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The Internet has grown as a result of information technology advancements, and cybercrime is becoming 

more and more common. To improve the network defense against all kinds of network attacks and reduce 

the success rate of cyber crimes, the research innovatively proposes to use the multi-tease attention 

mechanism to improve the gating cycle unit, and use the multi-head attention mechanism to obtain 

network security feature information at different locations, so as to improve the learning characteristics 

of network situation prediction and realize network security situation prediction. Three layers comprised 

the model: the prediction layer, the transform layer, and the circular network layer. The circular network 

layer was responsible for dimensionality reduction of network information data. Information features 

were extracted via the transform layer. The outcomes of the predictions were output by the prediction 

layer. The study's model performed better when taught in both directions, according to the data, and its 

accuracy could reach roughly 93.5%. The highest level of model accuracy could be reached when other 

parameters were fixed and the neurons in the feed-forward layer was 28. Compared with other network 

security situation prediction models, the proposed model could improve the prediction accuracy to 

around 93.5% and the precision to around 91% on the UNSW-NB15 dataset, while maintaining the F1 

value of the model at around 92%. The research-designed model can accurately predict the network 

security situation changes, which improves the Internet's defense against attacks and maintains the 

normal operation of the Internet community. 

Povzetek: Raziskava predstavlja model napovedovanja omrežne varnostne situacije, ki z večglavim 

mehanizmom pozornosti izboljša GRU in dosega visoko kvaliteto pri zaznavanju kompleksnih napadov. 

 

1 Introduction 
Networks have become the foundation of contemporary 

civilization due to the quick advancement of information 

technology. However, all kinds of network attacks are 

emerging, and network security (NS) problems are 

becoming increasingly serious. As an important means to 

ensure the stable operation of network environment, 

network security situation prediction (NSSP) is directly 

related to the security and reliability of network system 

[1-2]. NSSP technology is a key research direction in the 

field of information security. It predicts the future 

development trend by analyzing the type and frequency 

of attack events and the situation value after correlation 

and fusion, as well as by using the information of past 

attack events and the situation value [3-4]. The current 

state of research shows that network security situation 

(NSS) sensing system currently exists shortcomings such 

as sensing without action, unable to recognize new attack 

methods. Therefore, there is an urgent need to propose a 

responsive security situation awareness platform 

architecture to solve the problem of integrated perception 

and action construction [5]. The traditional approach  

 

assumes that network attack events are independent,  

meaning that the occurrence of one attack event does not 

affect the occurrence of another attack event. However, 

in the real world, attack events are often interrelated, and 

one attack event can trigger or mask other attack events. 

This assumption results in significant prediction errors 

for traditional NSSP methods when dealing with 

irregularly changing and fluctuating data, limiting their 

effectiveness in practical applications. With the 

continuous increase of network data and the 

diversification of network attack methods, the NSSP 

becomes more and more difficult. The traditional NSSP 

method has a large error in the prediction results when 

facing irregularly changing and fluctuating data. Its high 

requirement for data independence leads to a large 

limitation in the scope of use [6-7]. Therefore, in order to 

improve the network defense capability and network 

situational prediction accuracy, the study proposes to 

improve the gated recurrent unit (GRU) by using multi-

head attention mechanism (MHAM). Furthermore, the 

NSS is predicted and analyzed using the enhanced GRU. 

The main objective of this study is to improve the 
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accuracy and robustness of NSSP by proposing a new 

model that combines MHAMGRU. It is assumed that the 

integration of MHAM into the GRU framework will 

significantly enhance the model's ability to capture 

complex patterns and long-term dependencies in NS 

data, thereby improving the accuracy and precision of 

predictions. The expected results of this study include the 

development of a model that can accurately predict 

changes in the NSS, thereby improving the accuracy and 

robustness of the NSSP. The main measurement 

indicators are accuracy, precision and F1 value. 

The research innovatively proposes to use MHAM to 

improve the GRU, which utilizes the MHAM to obtain 

the NS feature information of different locations, so as to 

increase the learning characteristics of network situation 

prediction to realize NSSP. Network attacks typically 

have diversity and complexity, and different types and 

methods of attacks can produce different characteristics 

in different network locations. By analyzing the 

characteristics of different locations, the model can more 

comprehensively capture the diversity and complexity of 

attacks, thereby improving the accuracy of predictions. 

The main contribution of this research is to design a deep 

learning (DL) neural network (NN) that considers NS 

features of different locations and use the network to 

conduct prediction studies on complex NSSs. The NS 

defense is improved and the NSSP is improved. 

2 Related works 
NSSP can significantly improve NS defense capability 

and guarantee network operation security. Chen 

developed a radial basis function NN prediction model 

based on enhanced genetic algorithm optimization to 

increase the precision of NSS perception prediction and 

adapt to evolving network assault technologies. 

According to the findings, the optimized model 

prediction value was reasonably close to the real value, 

which helped with NS maintenance [8]. To solve the 

security difficulties of mobile IoT healthcare networks, 

Xu et al. suggested an enhanced convolutional NN model 

in conjunction with an intelligent prediction method for 

security performance. The outcomes demonstrated that 

the algorithm successfully safeguarded the medical data 

while increasing prediction accuracy by 20% [9]. Zhang 

M et al. proposed a NS encryption method based on 

chaotic iterative system to meet the encryption protection 

of indoor surveillance video data. The results showed 

that this scheme effectively improved the encryption 

level of surveillance data [10]. Kure et al. suggested an 

integrated NS risk management method based on fuzzy 

sets, machine learning and comprehensive assessment 

model in order to deal with cyber threats to cyber-

physical systems. The results indicated that the method 

effectively assessed asset criticality, accurately predicted 

risk types, and helped to proactively manage risks [11]. 

One popular DL NN is called GRU. To increase the 

precision of rotating machinery condition maintenance, 

Ni et al. proved a rolling bearing prediction method 

based on health indicators. The scheme analyzed the 

bearing state by methods such as spectral correlation and 

combined with an intelligent model to predict RUL. The 

outcomes revealed that the new indicator was monotonic 

and had high prediction accuracy [12]. Zhang et al. 

suggested a DL method based on GRU in order to 

accurately predict landslide displacement. The results 

revealed that the method outperformed other DLNNs. It 

could better capture historical information and cycle 

displacement changes to improve the prediction accuracy 

[13]. For intelligent transportation systems, Shu et al. 

suggested a prediction model based on an enhanced GRU 

NN to increase the precision of short-term traffic flow 

prediction. The outcomes revealed that the model 

combined bidirectional positive feedback with RAdam 

optimizer to significantly improve the prediction 

accuracy [14]. Lin H et al. illustrated a GRU DL model 

based on dual GRU with pattern decomposition based in 

order to predict the groundwater level in Qo Say Plain, 

Iran. The outcomes revealed that the dual GRU model 

performed better with high prediction accuracy and 

computational efficiency [15]. The summary of research 

and investigation literature is shown in Table 1. 

In summary, accurate prediction of NSS can 

effectively improve NS, but existing DL models are 

prone to over-fitting when processing high-dimensional 

data, resulting in good performance on the training set 

but poor generalization ability on the TeS. The traditional 

NSSP method has a large prediction error when dealing 

with irregular and fluctuating data, and its

 

Table 1: Summary of related works survey results 

Reference Method Data set Accuracy (%) Precision (%) F1 value 

Chen [8] GA-RBF UNSW-NB15 89.0 88.5 88.8 

Xu et al. [9] Enhanced CNN 
IoT Medical Network 

Dataset 
92.0 91.5 91.8 

Zhang et al. [10] Docker-deep learning 
SiteWhere Platform 
Dataset 

90.5 90.0 90.3 

Kure et al. [11] 
Improving machine 

learning with fuzzy sets 

Industrial Control 

System Dataset 
91.0 90.5 90.8 

Ni et al. [12] Health indicator prediction 
Mechanical Fault 
Dataset 

92.5 92.0 92.3 

Zhang et al. [13] GRU 
Geological hazard 

dataset 
93.0 92.5 92.8 

Shu et al. [14] EnhancedGRU Traffic flow dataset 93.5 93.0 93.3 

Lin H et al. [15] 
Pattern decomposition 

GRU 

Groundwater level 

dataset 
93.2 92.7 93.0 
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high data independence requirement limits its application 

scope. In addition, existing research does not focus on 

the location characteristics of network attacks, resulting 

in a decrease in the sensitivity of network attack 

detection models to network attack behavior. Therefore, 

a NSSP model based on MHAM-enhanced GRU is 

proposed. The acquisition of NS feature information 

from different locations by MHAM improves the 

learning characteristics of network situation prediction. 

The Transformer encoder architecture is utilized to 

improve the feature extraction capability and training 

effectiveness of the model. Residual links and layer 

normalization in the Transformer architecture can 

effectively prevent gradient vanishing problems and 

improve model training performance. 

3 Methods and materials 

3.1 Improved GRU Based on MHAM 

Attention mechanisms (AMs) are common techniques in 

the field of DL. The mechanism enables the model to 

focus on the most important parts of the input data by 

mimicking human visual attention [16-17]. The 

introduction of an AM can improve the feature 

sensitivity of the network to different attack methods and 

increase the sensitivity of the model to network attack 

behavior. Common AMs include scaled dot product 

attention mechanism (SDPAM) and multi-head self-

attention mechanism (MHSAM). SDPAM determines the 

weights by calculating the dot product of Query and Key, 

which is simple to operate and easy to understand, as 

shown in Equation (1) [18-19]. 

 ( ), , max
T

k
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A Q K V soft V

d

 
=  

 
 

 (1) 

In Equation (1), 
kd  and 

vd  denote the target feature 

dimensions. Q  and K  denote the input feature 

dimensions of the SDPAM when the feature dimension is 

kd . The MHSAM can be obtained by splicing multiple 

SDPAMs and performing a linear transformation. The 

computation of the MHSAM is shown in Equation (2). 

 ( ) ( )1 2, , , , , o

nMH Q K V C h h h W=  (2) 

In Equation (2), n  is the total heads counts. 
ih  

denotes the i th head feature. C  denotes vector splicing 

operation. 
oW  denotes the WM. The calculation of 

ih  is 

shown in Equation (3). 

 ( ), ,Q K V

i i i ih A QW KW VW=  (3)

 The length of time series data is often not fixed, and 

traditional NN models are difficult to handle variable-

length sequence data. GRU can handle variable-length 

sequence data, and the input to the model can be a 

sequence of any length, and the output can be any 

position in the sequence. This allows GRU to be very 

flexible in processing time series data and to adapt to 

variable length sequence data. Sequential data processing 

commonly uses the DL model GRU [20]. By 

implementing a gating mechanism, GRU aims to regulate 

information flow. The introduction of gates allows GRU 

to better capture long-term dependencies when 

processing long sequence data. Figure 1 depicts the 

internal organization of GRU. 

In Figure 1,  denotes element-by-element 

multiplication. The basic structure of GRU includes two 

gates and two hidden states (HS). The two gates are 

update gate (UG) and reset gate (RG). The UG of the 

GRU determines how much information is retained from 

the input data of the current time step (TS), namely the 

characteristics of the network attack behavior, as well as 

how much information is retained from the HS of the 

previous TS. The formula for the UG is given in 

Equation (4). 
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Multiply element by 

element

Activation 

function

Activation 

function
tanh

-1

ht-1
ht

rt zt

th

xt

 
Figure 1: Gated recurrent unit major structure (Author's self drawn). 
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Figure 2: Internal structure of the transformer encoder 

architecture. 

In Equation (4),   denotes the activation function. 

zW  is the update weight matrix (WM). 
1th −
 denotes the 

HS of the previous TS. 
tx  denotes the input of the 

current TS. How much data is kept from the previous 

TS's HS is decided by the RG. Equation (5) displays the 

formula for the RG. 

  ( )1,t r t tr W h x −=  (5) 

 

In Equation (5), 
rW  is the reset WM. The two HSs 

are the candidate HS and the final HS, respectively. 

Equation (6) shows the formula for calculating the 

candidate HS, which is the sum of the current TS and RG 

inputs. 

  ( )1tanh ,t t t th W r h x−=  (6) 

 

In Equation (6), W  denotes the candidate HS WM. 

The final HS is the combination of the UG and the 

candidate HS. The MHSAM is usually found in the 

Transformer architecture. Transformer architecture 

usually consists of encoder and decoder. The study uses 

only its encoder architecture in the improvement of GRU 

using MHSAM. The Transformer encoder architecture 

adds a residual connection structure and layer 

normalization between the multi-head self-attention 

(MHSA) layer and the feed forward network layer. The 

internal structure of the encoder is shown in Figure 2 

[21]. 

The positional connection properties of the analyzed 

data cannot be extracted by the GRU model when it is 

optimized solely based on the encoder structure. The 

cosine function and sine function can be used to encode 

the expression of the data position through angular 

analysis. The study adds a sine function with cosine 

function before inputting the original features to express 

the data position as shown in Equation (7). 
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In Equation (7), pos  denotes the position. 
( ),2pos i

PE  

and 
( ),2 1pos i

PE
+

 display the position information of the 

original data when the dimension is even or odd. 
modd  

denotes the encoder input features. For sequential data, 

positional information can help models understand the 

temporal order and contextual relationships of the data. 

The sine and cosine functions have periodicity that allows 

the model to handle sequences longer than the length of 

the training sequence. The values of the sine and cosine 

functions are unique for different locations. This ensures 

that each location has a unique encoding, preventing 

confusion of location information. The values of sine and 

cosine functions change smoothly, which enables the 

model to better capture subtle changes in positional 

information. Residual connection adds the output of the 

feed-forward network layer to the output of the MHSAM, 

and layer normalization normalizes the added result. This 

structure ensures effective transmission of information in 

multi-layer networks and prevents gradients from 

disappearing during back-propagation, thereby improving 

the training effectiveness and convergence speed of the 

model. The encoder's feed forward network can 

successfully prevent the issue of model training 

degradation brought on by gradient vanishing during 

training. Figure 3 displays the network structure of the 

MHSAM-based research-designed network situational 

prediction. 

The overall structure of the model constructed in the 

study is divided into GRU layer, MHSA layer and 

prediction layer. The MHSA layer adopts the Transform 

architecture, which consists of position embedding and 

encoder. The prediction layer and MHSA layer are 

connected by dropout mechanism and full connectivity. 

3.2 Improved GRU-based NSSP 

The study utilizes MHSAM after improving the GRU 

network. That is, the model's primary component for 

predicting and analyzing NSS is the enhanced network. 

The data related to NSS is characterized by large data 

size and high data dimension. High dimensional data 

increases the computational complexity of the model, 

resulting in slower training and inference processes [22-

23]. Due to the high dimensionality of NSS data, the raw 

data cannot be directly input into the model. It is 

necessary to first use an improved GRU to pre-process 

the raw data, and then use the GRU to map the high-

dimensional raw data into a low-dimensional space to 
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reduce the dimensionality of the data. As a result, Figure 

4 depicts the structure of the NSSP model that the study 

created. 
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Figure 3: Advanced representation of GRU network based on MHSA improvement. 

The study's NSSP model is built using a three-layer 

design overall. The data preparation layer is the first 

layer. The GRU network layer, which is enhanced based 

on MHSA, is the second layer. The model output layer is 

the third layer. For data correction, the original data must 

pass through the pre-processing layer before reaching the 

enhanced GRU network layer. The main operations of the 

pre-processing layer include data filtering, numerization, 

normalization and time serialization. Data filtering is to 

remove invalid data from the input information. 

Numericalization is to convert the encoding type of data 

information to facilitate model training and learning. 

Standardization can effectively reduce the differences 

between different data. Time serialization is to make the 

current cyber-attack data coincide with the historical 

cyber-attack data. Network attacks often do not occur in 

isolation, but have continuity and evolutionary processes. 

Historical data can provide background information about 

attacks and help models understand the origin, 

development, and evolution of attacks. Therefore, it is 

necessary to maintain data consistency. The original data 

set can be input into the improved GRU network layer 

after pre-processing. If the input data is assumed to be 

sequence ( )1 2, , , TX x x x= , the sequence enters into the 

improved GRU network and needs to undergo data 

dimensionality reduction first, as shown in Equation (8). 

  ( )1,2, ,tH GRU x t T= =  (8) 

 

In Equation (8), H  denotes the data features after 

dimensionality reduction. T  denotes the TS. The data 

dimensionality reduction method used in the study is 

feature compression, where the GRU network maps high-

dimensional input data to a low-dimensional HS space. 

Through this mapping, the model can compress the 

information in the input data into a low-dimensional 

representation, reducing the dimensionality of the data 

and improving computational efficiency. After the input 

data is processed by dimensionality reduction, the 

position information can be input through the position 

embedding vector in the improved GRU network. The 

embedding of location information relies on location 

encoding. The encoder is used to extract the information 

features of the current sequence after embedding the 

location data. After the encoder completes the feature 

extraction, NSSP can be achieved by Dropout with full 

connectivity. The Dropout mechanism effectively reduces 

the risk of model over-fitting by randomly dropping 

certain neurons, and this operation is relatively simple 

and does not affect the model structure. Therefore, this 

regularization technique is used in this study. A fully 

connected layer refers to a type of layer in a NN where 

each neuron is connected to all neurons in the previous 
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Figure 4: Prenetwork model of prediction model based on improved GRU. 
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layer. Dropout is a regularization technique widely used 

in DL. This keeps the NN from over-fitting and enhances 

the model's capacity for generalization. Its operation 

process can be defined as Equation (9) [24]. 
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In Equation (9), ( )1l

iw
+

 is the weight corresponding to 

the i th hidden unit in the 1l + th layer. f  is the 

activation function. ( )1l

iz
+

 denotes the input of the i th 

hidden unit in the 1l +  layer. ( )1l

ib
+

 is the bias 

corresponding to the i th hidden unit in the 1l +  layer. 

The activation function used in improving GRU networks 

is the softmax function, which has high applicability in 

classification tasks. However, NSSP is an attack behavior 

classification problem. Therefore, this function is used as 

the activation function in the study. The expression of the 

function is shown in Equation (10). 
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In Equation (10), K  is the values in the output 

vector. 
jz  is the j th value in the network output result. 

ip  is the probability of the current category. i  denotes 

the current computational category. Since the core 

structure of the prediction model is the GRU, its 

parameters need to be optimized when training the model. 

The optimizer chosen for the study is small batch gradient 

descent. Small batch gradient descent can take advantage 

of matrix operations to perform parallel processing on 

data from small batches of samples. Moreover, small 

batch gradient descent can quickly reduce losses in the 

early stages of training, and by continuously adjusting 

parameters in the later stages, the model can better fit the 

data and finally achieve a good convergence state. 

Therefore, the study chose small batch gradient descent 

as the optimization algorithm [25]. By using a small 

batch of training samples from the training set (TrS), this 

optimizer first optimizes the NN's parameters. Moreover, 

the mean value of the gradient of that batch of samples is 

calculated to optimize the parameters [26]. Figure 5 

depicts the overall NSSP flow based on MHSAM. 

The NSSP using the model designed by the research 

needs to be started with data collection and pre-

processing of the data set. The collected data needs to be 

divided into TrS and test set (TeS). To train the model, 

some of the samples are first forward propagated on the 

improved GRU network. The data samples start back-

propagation training immediately after the end of forward 

propagation. Furthermore, the network parameters have 

been optimized based on the training outcomes. After the 

parameters are updated and optimized, the network 

performance is compared before and after the update. 

Networks with better generalization performance are 

retained until the maximum iterations is reached. The 

model must be tested once it has been trained. Input the 

TeS into the network retained after reaching the 

maximum number of iterations, perform NSSP and 

output the results. The pseudo-code for the research and 

design model is shown in Figure 6. 

4 Results 

4.1 Experimental environment and 

parameter settings 

The dataset used in the study for training and testing the 

models constructed for the study is the UNSW-NB15 

dataset. The UNSW-NB15 dataset covers various types 

of network attacks, including but not limited to DoS 

attacks, DDoS attacks, port scans, backdoor attacks, fuzz 

attacks, malware attacks, and more. This diversity allows 

researchers to test multiple attack scenarios in a single 

dataset. The traffic in the dataset is partly derived from 

the real network environment and partly generated by 

simulation. This combination method aims to provide 

data that is closer to the actual network environment, 

while maintaining the controllability and diversity of the 
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Figure 5: Network security state assessment means with MHSA framework and GRU. 
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# Define model parameters
num_neurons_circ_layer = 16  # Number of neurons in the recurrent layer
input_dim = 16  # Input dimension
num_heads = 2  # Number of attention heads
subvector_dim = 8  # Subvector dimension
num_neurons_encoder = 12  # Number of neurons in the encoder
num_neurons_feedforward = 28  # Number of neurons in the feedforward layer

# Data preprocessing
def preprocess_data(data):
    # Filter invalid data
    filtered_data = filter_invalid_data(data)
    # Convert to numerical format
    numerical_data = convert_to_numerical(filtered_data)
    # Normalize data
    normalized_data = normalize(numerical_data)
    # Transform to time series
    time_series_data = time_series(normalized_data)
    return time_series_data

# Model training
def train_model(train_data, train_labels, epochs, batch_size):
    for epoch in range(epochs):
        for batch in range(0, len(train_data), batch_size):
            batch_data = train_data[batch:batch + batch_size]
            batch_labels = train_labels[batch:batch + batch_size]
            batch_data = preprocess_data(batch_data)
            gru_output = gru_layer(batch_data, num_neurons_circ_layer)
            encoder_output = encoder_layer(gru_output, num_heads, num_neurons_encoder)
            predictions = prediction_layer(encoder_output, num_neurons_feedforward)
            loss = compute_loss(predictions, batch_labels)
            gradients = compute_gradients(loss)
            update_parameters(gradients)
        accuracy = evaluate_model(test_data, test_labels)
        print(f'Epoch {epoch + 1}, Accuracy: {accuracy:.4f}')

 

Figure 6: Pseudo-code for the study design model. 

data. Each data set contains 42 characteristics covering 

various aspects of network traffic, such as duration, 

source and destination IP addresses, port numbers, 

protocol types, packet sizes, etc. The dataset has a total of 

2, 540, 044 records stored in four CSV files. The dataset 

is separated into TeS and TrS subsets. 175,341 records 

are in the TrS, while 82,332 records are in the TeS. This 

dataset contains several common types of network attacks, 

which can comprehensively cover security threats in 

today's network environments. This allows the model to 

learn the characteristics of different types of attacks 

during the training process, improving the model's 

generalization ability. The attack behavior in the dataset 

is generated from actual network traffic and has high 

authenticity and integrity. This allows the model to be 

exposed to real network attack scenarios during the 

training process, improving the practicality and reliability 

of the model. The dataset is large in size and contains a 

large number of training and test samples, which can 

provide sufficient data to support the training and 

validation of the model. Meanwhile, the quality of the 

dataset is high, and the data cleaning and pre-processing 

work is relatively complete, reducing the impact of data 

noise on model training. There may be an imbalance in 

the sample size of different attack types in the dataset, 

with some attack types having a larger sample size while 

others have a smaller sample size. This can lead to over-

fitting of the model to attack types with large sample 

sizes during training, and insufficient generalization 

ability to attack types with small sample sizes. As the size 

of the dataset increases, the computational complexity of 

the model increases linearly. Specifically, the 

computational complexity of data pre-processing, 

position coding, MHAM, GRU layer, encoder layer, and 

prediction layer is linearly related to the size of the 

dataset. Therefore, the demand for computational 

resources will increase significantly when the model 

processes large datasets. As the complexity of the 

network increases, the computational complexity of the 

model increases significantly. In particular, increasing the 

number of heads in the MHAM, the HS dimension of the 

GRU layer, and the HS dimension of the encoder layer 

will significantly increase the computational complexity. 

Therefore, as the model deals with more complex 

network structures, the demand for computational 

resources will increase significantly. Table 2 displays 
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Table 2: Experimental environment configuration 

Item Type Item Type 

Operating system Windows 10 Programming Language Python 

Memoryspace 16GB Interpreter version Python3.6 

GPU RTX 2060 Main libraries used Tensorflow-gpu-1.15.0、pandas 

CPU 
i7-10750H CPU @ 

2.60GHz 
/ / 

 

how the experimental environment is set up for the 

model's testing and training. In model training, the data 

standardization method used in the study is Z-Score 

normalization, and the sampling method is mixed 

sampling. The dropout rate is 0.5. 

The study's enhanced GRU network is a deep neuron 

network where the algorithm's performance is directly 

impacted by the selection of hyper parameters. The study 

configures the algorithm hyper-parameters according to 

Hannan et al. and Khodabandelou et al. A total of 4 sets 

of hyper-parameter configurations are designed in the 

study, as shown in Table 3. The hyper-parameter 

configuration information of the research design can 

reflect the impact of different parameters on the model 

performance, so only 4 sets of hyper-parameter 

configurations need to be set. The hyper-parameters 

selected for the study include the number of recurrent 

layer neurons, the input dimension, the total number of 

heads, the sub-vector dimension, the number of encoder 

neurons, and the number of model parameters. The 

algorithm used to evaluate whether the hyper-parameter 

configuration is reasonable is the grid search algorithm. 

To prevent over-fitting and ensure the generalization 

ability of the model, this study adopted a cross-validation 

method. Cross-validation evaluates the performance of a 

model by dividing the training dataset into multiple small 

data sets and performing multiple training and validation 

on these small datasets. The training set is divided into k 

equally sized subsets. For each subset, it is imperative to 

utilize it as the validation set, while the remaining k-1 

subsets are to be employed as the training set. The model 

is then trained on the training set, and its performance is 

evaluated on the validation set. The performance metrics 

are then calculated for each subset, and the average of 

these metrics is taken as the final performance evaluation 

result. Through cross-validation, it is possible to 

effectively prevent over-fitting of the model during 

training and ensure its generalization ability on new data. 

In this study, the number of folds k for cross-validation is 

set to 5, i.e., 5-fold cross-validation. 

4.2 Algorithm performance analysis 

Long short-term memory network (LSTM) is a classical 

prediction-like neuronal network with similar functions 

as GRU. The use of LSTM can verify the feasibility of 

improving the GRU network through research, and also 

verify whether the selection of the network is correct. 

One-way and two-way training are employed in the study 

to confirm the efficacy of the network architecture. 

Figure 7 compares the two enhanced networks' 

performances and displays the findings. 

 

Table 3: Improved hyper-parameter configuration of the GRU network 

Deploy 

Number of 

neurons in the 

circulating layer 

Enter the 

dimension 

Totalheads 

counts 

Subvector 

dimensions 

Number of 

encoder 

neurons 

Parameter 

quantity 

1 16 16 2 8 12 14970 

2 16 16 8 16 12 14970 

3 32 32 2 8 12 35498 

4 48 48 8 6 12 61658 
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Figure 7: Comparison of accuracy of proposed GRU and improved LSTM during one-way training. 
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Figure 8: Comparison of accuracy of proposed GRU network with improved LSTM network during bidirectional 

training. 

In Figure 7, training frequency/session refers to the 

number of model training times. The experimental 

outcomes of the enhanced GRU network under various 

hyper parameter configurations are displayed in Figure 

7(a). The accuracy remains around 93.5% under all four 

hyper-parameter configuration schemes. The fourth set of 

hyper-parameter configuration schemes shows significant 

over-fitting during the training process, and the model 

accuracy decreased after reaching its maximum value. 

This indicates that increasing the number of hyper-

parameters may lead to an increase in model complexity, 

thereby increasing the risk of over-fitting. Figure 7(b) 

shows the outcomes of the improved LSTM network 

under different hyper parameter configurations. The 

training results of the enhanced GRU network show a 

change trend that is largely compatible with the 

experimental findings of this network under various 

hyper parameter combinations. However, compared to 

the enhanced GRU network, the model's accuracy is 

marginally less. This finding suggests that GRU and 

LSTM demonstrate comparable performance in network 

situation prediction tasks. However, GRU may exhibit 

superior efficiency in processing long sequence data. 

Figure 8 illustrates how the upgraded LSTM and GRU 

networks' accuracy changed after they are trained in both 

directions. 

Figure 8(a) shows the change in accuracy when the 

proposed GRU network is trained using two-way 

training. The over fitting of the model is more obvious 

when the 4th hyper parameter configuration scheme is 

used. At this time, the performance degradation after 

model over fitting is also more obvious. In the 3rd hyper-

parameter configuration scheme, the model also shows a 

similar over-fitting phenomenon as in the 4th hyper-

parameter configuration scheme. Further increasing the 

number of feed-forward neurons will result in a decrease 

in model performance. This indicates that increasing the 

number of neurons in the feed-forward layer can lead to 

an increase in model complexity, thereby increasing the 

risk of over-fitting. Figure 8(b) shows the change in 

accuracy of the improved LSTM network when two-way 

training is used. The decrease in model accuracy is more 

serious after using bidirectional training, and the over 

fitting phenomenon is also more obvious. The network 

reaches its highest accuracy at the 50th training, which is 

about 93.00%. Conversely, as training times grow, the 

accuracy of the model progressively declines to 

approximately 92.5%. The performance of the algorithm 

is also directly impacted by the feed forward layer's 

neurons. This indicates that bidirectional training may 

increase the complexity of the model, leading to more 

severe over-fitting. The study examines how the feed 

forward layer neurons affect the upgraded GRU 

network's performance in both unidirectional and 

bidirectional training. The results are shown in Figure 9. 

 

3228242016

93.75

92.50

91.25

90.00

A
c
c
u

ra
c
y

/%

Number of neurons/unit

(a) The variation of model accuracy with the number of 

feedforward neurons under different training methods

Unidirectional training

Bidirectional training

3228242016

93.75

92.50

91.25

90.00

R
e
c
a
ll

/%

Number of neurons/unit

(b) The variation of model recall with the number of 

feedforward neurons under different training methods

Unidirectional training

Bidirectional training

 

Figure 9: Effect of the number of FLNs on the Proposed GRU. 
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Figure 10: Effect of training methods and the number of feed-forward neurons on proposed GRU. 

The impact of the feed forward layer's neuron count 

on the accuracy of the network under various training 

strategies is depicted in Figure 9(a). Using unidirectional 

training, the model accuracy is highest at about 93.60% 

when the feed forward layer neurons (FLNs) is 28. With 

further increase in the FLNs, there is a decrease in the 

model performance. The model accuracy drops to about 

92.7% when the FLNs is 32 numbers. When bi-

directional training is applied, the model's accuracy 

changes in a way that is consistent with what happens 

when uni-directional training is applied. On the other 

hand, the bidirectional training model has a better 

accuracy of up to 93.7%. Further increasing the number 

of feed-forward neurons will result in a decrease in model 

performance. This indicates that increasing the number of 

neurons in the feed-forward layer can lead to an increase 

in model complexity, thereby increasing the risk of over-

fitting. The effect of the feed forward layer neurons on 

the network recall under various training strategies is 

depicted in Figure 9(b). The neurons have little effect on 

the model recall. This suggests that an increase in the 

number of neurons in the feed-forward layer exerts 

minimal influence on the recall rate of the model, yet it 

may potentially result in a reduction in the model's 

accuracy. Figure 10 displays the effects of the feed 

forward layer neurons on the model's performance at 

various training intervals. 

In Figure 10, Training frequency/session refers to the 

number of model training times. Figure 10(a) displays the 

effect of the model training times and the FLNs on the 

model accuracy. When the FLNs is equal, the model test 

accuracy increases with the increasing training times. 

When the FLNs is 16, the highest model test accuracy is 

about 91.8%. When the neurons in the feed forward layer 

is 24, the highest model test accuracy is about 92.2%. The 

maximum accuracy of the model test is around 93.6% 

when there are 32 neurons in the feed forward layer. The 

maximum accuracy of the model test is around 93.6% 

when there are 32 neurons in the feed forward layer. This 

finding suggests that an optimal number of training 

iterations can enhance the model's performance. However, 

it is important to note that excessive training iterations 

may lead to over-fitting, which can compromise the 

model's generalization ability. Figure 10(b) shows the 

effect of the model training times and the neurons in the 

feed forward layer on the model recall. The model 

training times has basically no effect on the model recall. 

When the training times is the same, the more the number 

of FLNs, the higher the model recall. When the FLNs is 

16, the highest model recall is about 91.5%. When the 

FLNs is 32, the highest model recall is around 93.2%. 

This indicates that increasing the number of feed-forward 

neurons has a positive impact on the recall rate of the 

model, but may lead to a decrease in the accuracy of the 

model. The number of neurons in the feed-forward layer 

can improve the feature extraction ability of the model, 

allowing it to learn more complex feature representations. 

The number of neurons in the feed-forward layer 

increases the complexity of the model, making it easier to 

fit to the training data. Increasing the complexity of the 

model can improve its performance on the training set, 

but can also lead to over-fitting. Regularization 

techniques such as dropout can effectively prevent over-

fitting and improve the generalization ability of the model. 

In the last section of the study, performance of several 

NSS algorithms at various TSs are compared. Table 4 

presents the findings. In selecting algorithms for 

comparison, this article referred to the research results of 

various scientists. Decision trees, deep NNs, 

convolutional NNs, transformers, and GRUs are currently 

the most widely used and effective models in this field. 

Therefore, these models are chosen as the control models 

for the algorithm in this study. 

In Table 4, IGRU represents the network proposed 

by the research institute, the improved GRU algorithm 

designed by the study is always higher than the other 

algorithms in terms of accuracy, precision and F1 index, 

regardless of the TS. Moreover. When the TS is 5, the 

accuracy of the improved GRU algorithm can reach 

93.458%, the precision can reach 91.892% and the F1 

value can reach 91.892%. At a TS of 15, the accuracy of 

the improved GRU algorithm can reach 93.512, the 
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Table 4: Comparison of performance of NSSP algorithm under different TSs 

Index Decision tree 
Deep neural 

network 

Convolutionalne

ural network 
Transformer IGRU GRU 

5 

Accuracy (%) 88.574*** 93.248* 93.216* 93.268* 93.458 92.658** 

Precision (%) 89.195*** 90.748* 90.769* 90.586* 91.892 90.867** 

F1 (%) 88.748*** 91.747* 91.734* 91.766* 91.892 90.658** 

15 

Accuracy (%) 88.168*** 93.189* 93.265* 93.364* 93.512 92.684** 

Precision (%) 88.857*** 90.066* 90.636* 90.748* 91.016 90.052** 

F1 (%) 88.467*** 91.621* 91.693* 91.923* 92.068 90.596** 

Note: Compared to IGRU: *P<0.05. **P<0.01. ***P<0.001 

 

precision can reach 91.016% and the F1 value can reach 

92.068%. The performance of decision tree models is 

always lower than that of research design models at 

different TSs, which is significant at the 0.1% level. 

Deep NNs, convolutional NNs, and transformers are also 

always lower than research design models, and are 

significant at the 5% level. The performance of the GRU 

models is also significantly lower than that of the 

research design models, and is significant at the 1% 

level. The research design method outperforms other 

models in terms of accuracy, precision, and F1 value, and 

is significantly superior to other methods. The NSSP 

method designed by the study can accurately predict the 

NSS changes. 

5 Discussion 
The MHAM-GRU NSSP model proposed in the study 

significantly outperformed the existing best methods in 

terms of performance. The MHAM-GRU model 

achieved an accuracy of about 93.5% on the UNSW-

NB15 dataset, which was significantly higher than other 

methods such as traditional GRU and LSTM networks. 

For example, the accuracy of the standard GRU model 

was about 92.658%, while the accuracy of the LSTM 

network was about 93.00%. The reason why the MHAM-

GRU model could achieve better performance was 

attributed to the integration of MHAMs, which allowed 

the model to simultaneously focus on different parts of 

the input data and weigh their importance in different 

ways. 

The MHAM-GRU model increased the depth and 

complexity of the model by introducing the encoder part 

of the Transformer architecture. However, this increased 

complexity brought better feature extraction capabilities 

and training effectiveness. Residual connections and 

layer normalization in the Transformer architecture could 

effectively prevent gradient vanishing problems and 

improve the training performance of the model. In 

addition, the introduction of positional encoding allowed 

the model to better handle the positional information of 

sequence data, further improving the performance of the 

model. 

 

6 Conclusion 
In order to improve network information security and 

enhance the network's defense against attack behavior, it 

is proposed to use MHSAM to improve the GRU 

network. The model is based on GRU network, with 

Transformer as the framework, and combined with 

MHSAM. Furthermore, the model adopts Dropout and 

full connectivity to predict the NSS. The results indicated 

that when a bidirectional training method was used to 

train the model constructed for research, the model 

accuracy could be maintained at 93.7%. The highest 

accuracy of the model remained unchanged when a 

bidirectional training approach was used. When the 

training times was fixed and the neurons in the feed 

forward layer was less than 28, the model test accuracy 

increased with the increase in the neurons in the feed 

forward layer, up to about 93%. When the TS is 15, the 

proposed method achieved an accuracy of 93.512%, a 

precision of 91.016%, and an F1 value of 92.068% in 

NSSP. The study's NSSP approach could successfully 

increase the accuracy of predicting the NSS, thereby 

improving the network's resistance to various types of 

attacks. Although this study has achieved significant 

results in predicting the NSS, there are still some 

limitations. The model exhibits over-fitting during the 

training process, especially when the number of training 

iterations or feed-forward neurons is increased, which 

may lead to a decrease in model performance. In the 

future, research will use a regularization term added to 

the loss function to penalize the weights of the model and 

prevent excessive weight values, thereby reducing the 

complexity of the model. This will alleviate the problem 

of over-fitting. 
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