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Around the world, soft soils can be found in many areas close to seas and rivers. These areas play an 

indispensable and crucial role in the development of government plans, especially in the population 

growth sector. Due to maintaining a weak shear power and vast settlement under the buildings, soft soils 

are considered problematic soil. The significant risks associated with building structures and 

infrastructures in soft soil are high, requiring engineers' extreme attention. It depends on undrained shear 

strength (USS) that the foundation of structures can bear in soft soil, and this factor vigorously controls 

the selection of soil improvement techniques. In recent years, there have been enhancements and 

extensions in the methodologies employed for estimating soil characteristics, including USS. These 

methods are divided into three main sections: Laboratory Testing, Field Testing, and Correlation with 

Other Soil Parameters. In recent research, data science techniques have created more reliable and 

accurate models for predicting USS. This study aims to apply the K-Nearest Neighbors (KNN) classifying 

method for predicting USS. Mountain Gazelle Optimizer (MGO) and Coronavirus Herd Immunity 

Optimizer (CHIO) appeal for developing hybrid models with KNN and facilitating accuracy enhancement. 

The dataset which utilized in this study contains four input variables including liquid limit (LL), plastic 

limit (PL), and sleeve friction (SF), overburden weight (OBW). Comparative analysis across all data 

phases reveals that the KNCH model, optimized using the CHIO, achieved superior predictive 

performance with the highest coefficient of determination (R² = 0.993), and the lowest values in root mean 

square error (RMSE = 85.19), mean squared error (MSE = 7256.15), normalized RMSE (NRMSE = 

0.470), and scatter index (SI = 0.065). In contrast, the KNN model without optimization reported R² = 

0.971, RMSE = 168.17, and SI = 0.132, while the KNMG model—optimized using the MGO—resulted in 

R² = 0.983, RMSE = 128.15, and SI = 0.101. 

Povzetek: Raziskava uvaja hibridne modele KNN, optimizirane z metahevristikama CHIO in MGO, za 

napredno napovedovanje nedrenirane strižne trdnosti tal v geotehničnem inženirstvu.

1 Introduction 
Construction of geotechnical structures like dam 

embankments, dikes, levees, as well as road embankments 

is a common challenge in most countries worldwide, 

particularly when such structures are situated on organic 

subsoils [1]. Due to the significant compressibility and 

low initial Undrained Shear Strength (USS) of organic 

soils, constructing even moderately-sized embankments 

become problematic in engineering practice. When 

designing embankments on such subsoils, determining the 

stability of the embankment and anticipating subsurface 

deformations are the main challenges. The embankment  

stability analysis during construction predominantly relies 

on the USS of organic soils [2,3].  

Common field investigations include the Cone 

Penetration Test with Pore Pressure Measurement (CPTu) 

and the Vane Shear Test (VST) to assess the USS of soils. 

The VST utilizes cruciform blades rotated at a defined  

 

speed as per ASTM D2573-08 standards to determine  

USS values in saturated clay deposits, while the CPTu 

involves a 60° cone penetrometer with a friction sleeve, 

adhering to ASTM D-5778 standards, providing 

measurements of cone tip resistance (CR), sleeve friction 

(SF), and porewater pressure (PP). Dissipation tests are 

often conducted to evaluate equilibrium porewater 

pressure (𝑝𝑝0) by halting cone penetration and measuring 

porewater pressure dissipation. Even if human errors are 

assumed to be reduced to zero in these experiments, they 

are time- and cost-consuming [4]. 

To overcome all issues, utilizing novel machine 

learning (ML) algorithms in various aspects of 

engineering geotechnical studies has experienced 

remarkable growth lately [5–8]  . Among the vast number 

of research articles on applying machine learning models 

in geotechnical engineering published over the past years, 

approximately 70% have emerged within the last decade 

(data spanning from 1984 to 2019 [9]). A recent 
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comprehensive review article [10] provides an overview 

of the use of artificial neural networks (ANN) for 

estimating soil mechanical substances, particularly in 

terms of compressive and shear strength. [11–16]. support 

vector machines (SVM) and ANN have found application 

in forecasting bearing capacity for driven piles and 

settlement of shallow foundations [17,18]. These 

techniques have also been widely adopted for soil slope 

steadiness evaluation and estimation, including decision 

trees and logistic regression [19–22]. In geotechnical 

earthquake engineering, ANN and other deep learning 

frameworks were effectively employed to evaluate soil 

liquefaction potential [23–25]. Additionally, within the 

field of dynamic soil-foundation-structure interaction 

investigations, researchers have utilized multivariate 

linear regression and distance-weighted K-Nearest 

Neighbors (KNN) regression techniques to construct 

preliminary predictive models. These models aim to 

estimate seismic energy dissipation, permanent 

settlement, and the acceleration amplification ratio (which 

signifies the reduction in maximum acceleration 

transferred to the structure) for shallow foundations 

exhibiting rocking behaviour [26–28]. 

In geotechnical engineering, designers rely on crucial 

soil properties to accurately determine USS. These 

fundamental properties are also integral in developing 

predictive models through ML techniques. For example, 

the concept of soil plasticity, initially proposed by 

Atterberg in 1911, was introduced into soil mechanics by 

Casagrande in 1932 and further elaborated by Terzaghi 

and Peck in 1948. Soil behaviour is categorized based on 

water content (𝑤), defined as the ratio of moisture mass to 

the mass of dry soil particles, resulting in four states: solid, 

semi-solid, plastic, and liquid. Two primary consistency 

limits are employed to characterize soil behaviour. The 

plastic limit (𝑃𝐿) is the minimum water content at which 

soil exhibits plastic deformation, which is irrecoverable 

deformation without failure. The liquid limit (𝐿𝐿) is 

defined as the minimum water content at which soil 

behaves as a viscous fluid, essentially marking the 

boundary where the shear strength of the soil is nearly zero 

[29]. The liquidity index (LI) normalizes soil's water 

content concerning its plastic and liquid limits. When the 

LI is less than zero, the soil exhibits brittle behaviour, 

falling into the categories of solid or semi-solid. 

Conversely, when the LI exceeds 1, the soil behaves like 

a liquid. In the literature, it has been documented that the 

USS of remoulded soil at the liquid limit can range from 

0.5 to 1.7 kPa, with variations depending on soil types and 

testing apparatus or measurement methods [30].  

This investigation's goal is to develop data-driven 

predictive models for soil USS utilizing supervised 

learning and non-linear ML techniques. Data from a 200 

rock samples database consisting of sleeve friction (SF), 

LL, PL, and overburden weight (OBW) have been used to 

train, validate, and test machine learning models 

developed in this investigation. The non-linear, 

nonparametric ML algorithm considered is KNN. The 

performances of this single model are compared with the 

performance of optimized versions, which were developed 

using CHIO and MGO. The following sections explain the 

intake attributes and the theories of the ML methods in 

brief and their process of implementation in this research, 

provide performance evaluation parameters and present 

the major conclusions and outcomes of the research. 

• Justification for algorithms’ selection 

In this study, the MGO and CHIO were selected to 

enhance the predictive performance of the KNN model 

due to their demonstrated efficiency in handling complex, 

nonlinear optimization problems. These recently 

developed metaheuristic algorithms offer strong 

exploration-exploitation balance, fast convergence, and 

robustness against local minima, making them suitable for 

hyperparameter tuning in machine learning models. Their 

unique mechanisms—MGO’s predator-prey-inspired 

movement strategy and CHIO’s immunity-based 

adaptation—provide diverse search capabilities and 

improved accuracy, which are critical in developing 

reliable predictive models for USS. 

• Novelties and Contributions 

The novelty and distinctiveness of this study, 

particularly in the context of USS prediction using ML, 

can be articulated through the following key contributions: 

1. Pioneering Application of KNN-Based Models 

in USS Prediction: To the best of the author's 

knowledge, this study represents only the second 

documented academic attempt to employ KNN-

based models for the prediction of USS of soils. 

This rare application underscores the innovative 

nature of the study, especially given the limited 

exploration of KNN in geotechnical engineering 

contexts, where more conventional regression-

based or deep learning approaches are typically 

favored. 

2. Development of Two Novel Hybrid Models with 

State-of-the-Art Optimization Algorithms: This 

research introduces two cutting-edge hybrid 

models—KNCH and KNMG—by integrating 

the KNN algorithm with two recently developed 

metaheuristic optimization techniques: the CHIO 

and the MGO, respectively. These algorithms 

have shown substantial promise in diverse 

domains for hyperparameter tuning and global 

search efficiency, and their application here 

represents a significant methodological  

3. advancement for enhancing the predictive 

capability and convergence behavior of KNN 

models in civil engineering problems [31–33]. 

4. Robust Performance Evaluation Using Multiple 

Statistical Metrics: A comprehensive model 

evaluation framework is established through the 

implementation of five widely recognized 

statistical performance indicators: R², RMSE, 

MSE, NRMSE, and the SI. This multi-metric 

approach facilitates an in-depth and multi-

dimensional performance assessment of the 

models, enabling rigorous benchmarking of their 

prediction quality, generalization capacity, and 

error distribution. 

Table 1 reports the summary of comparing between 

previous publications. 



Hybrid K-Nearest Neighbors Models with Metaheuristic Optimization…                                  Informatica 49 (2025) 125–144     127                                                                                                                          

Table 1: The summary of the literature review 

Study Dataset Size Methodologies Key Results Limitations 

[30] ~100+ laboratory-

tested remoulded 

clay soil samples 

Experimental 

investigation and 

empirical modeling 

based on Atterberg 

limits 

- Reported that USS at liquid 

limit (LL) ranges between 

0.5–1.7 kPa depending on 

soil type 

- Strong empirical correlation 

observed between USS and 

the Liquidity Index (LI) 

- Not ML-based 

- Focused only on remoulded 

soils in specific consistency 

states 

- Limited generalizability 

across soil types 

[12] ~150 samples Multilayer ANN - Showed ANN could 

outperform conventional 

empirical equations 

- Strong correlation between 

input features (e.g., PL, LL) 

and USS 

- Overfitting risk due to small 

dataset 

- No feature importance 

analysis 

[13] ~200 samples Support Vector 

Machines (SVM) 

- SVM accurately predicted 

soil cohesion 

- R² ≈ 0.9 with optimized 

kernel parameters 

- Highly sensitive to kernel 

selection 

- Requires tuning for 

different soil types 

[14] ~180–220 data 

points 

ANN 

(Feedforward) 

- Developed regression-based 

ANN models 

- Achieved better accuracy 

than linear models 

- Lacked uncertainty 

quantification 

- No real-time or field 

validation 

[34] 300+ samples ANN with cross-

validation 

- ANN demonstrated good 

generalization after k-fold 

validation 

- Applied in pile foundation 

design 

- Focused on bearing 

capacity 

- Input features not aligned 

with USS prediction 

[15] ~200 soil 

specimens 

Hybrid SVM-GA 

(Genetic 

Algorithm) 

- Combined SVM with GA 

for parameter tuning 

- RMSE reduced by ~15% 

compared to standalone SVM 

- Computationally intensive 

- No interpretability analysis 

(e.g., SHAP or PCC) 

[19] ~300 slope case 

studies 

Decision Tree 

(DT), Random 

Forest (RF) 

- Achieved classification 

accuracy > 90% 

- Identified top influencing 

features (e.g., angle, 

cohesion) 

- Binary classification 

(stable/unstable) 

- Not suitable for continuous 

USS regression 

[20] GIS-based dataset 

(~500+ sites) 

Logistic Regression 

(LR) 

- Used for landslide hazard 

zonation 

- Provided probabilistic maps 

for decision-making 

- Not designed for strength 

prediction 

- Model outputs are 

probabilities, not magnitudes 

[21] ~400 data points Decision Tree - High interpretability 

- Good for categorizing soils 

by failure type 

- Not regression-capable 

- May oversimplify nonlinear 

soil behavior 

[22] 150–250 slope 

instances 

SVM, DT, ANN - Compared multiple ML 

algorithms 

- SVM performed best (AUC 

> 0.93) 

- Application limited to 

classification 

- Soil shear strength not 

directly modeled 

 

2 Materials and methodology 
This section provides a comprehensive overview of the 

data preparation process, a detailed description of the K-

Nearest Neighbors (KNN) model used as the baseline, and 

the implementation of the MGO and CHIO algorithms for 

optimization. Additionally, it outlines the evaluation 

metrics employed for performance assessment and 

presents the cross-validation results. These components  

 

are organized and discussed in detail across subsections 

2.1 to 2.6. 

2.1 Dataset description  

To predict the undrained shear strength of soil, 

outstanding 200 sample records from publication [35] 

were categorized randomly into validation (15%), testing 

(15%), and training (70%) phases. Here, SF, LL, PL, and 
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OBW—five variables that can impact the USS's value—

were taken into account as inputs. As the preprocessing 

tasks, the dataset is evaluated for miss values and no miss 

value is observed. In addition, the samples are randomized 

utilizing randperm method.  

SF refers to the resistance a pile or shaft encounters 

as it is driven or inserted into the subsurface soil or rock. 

It arises due to the shear resistance between the surface of 

the pile or shaft and the surrounding soil or rock material. 

LL represents the moisture content at which soil shifts 

from a plastic to a semi-solid state, determined by the 

Casagrande cup test, while PL signifies the moisture 

content at which soil transitions from a plastic to a brittle 

state, determined through the plasticity index test. Finally, 

OBW is the total vertical load the soil or rock exerts above 

a specific point underground. Table 2 presents the 

statistical characteristics of the dependent input variables' 

maximum, minimum, average, and standard deviation 

values as well as USS's target variable.  

The line-symbol plot in Figure 1 demonstrates the 

values of each input parameter and the output for 200 

samples. As it is obvious, among input parameters, the 

broadest and narrowest range of values are related to the 

LL and SF, respectively. OBW illustrates more 

fluctuation, and USS as an output parameter fluctuates less 

with more values near 1000 (MPa). In addition, the 

correlation between input and output parameters is 

illustrated in Figure 2.

Table 2: The statistic properties of the input variable of USS. 

Indicator 
Variables 

SF LL PL OBW USS 

Max 1.400 133 50 3.640 5670 

Min 0.020 24 12 0.030 100 

Avg 0.425 63.49 27.48 1.569 1271.9 

St. Dev. 0.289 19.886 6.940 0.824 968.61 

 

  

  

 

Figure 1: The Line-Symbol plot for input and output 



Hybrid K-Nearest Neighbors Models with Metaheuristic Optimization…                                  Informatica 49 (2025) 125–144     129                                                                                                                          

 

Figure 2: The Correlation plot for relationship between parameters. 

The computational framework utilized in this study is 

optimized to meet both hardware and software 

requirements efficiently. At its core, the system operates 

on an Intel® Core™ i7-3770K CPU clocked at 3.50 GHz, 

paired with 16 GB of RAM to support seamless 

multitasking and high-performance operations. The 

system architecture is 64-bit, featuring an x64-based 

processor, and it runs on the Windows 11 Pro operating 

system, ensuring modern compatibility and robust 

functionality. Graphical processing is managed by an 

NVIDIA GeForce GT 640 GPU, which provides reliable 

support for rendering and visualization tasks. Storage 

needs are met with a 1-terabyte hard drive, offering ample 

capacity for large-scale data processing and storage. On 

the software front, Python serves as the primary 

programming environment. Machine learning 

implementations are facilitated through the scikit-learn 

library, while Pandas and NumPy are employed for data 

manipulation and analysis. For visualization purposes, 

Matplotlib is utilized to effectively present analytical 

results, forming a comprehensive and capable toolkit for 

data-driven applications. 

2.2 Machine learning techniques 

2.2.1 K-Nearest Neighbors (KNN) 

The KNN algorithm is well known for its ease of use, 

simplicity, as well as effectiveness [36]. KNN is 

comparable to random forests (RF) and ANN in that it may 

be utilized in both regression and classification 

applications. The utilization of this technique offers 

several advantages:  

1. It exhibits a clear and intelligible essence, which 

qualifies it for practical application. 

2. When used for classification as well as 

regression, it can learn non-linear decision 

boundaries and becomes more versatile by 

allowing adjustment of the 𝐾 value to define 

these boundaries. 

3. In contrast to other algorithms, KNN doesn't 

require a specific training phase. 

4. The technique utilizes a single hyperparameter, 

represented as K, simplifying the adjustment of 

other hyperparameters. 

Finding a collection of K samples—often identified 

by a distance function—that show proximity to unknown 

samples within the calibration dataset is the basic idea 

behind KNN. Reaching this goal involves identifying 

groups of matching samples. To identify the classes of 

unidentified samples, KNN then computes the average of 

the response variables and compares the outcome to that 

of a set of K samples [37]. In this way, the KNN 

algorithm's selection of value for K is crucial to its 

effectiveness [38]. Equations (1) through (3) are the three 

distance functions that are used for this purpose in 

regression tasks to calculate the distances between 

neighboring data points: 

 

𝐹(𝑒) = √∑(𝑥𝑖 − 𝑦𝑖)
2

𝑓

𝑖=0

 (1) 

𝐹(𝑚𝑎) =∑|𝑥𝑖 − 𝑦𝑖|

𝑓

𝑖=0

 (2) 

𝐹(𝑚𝑖) = (∑(|𝑥𝑖 − 𝑦𝑖|)
𝑞

𝑓

𝑖=0

)

1
𝑞

 (3) 

  

In this context, 𝐹(𝑒) denotes the Euclidean distance 

function, 𝐹(𝑚𝑎) represents the Manhattan distance 

function, and 𝐹(𝑚𝑖) stands for the Minkowski distance 

function. 𝑥𝑖 and 𝑦𝑖  That is, it concerns the 𝑖𝑡ℎ dimension 
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of the data points 𝑥 and 𝑦, where 𝑞 is an order parameter 

utilized to calculate the distances between them.  

2.2.2 Mountain gazelle optimizer (MGO) 

In order to replicate the behavior of mountain gazelles, the 

MGO (Mountain Gazelle Optimization) algorithm divides 

them into three groups: territorial males, maternity herds, 

and bachelor males. It balances exploitation and 

exploration to approach optimal solutions, focusing on 

cost-effective individuals inspired by the least competitive 

gazelles among bachelor herds [39]. 

• Territorial solitary males 

Upon maturing and gaining physical strength, male 

mountain gazelles establish solitary territories they 

vigorously defend. These territories are typically spaced 

apart, leading to confrontations and dominance battles 

over territory and access to females. Younger males seek 

to establish themselves and mate with females, while adult 

males staunchly protect their territories. Equation (4) 

serves as a model for these territories maintained by adult 

male gazelles. 

𝑇𝑆𝑀 = 𝑚𝑎𝑙𝑒𝑔𝑧𝑙 − |(𝑟𝑖1 × 𝑌𝐻 − 𝑟𝑖2 × 𝑋(𝑡))

× 𝐹| × 𝐶𝑜𝑓𝑟 
(4) 

Equation (4) describes 𝑚𝑎𝑙𝑒𝑔𝑧𝑙 as the situation vector 

shows the greatest universal resolution, which is the adult 

male. The variables 𝑟𝑖2 and 𝑟𝑖1 show arbitrary integers 

that can take on a value of either 1 or 2. YH denoted the 

coefficient vector of the young male herd and is obtained 

by Equation (5). Similarly, 𝐹 is obtained by Equation (6). 

During every iteration, the randomly chosen coefficient 

vector 𝐶𝑜𝑓𝑟 is updated and utilized to boost the search 

power.  Equation (7) can be employed to define this 

coefficient vector. 

𝑌𝐻 = 𝑋𝑟𝑎 × ⌊𝑟1⌋ + 𝑀𝑝𝑟 × ⌈𝑟2⌉,   

𝑟𝑎 = {⌈
𝑁

3
⌉…𝑁} 

(5) 

Here, 𝑋𝑟𝑎 denotes an arbitrary resolution (young 

male) in 𝑟𝑎's range. 𝑀𝑝𝑟 refers to the search experts' mean 

amount, which is equal to ⌈
𝑁

3
⌉ And 𝑁 shows the whole 

gazelles' amount when 𝑟1 and 𝑟2 show arbitrary amounts 

in [0,1]. 

𝐹 = 𝑁1(𝐷) × exp (2 − 𝐼𝑡𝑒𝑟 × (
2

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
)) (6) 

Equation (6) incorporates various problem-specific 

variables, incorporating the use of the exponential 

function (𝑒𝑥𝑝) and 𝑁1, a number chosen at random from a 

standard distribution.  It also considers the current 

iteration (𝐼𝑡𝑒𝑟) and the total number of iterations 

(𝑀𝑎𝑥𝐼𝑡𝑒𝑟) in the process. 

𝐶𝑜𝑓𝑖

=

{
 
 

 
 (𝑥 + 1) + 𝑟3,

𝑥 × 𝑁2(𝐷),

𝑟4(𝐷),

𝑁3(𝐷) × 𝑁4(𝐷)
2 × cos((𝑟4 × 2) × 𝑁3(𝐷)) ,

 
(7) 

𝑥 = −1 + 𝐼𝑡𝑒𝑟 × (
−1

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
) (8) 

Additionally, 𝑟3, 𝑟4, and 𝑟𝑎𝑛𝑑 are random numbers 

from 0 to 1. The random numbers𝑁2, 𝑁3, and 𝑁4 are 

related to the dimensions of the problem and are drawn 

from a standard distribution.  𝐼𝑡𝑒𝑟 represents the number 

of iterations that are being performed, and 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 is the 

number of iterations that are to be executed. 

 

• Maternity herds 
Maternity herds are crucial for producing robust male 

gazelles. Equation (9) mathematically describes the 

interaction between male gazelles assisting in childbirth 

and juvenile guys trying to mate with females. 

𝑀𝐻 = (𝑌𝐻 + 𝐶𝑜𝑓1,𝑟) + (𝑟𝑖3 ×𝑚𝑎𝑙𝑒𝑔𝑧𝑙
− 𝑟𝑖4 × 𝑋𝑟𝑎𝑛𝑑) × 𝐶𝑜𝑓1,𝑟 

(9) 

 

Here, 𝑌𝐻 signifies the influence factor vector of 

adolescent males. Coefficient vectors 𝐶𝑜𝑓2,𝑟 and 𝐶𝑜𝑓3,𝑟 

are independently established through random selection. 

Two random integers, 𝑟𝑖3 and 𝑟𝑖4, can have values of 1 or 

2. The maximum universal resolution (adult male) in the 

current iteration was indicated by the symbol 𝑚𝑎𝑙𝑒𝑔𝑧𝑙 . In 

the end, the position vector of a gazelle selected at random 

from the entire population is represented by 𝑋𝑟𝑎𝑛𝑑 . 
 

• Bachelor male herds 
As male gazelles mature, they establish territories and 

compete intensely with younger and with adult males in 

the mating chase for access to females and territory 

dominance, as mathematically depicted in Equation (10). 

𝑌𝑀𝐻 = (𝑋(𝑡) − 𝐷) + (𝑟𝑖5 ×𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒𝑙𝑙𝑒
− 𝑟𝑖6 × 𝑌𝐻) × 𝐶𝑜𝑓𝑟 

(10) 

𝐷 = (|𝑋(𝑡)| + |𝑚𝑎𝑙𝑒𝑔𝑧𝑙|) × (2 × 𝑟6 − 1) (11) 

 

Where, 𝑋(𝑡) indicates the position vector of the 

Gazelle in the current iteration. The variables 𝑟𝑖5 and 

𝑟𝑖6 are random integers that can take a value of either 1 or 

2. The position vector of the male Gazelle (the best 

solution) is denoted by 𝑚𝑎𝑙𝑒𝑔𝑧𝑙 .  Another random number 

between 0 and 1 is 𝑟6. 

 

• Migration to search for food 
Mountain gazelles have a strong tendency for food 

foraging, which sometimes involves extensive journeys to 

locate suitable food sources or engage in migration. Their 

exceptional running speed and jumping abilities are 



Hybrid K-Nearest Neighbors Models with Metaheuristic Optimization…                                  Informatica 49 (2025) 125–144     131                                                                                                                          

crucial in this behaviour, as mathematically represented in 

Equation (12). 

𝑀𝑆𝐹 = (𝑢𝑙 − 𝑙𝑙) × 𝑟7 + 𝑙𝑙 (12) 

Where 𝑢𝑙 and 𝑙𝑙 define the upper and lower problem 

limits in order. Moreover, 𝑟7 is a randomly selected integer 

within the range [0,1]. The Algorithm 1 is the pseudocode 

for the MGO. In addition, the flowchart of MGO 

illustrated in Figure 3.

 

Algorithm 1. Pseudocode of MGO. 

MGO setting 

Inputs: The population size N and maximum number of iterations I 

Outputs: Gazelle's location and fitness potential 

Initialization 

Create a random population using Xi (i = 1, 2, ..., N) 

Calculate Gazelle's fitness level. 

While (stopping condition is not met) do 

  for (each Gazelle Xi) do 

    % Single male  

    Calculate TSM  

    Mother and child herd 

    Calculate MH  

    Young male herd 

    Calculate YMH  

    Migration to search for food 

    Calculate MSF  

    Calculate the fitness values of TSM, MH, YMH, and MSF, then add them to the habitat 

  end for 

  Sort the entire population in ascending order 

  Update bestGazelle 

  Save the N Best Gazelles in the Max number of population 

end while 

Return XBestGazelle, best Fitness 

 

 

Figure 3: The flowchart of the MGO algorithm. 

2.2.3 Coronavirus herd immunity optimizer 

(CHIO) 

Six main stages of the CHIO algorithm are described 

below [40]: 

 

 

Step (1): At the start, the CHIO parameters are 

configured along with the initiation of the optimization 

issue. This includes constructing the optimization issue 

with the utilization of an objective function, which will be 

further detailed below. 
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𝑀𝑖𝑛 𝑓(𝑥)  𝑥 ∈ [𝐿𝐵, 𝑈𝐵] (13) 

Here, the immunity rate, represented by the objective 

function 𝑓(𝑥), is evaluated for a particular instance (or 

person) represented by 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛), where each 𝑥𝑖 
relates to the gene (or decision variable) linked to the 

index 𝑖. Each individual contains a total of 𝑛 genes and the 

values for each gene, 𝑥𝑖, are confined within the range 

[LB, UB], determined by their respective lower (LB) and 

upper bounds (UB). 

The CHIO system consists of two control parameters 

and four algorithmic parameters. 

The algorithm parameters are as follows: 

• 𝐼0: Stands for the initial count of infection cases, 

initially set to one. 

• 𝑀𝑎𝑥 − 𝐼𝑡𝑟: Specifies the maximum number of 

iterations. 

• 𝑃𝑠: Governs the population size. 

• 𝑛: Represents the dimensionality of the problem. 

At this stage, two crucial control parameters for CHIO 

are set to their initial values: 

• The Basic Reproduction Rate 𝐵𝑅𝑟 , which 

quantifies viral pandemic transmission and 

significantly influences the decisions made by 

CHIO operators. 

• The outcome of infected individuals is 

significantly influenced by the maximum age for 

infection (𝑀𝑎𝑥𝐴𝑔𝑒). Individuals who reach this 

age are documented as having recovered or 

having passed away due to the illness. 

Step (2): This stage aims to establish a population 

possessing herd immunity. It commences by generating a 

set of cases equivalent to the capacity of the host immune 

system (𝑃𝑠). These instances are subsequently kept in the 

population classified as persons with herd immunity (𝑃𝐻𝐼) 
in a matrix-sized 𝑛 × 𝑃𝑠, as elaborated below: 

𝑃𝐻𝐼 =

[
 
 
 
𝑥1
1 𝑥2

1 ⋯ 𝑥𝑛
1

𝑥1
2 𝑥2

2 ⋯ 𝑥𝑛
2

⋮    ⋮   ⋮   ⋮
𝑥1
𝑃𝑠 𝑥2

𝑃𝑠 ⋯ 𝑥𝑛
𝑃𝑠]
 
 
 

 (14) 

In this step, each case𝑥𝑗 is generated using the formula 

𝑥𝑖
𝑗
= 𝐿𝐵𝑖 + (𝑈𝐵𝑖 − 𝐿𝐵𝑖) × 𝑈(0,1),  for all 𝑖 = 1,2, … , 𝑛. 

Additionally, a status vector (𝑆) of length 𝑃𝑠 is initialized 

for all cases in 𝑃𝐻𝐼 , with values of 0 indicating 

susceptibility and 1 indicating infection. With a count 

equal to 𝐼0, the initial number of units in set S with a value 

of 1 is created at random. 

Step (3): The genes (𝑥𝑖
𝑗
) in each case 𝑥𝑗 can 

experience stability or be influenced by social distancing 

measures, depending on three rules defined by the 

percentage of the Basic Reproduction Rate (𝐵𝑅𝑟). 

𝑥𝑖
𝑗(𝑡 + 1)

←  

{
  
 

  
 𝑥𝑖

𝑗(𝑡)    𝑟 ≥ 𝐵

𝐶 (𝑥𝑖
𝑗(𝑡))    𝑟 <

1

3
× 𝐵.  //𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑎𝑠𝑒

𝑁 (𝑥𝑖
𝑗(𝑡))    𝑟 <

2

3
× 𝐵.  //𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 𝑐𝑎𝑠𝑒

𝑅 (𝑥𝑖
𝑗(𝑡))    𝑟 < 𝐵.  //𝑖𝑚𝑚𝑢𝑛𝑒𝑑 𝑐𝑎𝑠𝑒

 
(15) 

A variable "r" generates a random number from zero 

to one, and B stands for 𝐵𝑅𝑟 . The three regulations set out 

the following terms and conditions. 

𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑎𝑠𝑒: When 𝑟 ∈ [0,
1

3
𝐵), the impact of 

social distance on the gene expression 𝑥𝑖
𝑗(𝑡 + 1) relies on 

the difference between the gene expression of an infected 

case 𝑥𝑚 and the present gene expression, which is defined 

as follows: 

𝑥𝑖
𝑗(𝑡 + 1) = 𝐶 (𝑥𝑖

𝑗(𝑡)) (16) 

Where: 

𝐶 (𝑥𝑖
𝑗(𝑡)) = 𝑥𝑖

𝑗(𝑡) + 𝑟 × (𝑥𝑖
𝑗(𝑡) − 𝑥𝑖

𝑐(𝑡)) (17) 

The status vector (S), where 𝑐 denotes the set of 𝑖 
values for which 𝑆𝑖 equals 1, determines the value of 

𝑥𝑖
𝑐(𝑡), which is selected at random from an infected case 

𝑥𝑐. 

𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 𝑐𝑎𝑠𝑒: The gene value 𝑥𝑖
𝑗(𝑡 + 1) falls 

within the range of 𝑟 ∈ [
1

3
𝐵,

2

3
𝐵), and it is influenced by 

social distancing measures. These measures are 

determined by the difference between the current gene and 

a gene selected from a susceptible case 𝑥𝑚, as elaborated 

below: 

𝑥𝑖
𝑗(𝑡 + 1) = 𝑁 (𝑥𝑖

𝑗(𝑡)) (18) 

Where: 

𝑁 (𝑥𝑖
𝑗(𝑡)) = 𝑥𝑖

𝑗(𝑡) + 𝑟 × (𝑥𝑖
𝑗(𝑡) − 𝑥𝑖

𝑚(𝑡)) (19) 

From a vulnerable situation 𝑥𝑚 specified by the status 

vector (S), where m is the set of 𝑖 values where 𝑆𝑖 equals 

0, 𝑥𝑖
𝑚(𝑡)is a randomly selected value. 

𝐼𝑚𝑚𝑢𝑛𝑒𝑑 𝑐𝑎𝑠𝑒: The gene value 𝑥𝑖
𝑗(𝑡 + 1) within the 

range of 𝑟 ∈ [
2

3
𝐵, 𝐵), is modified to social distancing 

measures, which are influenced by the disparity between 

the current gene and a gene selected from a susceptible 

case 𝑥𝜔 as described: 

𝑥𝑖
𝑗(𝑡 + 1) = 𝑅 (𝑥𝑖

𝑗(𝑡)) (20) 

Where: 

𝑅 (𝑥𝑖
𝑗(𝑡)) = 𝑥𝑖

𝑗(𝑡) + 𝑟 × (𝑥𝑖
𝑗(𝑡) − 𝑥𝑖

𝜔(𝑡)) (21) 

In a susceptible situation 𝑥𝜔, which is defined by the 

status vector (S), 𝑥𝑖
𝜔(𝑡) is a randomly selected value such 

that 𝑓(𝑥𝜔) = min
𝑗~{𝑘|𝑆𝑘=2}

𝑓(𝑥𝑗).  

Step (4): The immunity rate, denoted as 𝑓(𝑥𝑗(𝑡 +
1)), is computed for each new case, 𝑥𝑗(𝑡 + 1). If the new 

rate is superior, meaning when 𝑓(𝑥𝑗(𝑡 + 1)) < 𝑓(𝑥𝑗(𝑡)), 
the current case 𝑥𝑗(𝑡) is replaced with a new one. In cases 

where 𝑆𝑗 equals 1, the age vector 𝐴𝑗 increases by one. The 

status vector (𝑆𝑗) is updated for each individual (𝑥𝑗) based 
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on the herd immunity threshold, as determined by the 

subsequent equation:

𝑆𝑗 ← 

{
 
 

 
 1 𝑓 (𝑥𝑗(𝑡 + 1)) <

𝑓(𝑥)𝑗(𝑡 + 1)

∆𝑓(𝑥)
˄ 𝑆𝑗 = 0 ˄ 𝑖𝑠−𝑐𝑜𝑟𝑜𝑛𝑎(𝑥

𝑗(𝑡 + 1))

2 𝑓 (𝑥𝑗(𝑡 + 1)) >
𝑓(𝑥)𝑗(𝑡 + 1)

∆𝑓(𝑥)
˄ 𝑆𝑗 = 1

 (22) 

 

Here's the term: 𝑖𝑠−𝑐𝑜𝑟𝑜𝑛𝑎(𝑥
𝑗(𝑡 + 1)) is given a 

value of 1 if the condition is inherited by the newly 

diagnosed case 𝑥𝑗(𝑡 + 1) from any previously infected 

case. The population's mean immunity rates are 

represented by the symbol∆𝑓(𝑥), which is defined 

as
∑ 𝑓(𝑥𝑖)
𝑃𝑠
𝑖=1

𝑃𝑠
.  

Step (5): When a person who has developed a certain 

illness and is classified as a case (with 𝑆𝑗 = 1), and their 

immunity rate 𝑓 (𝑥𝑗(𝑡 + 1)) stays constant for a 

predetermined number of iterations as given by the 

parameter 𝑀𝑎𝑥_𝐴𝑔𝑒 (𝑖. 𝑒. , 𝐴𝑗 ≥  𝑀𝑎𝑥𝐴𝑔𝑒), then the case 

is classed as a fatality. 

Then, it is entirely recreated with 𝑥𝑗(𝑡 + 1) = 𝐿𝐵𝑖 +
(𝑈𝐵𝑖 − 𝐿𝐵𝑖) × 𝑈(0,1) for all 𝑖 = 1,2, … , 𝑛. Additionally, 

both 𝐴𝑗 and 𝑆𝑗 values are set to zero. 

Step (6): The CHIO framework advances from 𝑆𝑡𝑒𝑝 3 

to 𝑆𝑡𝑒𝑝 6 until it fulfils a pre-established termination 

condition, often set by a maximum iteration threshold. The 

population comprises a considerably larger number of 

susceptible and immune individuals than the population 

itself, and no further infections are occurring. Figure 4 

displays the flowchart of the CHIO. 

 

Figure 4: The flowchart of the CHIO algorithm. 

2.3 K-Fold cross validation 

To ensure robust evaluation of the prediction model, this 

study adopts the k-fold cross-validation (KCV) 

technique—a widely accepted and systematic approach to 

model validation. In k-fold cross-validation, the dataset is 

divided into k equally sized folds, where each subset is 

used once as the testing set while the remaining k-1 subsets 

serve as the training set. This cycle is repeated k times, 

ensuring that every data point is used for both training and 

testing exactly once. 

 

 

 

In this work, 5-fold cross-validation (k = 5) is 

employed. The dataset is partitioned into five equal parts, 

and the algorithm is executed over five iterations. In each 

iteration, one-fold is designated for testing and the 

remaining four for training. The performance metrics 

across all five iterations are then averaged to provide a 

comprehensive assessment of the model’s predictive 

capabilities. 

As illustrated in Figure 5, the evaluation of the KNN 

model reveals that the fifth fold outperformed the others, 

achieving the highest coefficient of determination (R² = 

0.971) and the lowest root mean squared error (RMSE = 

168.23), marking it as the most optimal split. 
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Figure 5: The results of 5-Fold Cross validation.

2.4 Metrics for performance assessment 

To evaluate the performance and predictive accuracy of 

the developed models, a set of widely accepted statistical 

metrics are employed, each offering unique insight into 

different aspects of model behavior in regression tasks. 

The selection of these metrics—R², RMSE, NRMSE, 

MSE, and SI—is based on their proven effectiveness and 

interpretability in capturing model accuracy, error 

magnitude, relative performance, and data dispersion. 

These indicators are particularly suitable for this study, 

which involves continuous prediction of geotechnical 

properties, where both absolute and relative errors are of 

interest. While alternative metrics (e.g., MAE, MAPE) 

were considered, the chosen set offers a well-rounded, 

interpretable, and comprehensive assessment framework. 

Coefficient of Determination (R²): This metric 

quantifies the proportion of variance in the observed data 

that is predictable from the model. It captures the strength 

and direction of the linear relationship between observed 

and predicted values. A higher R² indicates better model 

fit. It is defined as: 

                 𝑅2

= (
∑ (𝑡𝑖 − �̅�)(𝑣𝑖 − �̅�)
𝑛
𝑖=1

√[∑ (𝑣𝑖 − 𝑤)
2𝑛

𝑖=1 ][∑ (𝑣𝑖 − �̅�)
2𝑛

𝑖=1 ]
)

2

 
(23) 

Root Mean Square Error (RMSE): RMSE 

measures the average magnitude of prediction errors, 

offering an intuitive understanding of error in the same 

units as the target variable. It is particularly sensitive to 

large deviations, making it effective for detecting 

significant outliers: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑣𝑖 − 𝑤𝑖)

2

𝑛

𝑖=1

 (24) 

Normalized Root Mean Square Error (NRMSE): 

This is a scale-independent version of RMSE, enabling  

 

comparison across datasets or models with differing 

output ranges. It provides a normalized perspective on 

model performance: 

NRMSE = √
1
𝑛
∑ (𝑣𝑖 −𝑤𝑖)

2𝑛
𝑖=1

∑ (𝑤𝑖)
2𝑛

𝑖=1

 (25) 

Mean Squared Error (MSE): As the square of the 

standard deviation of prediction errors, MSE penalizes 

larger errors more severely, thus highlighting models that 

consistently produce significant deviations: 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑣𝑖 − 𝑤𝑖)

2
𝑛

𝑖=1
 (26) 

Scatter Index (SI): SI measures the dispersion of the 

prediction errors relative to the mean observed value, 

providing a normalized indicator of how tightly 

predictions cluster around the true values. It is particularly 

useful for comparing performance across datasets with 

different scales: 

 𝑆𝐼 =
𝑅𝑀𝑆𝐸

𝑤𝑖
 (27) 

Together, these metrics offer a comprehensive 

evaluation of both the absolute accuracy and relative 

performance of the predictive models, ensuring robust, 

multi-faceted performance validation. 

In all the above equations: 

 𝑛: number of samples, 

 𝑣𝑖: predicted value,  

 �̅�: average predicted value, 

 𝑤𝑖 : experimentally measured value, 

 �̅�: average experimentally measured value. 

3 Results 
The primary objective of this study was to investigate the 

reliability of a single KNN model and optimized versions 

based on MGO and CHIO in predicting the Undrained 

Shear strength (USS) of soils. To achieve this goal, the 

models were divided into three categories: a training set, a 
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validation set, and a testing set, with 70%, 15%, and 15% 

of the models, respectively. Subsequently, the precision of 

each model in forecasting the USS was evaluated based on 

five evaluation metrics, and the results were presented 

through comparative charts and graphs, as presented in the 

following sections. 

3.1 Results of hyperparameters and 

convergence curves 

Effective hyperparameter tuning plays a critical role in 

enhancing the performance and generalization capability 

of machine learning models. While several strategies 

exist—including manual tuning, grid search, random 

search, and Bayesian optimization—the choice of method 

often depends on model complexity, the number of 

tunable parameters, computational resources, and time 

constraints. 

In this study, a random search strategy was adopted 

for hyperparameter optimization due to its efficiency in 

exploring high-dimensional spaces without exhaustive 

computation. This method randomly samples 

combinations from predefined hyperparameter ranges, 

increasing the likelihood of identifying optimal 

configurations with reduced evaluation overhead. 

As summarized in Table 3, the hyperparameter search 

focused on tuning three key parameters for the KNN-

based hybrid models (KNCH and KNMG): n_neighbors, 

leaf_size, and P. These settings were varied systematically 

to maximize model performance while maintaining 

computational efficiency. 

Table 3: The result of developed models for KNN

Hyperparameters 
Hybrid Models 

KNCH KNMG 

n_neighbors 14 20 

leaf_size 958 736 

p 813 905 

Tracking RMSE over iterations is a common strategy 

to monitor how well a machine learning model is learning. 

Convergence plots help visualize this process by revealing 

trends in error reduction and indicating the model's ability 

to reach an optimal state. 

As shown in Figure 6, the convergence performance 

of two hybrid models—KNCH and KNMG—was 

analyzed across 200 iterations. The KNCH model 

displayed a consistent downward trajectory in RMSE, 

ultimately stabilizing around 60, which points to efficient 

learning and robust optimization. On the other hand, 

KNMG started with a higher RMSE and leveled off closer 

to 90, reflecting a comparatively slower convergence. 

These findings clearly demonstrate the superior 

convergence efficiency of KNCH over KNMG, making it 

a more promising candidate for modeling under the given 

setup. 

 

Figure 6: The Convergence curves for hybrid model 
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3.2 Results of evaluation metrics for models 

This section compares the employed models' productivity 

by utilizing five statistical evaluators, R2, RMSE, MSE, 

NRMSE, and SI, as depicted in Table 4. In terms of R2, it 

is evident that the best result is for the KNCH in the 

training, validation, and testing parts, in which R2 is 0.993, 

0.987, and 0.977, respectively. Among the three models, 

KNCH consistently achieved the best results across the 

training, validation, and testing phases, with R² values of 

0.993, 0.987, and 0.977, respectively. It is important to 

note that R² values in the testing phase are naturally lower 

than in the training phase, as the testing process is 

performed solely on unseen input data, without access to 

the corresponding output values. In contrast, during 

training, the model learns from both inputs and known 

outputs, allowing it to optimize its parameters. Therefore, 

this drop does not necessarily indicate improper training; 

rather, it reflects the realistic challenges of generalizing to 

new data. The relatively small decline in KNCH's R² 

values indicates strong generalization capability, 

especially when compared to KNMG (R²: 0.985 → 0.976 

→ 0.967) and KNN (R²: 0.975 → 0.958 → 0.950), where 

larger performance gaps are evident. 

Comparing values of the SI in which lower values 

mean the highest model accuracy, it is evident that the 

optimal value of 0.065 was obtained in the validation 

phase of the KNCH, while this value for KNMG and KNN 

was approximately 50% and 30% higher. RMSE, 

NRMSE, and MSE outcomes demonstrate that the KNCH 

with the least error values (𝑅𝑀𝑆𝐸 = 85.192, 𝑁𝑅𝑀𝑆𝐸 =
0.470, and 𝑀𝑆𝐸 = 7259.15) exhibited the highest level 

of performance, while KNMG and KNN placed second 

and third in rank, respectively.

Table 4: The result of developed models for KNN. 

Phase Model 

 

Index values 

RMSE R2 MSE NRMSE SI Confidence 

Interval-

lower 

Confidence 

Interval-

upper 

St. dev 

of Errors 

T
ra

in
 

KNN 163.81 0.975 26866 1.171 0.134 22163 34447 21.909 

KNCH 85.19 0.993 7259 0.609 0.070 6374 9907 10.991 

KNMG 123.05 0.985 15131 0.879 0.101 12756 19827 16.296 

V
al

id
at

io
n

 KNN 173.38 0.958 30061 5.779 0.106 20698 76344 19.327 

KNCH 106.90 0.987 11428 3.563 0.065 7028 25922 11.461 

KNMG 137.24 0.976 18835 4.575 0.084 9137 33701 14.011 

T
es

t 

KNN 182.35 0.950 33252 6.078 0.159 19319 71260 26.407 

KNCH 116.62 0.977 13600 3.887 0.102 8554 31552 14.600 

KNMG 141.40 0.967 19994 4.713 0.123 12056 44469 19.458 

A
ll

 

KNN 168.17 0.971 28303 0.841 0.132 23571 34951 22.325 

KNCH 93.99 0.991 8836 0.470 0.074 7358 10911 11.701 

KNMG 128.15 0.983 16416 0.641 0.101 13623 20201 16.620 

 

Figure 7 presents scatter plots that depict the 

relationship between the predicted USS values and their 

corresponding experimentally measured values for all 

three models across the training, validation, and testing 

phases. These plots serve as a visual diagnostic tool to 

evaluate both the accuracy and consistency of model 

predictions. 

The x-axis represents the actual (measured) USS 

values, while the y-axis corresponds to the predicted 

values, adhering to standard regression visualization 

conventions. Each subplot also incorporates three key 

graphical elements: 

1. A diagonal reference line (Y = X), representing 

perfect predictions where predicted values 

exactly match measured values. 

2. A best-fit linear regression line, indicating the 

actual trend followed by the predictions. 

3. Two boundary lines (Y = 0.9X and Y = 1.1X), 

denoting a ±10% margin of error—used to assess 

the practical range within which most predictions 

fall. 

The inclusion of Root Mean Square Error (RMSE) 

and Coefficient of Determination (R²) values in each panel 

quantitatively supports the scatter distributions. RMSE 

measures the average magnitude of prediction errors, with 

lower values indicating less dispersion and higher data 

point density around the ideal fit. R² reflects the proportion 

of variance explained by the model; values closer to 1 

imply a stronger correlation and tighter clustering of data 

along the ideal line. 
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Among the three models, KNCH demonstrates 

superior performance, with the highest R² values of 0.993 

(training), 0.987 (validation), and 0.977 (testing). These 

results show a strong linear agreement between predicted 

and measured values. Concurrently, it exhibits the lowest 

RMSE values of 85.19, 106.90, and 116.62, respectively, 

indicating minimal prediction error and more compact 

clustering of data points. 

While some overlap of data points is observed—due 

to the relatively narrow range of USS values in the 

dataset—this visualization remains valuable in confirming 

both the accuracy and consistency of the KNCH model 

across different data splits. Future work may incorporate 

density plots or zoomed views to improve interpretability 

when data point congestion is high. 

  

 

Figure 7: The scatter plot for developed hybrid models 

The bar chart in Figure 8 presents a visual comparison 

of R2, RMSE, and NRMSE (vertical axes) for three 

developed models in divided phases of training, 

validation, and testing (horizontal axes). Differences 

between R2 values for the two hybrid models are marginal, 

with KNCH being better than KNMG, but KNN has a 

noticeable 3% difference with them. The discrepancy of 

models in the case of error values is more remarkable, 

especially in RMSE, in which the maximum value of 

163.814 related to the KNN is almost twice the minimum 

value of 85.192 related to the KNCH model. Turning to 

the NRMSE charts, again, the same pattern as mentioned 

for RMSE is clear there. Also, corresponding values of 

NRMSE in validation and testing parts are 5 to 6-fold 

higher than that for the training part.
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Figure 8: Comparison between models based on RMSE, R2, NRMSE 

The normal distribution plot in Figure 9 exemplifies a 

graphical analysis of errors for the KNN, KNCH, and 

KNMG models. As the error range of KNN is more widely 

spread and diagrams related to the KNCH are more narrow 

bell-shaped ones, KNN and KNCH respective are less and 

more accurate models. 
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Figure 9: The error percentage for the models based on the normal distribution plot. 

Figure 10 presents a comprehensive visualization of 

percentage prediction errors across all 200 data samples 

for the three evaluated models—KNN (baseline), KNCH 

(CHIO-optimized KNN), and KNMG (MGO-optimized 

KNN)—during the training, validation, and testing phases. 

This line plot was intentionally chosen for its ability to 

visually capture the behavior and variability of each 

model's prediction errors across individual samples, 

offering deeper insights beyond aggregate statistical 

metrics such as RMSE or R². The x-axis represents the 

sample number (1–200), while the y-axis indicates the 

prediction error (%). This enables a sequential view of 

how the models performed on each data point. The three 

vertical dashed lines divide the dataset into its respective 

training, validation, and testing partitions, which were 

used consistently across all models. 

The baseline KNN model shows significant 

fluctuations and a tendency toward larger error spikes, 

especially in the training and validation phases. The 

maximum error value of 72.8%, highlighted in red, 

indicates susceptibility to outliers or poor generalization 

on certain samples. The KNCH model exhibits the most 

stable error profile, with error values closely clustered 

around zero and minimal large deviations, especially in 

the test phase. This suggests a higher predictive reliability 

and generalization capability. The KNMG model 

demonstrates performance improvements over the original 

KNN but displays slightly more variability than KNCH, 

indicating moderate robustness. 

 

Figure 10: The Line plot for errors of the developed models. 

• Statistical significance test based on wilcoxon 

Table 5 summarizes the outcomes of the Wilcoxon 

signed-rank test, which was employed to statistically 

evaluate the performance differences among the 

developed models. The test was conducted to determine 

whether there were significant differences in the 

distributions of prediction errors. 

According to the results, none of the models—

KNN_MGO, KNN_CHIO, and KNN—show statistically 

significant differences, as all p-values are well above the 

0.05 threshold. Specifically, the KNN_CHIO model 

yielded the highest p-value (0.882), followed by KNN 

(0.668) and KNN_MGO (0.347). The corresponding test 

statistics (9280, 9929, and 9699, respectively) further 

support the consistency in performance across these 

models. 

These findings indicate that, under the given 

conditions, the predictive outputs of the three models are 

not significantly different from each other in a statistical 

sense. 
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Table 5: The result of Wilcoxon test. 

Model P-value Statistics 

KNN_MGO 0.347 9280 

KNN_CHIO 0.882 9929 

KNN 0.668 9699 

 

• Comparison with previous studies 

Table 6 presents a comparative analysis between the 

results of the present study and several recent state-of-the-

art articles focused on predicting USS using machine 

learning techniques. The proposed KNN model in this 

study, trained on 200 samples using a limited yet effective 

set of inputs—LL, PL, SF, and OBW—achieved an 

excellent coefficient of determination (R² = 0.993). While 

the RMSE value (85.19) appears higher compared to other 

studies, it is important to consider that the scale and units 

of output values may differ, influencing RMSE 

interpretation. 

In comparison, Zarei et al. [41] attained a slightly 

higher R² of 0.9975 using a deep neural network (DNN) 

with a more complex input set, albeit on a smaller dataset 

(72 samples). Zhang et al. [42] utilized the XGBoost 

model on a larger dataset (304 samples) and reported a 

lower R² (0.92), indicating that while their RMSE (2.38) 

was lower, the model’s overall explanatory power was not 

as strong. Pham et al. [43] applied a hybrid RF-PSO model 

and obtained an R² of 0.89 with an impressively low 

RMSE (0.453), reflecting a trade-off between error 

minimization and data generalization. Elsawy et al. [44] 

implemented a Fine Gaussian Support Vector Regression 

(SVR), yielding strong performance (R² = 0.96; RMSE = 

1.65) based on 111 data points. 

Overall, the present study demonstrates competitive 

predictive accuracy using fewer input variables and a 

simpler model, underscoring its practicality and efficiency 

for real-world geotechnical applications. The high R² 

value confirms the model’s robustness, despite RMSE 

differences which arising from dataset scaling or units of 

output. 

Table 6: The Comparison between the results of present study and available articles. 

Article Dataset 

size 

Inputs Model Metrics 

R2 RMSE 

Zarei et 

al. [41] 

72 vertical stress, percentage of the crushed tire, 

percentage of clay, size of clay, specific gravity of 

tires, Liquid limit, Plastic limit and Specific gravity of 

clay samples 

DNN 0.9975 2.42 

Zhang et 

al. [42] 

304 vertical effective stress, pre-consolidation stress, liquid 

limit, plastic limit, and natural water content 

XGBoost 0.92 2.38 

Pham et 

al. [43] 

127 Clay content, Water content, Specific gravity, Void 

ratio, Liquid limit, and Plastic limit 

RF-PSO 0.89 0.453 

Elsawy et 

al. [44] 

111 natural water content, dry unit weight, liquid limit, 

plasticity index, consistency index, void ratio, specific 

gravity, and pocket penetration shear 

Fine 

Gaussian 

SVR 

0.96 1.65 

Present 

study 

200 liquid limit (LL), plastic limit (PL), and sleeve 

friction (SF), overburden weight (OBW) 

KNN 0.993 85.19 

 

4 Discussion 

4.1   Practical implications 
The findings of this study have direct relevance to 

geotechnical engineering, particularly in regions where 

soft soils are prevalent, such as coastal and riverine zones. 

By accurately predicting undrained shear strength (USS) 

using easily measurable soil parameters (LL, PL, SF, and 

OBW), engineers can make more informed decisions 

without relying solely on time-consuming and expensive 

laboratory or field tests. The hybrid models, especially 

KNCH, offer a computationally efficient alternative that 

retains high predictive accuracy, making them suitable for 

integration into early-stage geotechnical investigations, 

feasibility assessments, and large-scale infrastructure 

planning. Moreover, these models can be embedded into  

 

software tools or decision-support systems, enhancing 

design safety and reducing costs associated with soil 

characterization. 

4.2. Limitations of the study 

While the results are promising, several limitations should 

be acknowledged. First, the dataset used in this study, 

though diverse, was limited to 200 samples. A larger and 

more geographically varied dataset could improve the 

generalizability of the models. Second, the input features 

were selected based on availability and relevance, but 

additional parameters such as moisture content, particle 

size distribution, or in-situ test data might further enhance 

model robustness. Third, although the optimization 

algorithms (MGO and CHIO) significantly improved 

model performance, their convergence behavior and 

computational cost were not thoroughly analyzed, which 
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could affect scalability for larger datasets or real-time 

applications. 

4.3. Potential future studies 

Future research could expand on this work in several 

directions. Firstly, enlarging the dataset with samples from 

different soil types and geographic locations would 

enhance model generalizability and allow for regional 

model calibration. Secondly, incorporating more 

advanced machine learning models such as deep neural 

networks (DNNs), ensemble methods, or transfer learning 

approaches may yield even better predictive performance. 

Additionally, future studies could explore real-time or 

semi-real-time implementation of the proposed models in 

geotechnical monitoring systems. It is also recommended 

to investigate the comparative effectiveness of other 

nature-inspired optimization algorithms and assess their 

efficiency in terms of convergence speed, stability, and 

computational load. 

5 Conclusion 
This study tackled the complex problem of predicting 

undrained shear strength (USS) in soft soils near water 

bodies—an essential task in geotechnical engineering for 

ensuring structural safety and stability. The introduction 

contextualized the challenge posed by soft soils and 

highlighted the importance of USS in engineering design, 

along with the increasing application of machine learning 

(ML) techniques to enhance prediction accuracy. The 

research aimed to construct and evaluate data-driven 

models using non-linear ML approaches, particularly the 

K-Nearest Neighbor (KNN) algorithm and its two 

optimized variants: KNMG (KNN with Mountain Gazelle 

Optimizer) and KNCH (KNN with Coronavirus Herd 

Immunity Optimizer). The models were trained and tested 

on a dataset of 200 soil samples with four key input 

features—sleeve friction (SF), liquid limit (LL), plastic 

limit (PL), and overburden weight (OBW). 

To rigorously evaluate the models, five performance 

metrics—R², RMSE, NRMSE, MSE, and Scatter Index 

(SI)—were used across training, validation, and test 

phases. The results show that the KNCH model 

consistently outperformed both the baseline KNN and the 

KNMG variant across all evaluation metrics and phases. 

Specifically, KNCH achieved the highest R² values and 

the lowest RMSE, MSE, NRMSE, and SI values, 

indicating superior accuracy and model stability. For 

instance, in the test phase, KNCH's RMSE was 

approximately 36% lower than KNMG's and 56% lower 

than KNN’s. Its R² score was also 0.8% and 2% higher 

than those of KNMG and KNN, respectively. 

While KNMG demonstrated improved performance 

over the baseline KNN, particularly in reducing prediction 

errors and increasing correlation strength, it was 

consistently outperformed by KNCH in every phase and 

metric. The baseline KNN model, although less accurate, 

provided a valuable benchmark for gauging the impact of 

optimization algorithms. 

Moreover, the graphical analyses revealed that the 

predicted values from all three models, especially KNCH, 

closely followed the trends in experimentally measured 

USS values. This alignment underscores the effectiveness 

and feasibility of the proposed hybrid ML-optimization 

frameworks, with KNCH emerging as the most reliable 

model for predicting USS in soft soils. 
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