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Our study investigates the classification of commands for the ALEXA virtual assistant using various 

machine-learning models. The dataset includes 16,521 samples, and data preprocessing steps, such as 

vectorization and remove all stop words and punctuation, were applied before training. Decision Trees, 

Random Forest, Hist Gradient Boosting, AdaBoost, and Neural Networks are employed to classify textual 

commands into respective classes. The dataset consists of commands and their classes, transformed into 

feature vectors using the TF-IDF method. Our neural network architecture comprises three dense layers 

and two dropout layers, totaling 272,850 trainable parameters, and uses RMSprop for optimization and 

categorical cross-entropy as the loss function. Performance is evaluated utilizing metrics like accuracy, 

precision, recall, and F1 score. Results have shown that neural networks perform better in comparison to 

classical algorithms and outperform AdaBoost explicitly in all metrics. The comparative results between 

neural networks and AdaBoost in evaluation metrics are, respectively, as follows:(0.851695 / 0.620157), 

(0.857729 / 0.771549),(0.851695 / 0.62057) and (0.85236 / 0.639389). Therefore, deep learning will 

indeed provide many promises toward solving challenging NLP tasks in a virtual assistant system like 

Alexa. The findings provide enormous insight into effective methodologies regarding the classification of 

commands and further establish the relevance of neural networks within extending virtual assistant 

technology. Further research may consider discussing more recent neural network structures and 

exploring their scalability and generalizability across several domains and languages.  

Povzetek: Raziskava primerja učinek nevronskih mrež in ansambelskih metod pri razvrščanju ukazov v 

Alexa asistentu, kjer nevronske mreže dosegajo najboljše razultate. 

 

1 Introduction 
Whereas virtual assistants gave a whole new dimension to 

human-computer interaction, in facilitating technology 

towards and for people in every respect, the pioneering 

leader is ALEXA by Amazon. It grants users the ability to 

perform voice-controlled functions that range from 

managing smart home appliances to even playing music. 

The central role of ALEXA involves understanding and 

classifying commands. 

Intent classification for virtual assistants is especially 

challenging because of the variability of natural language 

and the extensive range of tasks ALEXA can do. For a 

virtual assistant to function reliably and provide a seamless 

user experience, it is very important to accurately classify 

the command. 

These models represent a wide variety of machine 

learning techniques used in this investigation, from the 

more traditional decision tree-based approaches to 

advanced ensembles and neural networks. Decision trees 

provide interpretability and simplicity, while ensemble 

methods, such as Random Forest, Histogram Gradient 

Boosting, and AdaBoost, use the power of bundling 

several weak learners together to improve classification  

 

performance. Furthermore, the neural network-based  

model gives a versatile structure that can fit complex 

patterns in data. 

The aim is to find out the best model that classifies 

voice commands in virtual assistant ALEXA through hard 

experimentation and analysis. Some of the key parameters 

used in the evaluation include classification accuracy, 

computational efficiency, and scalability to handle high 

volumes. Other than this, we discuss the strengths and 

weaknesses of each model, which also constitutes insights 

into their performance and suitability against real-world 

deployment. 

These findings contribute to the extension of machine 

learning knowledge in virtual assistant systems that have 

natural language processing tasks. The outcome is better 

represented in reality by designing and implementing a 

more efficient command classification system that is 

highly accurate to enhance the user experience with 

ALEXA and other similar voice assistants. 

1.1 Main novelty 

The most important novelty of this research includes an in-

depth comparative analysis of machine learning models to 
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classify commands within ALEXA. The work will detail 

the performance of different models of the command 

classification in ALEXA, whereas other previous works 

may have focused on individual models or just general 

natural language processing tasks. We present the 

comparison of various models, starting from classic 

decision tree-based approaches and ending with ensembles 

such as Random Forest, Histogram Gradient Boosting, and 

AdaBoost, and one neural network-based model. The 

selection thus enables diverse exploration of 

methodologies and their suitability for the task at hand. We 

restrict our focus to the virtual assistant ALEXA; hence, 

these research findings should apply directly to this widely 

used and practical context and thus hopefully also 

contribute to tangible improvements in user experience 

and system reliability. 

Furthermore, our study lets the models be scrutinized 

along several dimensions: not only for the accuracy of the 

classification but also for computational efficiency and 

scalability. This provides a more complete picture of the 

performance and practical viability of each model in real-

world applications. By distilling the strengths and 

weaknesses of each model, we give great insight into the 

performance characteristics of the models, shedding light 

on why some of these models may be more suitable for 

command classification in ALEXA compared to others. 

Our study's results can further help in designing and 

implementing more efficient and effective command 

classification systems for ALEXA and similar virtual 

assistants. In turn, this may improve user experience and 

interaction with these platforms. 

1.2 Related studies 

With the improvement in techniques of machine learning 

and deep learning and also with the development of strong 

tools such as AI and virtual assistants, the researchers and 

the engineers went deep inside the aspects of text 

recognition, classification, speech recognition, and all 

those areas. It is a vast field covering a whole range of 

techniques that inspire new approaches toward solving 

these problems comprehensively. 

Zhou et al. [1] present a new model, C-LSTM, that 

combines CNN and RNN architectures for sentence 

modeling in text classification. In C-LSTM, CNN is used 

to extract the representation of phrases, which is fed into 

an LSTM to produce the sentence representation. This 

model captures both local phrase features and global 

sentence semantics. These results indeed show that, for 

both sentiment and question classification tasks, C-LSTM 

outperforms CNN and LSTM. The results obtained were 

excellent for all tasks using the C-LSTM model. 

 

Lai et al. [2] propose a new kind of recurrent 

convolutional neural network for text categorization that 

does not rely on human-designed features. The model 

learns the representation of words by composing the 

meaning of a sentence with a recurrent structure and a 

max-pooling layer to automatically identify keywords 

during classification. Experimental results on four datasets 

show that this approach outperforms the existing 

techniques, especially on document-level datasets. 

A simple approach for detecting forge news is 

proposed by Granik & Mesyura [3] based on a naive Bayes 

classifier. They implemented such a system and performed 

its testing on the Facebook news posts dataset. The 

classifier achieved an accuracy of roughly 74% on the test 

set, impressive given the simplicity of the model. The 

paper reviewed several lines of research improving these 

results and pointed out a direction in which artificial 

intelligence approaches may help in dealing with the 

problem of fake news detection. 

 Tavčar et al. (2016) [4] introduce a web-based system 

designed to enhance virtual museum tours through the use 

of intelligent virtual assistants. This system analyzes user 

preferences to generate personalized exhibition 

recommendations. Furthermore, it incorporates a natural 

language interface, enabling users to ask questions and 

receive contextually relevant responses. 

Kim et al. [5] investigate capsule networks for text 

classification, which is not well researched, although 

capsule networks have been very successful in image 

classification. This paper showed very promising results 

using capsule networks for text classification and their 

advantages when compared to convolutional neural 

networks. They further propose a simple routing method 

to reduce the computational complexity. Experiments on 

seven benchmark datasets show that capsule neural 

networks, using the routing technique presented in this 

paper, match the performance of traditional methods. 

Qiao et al. [6] introduce a novel approach in this work 

to obtain task-specific distributed representations of n-

grams for text classification by using "region 

embeddings." Using two different models to generate the 

embeddings, each word representation is combined 

through a weighting matrix to interact with the local 

context. These serve as parameters for the neural network 

classifier. It outperforms the existing methods on several 

benchmark datasets and effectively captures the important 

phrasal expressions present in texts, as evidenced by the 

experimental results.  

 

 

 

 

 

 

 

 

 

 

 



Comparative Performance of Neural Networks and Ensemble Methods…                                    Informatica 49 (2025) 435–450   437                                                                                                                                               

 
Table 1: Examples of related works along with data

 

Islam et al. [7] present the Semantics Aware Random 

Forest (SARF) classifier, which selects the features 

relevant to the predicted classes. They assess SARF's 

performance on 30 real-world text datasets, comparing it 

with leading ensemble selection methods. The results 

show that SARF excels in textual information retrieval, 

indicating a promising new avenue for research on 

classifier interpretability. 

Chen et al. [8] introduce NPMM, a nonparametric 

model designed for online short-text analysis. It utilizes 

auxiliary word embeddings to estimate topic numbers and 

tackle sparsity in topic-word distributions. NPMM 

automates the process of determining document-topic 

association by employing squared Mahalanobis distance, 

thereby eliminating the need for hyperparameter tuning in 

a new topic generation. Additionally, they suggest a 

nonparametric sampling strategy for identifying key terms 

within each topic. Inference is performed using a one-pass 

Gibbs sampling algorithm, augmented by a Metropolis-

Hastings step. Experimental results demonstrate NPMM's 

superior performance compared to existing methods. 

Yao et al. [9] present a text classification model that 

utilizes fastText. The model employs feature engineering 

to extract key information from the text and generates 

high-quality, low-dimensional, continuous representations 

using the fastText algorithm. The  

experiment involves classifying a text dataset from the 

Baidu Dianshi platform's "user comment data emotional  

polarity judgment" using Python. Results from the 

emotional polarity judgment task indicate that the model  

outperforms traditional machine learning algorithms in 

precision, recall, and F-values, showcasing its strong 

classification performance. 

 

Gargiulo et al. [10] explore Deep Learning architectures 

for text classification, focusing on extreme multi-class and 

multi-label tasks with hierarchical labels. They introduced 

the HLSE method for adjusting the data  

label and evaluating a variety of WE model. Evaluation of 

the PubMed collection shows the effectiveness of HLSE 

and the importance of various WE model for such tasks. 

Recently, Wang et al. [11] proposed Hierarchy-guided 

Contrastive Learning (HGCLR) to incorporate hierarchy 

into a text encoder. While training, HGCLR prepares the 

positive samples from the label hierarchy and lets the text 

encoder learn hierarchy-aware representation on its own. 

While in testing, the HGCLR-enhanced encoder can 

discard redundant hierarchy. The effectiveness of HGCLR 

has been well verified by intensive experiments on three 

benchmark datasets. 

Sun et al. [12] introduced Clue and Reasoning 

Prompting (CARP), a method that uses a step-by-step 

reasoning approach tailored for text classification. CARP 

guides Language Models (LLMs) to detect basic clues 

such as keywords, tones, semantic connections, and 

references, which then trigger a diagnostic reasoning 

process for making final decisions. To tackle the issue of 

limited tokens, CARP utilizes a fine-tuned model on a 

supervised dataset for KNN demonstration search in in-

context learning. This method combines the generalization 

ability of LLMs with task-specific evidence from the 

complete labeled dataset. 

Reference  Task Type Data Accuracy  

 

 

Lai et al. [2] 

 

Convolutional 

Neural Networks 

20Newsgroup/ 7520 

 

CNN/94.79% 

RCNN/96.49% 

 

Fudan University 

document/ 8823 

CNN/94.04% 

RCNN/95.20% 

 

Kim et al. [5] 

 

Classification 

using Capsules 

20Newsgroup/10182 

 

Capsule-A/80.39% 

Capsule-B/80.03% 

Reuters10/6472 Capsule-A/87.74% 

Capsule-B/87.96% 

 

Qiao et al. [6] 

 

Region Embedding for      

Text Classification 

 

Amazon Review 

Polarity/ 3,000,000 

VDCNN/95.7% 

D-LSTM/ - 

Sogou News/ 450,000 VDCNN/96.8% 

D-LSTM/94.9% 
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2 Utilized models, data and methods 
This section presents a brief description of the executed 

dataset as well as the models. Also, the methodology of 

this study is explained. 

Model Hyperparameters (default values) 

We used Decision Tree, Random Forest, AdaBoost, and 

Histogram-based Gradient Boosting (Hist GB) models 

with their default parameters, as these values are 

commonly used in studies and provide reliable results. 
Additionally, details regarding the experimental setup, 

computational environment, and software libraries used 

have been provided for better understanding. The key 

default parameters are. 

Model Hyperparameters (default values) 

Decision Tree: max_depth=30, min_samples_split=2, 

min_samples_leaf=1, criterion="gini" 

Random Forest: n_estimators=100, max_depth=30, 

min_samples_split=2, min_samples_leaf=1, 

criterion="gini" 

AdaBoost: n_estimators=50, learning_rate=1.0, 

base_estimator=DecisionTreeClassifier(max_depth=1) 

Histogram-based Gradient Boosting (Hist GB): 

learning_rate=0.1, max_iter=100, max_depth=30, 

l2_regularization=0.1, min_samples_leaf=20 

 

Data Splitting Strategy 

• The dataset was split into 75% training and 

25% testing. 

• This process was repeated 5 times with random 

splits, and the final results were reported as the 

mean values across these runs. 

Computing Environment 

• RAM: 16GB 

• CPU: Ryzen 7 

• GPU: NVIDIA RTX 3060 

• Software: Python 3.10.*, TensorFlow, Scikit-

learn 

Neural Network Configuration 

• Train-Validation Split: 10% of the training data 

was set aside for validation. 

• Batch Size: 32 

• Epochs: 30 

• Dropout Rate: 0.2 

• Dense Layers: Three layers, each with 128 

neurons. 

• Optimizer: RMSprop with learning rate 2.5e-4 

due to its fast convergence. 

2.1 Data description 

Aiming to classify the commands of ALEXA, they 

gathered various information related to the ALEXA virtual 

assistant. The dataset contains 16,521 records collected 

from the MASSIVE dataset' containing both the text of the 

commands and their corresponding class labels. The 

dataset encompasses approximately 20 distinct classes. 

Classification techniques were used to sort and categorize 

the data based on these labels. 

 

Fig. 1 demonstrates the dispersion of the data in each 

category. 

 

Figure 1: Number of samples in each label 
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According to the graphs in Fig. 1, the data with labels 

of calendar and play are in the majority, and labels such as 

cooking and takeaway contain the least amount of data. 

Each label contains various words with different 

frequencies. The following figures demonstrate word 

frequency in some of the labels presented in the word 

cloud as an example. 

 

Figure 2: Word frequency in the label of the calendar 

Fig. 2 displays that the label named calendar contains 

several words with close relation to the calendar. It 

displays those words such as calendar, meeting, event, 

remind, and today have been repeated more. 

 

Figure 3: Word frequency in the label of cooking 

The related words to cooking are demonstrated in Fig. 

3. Accordingly, words such as recipe, cook, make, 

chicken, and find are more frequent in the commands 

related to cooking. This indicates that ALEXA users 

mostly used this VA to learn food recipes. 
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Figure 4: Word frequency in the label of transport 

According to Fig. 4, in the commands related to 

transport, words like ticket, train, traffic, and book are 

more frequently, denoting the fact that people mostly used 

ALEXA to buy tickets and check the traffic. 

 

Figure 5. Word frequency in the label of play 

According to Fig. 5, the play label involves the words 

related to the commands for playing music and other 

media. Hence, words such as play, song, music, podcast, 

radio, and start are in the most repeated commands.  

 

Figure 6. Word frequency in the label of weather 

The label of weather contains all the command texts 

related to weather. According to the word cloud in Fig. 6, 

weather, today, will, week, need, rain, tomorrow, and will 

are the most frequent words in this class. 

The following sections describe the compared models 

in this study. 

2.2 Decision tree model 

A decision tree classifier is a popular algorithm for 

classification, using a tree-like model where each internal 

node tests a specific feature, branches represent the 

decision outcome of those tests, and leaf nodes represent 

the class labels. This structure makes it intuitive to 

understand how decisions are made based on input 

features [13]. 

The algorithm begins by choosing the optimal feature 

from the dataset using specific criteria like information 

gain or Gini impurity. It then splits the dataset into subsets, 

starting with the selected feature. Each subset represents a 

different value of the feature. Each subset follows this 

iterative feature selection and partitioning process, 

recursively creating a tree structure until a stopping 

condition has been reached, such as when a maximum tree 

depth is reached or a minimum number of samples in a 

node. 

Once the tree has been constructed, any instance can 

be classified by starting at the root and working its way 

down to a leaf. At each node, it considers the test on the 

feature and heads down the appropriate branch until it 

reaches a leaf. This gives the instance the class label of the 
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leaf that it ends up at. The ease with which this process 

can be followed makes decision trees easily 

understandable and interpretable and forms one of the 

major advantages of the technique. 

With their great power, however, comes great 

susceptibility to overfitting in the case of large decision 

trees. To overcome this, several methods can be 

performed: pruning and tuning of parameters such as 

maximum depth or minimum samples per leaf. Then there 

are the ensemble methods, which include Random Forests 

and GBMs, where many trees are combined with the intent 

of reducing overfitting and further improving 

performance. Generally, decision tree classifiers offer a 

versatile and interpretable approach to classification tasks, 

with several strategies that may be used to improve 

performance and generalization capabilities [14], [15]. 

2.3 Random forest model 

The Random Forest ensemble is resistant and involves 

learning for both classification and regression problems. It 

constructs a large number of decision trees during training 

and combines their outputs to yield the outcome. Each tree 

in the Random Forest is trained on a different subset of the 

data through a process called bootstrap sampling, meaning 

that random samples are drawn with replacement from the 

training data. 

In the decision trees formed in a Random Forest, each 

node will not consider all features on which to split; 

instead, a random subset of the features alone would be 

considered for a split. That injects randomness into the 

model and helps with decorating the trees, yielding an 

ensemble that's more robust and less prone to overfitting. 

The best split at each node is determined based on a 

chosen criterion such as Gini impurity or information gain. 

This is an iterative process that repeats either until the trees 

are full or the stopping criterion is reached. For 

classification tasks, each tree in the Random Forest 

"votes" for a class, and the class receiving the most votes 

is chosen as the final prediction. For regression tasks, the 

final prediction is gained by averaging the predictions 

from all the trees. 

Random Forests provide several benefits. They are 

resilient to noise and outliers due to the averaging effect 

of multiple trees. They also offer insights into feature 

importance, helping identify which features significantly 

impact predictions. Further, the training of individual trees 

can be parallelized, thus making them efficient for large 

datasets. 

However, with these strengths, Random Forests are 

quite computationally expensive. In cases of high linearity 

among the features-target variables relationships or high-

dimensional data, its performance may not be at par with 

other techniques. Nevertheless, because it has robustness 

and effectiveness in solving a wide variety of problem 

types, Random Forests find wide use in practice in a wide 

array of domains [16], [17]. 

Random Forests can be represented mathematically, 

although it's a bit more complex than a single decision tree 

due to the ensemble nature of the model.  

Let 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑛) be the input features and 𝑌 be 

the target variable.  

A Random Forest consists of 𝐵 decision trees 

𝑇1, 𝑇2, … , 𝑇𝐵  each trained on a bootstrap sample of the 

data. The prediction for a new instance 𝑥 in a classification 

problem is obtained by taking a majority vote among the 

predictions of all trees: 

 

�̂�𝑹𝑭(𝒙) = 𝒎𝒐𝒅𝒆 (�̂�𝟏(𝒙), �̂�𝟐(𝒙), … , �̂�𝑩(𝒙))  (1) 

Where �̂�𝑖(𝑥) is the predicted value of the 𝑖-th tree. 

2.4 Histogram gradient boosting 

The Histogram-based Gradient Boosting Classifier is a 

robust machine learning algorithm for classification tasks, 

especially on big data. It falls into the category of a 

gradient-boosting family that combines a sequence of 

weak learners, usually decision trees, into a robust 

classifier. 

Perhaps the most salient feature of the Hist Gradient 

Boosting Classifier is the unique approach to feature 

binning via histogramming. This avoids the use of exact 

algorithms that usually find split points in decision trees 

and instead discretizes features into intervals, hence 

making it way faster during training, particularly for 

datasets with a large number of samples. 

Similar to other boosting gradient-type methods, the 

Hist Gradient Boosting Classifier builds trees 

consecutively in a greedy manner such that the newest tree 

in each step minimizes the previously incurred loss. 

Adding more trees in a sequence reduces some loss 

of objective function—e.g., deviance or exponential loss 

for classification—leading to an increase in the predictive 

power of the model. The Histogram Gradient Boosting 

Classifier uses regularisation to avoid overfitting by 

limiting the tree depth and the minimum number of 

samples to create a leaf and to split a node for good 

generalization to unseen data. 

Another advantage of the Hist Gradient Boosting 

Classifier involves the handling of missing values in the 

dataset, both during training and prediction, without 

needing to take prior care of imputation. This facility 

makes it highly convenient when dealing with real 

datasets that are inherently bound to show some data loss. 

Due to its histogram-based approach, the Hist 

Gradient Boosting Classifier is highly scalable and 

efficient and is hence indicated in problems with a high 

number of samples and features. Like other gradient-

boosting methods, it is also robust to outliers in data and 

can handle mixed types of features, including categorical 

and numerical variables [18], [19]. 

2.5 AdaBoost model 

AdaBoost-Adaptive Boosting is a classification ensemble 

learning technique that combines several weak learners 

into one robust learner. The basic principle behind 

AdaBoost lies in training multiple weak learners—usually 

simple decision trees—on a training set sequentially while 

focusing on instances difficult to classify. 
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All instances in the dataset have an equal weight to 

start training. A weak learner is then fitted on this data and 

tested for performance. Weights are increased for those 

instances that have been classified incorrectly, while the 

weights are decreased for the instances correctly classified 

in successive rounds. The adaptive fashion of this method 

will make subsequent weak learners focus more on 

instances that were challenging to classify in earlier 

rounds. It involves training each of these weak learners 

sequentially in a manner that each of them tries to correct 

mistakes made previously by the other weak learners. 

Several of these weak learners are trained one after 

another, and all their predictions are combined to have the 

final prediction. They all contribute to the final prediction. 

Their contribution is weighted by their accuracy. 

AdaBoost works effectively for both binary and 

multiclass classification problems. It is very effective to 

deal with complicated data since it can capture complex 

boundaries of the decisions. AdaBoost may be sensitive to 

outliers and noisy data, which could degrade the 

performance. Though limited, AdaBoost is still popular 

owing to its simplicity and efficiency. Besides, it often 

acts as a base algorithm in advanced ensemble methods 

like GBM and XGBoost, further enhancing its 

performance and robustness [20], [21]. 

2.6 Neural Network model 

A neural network model is a computational framework of 

interconnected nodes, or neurons, in layers inspired by the 

structure and function of biological neural networks, such 

as the human brain. Each neuron receives an input, 

undergoes processing of that input, and sends it to the next 

layer; this is accomplished with the interlinking of neurons 

through weights according to their strength. 

It is trained in a procedure called supervised learning, 

where the model learns to relate input data to output labels 

by adjusting the weights of the connections among 

neurons. By repeatedly exposing the model to training 

data, it learns to recognize patterns and, eventually, to 

make predictions or classifications. They find applications 

in many areas, such as image and audio recognition and 

natural language processing, because they can find 

complex patterns from enormous data [22]. 

The neural network model in this study comprises 

three dense layers and two layers of dropout. In total, the 

neural network model contains 272,850 trainable 

parameters. 

Dense layer: It forms one of the major components in 

neural network architectures. Every neuron in this layer is 

normally connected to every neuron of the previous layer, 

thus creating a dense connectivity structure. Hence, each 

neuron's output is dependent on all neurons in the 

preceding layer. Each such connection is also associated 

with a learned weight in training. The most common 

places for which dense layers occupy are in the middle of 

the neural network, allowing it to capture intricate patterns 

within the data. Normally, after each of them comes an 

activation function that may introduce non-linearity into 

the network, hence enabling it to learn and represent 

complex relationships among features of data in a more 

effective way. 

Dropout in neural networks is a regularization 

approach that works by randomly deactivating a portion of 

the neurons during training to prevent overfitting. During 

each training iteration, dropout arbitrarily turns a portion 

of the outputs from the neurons to zero. This forces the 

network to learn redundant representations of its data, 

reducing the risk of relying too heavily on any particular 

feature or combination of features. Dropout effectively 

simulates training multiple networks with different 

architectures simultaneously, resulting in a more robust 

model that generalizes better to unseen data. Typically, 

dropout is applied to hidden layers of the network, with a 

dropout rate parameter controlling the fraction of neurons 

to deactivate. 

We also utilized the categorical cross entropy as the 

loss function in the neural network model. Categorical 

cross-entropy stands as a frequently employed loss 

function in machine learning, particularly for tasks 

involving multi-class classification. Its role is to evaluate 

the discrepancy between the actual distribution and the 

predicted distribution of categorical variables. In 

classification problems, the output variable is categorical, 

meaning it falls into one of several classes. The true 

distribution represents the actual classes, typically 

encoded as a one-hot vector, where only one element (the 

true class) is 1, and the rest are 0s. The predicted 

distribution, on the other hand, represents the model's 

probabilities for each class. Mathematically, categorical 

cross-entropy is calculated using the following formula for 

a single example: 

 

𝑳(𝒚, �̂�) = ∑ 𝒚𝒊 𝐥𝐨𝐠(�̂�𝒊)𝒊   (2) 

 

Where 𝑦 is the true distribution (the one-hot encoded 

vector). �̂� is the predicted distribution (the vector of 

probabilities). Class 𝑖's true probability is denoted by 𝑦𝑖 . 

The anticipated probability of class 𝑖 is shown by �̂�𝑖. 

The sum is taken over all classes. This formula is 

applied for every example within the dataset and then 

averaged across all examples to make a final calculation 

of loss. 

That's because it is trained to penalize the model when 

it has a lower probability of the true class by quantifying 

the difference between predicted and true distributions. 

This is appropriate for problems with mutually exclusive 

classes, in which each instance is assigned only to one 

class. Minimizing this categorical cross-entropy loss, 

therefore, allows the model to generate probabilities that 

align well with the actual distribution, hence increasing its 

accuracy of classification [23]. 

To enhance the performance of the neural network, 

this model is optimized using the RMSprop algorithm. 

RMSprop, or Root Mean Square Propagation, is a popular 

choice for training neural networks since it avoids the 

pitfalls of normal stochastic gradient descent by adapting 

the learning rate of each parameter based on the 

magnitudes of the gradients. Such adaptiveness provides 
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faster convergence and better handling of non-stationary 

and sparse gradients in tasks involving deep learning. 

The RMSProp works by giving each parameter a 

different learning rate, meanwhile computing the 

exponential moving average of the squared gradients. This 

is achieved through an exponentially decaying average 

calculation: 

𝑬[𝒈𝟐]𝒕 = 𝜷𝑬[𝒈𝟐]𝒕−𝟏 + (𝟏 − 𝜷)𝒈𝒕
𝟐  (3) 

 

Here, 𝑔𝑡 represents the gradient of the parameter at 

time step t, and 𝛽 controls the decay rate of the moving 

average. Typically, 𝛽 is set to a value like 0.9. The moving 

average 𝐸[𝑔2]𝑡 accumulates the squared gradients over 

time, providing an estimate of the variance of the 

gradients. 

The update rule in RMSprop is then adjusted using the 

square root of the accumulated squared gradients, 

effectively scaling the learning rates for each parameter: 

 

𝜽𝒕+𝟏 = 𝜽𝒕 −
𝜼

√𝑬[𝒈𝟐]
𝒕
+𝝐

∙ 𝒈𝒕  (4) 

 

When the parameter at time step t is denoted by 𝜃𝑡, 

the learning rate is indicated by 𝜂, and 𝜖 is a tiny constant 

introduced for numerical stability to avoid division by 

zero. The division by the square root of the accumulated 

squared gradients normalizes the learning rate such that 

updates corresponding to large gradients are reduced and 

vice versa. 

RMSProp is particularly suited for deep learning 

tasks, wherein the data may have different gradients and 

scales, with its adaptive learning rate. Nevertheless, 

similar to many of the optimization algorithms, RMSProp 

has several hyperparameters, such as the learning rate 𝜂 

and the decay rate 𝛽, that need further fine-tuning to attain 

optimal performance on different applications [24], [25]. 

2.7 Data preprocessing 

First, the text is vectorized using one of the most salient 

techniques for text analysis and document classification: 

the TF-IDF method. TF-IDF (Term Frequency-Inverse 

Document Frequency) is a crucial text preprocessing 

technique used to convert textual data into numerical 

representations for machine learning models. TF-IDF 

involves processes such as tokenization (where text is 

divided into individual words or tokens), 

stemming/lemmatization (where words are reduced to 

their root form to standardize variations), TF calculation 

(where the frequency of each word in a document is 

computed), IDF calculation (where the inverse document 

frequency is computed to down weight common words 

across multiple documents), and TF-IDF score 

computation (where each word’s TF is multiplied by its 

IDF score to determine its importance within the 

document). TF-IDF helps highlight important words in a 

document while reducing the impact of common but less 

meaningful terms. 

 The unigrams, bigrams, and trigrams included in the 

vectorization process incorporated more intricate patterns 

and connections from within the textual data. 

After vectorization, we had 2057 unique words and 

important phrases for our dataset. Further, in improving 

the quality of representation, all stop words and 

punctuation were removed from the text. This removes the 

noise in the texts and puts the attention of the model on 

meaningful content. 

Then, the data were divided into training and testing 

sets. There were 13,217 records designated for training the 

models to learn trends and relationships from them. 3,304 

records were set aside to test the performance of the 

models. This separation of data into training and testing 

sets helps to assess how well the trained models generalize 

to unseen data and provides a measure of their predictive 

accuracy. 

3 Analysis results 

3.1  Neural network validation 

In the first step, we analyzed the loss values and accuracy 

of the neural network model during training and testing. 

The Fig. 7 in the following demonstrates the results. 

  

Figure 7: The validation results of the neural network model 

Fig. 7a displays the accuracy of the neural network model 

after 30 epochs. It indicates that the accuracy of the model 

in total increases in the earlier epochs and stays in the high 

values as the epochs advance. The training accuracy 

rapidly rises within the first few epochs and then stabilizes 



444   Informatica 49 (2025) 435–450                                                                                                                                              L. li 

around 92%, while the validation accuracy follows a 

similar pattern but remains slightly lower, around 86%. 

This gap between training and validation accuracy 

suggests that the model learns well on training data but has 

some overfitting tendencies. 

Furthermore, the loss value of the model during training 

and testing in Fig. 7b denotes that the loss value of the 

neural network model in the training process decreases 

gradually as the epochs go forward. The loss initially 

drops sharply within the first few epochs, showing rapid 

learning progress, then continues to decrease more 

gradually. The training loss consistently reduces, reaching 

approximately 0.2, while the validation loss exhibits a 

different trend. 

By scrutinizing the loss value of the test (val_loss), it is 

derived that the loss values at the earlier epochs drop. 

However, as the epochs advance, the loss value of the 

model starts increasing to a small number due to 

overfitting; hence, the validation process after 30 epochs 

is stopped. This increase in validation loss while training 

loss continues to decrease suggests that the model is 

memorizing patterns from the training data rather than 

generalizing well to unseen data. Techniques such as early 

stopping, dropout regularization, or data augmentation 

could help mitigate overfitting and improve the model’s 

ability to generalize. 

3.2 Evaluation metrics 

The studied models used in this analysis, which are 

introduced in sections 2.2 to 2.6, are evaluated through 

well-known metrics such as accuracy, precision, recall, 

and f1 score. These metrics are used to evaluate the 

performance of classification models, especially in the 

context of machine learning and statistics. 

Accuracy is the most straightforward metric and 

measures the ratio of correctly predicted instances to the 

total instances. It is computed by dividing the total number 

of forecasts by the number of correct guesses.  

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  
( 𝑻𝑷+𝑻𝑵 )

𝒕𝒐𝒕𝒂𝒍 𝒑𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏
  (5) 

 

Precision assesses the proportion of accurately 

predicted positive observations out of all predicted 

positive observations. It reflects the model's effectiveness 

in minimizing false positives.  

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =   
( 𝑻𝑷 )

( 𝑻𝑷+𝑭𝑷 )
  (6) 

 

High precision means that an algorithm returned 

substantially more relevant results than irrelevant ones, 

though it might miss some relevant results (low recall). 

Recall or sensitivity measures the proportion of 

accurately predicted positive observations compared to all 

actual positive instances in the dataset. It evaluates the 

model's ability to detect all positive cases. 

𝑹𝒆𝒄𝒂𝒍𝒍 =  
( 𝑻𝑷 )

( 𝑻𝑷+𝑭𝑵 )
  

(7) 

 

High recall means that an algorithm returned most of 

the relevant results (low false negatives), though it might 

also bring back many irrelevant results (low precision).  

The F1 score represents the harmonic mean of 

precision and recall, offering a balanced single score that 

considers both precision and recall. 

𝑭𝟏 𝒔𝒄𝒐𝒓𝒆 = 𝟐 ×  
( 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ×𝑹𝒆𝒄𝒂𝒍𝒍 )

( 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍 )
  

(8) 

 

The F1 score is a good measure of a model's accuracy, 

especially when there is an uneven class distribution 

(imbalanced data).  

The obtained results for the aforesaid metrics are 

presented in the following table: 

 

Table 2: The metrics results for the models 

 Neural Network Decision Tree Random Forest AdaBoost Hist GB 

Accuracy 0.851695 0.81023 0.831114 0.620157 0.804782 

Precision 0.857729 0.815996 0.837435 0.771549 0.822176 

Recall 0.851695 0.81023 0.831114 0.62057 0.804782 

F1 score 0.85236 0.810181 0.830936 0.639389 0.80615 

The results show the neural networks' superior 

performance. Neural Network achieves the highest 

accuracy (0.8517) and strong performance across all 

metrics, making it the most effective model overall. 

Decision Tree and Random Forest also perform well, with 

Random Forest slightly outperforming Decision Tree in 

all metrics. 

AdaBoost shows significantly lower performance, 

particularly in accuracy (0.6202) and F1 score (0.6394), 

indicating it may not be well-suited for this dataset. 

Hist Gradient Boosting (Hist GB) performs 

competitively, with results close to those of the Decision 

Tree and Random Forest models. To get a better 

understanding of the obtained results, Fig. 8 presents the 

graphic comparison. 
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Figure 8: Comparison of the obtained results for the models 

By comparing the accuracy of the models, it is 

deduced that the neural network model holds the highest 

accuracy value, and the random forest and the decision 

tree models are the second and third-best models. The 

precision of the models demonstrates the neural network 

model shows promising value with the best-obtained value 

among the studied models. The results of the recall denote 

the outperformance of the neural network model 

compared to the other exerted models. The results 

indicated the disappointing results of the AdaBoost. 

According to the f1 score of the models, the neural 

network presents the highest obtained value, and the 

random forest and decision tree are the next beneficial 

models.  

In total, the neural network consistently outperforms 

all other models across all metrics utilized in this study. 

Conversely, AdaBoost exhibits the lowest performance 

across the board. This highlights the superior effectiveness 

and robustness of the neural network over its counterparts, 

making it the clear choice for the task at hand. 

3.3 Class correlation in the neural 

networks 

Since the neural network model was the best model for 

accomplishing the given tasks, the class characteristics of 

the neural networks are delved into, rigorously. The 

following figure demonstrates the confusion matrix 

among the classes. 

 

Figure 9: Confusion matrix of neural network classes 
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Fig. 9 displays the confusion matrix, which denotes 

which classes are mistaken with each other. This happens 

due to the similarity of data between the two classes. In 

Fig. 9, the lighter colors represent more similarity between 

classes. As an example, the general and qa contain 

resembling textual data and are sometimes mistaken with 

each other by the models. In other words, "light colors" in 

the confusion matrix indicate higher values of 

classification accuracy, representing a stronger correlation 

between true and predicted labels. 

 

 

 

Figure 10: Class relation in the neural network model 

Fig. 10 demonstrates the relationship between classes 

in the neural network model. The lighter colors indicate 

the higher relation between the two classes. Two classes 

with high relations denote that the classes share the same 

commands and contain resembling textual data. 

According to the matrix, the general has a high 

relationship with classes such as weather, 

recommendation, and qa. Also, play and music share 

similar commands. 

Analyzing the confusion matrix, we can observe areas 

where the model misclassified instances. The off-diagonal 

elements in the matrix highlight these misclassifications. 

For example, there is a noticeable overlap between the 

"lists" and "recommendation" classes. This could stem 

from shared contextual words in their respective command 

texts, such as "add," "suggest," or "list." Enhancing the 

feature extraction process or incorporating contextual 

embeddings may help differentiate these classes better. 

The confusion between "news" and "general" is 

evident, likely because commands labeled as "general" 

might occasionally reference current events or updates, 

leading the model to associate them with "news." Using 

additional semantic analysis might mitigate this issue. 

 

4  Discussion  

Highest Values Across All Metrics: It can be observed 

that the Neural Network outperforms other models across 

all evaluation metrics, achieving the highest scores. This 

indicates that the neural network has the lowest error in its 

predictions and is the most optimized model for this task. 

 Traditional models like Decision Trees and Random 

Forests have structural limitations that prevent them from 

effectively capturing complex relationships in the data. In 

contrast, a neural network, with multiple hidden layers, 

can better learn nonlinear and intricate patterns within the 

dataset. In other words, the flexibility in learning complex 

patterns is one of the advantages of this model. 

Deep learning also offers advantages in natural 

language processing (NLP). Neural networks are 

particularly well-suited for Natural Language Processing 

(NLP) tasks. Unlike classical models based on decision 

trees, neural networks can better understand semantic 

relationships between words and phrases. Given that the 

goal of this research is to classify voice commands in 

ALEXA, this capability makes the neural network a 

superior choice. 

The proposed model utilizes improved optimization 

and overfitting prevention techniques. The neural network 

architecture benefits from techniques such as Dropout and 

RMSprop optimization, which improve the model's 

generalization ability. This ensures that the model 

maintains high performance on new, unseen data. 

Neural networks often excel in text classification 

because they can automatically learn complex and 

hierarchical representations from raw text data. In contrast 

with traditional machine learning methods, which usually 

rely on manually engineered features or simpler 

representations, neural networks (especially architectures 
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like CNNs, RNNs, or Transformers) can capture intricate 

semantic relationships and contextual nuances, leading to 

improved performance. 

One possible reason AdaBoost underperforms in this 

context is its reliance on weak learners (often decision 

trees) that might not capture the complexity of text data as 

effectively as neural networks. Text data is typically high-

dimensional and sparse, making it challenging for 

boosting methods that build models sequentially. If the 

individual weak learners cannot handle the intricacies of 

word order, context, and nuanced semantics, the ensemble 

may struggle even after several iterations. Additionally, 

AdaBoost is sensitive to noisy data and outliers, which are 

common in natural language tasks, further impeding its 

performance. 

Additionally, the performance and scalability of the 

models used in the article were compared with each other. 

Decision Trees Fast in training and prediction but prone to 

overfitting. Good scalability for small datasets Random 

Forest Higher accuracy than decision trees with reduced 

overfitting but slower training. Moderate scalability. Hist 

Gradient Boosting More efficient than classical boosting 

methods, suitable for large datasets, but requires careful 

hyperparameter tuning. AdaBoost Performs well on small 

datasets but is sensitive to noise and less scalable than 

modern boosting methods. Neural Networks Capable of 

learning complex patterns but computationally expensive 

and requires large datasets for optimal performance. High 

scalability with GPU/TPU acceleration. 

Statistical 

The following is the t-test for neural network and 

random forest for accuracy precison and recall  

 

T-Test Results: 

Accuracy: t = 4.1309, p = 0.0006 

Precision: t = 3.8258, p = 0.0012 

Recall: t = 6.3499, p = 0.0000 

F1-Score: t = 2.5812, p = 0.0188 

 

 

 

5  Conclusion 
In conclusion, our research offers an in-depth analysis of 

command classification for the ALEXA virtual assistant, 

utilizing various machine learning models and methods. 

By utilizing Decision Trees, Random Forest, Hist 

Gradient Boosting, AdaBoost, and Neural Networks, we 

aimed to discern the most effective approach for 

accurately categorizing user commands. 

Our study capitalized on a dataset containing text-

based commands and their corresponding classes, which 

were transformed into feature vectors using the TF-IDF 

method. Notably, our neural network architecture was 

composed of three dense layers and two dropout layers, 

comprising a total of 272,850 trainable parameters. The 

loss function used was the categorical cross-entropy, 

while RMSProp was used to ensure sound optimization 

for the training of the neural network model. 

In this respect, our results unambiguously prove the 

superiority of neural network models compared to other 

conventional machine learning algorithms through 

extensive evaluation by using precision, accuracy, F1 

score, and recall metrics. More precisely, the neural 

networks were always ranked first compared to AdaBoost 

in terms of classification performance for all measured 

parameters. 

This work provides insight into the performance of 

various machine learning models for command 

classification but points out the very important potential 

use of neural networks in dealing with complex natural 

language processing tasks. The top performance given by 

the relative performance of neural networks in this work 

points to their suitability for real-world applications within 

virtual assistant frameworks such as ALEXA. 

Furthermore, our findings point out how state-of-the-

art techniques, such as deep learning, will have to be 

explored for high accuracy and robust performance in 

command classification tasks. The success of neural 

networks here indicates how these approaches are relevant 

within virtual assistant technology, opening new paths 

toward the development of more fluid user experiences 

and natural ways of interaction. 

These findings have significant practical implications. 

By leveraging neural networks, ALEXA’s command 

classification can be directly improved in real-world 

scenarios. For instance, better classification accuracy can 

lead to enhanced user satisfaction by reducing 

misinterpretation of commands. The findings also suggest 

that integrating more complex neural architectures could 

allow ALEXA to handle a broader variety of commands, 

including those involving nuanced or multi-intent queries. 

Additionally, the scalability demonstrated in this research 

implies that the models can adapt to diverse languages and 

accents, improving accessibility for users worldwide. 

In further research, more neural network architectures 

can be compared and more feature extraction methods 

could be explored, or even ensemble techniques could be 

considered to improve the performance on command 

classification tasks. Additionally, the scalability and 

generalizability of the proposed models could be 

evaluated across different domains and languages to 

assess their broader applicability. Overall, our study 

contributes valuable insights into the field of natural 

language processing and lays the foundation for continued 

advancements in virtual assistant technologies. 

Nomenclature 

Abbreviation Description Abbreviation Description 

VA Virtual Assistant 𝑋 Input feature 

AdaBoost Adaptive Boosting 𝑌 Targe value 

AI Artificial Intelligence �̂�𝑖(𝑥) Predicted value of 𝑖-th tree in random forest 
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CNN Convolutional Neural Network 𝑦𝑖  True probability of class 𝑖 
LSTM Long Short-Term Memory �̂�𝑖 Predicted probability of class 𝑖 
SARF Semantics Aware Random Forest 𝜖 Small constant number 

NPMM nonparametric model 𝑔𝑡 The gradient of the parameter at iteration t 

HLSE Hierarchical Label Set Expansion 𝛽 Parameter to control the decay rate 

HGCLR Hierarchy-guided Contrastive 

Learning 

𝜃𝑡 Parameter at time step t 

WE Word Embedding 𝜂 Learning rate 

CARP Clue and Reasoning Prompting TP True positive 

GBM Gradient Boosting Machines TN True negative 

RMSprop Root Mean Square Propagation FP False positive 

SGD stochastic gradient descent FN False negative 
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