
https://doi.org/10.31449/inf.v49i2.7725 Informatica 49 (2025) 435–450 435

Comparative Performance of Neural Networks and Ensemble

Methods for Command Classification in ALEXA Virtual Assistant

Li lI

Artificial Intelligence and Big Data College, Chongqing Polytechnic University of Electronic Technology

Chongqing 401331, China

E-mail: 200708036@cqcet.edu.cn

Keywords: ALEXA virtual assistant, deep learning models, neural networks, random forest, command classification

Received: December 2, 2024

Our study investigates the classification of commands for the ALEXA virtual assistant using various

machine-learning models. The dataset includes 16,521 samples, and data preprocessing steps, such as

vectorization and remove all stop words and punctuation, were applied before training. Decision Trees,

Random Forest, Hist Gradient Boosting, AdaBoost, and Neural Networks are employed to classify textual

commands into respective classes. The dataset consists of commands and their classes, transformed into

feature vectors using the TF-IDF method. Our neural network architecture comprises three dense layers

and two dropout layers, totaling 272,850 trainable parameters, and uses RMSprop for optimization and

categorical cross-entropy as the loss function. Performance is evaluated utilizing metrics like accuracy,

precision, recall, and F1 score. Results have shown that neural networks perform better in comparison to

classical algorithms and outperform AdaBoost explicitly in all metrics. The comparative results between

neural networks and AdaBoost in evaluation metrics are, respectively, as follows:(0.851695 / 0.620157),

(0.857729 / 0.771549),(0.851695 / 0.62057) and (0.85236 / 0.639389). Therefore, deep learning will

indeed provide many promises toward solving challenging NLP tasks in a virtual assistant system like

Alexa. The findings provide enormous insight into effective methodologies regarding the classification of

commands and further establish the relevance of neural networks within extending virtual assistant

technology. Further research may consider discussing more recent neural network structures and

exploring their scalability and generalizability across several domains and languages.

Povzetek: Raziskava primerja učinek nevronskih mrež in ansambelskih metod pri razvrščanju ukazov v

Alexa asistentu, kjer nevronske mreže dosegajo najboljše razultate.

1 Introduction
Whereas virtual assistants gave a whole new dimension to

human-computer interaction, in facilitating technology

towards and for people in every respect, the pioneering

leader is ALEXA by Amazon. It grants users the ability to

perform voice-controlled functions that range from

managing smart home appliances to even playing music.

The central role of ALEXA involves understanding and

classifying commands.

Intent classification for virtual assistants is especially

challenging because of the variability of natural language

and the extensive range of tasks ALEXA can do. For a

virtual assistant to function reliably and provide a seamless

user experience, it is very important to accurately classify

the command.

These models represent a wide variety of machine

learning techniques used in this investigation, from the

more traditional decision tree-based approaches to

advanced ensembles and neural networks. Decision trees

provide interpretability and simplicity, while ensemble

methods, such as Random Forest, Histogram Gradient

Boosting, and AdaBoost, use the power of bundling

several weak learners together to improve classification

performance. Furthermore, the neural network-based

model gives a versatile structure that can fit complex

patterns in data.

The aim is to find out the best model that classifies

voice commands in virtual assistant ALEXA through hard

experimentation and analysis. Some of the key parameters

used in the evaluation include classification accuracy,

computational efficiency, and scalability to handle high

volumes. Other than this, we discuss the strengths and

weaknesses of each model, which also constitutes insights

into their performance and suitability against real-world

deployment.

These findings contribute to the extension of machine

learning knowledge in virtual assistant systems that have

natural language processing tasks. The outcome is better

represented in reality by designing and implementing a

more efficient command classification system that is

highly accurate to enhance the user experience with

ALEXA and other similar voice assistants.

1.1 Main novelty

The most important novelty of this research includes an in-

depth comparative analysis of machine learning models to

mailto:200708036@cqcet.edu.cn

436 Informatica 49 (2025) 435–450 L. li

classify commands within ALEXA. The work will detail

the performance of different models of the command

classification in ALEXA, whereas other previous works

may have focused on individual models or just general

natural language processing tasks. We present the

comparison of various models, starting from classic

decision tree-based approaches and ending with ensembles

such as Random Forest, Histogram Gradient Boosting, and

AdaBoost, and one neural network-based model. The

selection thus enables diverse exploration of

methodologies and their suitability for the task at hand. We

restrict our focus to the virtual assistant ALEXA; hence,

these research findings should apply directly to this widely

used and practical context and thus hopefully also

contribute to tangible improvements in user experience

and system reliability.

Furthermore, our study lets the models be scrutinized

along several dimensions: not only for the accuracy of the

classification but also for computational efficiency and

scalability. This provides a more complete picture of the

performance and practical viability of each model in real-

world applications. By distilling the strengths and

weaknesses of each model, we give great insight into the

performance characteristics of the models, shedding light

on why some of these models may be more suitable for

command classification in ALEXA compared to others.

Our study's results can further help in designing and

implementing more efficient and effective command

classification systems for ALEXA and similar virtual

assistants. In turn, this may improve user experience and

interaction with these platforms.

1.2 Related studies

With the improvement in techniques of machine learning

and deep learning and also with the development of strong

tools such as AI and virtual assistants, the researchers and

the engineers went deep inside the aspects of text

recognition, classification, speech recognition, and all

those areas. It is a vast field covering a whole range of

techniques that inspire new approaches toward solving

these problems comprehensively.

Zhou et al. [1] present a new model, C-LSTM, that

combines CNN and RNN architectures for sentence

modeling in text classification. In C-LSTM, CNN is used

to extract the representation of phrases, which is fed into

an LSTM to produce the sentence representation. This

model captures both local phrase features and global

sentence semantics. These results indeed show that, for

both sentiment and question classification tasks, C-LSTM

outperforms CNN and LSTM. The results obtained were

excellent for all tasks using the C-LSTM model.

Lai et al. [2] propose a new kind of recurrent

convolutional neural network for text categorization that

does not rely on human-designed features. The model

learns the representation of words by composing the

meaning of a sentence with a recurrent structure and a

max-pooling layer to automatically identify keywords

during classification. Experimental results on four datasets

show that this approach outperforms the existing

techniques, especially on document-level datasets.

A simple approach for detecting forge news is

proposed by Granik & Mesyura [3] based on a naive Bayes

classifier. They implemented such a system and performed

its testing on the Facebook news posts dataset. The

classifier achieved an accuracy of roughly 74% on the test

set, impressive given the simplicity of the model. The

paper reviewed several lines of research improving these

results and pointed out a direction in which artificial

intelligence approaches may help in dealing with the

problem of fake news detection.

 Tavčar et al. (2016) [4] introduce a web-based system

designed to enhance virtual museum tours through the use

of intelligent virtual assistants. This system analyzes user

preferences to generate personalized exhibition

recommendations. Furthermore, it incorporates a natural

language interface, enabling users to ask questions and

receive contextually relevant responses.

Kim et al. [5] investigate capsule networks for text

classification, which is not well researched, although

capsule networks have been very successful in image

classification. This paper showed very promising results

using capsule networks for text classification and their

advantages when compared to convolutional neural

networks. They further propose a simple routing method

to reduce the computational complexity. Experiments on

seven benchmark datasets show that capsule neural

networks, using the routing technique presented in this

paper, match the performance of traditional methods.

Qiao et al. [6] introduce a novel approach in this work

to obtain task-specific distributed representations of n-

grams for text classification by using "region

embeddings." Using two different models to generate the

embeddings, each word representation is combined

through a weighting matrix to interact with the local

context. These serve as parameters for the neural network

classifier. It outperforms the existing methods on several

benchmark datasets and effectively captures the important

phrasal expressions present in texts, as evidenced by the

experimental results.

Comparative Performance of Neural Networks and Ensemble Methods… Informatica 49 (2025) 435–450 437

Table 1: Examples of related works along with data

Islam et al. [7] present the Semantics Aware Random

Forest (SARF) classifier, which selects the features

relevant to the predicted classes. They assess SARF's

performance on 30 real-world text datasets, comparing it

with leading ensemble selection methods. The results

show that SARF excels in textual information retrieval,

indicating a promising new avenue for research on

classifier interpretability.

Chen et al. [8] introduce NPMM, a nonparametric

model designed for online short-text analysis. It utilizes

auxiliary word embeddings to estimate topic numbers and

tackle sparsity in topic-word distributions. NPMM

automates the process of determining document-topic

association by employing squared Mahalanobis distance,

thereby eliminating the need for hyperparameter tuning in

a new topic generation. Additionally, they suggest a

nonparametric sampling strategy for identifying key terms

within each topic. Inference is performed using a one-pass

Gibbs sampling algorithm, augmented by a Metropolis-

Hastings step. Experimental results demonstrate NPMM's

superior performance compared to existing methods.

Yao et al. [9] present a text classification model that

utilizes fastText. The model employs feature engineering

to extract key information from the text and generates

high-quality, low-dimensional, continuous representations

using the fastText algorithm. The

experiment involves classifying a text dataset from the

Baidu Dianshi platform's "user comment data emotional

polarity judgment" using Python. Results from the

emotional polarity judgment task indicate that the model

outperforms traditional machine learning algorithms in

precision, recall, and F-values, showcasing its strong

classification performance.

Gargiulo et al. [10] explore Deep Learning architectures

for text classification, focusing on extreme multi-class and

multi-label tasks with hierarchical labels. They introduced

the HLSE method for adjusting the data

label and evaluating a variety of WE model. Evaluation of

the PubMed collection shows the effectiveness of HLSE

and the importance of various WE model for such tasks.

Recently, Wang et al. [11] proposed Hierarchy-guided

Contrastive Learning (HGCLR) to incorporate hierarchy

into a text encoder. While training, HGCLR prepares the

positive samples from the label hierarchy and lets the text

encoder learn hierarchy-aware representation on its own.

While in testing, the HGCLR-enhanced encoder can

discard redundant hierarchy. The effectiveness of HGCLR

has been well verified by intensive experiments on three

benchmark datasets.

Sun et al. [12] introduced Clue and Reasoning

Prompting (CARP), a method that uses a step-by-step

reasoning approach tailored for text classification. CARP

guides Language Models (LLMs) to detect basic clues

such as keywords, tones, semantic connections, and

references, which then trigger a diagnostic reasoning

process for making final decisions. To tackle the issue of

limited tokens, CARP utilizes a fine-tuned model on a

supervised dataset for KNN demonstration search in in-

context learning. This method combines the generalization

ability of LLMs with task-specific evidence from the

complete labeled dataset.

Reference Task Type Data Accuracy

Lai et al. [2]

Convolutional

Neural Networks

20Newsgroup/ 7520

CNN/94.79%

RCNN/96.49%

Fudan University

document/ 8823

CNN/94.04%

RCNN/95.20%

Kim et al. [5]

Classification

using Capsules

20Newsgroup/10182

Capsule-A/80.39%

Capsule-B/80.03%

Reuters10/6472 Capsule-A/87.74%

Capsule-B/87.96%

Qiao et al. [6]

Region Embedding for

Text Classification

Amazon Review

Polarity/ 3,000,000

VDCNN/95.7%

D-LSTM/ -

Sogou News/ 450,000 VDCNN/96.8%

D-LSTM/94.9%

438 Informatica 49 (2025) 435–450 L. li

2 Utilized models, data and methods
This section presents a brief description of the executed

dataset as well as the models. Also, the methodology of

this study is explained.

Model Hyperparameters (default values)

We used Decision Tree, Random Forest, AdaBoost, and

Histogram-based Gradient Boosting (Hist GB) models

with their default parameters, as these values are

commonly used in studies and provide reliable results.
Additionally, details regarding the experimental setup,

computational environment, and software libraries used

have been provided for better understanding. The key

default parameters are.

Model Hyperparameters (default values)

Decision Tree: max_depth=30, min_samples_split=2,

min_samples_leaf=1, criterion="gini"

Random Forest: n_estimators=100, max_depth=30,

min_samples_split=2, min_samples_leaf=1,

criterion="gini"

AdaBoost: n_estimators=50, learning_rate=1.0,

base_estimator=DecisionTreeClassifier(max_depth=1)

Histogram-based Gradient Boosting (Hist GB):

learning_rate=0.1, max_iter=100, max_depth=30,

l2_regularization=0.1, min_samples_leaf=20

Data Splitting Strategy

• The dataset was split into 75% training and

25% testing.

• This process was repeated 5 times with random

splits, and the final results were reported as the

mean values across these runs.

Computing Environment

• RAM: 16GB

• CPU: Ryzen 7

• GPU: NVIDIA RTX 3060

• Software: Python 3.10.*, TensorFlow, Scikit-

learn

Neural Network Configuration

• Train-Validation Split: 10% of the training data

was set aside for validation.

• Batch Size: 32

• Epochs: 30

• Dropout Rate: 0.2

• Dense Layers: Three layers, each with 128

neurons.

• Optimizer: RMSprop with learning rate 2.5e-4

due to its fast convergence.

2.1 Data description

Aiming to classify the commands of ALEXA, they

gathered various information related to the ALEXA virtual

assistant. The dataset contains 16,521 records collected

from the MASSIVE dataset' containing both the text of the

commands and their corresponding class labels. The

dataset encompasses approximately 20 distinct classes.

Classification techniques were used to sort and categorize

the data based on these labels.

Fig. 1 demonstrates the dispersion of the data in each

category.

Figure 1: Number of samples in each label

Comparative Performance of Neural Networks and Ensemble Methods… Informatica 49 (2025) 435–450 439

According to the graphs in Fig. 1, the data with labels

of calendar and play are in the majority, and labels such as

cooking and takeaway contain the least amount of data.

Each label contains various words with different

frequencies. The following figures demonstrate word

frequency in some of the labels presented in the word

cloud as an example.

Figure 2: Word frequency in the label of the calendar

Fig. 2 displays that the label named calendar contains

several words with close relation to the calendar. It

displays those words such as calendar, meeting, event,

remind, and today have been repeated more.

Figure 3: Word frequency in the label of cooking

The related words to cooking are demonstrated in Fig.

3. Accordingly, words such as recipe, cook, make,

chicken, and find are more frequent in the commands

related to cooking. This indicates that ALEXA users

mostly used this VA to learn food recipes.

440 Informatica 49 (2025) 435–450 L. li

Figure 4: Word frequency in the label of transport

According to Fig. 4, in the commands related to

transport, words like ticket, train, traffic, and book are

more frequently, denoting the fact that people mostly used

ALEXA to buy tickets and check the traffic.

Figure 5. Word frequency in the label of play

According to Fig. 5, the play label involves the words

related to the commands for playing music and other

media. Hence, words such as play, song, music, podcast,

radio, and start are in the most repeated commands.

Figure 6. Word frequency in the label of weather

The label of weather contains all the command texts

related to weather. According to the word cloud in Fig. 6,

weather, today, will, week, need, rain, tomorrow, and will

are the most frequent words in this class.

The following sections describe the compared models

in this study.

2.2 Decision tree model

A decision tree classifier is a popular algorithm for

classification, using a tree-like model where each internal

node tests a specific feature, branches represent the

decision outcome of those tests, and leaf nodes represent

the class labels. This structure makes it intuitive to

understand how decisions are made based on input

features [13].

The algorithm begins by choosing the optimal feature

from the dataset using specific criteria like information

gain or Gini impurity. It then splits the dataset into subsets,

starting with the selected feature. Each subset represents a

different value of the feature. Each subset follows this

iterative feature selection and partitioning process,

recursively creating a tree structure until a stopping

condition has been reached, such as when a maximum tree

depth is reached or a minimum number of samples in a

node.

Once the tree has been constructed, any instance can

be classified by starting at the root and working its way

down to a leaf. At each node, it considers the test on the

feature and heads down the appropriate branch until it

reaches a leaf. This gives the instance the class label of the

Comparative Performance of Neural Networks and Ensemble Methods… Informatica 49 (2025) 435–450 441

leaf that it ends up at. The ease with which this process

can be followed makes decision trees easily

understandable and interpretable and forms one of the

major advantages of the technique.

With their great power, however, comes great

susceptibility to overfitting in the case of large decision

trees. To overcome this, several methods can be

performed: pruning and tuning of parameters such as

maximum depth or minimum samples per leaf. Then there

are the ensemble methods, which include Random Forests

and GBMs, where many trees are combined with the intent

of reducing overfitting and further improving

performance. Generally, decision tree classifiers offer a

versatile and interpretable approach to classification tasks,

with several strategies that may be used to improve

performance and generalization capabilities [14], [15].

2.3 Random forest model

The Random Forest ensemble is resistant and involves

learning for both classification and regression problems. It

constructs a large number of decision trees during training

and combines their outputs to yield the outcome. Each tree

in the Random Forest is trained on a different subset of the

data through a process called bootstrap sampling, meaning

that random samples are drawn with replacement from the

training data.

In the decision trees formed in a Random Forest, each

node will not consider all features on which to split;

instead, a random subset of the features alone would be

considered for a split. That injects randomness into the

model and helps with decorating the trees, yielding an

ensemble that's more robust and less prone to overfitting.

The best split at each node is determined based on a

chosen criterion such as Gini impurity or information gain.

This is an iterative process that repeats either until the trees

are full or the stopping criterion is reached. For

classification tasks, each tree in the Random Forest

"votes" for a class, and the class receiving the most votes

is chosen as the final prediction. For regression tasks, the

final prediction is gained by averaging the predictions

from all the trees.

Random Forests provide several benefits. They are

resilient to noise and outliers due to the averaging effect

of multiple trees. They also offer insights into feature

importance, helping identify which features significantly

impact predictions. Further, the training of individual trees

can be parallelized, thus making them efficient for large

datasets.

However, with these strengths, Random Forests are

quite computationally expensive. In cases of high linearity

among the features-target variables relationships or high-

dimensional data, its performance may not be at par with

other techniques. Nevertheless, because it has robustness

and effectiveness in solving a wide variety of problem

types, Random Forests find wide use in practice in a wide

array of domains [16], [17].

Random Forests can be represented mathematically,

although it's a bit more complex than a single decision tree

due to the ensemble nature of the model.

Let 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑛) be the input features and 𝑌 be

the target variable.

A Random Forest consists of 𝐵 decision trees

𝑇1, 𝑇2, … , 𝑇𝐵 each trained on a bootstrap sample of the

data. The prediction for a new instance 𝑥 in a classification

problem is obtained by taking a majority vote among the

predictions of all trees:

�̂�𝑹𝑭(𝒙) = 𝒎𝒐𝒅𝒆 (�̂�𝟏(𝒙), �̂�𝟐(𝒙), … , �̂�𝑩(𝒙)) (1)

Where �̂�𝑖(𝑥) is the predicted value of the 𝑖-th tree.

2.4 Histogram gradient boosting

The Histogram-based Gradient Boosting Classifier is a

robust machine learning algorithm for classification tasks,

especially on big data. It falls into the category of a

gradient-boosting family that combines a sequence of

weak learners, usually decision trees, into a robust

classifier.

Perhaps the most salient feature of the Hist Gradient

Boosting Classifier is the unique approach to feature

binning via histogramming. This avoids the use of exact

algorithms that usually find split points in decision trees

and instead discretizes features into intervals, hence

making it way faster during training, particularly for

datasets with a large number of samples.

Similar to other boosting gradient-type methods, the

Hist Gradient Boosting Classifier builds trees

consecutively in a greedy manner such that the newest tree

in each step minimizes the previously incurred loss.

Adding more trees in a sequence reduces some loss

of objective function—e.g., deviance or exponential loss

for classification—leading to an increase in the predictive

power of the model. The Histogram Gradient Boosting

Classifier uses regularisation to avoid overfitting by

limiting the tree depth and the minimum number of

samples to create a leaf and to split a node for good

generalization to unseen data.

Another advantage of the Hist Gradient Boosting

Classifier involves the handling of missing values in the

dataset, both during training and prediction, without

needing to take prior care of imputation. This facility

makes it highly convenient when dealing with real

datasets that are inherently bound to show some data loss.

Due to its histogram-based approach, the Hist

Gradient Boosting Classifier is highly scalable and

efficient and is hence indicated in problems with a high

number of samples and features. Like other gradient-

boosting methods, it is also robust to outliers in data and

can handle mixed types of features, including categorical

and numerical variables [18], [19].

2.5 AdaBoost model

AdaBoost-Adaptive Boosting is a classification ensemble

learning technique that combines several weak learners

into one robust learner. The basic principle behind

AdaBoost lies in training multiple weak learners—usually

simple decision trees—on a training set sequentially while

focusing on instances difficult to classify.

442 Informatica 49 (2025) 435–450 L. li

All instances in the dataset have an equal weight to

start training. A weak learner is then fitted on this data and

tested for performance. Weights are increased for those

instances that have been classified incorrectly, while the

weights are decreased for the instances correctly classified

in successive rounds. The adaptive fashion of this method

will make subsequent weak learners focus more on

instances that were challenging to classify in earlier

rounds. It involves training each of these weak learners

sequentially in a manner that each of them tries to correct

mistakes made previously by the other weak learners.

Several of these weak learners are trained one after

another, and all their predictions are combined to have the

final prediction. They all contribute to the final prediction.

Their contribution is weighted by their accuracy.

AdaBoost works effectively for both binary and

multiclass classification problems. It is very effective to

deal with complicated data since it can capture complex

boundaries of the decisions. AdaBoost may be sensitive to

outliers and noisy data, which could degrade the

performance. Though limited, AdaBoost is still popular

owing to its simplicity and efficiency. Besides, it often

acts as a base algorithm in advanced ensemble methods

like GBM and XGBoost, further enhancing its

performance and robustness [20], [21].

2.6 Neural Network model

A neural network model is a computational framework of

interconnected nodes, or neurons, in layers inspired by the

structure and function of biological neural networks, such

as the human brain. Each neuron receives an input,

undergoes processing of that input, and sends it to the next

layer; this is accomplished with the interlinking of neurons

through weights according to their strength.

It is trained in a procedure called supervised learning,

where the model learns to relate input data to output labels

by adjusting the weights of the connections among

neurons. By repeatedly exposing the model to training

data, it learns to recognize patterns and, eventually, to

make predictions or classifications. They find applications

in many areas, such as image and audio recognition and

natural language processing, because they can find

complex patterns from enormous data [22].

The neural network model in this study comprises

three dense layers and two layers of dropout. In total, the

neural network model contains 272,850 trainable

parameters.

Dense layer: It forms one of the major components in

neural network architectures. Every neuron in this layer is

normally connected to every neuron of the previous layer,

thus creating a dense connectivity structure. Hence, each

neuron's output is dependent on all neurons in the

preceding layer. Each such connection is also associated

with a learned weight in training. The most common

places for which dense layers occupy are in the middle of

the neural network, allowing it to capture intricate patterns

within the data. Normally, after each of them comes an

activation function that may introduce non-linearity into

the network, hence enabling it to learn and represent

complex relationships among features of data in a more

effective way.

Dropout in neural networks is a regularization

approach that works by randomly deactivating a portion of

the neurons during training to prevent overfitting. During

each training iteration, dropout arbitrarily turns a portion

of the outputs from the neurons to zero. This forces the

network to learn redundant representations of its data,

reducing the risk of relying too heavily on any particular

feature or combination of features. Dropout effectively

simulates training multiple networks with different

architectures simultaneously, resulting in a more robust

model that generalizes better to unseen data. Typically,

dropout is applied to hidden layers of the network, with a

dropout rate parameter controlling the fraction of neurons

to deactivate.

We also utilized the categorical cross entropy as the

loss function in the neural network model. Categorical

cross-entropy stands as a frequently employed loss

function in machine learning, particularly for tasks

involving multi-class classification. Its role is to evaluate

the discrepancy between the actual distribution and the

predicted distribution of categorical variables. In

classification problems, the output variable is categorical,

meaning it falls into one of several classes. The true

distribution represents the actual classes, typically

encoded as a one-hot vector, where only one element (the

true class) is 1, and the rest are 0s. The predicted

distribution, on the other hand, represents the model's

probabilities for each class. Mathematically, categorical

cross-entropy is calculated using the following formula for

a single example:

𝑳(𝒚, �̂�) = ∑ 𝒚𝒊 𝐥𝐨𝐠(�̂�𝒊)𝒊 (2)

Where 𝑦 is the true distribution (the one-hot encoded

vector). �̂� is the predicted distribution (the vector of

probabilities). Class 𝑖's true probability is denoted by 𝑦𝑖 .

The anticipated probability of class 𝑖 is shown by �̂�𝑖.

The sum is taken over all classes. This formula is

applied for every example within the dataset and then

averaged across all examples to make a final calculation

of loss.

That's because it is trained to penalize the model when

it has a lower probability of the true class by quantifying

the difference between predicted and true distributions.

This is appropriate for problems with mutually exclusive

classes, in which each instance is assigned only to one

class. Minimizing this categorical cross-entropy loss,

therefore, allows the model to generate probabilities that

align well with the actual distribution, hence increasing its

accuracy of classification [23].

To enhance the performance of the neural network,

this model is optimized using the RMSprop algorithm.

RMSprop, or Root Mean Square Propagation, is a popular

choice for training neural networks since it avoids the

pitfalls of normal stochastic gradient descent by adapting

the learning rate of each parameter based on the

magnitudes of the gradients. Such adaptiveness provides

Comparative Performance of Neural Networks and Ensemble Methods… Informatica 49 (2025) 435–450 443

faster convergence and better handling of non-stationary

and sparse gradients in tasks involving deep learning.

The RMSProp works by giving each parameter a

different learning rate, meanwhile computing the

exponential moving average of the squared gradients. This

is achieved through an exponentially decaying average

calculation:

𝑬[𝒈𝟐]𝒕 = 𝜷𝑬[𝒈𝟐]𝒕−𝟏 + (𝟏 − 𝜷)𝒈𝒕
𝟐 (3)

Here, 𝑔𝑡 represents the gradient of the parameter at

time step t, and 𝛽 controls the decay rate of the moving

average. Typically, 𝛽 is set to a value like 0.9. The moving

average 𝐸[𝑔2]𝑡 accumulates the squared gradients over

time, providing an estimate of the variance of the

gradients.

The update rule in RMSprop is then adjusted using the

square root of the accumulated squared gradients,

effectively scaling the learning rates for each parameter:

𝜽𝒕+𝟏 = 𝜽𝒕 −
𝜼

√𝑬[𝒈𝟐]
𝒕
+𝝐

∙ 𝒈𝒕 (4)

When the parameter at time step t is denoted by 𝜃𝑡,

the learning rate is indicated by 𝜂, and 𝜖 is a tiny constant

introduced for numerical stability to avoid division by

zero. The division by the square root of the accumulated

squared gradients normalizes the learning rate such that

updates corresponding to large gradients are reduced and

vice versa.

RMSProp is particularly suited for deep learning

tasks, wherein the data may have different gradients and

scales, with its adaptive learning rate. Nevertheless,

similar to many of the optimization algorithms, RMSProp

has several hyperparameters, such as the learning rate 𝜂

and the decay rate 𝛽, that need further fine-tuning to attain

optimal performance on different applications [24], [25].

2.7 Data preprocessing

First, the text is vectorized using one of the most salient

techniques for text analysis and document classification:

the TF-IDF method. TF-IDF (Term Frequency-Inverse

Document Frequency) is a crucial text preprocessing

technique used to convert textual data into numerical

representations for machine learning models. TF-IDF

involves processes such as tokenization (where text is

divided into individual words or tokens),

stemming/lemmatization (where words are reduced to

their root form to standardize variations), TF calculation

(where the frequency of each word in a document is

computed), IDF calculation (where the inverse document

frequency is computed to down weight common words

across multiple documents), and TF-IDF score

computation (where each word’s TF is multiplied by its

IDF score to determine its importance within the

document). TF-IDF helps highlight important words in a

document while reducing the impact of common but less

meaningful terms.

 The unigrams, bigrams, and trigrams included in the

vectorization process incorporated more intricate patterns

and connections from within the textual data.

After vectorization, we had 2057 unique words and

important phrases for our dataset. Further, in improving

the quality of representation, all stop words and

punctuation were removed from the text. This removes the

noise in the texts and puts the attention of the model on

meaningful content.

Then, the data were divided into training and testing

sets. There were 13,217 records designated for training the

models to learn trends and relationships from them. 3,304

records were set aside to test the performance of the

models. This separation of data into training and testing

sets helps to assess how well the trained models generalize

to unseen data and provides a measure of their predictive

accuracy.

3 Analysis results

3.1 Neural network validation

In the first step, we analyzed the loss values and accuracy

of the neural network model during training and testing.

The Fig. 7 in the following demonstrates the results.

Figure 7: The validation results of the neural network model

Fig. 7a displays the accuracy of the neural network model

after 30 epochs. It indicates that the accuracy of the model

in total increases in the earlier epochs and stays in the high

values as the epochs advance. The training accuracy

rapidly rises within the first few epochs and then stabilizes

444 Informatica 49 (2025) 435–450 L. li

around 92%, while the validation accuracy follows a

similar pattern but remains slightly lower, around 86%.

This gap between training and validation accuracy

suggests that the model learns well on training data but has

some overfitting tendencies.

Furthermore, the loss value of the model during training

and testing in Fig. 7b denotes that the loss value of the

neural network model in the training process decreases

gradually as the epochs go forward. The loss initially

drops sharply within the first few epochs, showing rapid

learning progress, then continues to decrease more

gradually. The training loss consistently reduces, reaching

approximately 0.2, while the validation loss exhibits a

different trend.

By scrutinizing the loss value of the test (val_loss), it is

derived that the loss values at the earlier epochs drop.

However, as the epochs advance, the loss value of the

model starts increasing to a small number due to

overfitting; hence, the validation process after 30 epochs

is stopped. This increase in validation loss while training

loss continues to decrease suggests that the model is

memorizing patterns from the training data rather than

generalizing well to unseen data. Techniques such as early

stopping, dropout regularization, or data augmentation

could help mitigate overfitting and improve the model’s

ability to generalize.

3.2 Evaluation metrics

The studied models used in this analysis, which are

introduced in sections 2.2 to 2.6, are evaluated through

well-known metrics such as accuracy, precision, recall,

and f1 score. These metrics are used to evaluate the

performance of classification models, especially in the

context of machine learning and statistics.

Accuracy is the most straightforward metric and

measures the ratio of correctly predicted instances to the

total instances. It is computed by dividing the total number

of forecasts by the number of correct guesses.

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
(𝑻𝑷+𝑻𝑵)

𝒕𝒐𝒕𝒂𝒍 𝒑𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏
 (5)

Precision assesses the proportion of accurately

predicted positive observations out of all predicted

positive observations. It reflects the model's effectiveness

in minimizing false positives.

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
(𝑻𝑷)

(𝑻𝑷+𝑭𝑷)
 (6)

High precision means that an algorithm returned

substantially more relevant results than irrelevant ones,

though it might miss some relevant results (low recall).

Recall or sensitivity measures the proportion of

accurately predicted positive observations compared to all

actual positive instances in the dataset. It evaluates the

model's ability to detect all positive cases.

𝑹𝒆𝒄𝒂𝒍𝒍 =
(𝑻𝑷)

(𝑻𝑷+𝑭𝑵)

(7)

High recall means that an algorithm returned most of

the relevant results (low false negatives), though it might

also bring back many irrelevant results (low precision).

The F1 score represents the harmonic mean of

precision and recall, offering a balanced single score that

considers both precision and recall.

𝑭𝟏 𝒔𝒄𝒐𝒓𝒆 = 𝟐 ×
(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ×𝑹𝒆𝒄𝒂𝒍𝒍)

(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍)

(8)

The F1 score is a good measure of a model's accuracy,

especially when there is an uneven class distribution

(imbalanced data).

The obtained results for the aforesaid metrics are

presented in the following table:

Table 2: The metrics results for the models

 Neural Network Decision Tree Random Forest AdaBoost Hist GB

Accuracy 0.851695 0.81023 0.831114 0.620157 0.804782

Precision 0.857729 0.815996 0.837435 0.771549 0.822176

Recall 0.851695 0.81023 0.831114 0.62057 0.804782

F1 score 0.85236 0.810181 0.830936 0.639389 0.80615

The results show the neural networks' superior

performance. Neural Network achieves the highest

accuracy (0.8517) and strong performance across all

metrics, making it the most effective model overall.

Decision Tree and Random Forest also perform well, with

Random Forest slightly outperforming Decision Tree in

all metrics.

AdaBoost shows significantly lower performance,

particularly in accuracy (0.6202) and F1 score (0.6394),

indicating it may not be well-suited for this dataset.

Hist Gradient Boosting (Hist GB) performs

competitively, with results close to those of the Decision

Tree and Random Forest models. To get a better

understanding of the obtained results, Fig. 8 presents the

graphic comparison.

Comparative Performance of Neural Networks and Ensemble Methods… Informatica 49 (2025) 435–450 445

Figure 8: Comparison of the obtained results for the models

By comparing the accuracy of the models, it is

deduced that the neural network model holds the highest

accuracy value, and the random forest and the decision

tree models are the second and third-best models. The

precision of the models demonstrates the neural network

model shows promising value with the best-obtained value

among the studied models. The results of the recall denote

the outperformance of the neural network model

compared to the other exerted models. The results

indicated the disappointing results of the AdaBoost.

According to the f1 score of the models, the neural

network presents the highest obtained value, and the

random forest and decision tree are the next beneficial

models.

In total, the neural network consistently outperforms

all other models across all metrics utilized in this study.

Conversely, AdaBoost exhibits the lowest performance

across the board. This highlights the superior effectiveness

and robustness of the neural network over its counterparts,

making it the clear choice for the task at hand.

3.3 Class correlation in the neural

networks

Since the neural network model was the best model for

accomplishing the given tasks, the class characteristics of

the neural networks are delved into, rigorously. The

following figure demonstrates the confusion matrix

among the classes.

Figure 9: Confusion matrix of neural network classes

446 Informatica 49 (2025) 435–450 L. li

Fig. 9 displays the confusion matrix, which denotes

which classes are mistaken with each other. This happens

due to the similarity of data between the two classes. In

Fig. 9, the lighter colors represent more similarity between

classes. As an example, the general and qa contain

resembling textual data and are sometimes mistaken with

each other by the models. In other words, "light colors" in

the confusion matrix indicate higher values of

classification accuracy, representing a stronger correlation

between true and predicted labels.

Figure 10: Class relation in the neural network model

Fig. 10 demonstrates the relationship between classes

in the neural network model. The lighter colors indicate

the higher relation between the two classes. Two classes

with high relations denote that the classes share the same

commands and contain resembling textual data.

According to the matrix, the general has a high

relationship with classes such as weather,

recommendation, and qa. Also, play and music share

similar commands.

Analyzing the confusion matrix, we can observe areas

where the model misclassified instances. The off-diagonal

elements in the matrix highlight these misclassifications.

For example, there is a noticeable overlap between the

"lists" and "recommendation" classes. This could stem

from shared contextual words in their respective command

texts, such as "add," "suggest," or "list." Enhancing the

feature extraction process or incorporating contextual

embeddings may help differentiate these classes better.

The confusion between "news" and "general" is

evident, likely because commands labeled as "general"

might occasionally reference current events or updates,

leading the model to associate them with "news." Using

additional semantic analysis might mitigate this issue.

4 Discussion

Highest Values Across All Metrics: It can be observed

that the Neural Network outperforms other models across

all evaluation metrics, achieving the highest scores. This

indicates that the neural network has the lowest error in its

predictions and is the most optimized model for this task.

 Traditional models like Decision Trees and Random

Forests have structural limitations that prevent them from

effectively capturing complex relationships in the data. In

contrast, a neural network, with multiple hidden layers,

can better learn nonlinear and intricate patterns within the

dataset. In other words, the flexibility in learning complex

patterns is one of the advantages of this model.

Deep learning also offers advantages in natural

language processing (NLP). Neural networks are

particularly well-suited for Natural Language Processing

(NLP) tasks. Unlike classical models based on decision

trees, neural networks can better understand semantic

relationships between words and phrases. Given that the

goal of this research is to classify voice commands in

ALEXA, this capability makes the neural network a

superior choice.

The proposed model utilizes improved optimization

and overfitting prevention techniques. The neural network

architecture benefits from techniques such as Dropout and

RMSprop optimization, which improve the model's

generalization ability. This ensures that the model

maintains high performance on new, unseen data.

Neural networks often excel in text classification

because they can automatically learn complex and

hierarchical representations from raw text data. In contrast

with traditional machine learning methods, which usually

rely on manually engineered features or simpler

representations, neural networks (especially architectures

Comparative Performance of Neural Networks and Ensemble Methods… Informatica 49 (2025) 435–450 447

like CNNs, RNNs, or Transformers) can capture intricate

semantic relationships and contextual nuances, leading to

improved performance.

One possible reason AdaBoost underperforms in this

context is its reliance on weak learners (often decision

trees) that might not capture the complexity of text data as

effectively as neural networks. Text data is typically high-

dimensional and sparse, making it challenging for

boosting methods that build models sequentially. If the

individual weak learners cannot handle the intricacies of

word order, context, and nuanced semantics, the ensemble

may struggle even after several iterations. Additionally,

AdaBoost is sensitive to noisy data and outliers, which are

common in natural language tasks, further impeding its

performance.

Additionally, the performance and scalability of the

models used in the article were compared with each other.

Decision Trees Fast in training and prediction but prone to

overfitting. Good scalability for small datasets Random

Forest Higher accuracy than decision trees with reduced

overfitting but slower training. Moderate scalability. Hist

Gradient Boosting More efficient than classical boosting

methods, suitable for large datasets, but requires careful

hyperparameter tuning. AdaBoost Performs well on small

datasets but is sensitive to noise and less scalable than

modern boosting methods. Neural Networks Capable of

learning complex patterns but computationally expensive

and requires large datasets for optimal performance. High

scalability with GPU/TPU acceleration.

Statistical

The following is the t-test for neural network and

random forest for accuracy precison and recall

T-Test Results:

Accuracy: t = 4.1309, p = 0.0006

Precision: t = 3.8258, p = 0.0012

Recall: t = 6.3499, p = 0.0000

F1-Score: t = 2.5812, p = 0.0188

5 Conclusion
In conclusion, our research offers an in-depth analysis of

command classification for the ALEXA virtual assistant,

utilizing various machine learning models and methods.

By utilizing Decision Trees, Random Forest, Hist

Gradient Boosting, AdaBoost, and Neural Networks, we

aimed to discern the most effective approach for

accurately categorizing user commands.

Our study capitalized on a dataset containing text-

based commands and their corresponding classes, which

were transformed into feature vectors using the TF-IDF

method. Notably, our neural network architecture was

composed of three dense layers and two dropout layers,

comprising a total of 272,850 trainable parameters. The

loss function used was the categorical cross-entropy,

while RMSProp was used to ensure sound optimization

for the training of the neural network model.

In this respect, our results unambiguously prove the

superiority of neural network models compared to other

conventional machine learning algorithms through

extensive evaluation by using precision, accuracy, F1

score, and recall metrics. More precisely, the neural

networks were always ranked first compared to AdaBoost

in terms of classification performance for all measured

parameters.

This work provides insight into the performance of

various machine learning models for command

classification but points out the very important potential

use of neural networks in dealing with complex natural

language processing tasks. The top performance given by

the relative performance of neural networks in this work

points to their suitability for real-world applications within

virtual assistant frameworks such as ALEXA.

Furthermore, our findings point out how state-of-the-

art techniques, such as deep learning, will have to be

explored for high accuracy and robust performance in

command classification tasks. The success of neural

networks here indicates how these approaches are relevant

within virtual assistant technology, opening new paths

toward the development of more fluid user experiences

and natural ways of interaction.

These findings have significant practical implications.

By leveraging neural networks, ALEXA’s command

classification can be directly improved in real-world

scenarios. For instance, better classification accuracy can

lead to enhanced user satisfaction by reducing

misinterpretation of commands. The findings also suggest

that integrating more complex neural architectures could

allow ALEXA to handle a broader variety of commands,

including those involving nuanced or multi-intent queries.

Additionally, the scalability demonstrated in this research

implies that the models can adapt to diverse languages and

accents, improving accessibility for users worldwide.

In further research, more neural network architectures

can be compared and more feature extraction methods

could be explored, or even ensemble techniques could be

considered to improve the performance on command

classification tasks. Additionally, the scalability and

generalizability of the proposed models could be

evaluated across different domains and languages to

assess their broader applicability. Overall, our study

contributes valuable insights into the field of natural

language processing and lays the foundation for continued

advancements in virtual assistant technologies.

Nomenclature

Abbreviation Description Abbreviation Description

VA Virtual Assistant 𝑋 Input feature

AdaBoost Adaptive Boosting 𝑌 Targe value

AI Artificial Intelligence �̂�𝑖(𝑥) Predicted value of 𝑖-th tree in random forest

448 Informatica 49 (2025) 435–450 L. li

CNN Convolutional Neural Network 𝑦𝑖 True probability of class 𝑖
LSTM Long Short-Term Memory �̂�𝑖 Predicted probability of class 𝑖
SARF Semantics Aware Random Forest 𝜖 Small constant number

NPMM nonparametric model 𝑔𝑡 The gradient of the parameter at iteration t

HLSE Hierarchical Label Set Expansion 𝛽 Parameter to control the decay rate

HGCLR Hierarchy-guided Contrastive

Learning

𝜃𝑡 Parameter at time step t

WE Word Embedding 𝜂 Learning rate

CARP Clue and Reasoning Prompting TP True positive

GBM Gradient Boosting Machines TN True negative

RMSprop Root Mean Square Propagation FP False positive

SGD stochastic gradient descent FN False negative

Acknowledgements

I would like to take this opportunity to acknowledge that

there are no individuals or organizations that require

acknowledgment for their contributions to this work.

Competing of interests

The authors declare no competing of interests.

Authorship contribution statement

The author contributed to the study's conception and

design. Data collection, simulation, and analysis were

performed by " Li LI ". Also, the first draft of the

manuscript was written by Li LI commented on previous

versions of the manuscript.

Data availability

Data can be shared upon request.

Declarations

Not applicable

Conflicts of interest

The authors declare that there is no conflict of interest

regarding the publication of this paper.

Author statement

The manuscript has been read and approved by all the

authors, the requirements for authorship, as stated earlier

in this document, have been met, and each author believes

that the manuscript represents honest work.

Funding

This research received no specific grant from any funding

agency in the public, commercial, or not-for-profit sectors.

Ethical approval

The research paper has received ethical approval from the

institutional review board, ensuring the protection of

participants' rights and compliance with the relevant

ethical guidelines.

References
[1] C. Zhou, C. Sun, Z. Liu, and F. C. M. Lau, “A C-

LSTM Neural Network for Text Classification,”

Nov. 2015, [Online]. Available:

http://arxiv.org/abs/1511.08630

[2] S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent

Convolutional Neural Networks for Text

Classification,” 2015. [Online]. Available:

www.aaai.org

[3] M. Granik and V. Mesyura, “Fake News Detection

Using Naive Bayes Classifier,” in IEEE First

Ukraine Conference on Electrical and Computer

Engineering (UKRCON), 2017.

[4] A. Tavčar, C. Antonya, and E. V. Butila,

“Recommender System for Virtual Assistant

Supported Museum Tours,” 2016. [Online].

Available: http://www.projekt-

[5] J. Kim, S. Jang, S. Choi, and E. Park, “Text

Classification using Capsules,” Aug. 2018, [Online].

Available: http://arxiv.org/abs/1808.03976

[6] C. Qiao et al., “A NEW METHOD OF REGION

EMBEDDING FOR TEXT CLASSIFICATION,”

2018.

[7] M. Z. Islam, J. Liu, J. Li, L. Liu, and W. Kang, “A

semantics aware random forest for text

classification,” in International Conference on

Information and Knowledge Management,

Proceedings, Association for Computing Machinery,

Nov. 2019, pp. 1061–1070. doi:

10.1145/3357384.3357891.

[8] J. Chen, Z. Gong, and W. Liu, “A nonparametric

model for online topic discovery with word

embeddings,” Inf Sci (N Y), vol. 504, pp. 32–47,

Dec. 2019, doi: 10.1016/j.ins.2019.07.048.

[9] T. Yao, Z. Zhai, and B. Gao, “Text Classification

Model Based on fastText,” in IEEE International

Conference on Artificial Intelligence and

Information Systems (ICAIIS), 2020.

[10] F. Gargiulo, S. Silvestri, M. Ciampi, and G. De

Pietro, “Deep neural network for hierarchical

extreme multi-label text classification,” Applied Soft

Computing Journal, vol. 79, pp. 125–138, Jun. 2019,

doi: 10.1016/j.asoc.2019.03.041.

[11] Z. Wang, P. Wang, L. Huang, X. Sun, and H. Wang,

“Incorporating Hierarchy into Text Encoder: a

Comparative Performance of Neural Networks and Ensemble Methods… Informatica 49 (2025) 435–450 449

Contrastive Learning Approach for Hierarchical

Text Classification,” Mar. 2022, [Online]. Available:

http://arxiv.org/abs/2203.03825

[12] X. Sun et al., “Text Classification via Large

Language Models,” 2023.

[13] I. Gounari and M. Kanzilieris, “Wireless Sensor

Networks Focusing on Predicting Average

Localization Error through Machine Learning

Applications,” Journal of Artificial Intelligence and

System Modelling, vol. 01, no. 04, pp. 104–118,

2024, doi: 10.22034/jaism.2024.474005.1055.

[14] A. Navada, A. Nizam Ansari, S. Patil, and B. A.

Sonkamble, “Overview of Use of Decision Tree

algorithms in Machine Learning,” IEEE Control and

System Graduate Research Colloquium, 2011.

[15] Y. Y. Song and Y. Lu, “Decision tree methods:

applications for classification and prediction,”

Shanghai Arch Psychiatry, vol. 27, no. 2, pp. 130–

135, Apr. 2015, doi: 10.11919/j.issn.1002-

0829.215044.

[16] G. Biau and E. Scornet, “A Random Forest Guided

Tour,” Nov. 2015, [Online]. Available:

http://arxiv.org/abs/1511.05741

[17] G. Louppe, “Understanding Random Forests: From

Theory to Practice,” Jul. 2014, [Online]. Available:

http://arxiv.org/abs/1407.7502

[18] Y. J. Ong, Y. Zhou, N. Baracaldo, and H. Ludwig,

“Adaptive Histogram-Based Gradient Boosted Trees

for Federated Learning,” Dec. 2020, [Online].

Available: http://arxiv.org/abs/2012.06670

[19] A. Guryanov, “Histogram-Based Algorithm for

Building Gradient Boosting Ensembles of Piecewise

Linear Decision Trees,” in 8th International

Conference, AIST 2019 Kazan, Russia, July 17–19,

Goos Gerhard and Hartmanis Juris, Eds., Kazan:

Springer, Jul. 2019, pp. 39–50.

[20] J. Zhu, H. Zou, S. Rosset, and T. Hastie, “Multi-class

AdaBoost *,” 2009.

[21] R. E. Schapire, “Explaining AdaBoost,” 2013.

[22] Y. Goldberg, “Neural Network Methods for Natural

Language Processing,” Synthesis Lectures on

Human Language Technologies, vol. 10, no. 1, pp.

1–311, 2017, doi:

10.2200/S00762ED1V01Y201703HLT037.

[23] Z. Zhang and M. R. Sabuncu, “Generalized Cross

Entropy Loss for Training Deep Neural Networks

with Noisy Labels,” 2018.

[24] T. Kurbiel and S. Khaleghian, “Training of Deep

Neural Networks based on Distance Measures using

RMSProp,” Aug. 2017, [Online]. Available:

http://arxiv.org/abs/1708.01911

[25] R. Elshamy, O. Abu-Elnasr, M. Elhoseny, and S.

Elmougy, “Improving the efficiency of RMSProp

optimizer by utilizing Nestrove in deep learning,”

Sci Rep, vol. 13, no. 1, Dec. 2023, doi:

10.1038/s41598-023-35663-x.

450 Informatica 49 (2025) 435–450 L. li

