications that require real-time and accurate 

decision-making. 

5.1 Limitations 

Even though LDDNet achieves competitive performance 

on the PlantVillage dataset, there are still limitations. 

First, while data augmentation and preprocessing 

techniques are applied, the model still suffers from class 

imbalance, especially when the number of samples in some 

disease classes is significantly lower. In doing so they 

might lead to slight bias of predictions towards classes that 

have higher representation, which can be evidenced by 

misclassifications through the confusion matrix. First, 

LDDNet uses depthwise separable convolutions to cut 

down on computational complexity. However, due to the 

added complexity from the custom Inception and attention 

components, the training time of LDDNet is still in the 

higher range. For large-scale deployments, additional 

optimizations will be needed, such as model pruning or 

quantization, to achieve faster convergence. Third, the 

performance of the model played mainly on PlantVillage 

dataset, which consists curated, relatively cleaning of the 

images. Its performance in the wild, whenever 

backgrounds are noisy, occlusions occur, or the field is 

dirty, is unknown, and will require training on more 

complex datasets. Finally, while the architecture is 

designed to suit the scalability needs, its actual deployment 

on resource-constrained hardware platforms (e.g., drones 

or edge devices) has not yet been assessed experimentally, 

thus leaving a ground for future exploration. 

6   Conclusion and future work 

This paper introduces a new DL architecture, the LDDNet 

model, capable of detecting leaf disease types through 

preprocessing and optimization, with the PlantVillage 

dataset yielding an impressive 97.54% accuracy. LDDNet 

is scalable and performs consistently across different 

disease classes and large-scale datasets such as 

PlantVillage. The modular design of the model and the 

fewer number of parameters involved allow for its 

deployment in both performance-hungry servers and 

computation-limited edge devices. Moreover, LDDNet 

tackles two significant challenges of heterogeneous 

agricultural datasets regarding multi-scale disease patterns 

and diverse plant species. In doing so, it presents a 

significant step forward in precision agriculture through 

early, accurate, and automated detection of plant diseases. 

The study does, however, have limitations that provide 

future research directions. To begin with, the reliance on 

the system raises the question of whether the model applies 

to the PlantVillage dataset and will be robust across 

diverse and real-world datasets with complicated 

backgrounds and different environmental conditions. 

Future studies could consider larger datasets using other 

scenarios (field conditions, different crops, etc.). Second, 

the real-time execution of video streams or drone-based 

imaging may make it more suitable for large-scale 

agricultural observation. LDDNet will be validated on 

hardware platforms (such as edge devices, embedded 

systems) in the future work. While the presented 

experiments demonstrate the computational efficiency of 

LDDNet in isolation, deploying a model in a real-world 

agricultural application will depend on quantifying its 

computational performance in the context of hardware 

resources that are limited in terms of available memory and 

processing power—quadrants that were mainly not 

explored in this study. 
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