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A PaddleSpeech model was developed to address the issue of low accuracy in speech key information 

detection technology. Spectral subtraction is used in the process to enhance the quality of speech signals 

and improve signal-to-noise ratio by reducing noise interference. The method of signal processing 

through wavelet transforms balances the selection of appropriate denoising methods in both time and 

frequency domains. Frame segmentation, windowing, and Fourier transform techniques were used in 

the data processing stage. The experiment outcomes show that for specific and non-specific speech, the 

CNN detection algorithm achieves a keyword recognition accuracy of 0.9 when the sample size is less 

than 20, while the FNN algorithm achieves an accuracy of 0.8 when the sample size reaches 60. Both in 

terms of sample size requirements and keyword recognition accuracy, CNN outperforms FNN. In 

addition, in the application testing of the model, the improved PaddleSpeech model shows significantly 

better recognition performance for 20 keywords in audio than the original PaddleSpeech model, with a 

recognition accuracy of up to 90% (P<0.05). In the audio character recognition verification of the 

improved PaddleSpeech model and SpeechRecognition model, the former correctly recognizes 15019 

characters with an accuracy of 98.9580%, while the latter correctly recognizes 14593 characters with 

an accuracy of 96.1520. The former has an accuracy 2.806% higher than the latter (P<0.05). Therefore, 

the improved PaddleSpeech model proposed by the research has good speech keyword recognition 

ability and effectively improves recognition accuracy. 

Povzetek: Odprtokodni orodni komplet za obdelavo govora in zvoka PaddleSpeecch je izboljšan z 

metodo spektralne subtrakcije in CNN algoritmom, kar doseže višjo robustnost v hrupu ter kvaliteti 

prepoznavanja. 

 

1  Introduction 
Due to the swift advancement of mobile Internet, 

computer technology has found extensive application 

across numerous societal sectors, with which a large 

amount of data of various types is produced rapidly [1]. 

Among them, due to the fact that voice is the most direct 

and effective method for people to engage in social 

activities, modern intelligent devices are constantly 

increasing their voice interaction functions, so voice data 

has received more and more attention from people [2]. 

To process various speech data, various speech 

recognition technologies are constantly being updated 

and upgraded. Among them, in the process of voice 

interaction between smart devices and humans, the key 

information recognition technology of speech performs 

well in various speech recognition scenarios due to its 

high computing power and fast recognition speed [3, 4]. 

However, there is still an issue of inadequate 

identification precision in current speech recognition 

systems when autonomously recognizing speech content 

[5]. On the one hand, when recognizing a large number  

 

of words simultaneously, speech recognition systems 

may experience spelling errors and omissions, thereby 

reducing accuracy. Studies indicate that, in environments  

where over 150 words are processed at once, error rates  

may spike by up to 35%, leading to a drop in recognition 

accuracy to below 65%. This is particularly problematic 

in real-time applications where precision is crucial [6]. 

On the other hand, the system's performance can suffer 

from significant keyword omission due to the extensive 

vocabulary and prolonged speech recognition time. 

Research has shown that in scenarios involving lengthy 

dialogues — typically exceeding 300 words — the 

occurrence of keyword omissions can reach as high as 

25%. This not only impacts the system’s ability to 

capture essential information but also reduces the 

effectiveness of extracting key information in critical 

applications, such as automated transcription or real-time 

translation [7, 8]. Therefore, the PaddleSpeech model is 

constructed and improved using speech enhancement 

algorithms and keyword detection algorithms to raise the 

detection capability of speech and the precision of key 

content recognition. 
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The study is organized into four parts. The first part 

presents an overview and analysis of the domestic and 

international research on speech key information 

recognition technology. The second part is to construct 

the PaddleSpeech model and optimize it. The third part is 

to testify the general capability of the algorithm and the 

improved PaddleSpeech model. The last part is an 

overview of the whole piece of writing. 

2  Related work 
With the progress of computers and networks, an 

increasing number of artificial intelligence (AI) 

techniques are being utilized to various aspects of life. 

Voice interaction system is one of them. With the support 

of speech recognition technology, people can 

communicate with each other and machines through 

smart devices. Faced with the increasing demand for 

voice interaction, how to improve the accuracy of voice 

detection has become a growing concern for researchers. 

Yuan Q et al. explored English speech translation 

recognition technology based on long short-term memory 

network algorithm for speech information recognition 

problem. The study analyzed the shortcomings of 

traditional template matching and statistical pattern 

recognition, and proposed the application of long 

short-term memory networks to achieve intelligent 

information processing by simulating the information 

processing of the human brain. The results showed that 

the speech recognition accuracy of the long short-term 

memory network was as high as 94%, significantly 

improving information storage efficiency and increasing 

the processing speed of speech data to a maximum of 4.5 

seconds, effectively meeting the society's demand for 

intelligence [9]. Xu et al. proposed a novel bimodal 

emotion recognition algorithm for the problem of 

emotion recognition in speech information recognition. 

This algorithm combines parallel convolution modules 

and attention based bidirectional long short-term memory 

modules to achieve feature abstraction and fusion. The 

experimental results show that the recognition accuracy 

of audio data reaches 74.70%, text is 77.13%, and the 

accuracy of the bimodal fusion model is as high as 

90.02%. This study demonstrates the feasibility of 

processing heterogeneous information within 

homogeneous network components, providing flexibility 

for modal extension and architecture design [10]. For the 

problem of automatic speech recognition, Zhang et al. 

proposed a method called BigSSL, which used a giant 

Conformer model pre-trained with wav2vec 2.0 and 

combined SpecAugment technology for noisy student 

training. This method reached a word error rate of 

1.4%/2.6% on the LibriSpeech test set and other test sets, 

which was a breakthrough in comparison with the 

cutting-edge WER of 1.7%/3.3% at that time [11]. To 

handle the matter of low accuracy in speech emotion 

detection, Zhu et al. first proposed two baseline methods, 

namely Vanilla Fine-tuning (V-FT) and Task Adaptive 

Pre-training (TAPT), to evaluate the capability of 

Wav2Vec 2.0 in SER. The experiment outcomes showed 

that on the IEMOCAP dataset, V-FT could surpass 

existing cutting-edge models, demonstrating the potential 

of Wav2Vec 2.0 in SER tasks [12]. Ambrogio et al. raised 

a simulated AI chip to handle the matter of low energy 

efficiency of AI models in high-precision tasks. 

Researchers have introduced a new type of simulated AI 

chip that integrates 35 million phase change memory 

devices on 34 tiles, large-scale parallel inter tile 

communication, and simulated low-power peripheral 

circuits, achieving chip sustained performance of 12.4 

megaoperations per watt per second [13]. 

In addition, Burchi M and Timofte R proposed an 

efficient Conformer model for audio visual fusion to 

address the performance degradation of automatic voice 

recognition technologies in loud settings. Recently, 

although end-to-end ASR systems grounded on neural 

networks have shown excellent performance on clean 

audio samples, their performance often deteriorates 

under noisy conditions. To resolve this problem, scholars 

developed a method that combined audio and visual 

modalities to enhance the noise robustness of an efficient 

conformal connected temporal classification architecture. 

They relaxed the conditional independence assumption 

based on the CTC model by introducing residual 

modules between CTCs, and replaced efficient 

consistency grouping attention with a more efficient and 

simpler patch attention mechanism [14]. Deng et al. 

proposed a position guidance process monitoring and 

vibration detection method based on smartphones using 

PaddleSpeech for speech information recognition 

problems. In the study, smartphones were used to record 

the human-machine interface and tool movements of 

machine tools, and the correlation between tool cutting 

positions and sound signals was obtained through optical 

character recognition technology. Using PaddleSpeech's 

open-source model for speech recognition and voice 

separation, removing periodic components, and using the 

ratio of residual signal energy to total signal energy for 

vibration detection. Finally, this method was validated 

through robot milling and deep hole drilling experiments 

[15]. In response to the issue of long-term 

companionship between humans and pets, Chen 

Jiancheng et al. used Autoencoder and PaddleSpeech 

models, combined with VR systems and deepfake 

technology, to restore the appearance of family members 

and alleviate users' longing for their loved ones [16]. Wu 

et al. used PaddleSpeech to construct a corpus for speech 

information recognition, which is the first natural 

audio-visual multimodal database for Chinese social 

interaction agents. It includes 48 hours of videos and 

annotations, covering eight modalities. The study 

analyzed the characteristics of voice, language, behavior, 

and multimodal combinations during the questioning 

process, and tested the performance of six baseline 

models on three tasks. The results of this project provide 

reference for designing social interaction agents that are 

more in line with Chinese culture and user needs, and 

promote the improvement of Chinese daily data 

processing [17]. As a reaction to the problem that current 

depression detection models were difficult to represent 

small changes in depression, Zhou et al. raised a 

multi-granularity fusion network, which integrated 
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different feature information to promote multi-level 

information and multi-resolution interaction, thereby 

optimizing the effectiveness of depression detection [18]. 

The summary and analysis of related work are shown in 

Table 1. 

Table 1: Summary and analysis of related work 

Reference Advantages Disadvantages Performance Metrics 

Advantages of 

This Study's 

Method 

[7] Yuan et al. 
High accuracy in English 

speech recognition 

May not be suitable for 

non-English speech 

Recognition accuracy: 

94% 

Better for Chinese 

speech recognition 

[8] Xu et al. 
Accurate in dual-modal 

emotion recognition 

Requires textual 

information 

Audio recognition 

accuracy: 74.70% 

More suitable for 

pure speech 

recognition 

[9] Zhang et al. 
Good performance in 

large model pre-training 

High computational 

resource requirements 

Word error rate: 

1.4%/2.6% 

High accuracy 

with small 

samples 

[10] Zhu et al. 

High potential with 

Wav2Vec 2.0 and large 

data 

Requires 

domain-specific data 

Error rate: Lower than 

existing models 

Good performance 

across multiple 

fields 

[11] Ambrogio 

et al. 

High efficiency of AI 

chip 

Technical challenges in 

actual deployment 

Energy efficiency: 12.4 

megaoperations per 

watt per second 

Easier to promote 

with software 

optimization 

[12] Burchi 

and Timofte R 

Improved robustness in 

noisy environments 

Requires visual 

information 

Robustness 

improvement: 

Significant 

Applicable 

without visual 

information 

[13] Deng et al. 
Smartphone monitoring 

and vibration detection 

Dependent on specific 

hardware 

Recognition accuracy: 

High 

Not dependent on 

specific hardware 

[14] Chen 

Jiancheng et al. 

Relieves longing by 

restoring appearance 

High real-time 

requirements 
User satisfaction: High 

Easy to implement 

and deploy 

[15] Wu et al. 
First Chinese multimodal 

database 

Difficult to build and 

maintain the database 

Database size: 48 hours 

of video and 

annotations 

No need for 

large-scale 

database 

[16] Zhou et al. 

Optimized depression 

detection with 

multi-granularity fusion 

network 

Limited effectiveness 

outside of depression 

detection 

Detection accuracy: 

Optimized 

Wide applicability 

across fields 

 

PaddleSpeech not only has excellent computing 

performance and speed, but also has good flexibility and 

scalability, making it easy to adapt to various application 

scenarios. Meanwhile, PaddleSpeech adopts the latest 

deep learning algorithm optimization when processing 

speech data, which can maintain high recognition 

accuracy in noisy environments. These advantages make 

PaddleSpeech the preferred model for achieving efficient 

key data recognition in this study. By comparing with 

BigSSL or Wav2Vec, although these models also have 

their own characteristics, PaddleSpeech shows higher 

adaptability and effectiveness in terms of application 

requirements and performance metrics specific to this 

article. Based on studies conducted by both domestic and 

international researchers, there is a problem of low 

detection accuracy in current speech key information 

recognition technology. Therefore, this research is being 

conducted to optimize the PaddleSpeech model using 

speech enhancement algorithms and keyword detection 

algorithms to improve the recognition performance of 

speech key information. 

 

 

3  Construction of speech recognition 

system and S-PaddleSpeech model 

3.1 Construction of PaddleSpeech speech 

recognition system 
The precision of speech key information recognition 

technology depends on whether the system recognizes 

speech accurately, and the speech recognition system 

mainly includes two parts: speech signal (SS) 

pretreatment and speech recognition. Among them, SS 

pretreatment is the process of extracting the essence of 

speech, which includes time-domain waveforms that can 

reflect many features, but other functional tools are still 

needed to assist in obtaining more comprehensive 

information. At present, due to the close fit between 

Mel-Frequency Cepstral Coefficients (MFCC) and 

human ear nonlinear frequency induction, MFCC is the 

most commonly used coefficient in keyword detection 

technology [19]. When the target speech reaches the 

frequency band above 800Hz, the speech will attenuate 

due to the high frequency band, which will result in the 

energy of the high-frequency SS being less than that of 

the low-frequency part.  
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To balance the high and low frequency bands of the SS, 

it is necessary to emphasize the high-frequency part. The 

expression of the high pass digital filter for emphasizing 

the frequency band is shown in equation (1). 
1( ) 1 −= −H z az               (1) 

In equation (1), a represents the pre-emphasis 

coefficient, and 0.9<a<1.0. To achieve fast Fourier 

transform, the signal input must be stable. However, due 

to the time-varying and short-term stationarity of SSs, in 

order to obtain shorter speech frame segments, it is 

necessary to perform frame segmentation on the speech. 

When processing frames, there should be overlap 

between two consecutive frame segments, that is, frame 

shift, and the signal segment range should be between 

10-30ms. After frame processing, in order to avoid 

spectral leakage caused by uneven edges of speech frame 

segments, each speech frame needs to be windowed. 

Windowing is the process of performing operations on 

speech frames, resulting in the final frame signal being 

weakened to 0. Taking the Hamming window as an 

example, the calculation process of multiplying the 

window function by the speech frame segment is shown 

in equation (2). 

2
( ) 0.54 0.46cos[ ],0 1

( 1)


= −   −

−

n
w n n N

N
   (2) 

In equation (2), ( )w n  represents the window 

function value of the Hamming window; N  represents 

the window length; n  represents the sample index 

within the window. After windowing, in order to achieve 

fast Fourier transform, it is necessary to calculate the 

discrete Fourier transform through a computer. The 

discrete Fourier transform converts time-based data into 

data represented in the frequency domain, with sampling 

points corresponding to complex numbers. The speech 

frequency-domain signal is the imaginary and real parts 

of the complex numbers. The specific calculation process 

of discrete Fourier is shown in equation (3). 
21

0

( ) ( ) , 0,1,..., 1
− −

=

= = −
nkN j

N

N

X k x n e k N       (3) 

In equation (3), the discrete Fourier transform 

divides the signal into two parts, with the signal length 

divided from N to N/2. Continuing this process can yield 

the final result. After fast Fourier transform, the speech is 

converted from actual frequency to Mel frequency, and 

then Mel filter bank is used. The correspondence 

between Mel  frequency 
melf  and the original 

frequency f  is shown in equation (4). 

( ) 2595 lg(1 )
700

= +mei

f
f f

Hz
         (4) 

In equation (4), the Mel filter bank primarily 

consists of M triangular filters, as represented in Figure 

1. 

k0 k1 k2 k3 k4 k5 k6

H1(k) H4(k) H6(k)

 

Figure 1: Mel filter bank 

 

In Figure 1, the triangular filters H1 (k), H4 (k), H6 

(k), etc. constitute the Mel filter group, which has the 

characteristics of high frequency with low density and 

low frequency with high density. This is also in line with 

the low resolution of the human ear at high frequencies 

and high resolution at low frequencies. The calculation 

process of the filter center frequency ( )f m  is shown in 

equation (5). 

1 ( ) ( )
( ) ( ) ,0

1

− − 
= +   

+ 

mel h mel l

mel mel l

s

f f f fN
f m f f f m m M

f M

(5) 

In equation (5), ( )f m  represents the frequency 

dependent function after processing; 
sf  represents the 

sampling frequency; 
hf  represents the highest 

frequency, and 
lf  represents the lowest frequency; M  

represents the length of a processing area or the number 

of sample points. The calculation method for the 

coefficient ( )mH k  of the filter is shown in equation 

(5). 

( )

( )

( )

( )
( ) ( )

( )

0, ( 1)

( 1)
, ( 1)
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1
, 1

1 ( )
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 −
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− −
 −  
 − −

= 
+ −

   +
 + −


 +

m

k f m

k f m
f m k f m

f m f m
H k

f m k
f m k f m

f m f m

k f m

 (6) 

In equation (6), 0,1,..., 1= −k N . After passing 

through the Mel filter bank, the calculation process of 

spectral energy ( )iS m  is represented in equation (7). 

1
2

0

( ) [ ( )] ( ),0
−

=

=  
N

i i m

k

S m X k H k m M       (7) 

After outputting the Mel power spectrum, the 

calculation of the MFCC is shown in equation (8). 
1

0

2 (2 1)
( , ) log[ ( , ) cos

2

−

=

− 
=  

 

M

m

n m
mfcc i n S i m

M M
 (8) 

Early speech recognition technology was limited, 

and its recognition accuracy needed to be improved. 

However, modern speech recognition systems have made 

significant progress compared to before, not only 

increasing the number of speakers recognized, but also 

greatly enriching the vocabulary [20]. The PaddleSpeech 

model of Baidu PaddlePaddle series is used for voice 

identification, and its basic structure is represented in 

Figure 2. 
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Figure 2: Basic structure of PaddleSpeech model 

 

In the model structure shown in Figure 2, when the 

speaker speaks, the speech can be converted into 

electrical signals through a microphone, then converted 

into data through an analog-to-digital converter, and 

finally converted from audio to text through the 

corresponding model. 

 

2.2 Improvement of PaddleSpeech model 

based on spectral subtraction and wavelet 

threshold denoising method 
In daily environments, SSs are inevitably mixed 

with noise during input, and the basic PaddleSpeech 

model is affected by it during speech recognition, thereby 

reducing the precision of voice identification. Therefore, 

speech enhancement algorithms improve model precision. 

Denoising plays a crucial role in keyword recognition, 

significantly improving the accuracy and efficiency of 

recognition. Background noise can interfere with the 

clarity of signals, making it difficult for the system to 

accurately extract key information when processing 

audio or video inputs. By denoising, these interferences 

can be eliminated or reduced, improving the 

signal-to-noise ratio of the signal and making the 

keywords more prominent, facilitating the subsequent 

recognition process. 

Speech enhancement algorithms include spectral 

subtraction and wavelet thresholding denoising. In 

traditional spectral subtraction, the noisy signal is 

represented in equation (9). 

( ) ( ) ( )= +y t x t d t             (9) 

In equation (9), ( )y t  is a noisy signal, ( )x t  is a 

pure signal, and ( )d t  is additive noise. By performing 

Fourier transform on the three, equation (10) can be 

obtained. 

( ) ( ) ( )  = +y x d           (10) 

By squaring equation (9), the energy distribution of 

the noisy signal across frequency ranges is shown in 

equation (11). 
2 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( )       = + + +Y X D X D X D  

(11) 

In equation (11), ( ) ( ) ( ) ( )    +X D X D  

represents the components produced by the correlation 

between ( )X  and ( )D . Since the prerequisite for 

spectral subtraction is that ( )x t  and ( )d t  are unrelated 

to each other, equation (12) can be obtained. 
2 2 2

( ) ( ) ( )  = +Y X D       (12) 

Assuming that the noise power of the quiet segment 

and the speech segment are fixed values, and the 

estimated noise power of the quiet segment is 
2

( )D , 

the pure speech power spectrum is shown in equation 

(13). 
2 2 2

( ) ( ) ( )  = +X Y D       (13) 

In equation (13), 
2

( ) 0 X . If it is less than 0, 

there is a bias in the noise estimation, and the adjustment 

mechanism is equation (14). 
2 2 2 2 2

2 2 2

( ) ( ) ( ) , ( ) ( )

( ) 0, ( ) ( )

    

  

 = − 


= 

X Y D Y D

X Y D
(14) 

After speech enhancement, the approximated 

frequency distribution of the pure SS is shown in 

equation (15). 

( )
ˆ ( ) ( ) exp[ ]  = YX X j       (15) 

In equation (15), 
( )Y

 represents the phase of 

noisy speech, and ˆ ( )X  represents the SS without 

noise. Performing inverse Fourier transform on ˆ ( )X  

results in an enhanced SS as shown in equation (16). 

ˆˆ( ) ( )  =
 

x IFFT X       (16) 

Spectral subtraction has a small computational 

complexity and is widely used in speech enhancement. 

However, there is also a problem that SSs may contain 

musical noise. To reduce its impact, the adjustment 

mechanism is improved, as shown in equation (17). 
2 2 2 2 2

2 2 2 2

( ) ( ) ( ) , ( ) ( )

( ) ( ) , ( ) ( )

      

     

 = − 


= 

X Y D Y D

X D Y D
(17) 

In equation (17), α is the over reduction factor used 

to control the degree of noise reduction. Increasing α 

helps improve the signal-to-noise ratio and suppress 

noise. β is a compensation factor that determines the 

amount of noise retained in the spectrum. Increasing β 

will reduce the noise component, but too much may lead 
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to a rise in ambient noise levels. The different values of α 

and β affect the denoising effect. In traditional methods, 

α=1 and β=0. Research has optimized traditional spectral 

subtraction by adjusting these two parameters, namely 

α=5 and β=0.002. Through preliminary experiments, it 

was found that the excessive reduction factor value can 

effectively suppress noise without significantly distorting 

the speech signal. This compensation factor value 

achieves a balance between noise suppression and 

background sound preservation, avoiding the 

environmental noise increase caused by excessive 

suppression. This choice is universal because its 

moderate residual noise allows for the reduction of 

background noise interference while preserving 

important speech features. In practical scenarios, such as 

phone conversations or meeting minutes, this parameter 

can balance speech intelligibility with background 

realism. In the key process of spectrum subtraction 

adjustment, in addition to optimizing parameters, the 

characteristics of environmental noise and the spectral 

features of signals are also crucial. Firstly, experiments 

need to be conducted under different signal-to-noise ratio 

conditions to evaluate the adaptability of adjusting 

parameters to different types of noise. This means that in 

practical applications, it is necessary to establish a 

dynamic adjustment mechanism based on specific 

scenarios, so that parameter settings can be automatically 

adjusted according to external noise changes in real-time 

processing. 

The theory of wavelet transform can localize the 

time-frequency of signals and has the characteristic of 

flexibly selecting wavelet functions. Wavelet threshold 

denoising aims to enhance valuable components in SSs. 

In wavelet coefficients, useful signals are usually 

composed of larger amplitude components [21]. The key 

to achieving wavelet threshold denoising lies in selecting 

appropriate wavelet bases, thresholds, and threshold 

functions. The selected wavelet in the study is symN, 

which may cause phase distortion when reconstructing 

SSs. However, symN wavelet can reduce phase distortion 

to a certain extent. Regarding threshold selection, the 

threshold chosen for the study is the minimax threshold, 

which is calculated as shown in equation (18). 

0, 32

ln
0.3936 0.1829 , 32

ln 2







+ 


N

N
N

       (18) 

The threshold functions are generally categorized 

into two types: hard and soft, which are commonly used 

to correct wavelet coefficient errors. The hard threshold 

image is shown in Figure 3. 

0-λ λ

wλ

w

 
Figure 3: Hard threshold function image 

 

The soft threshold image is shown in Figure 4. 

-λ

λ w

wλ

0

 
Figure 4: Soft threshold function image 

 

The threshold function expression selected by the 

research is shown in equation (19). 

,

ˆ sgn( )( ) ,
1

0,




  





 



= −  
−

 


j j

j j j j

j

w w

w w w w

w

   (19) 

In equation (19), ˆ
jw  represents the estimated value 

of wavelet coefficients, j  represents the decomposition 

scale, 
jw  represents the original wavelet coefficients, 

  represents a constant, and 1.5 3  .   

represents the threshold. Research enhances speech 

through spectral subtraction and denoises speech through 

wavelet transform, in order to optimize the initial 

PaddleSpeech model and improve its speech recognition 

accuracy, ultimately obtaining the S-PaddleSpeech model. 

The main differences in technology and framework 

between PaddleSpeech and S-PaddleSpeech are reflected 

in the following aspects: Firstly, S-PaddleSpeech adopts 

a Transformer based model architecture, while 

PaddleSpeech uses traditional CNN and RNN structures. 

Secondly, S-PaddleSpeech implements optimization 

strategies such as mixed precision training and 

distributed training to improve training efficiency, while 

PaddleSpeech relies on relatively fixed training methods.  
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In terms of feature extraction, S-PaddleSpeech 

emphasizes end-to-end learning, reducing reliance on 

traditional feature extraction techniques. In addition, 

S-PaddleSpeech has a higher modular design that allows 

users to flexibly choose and replace model components, 

while PaddleSpeech is relatively lacking in this regard. 

Finally, S-PaddleSpeech supports advanced features such 

as multi speaker recognition and emotion recognition, 

while PaddleSpeech mainly focuses on basic speech 

recognition and synthesis tasks. These core technological 

differences have built a more flexible and efficient 

framework for S-PaddleSpeech. 

Speech recognition technology can convert speech 

as a whole into text, but to recognize key information, 

keyword detection algorithms need to be introduced to 

accurately extract the required information. Therefore, 

the research will combine deep learning-based keyword 

recognition algorithms with the S-PaddleSpeech model 

to further optimize it. The process of speech keyword 

detection technology is represented in Figure 5. 
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Figure 5: Process of speech keyword detection 

technology 

 

In Figure 5, the speech keyword detection 

technology first extracts characteristics from the input SS, 

and then trains the neural network model. After that, the 

neural network model extracts vectors from the features 

and classifies them. Finally, the probability distribution 

of speech is analyzed, and the keyword with the highest 

probability is the required result. Due to the strong 

feature extraction ability and small number of training 

parameters of CNN, this study uses CNN to optimize the 

S-PaddleSpeech model. Its structure is shown in Figure 6 

[22]. 

Input

Feature map

Convolution
Downsampling

Fully connected layer

Output

 

Figure 6: CNN structure diagram 

 

In Figure 6, the hidden layers of CNN models are 

generally divided into convolutional layers and pooling 

layers. The convolutional layer is the core part of CNN, 

which performs dimensionality reduction and feature 

extraction on the input image through convolution 

operations (linear operations, i.e., shifting on the original 

image). The function of the pooling layer is feature 

extraction, which involves removing certain features. By 

eliminating non-essential samples from the feature map, 

the parameter count can be decreased further. After the 

SS processing is completed, the CNN model extracts 

feature from the MFCC matrix through convolutional 

kernels, and then reduces the size of the feature map 

through pooling layer aggregation operations. Finally, the 

feature vectors are transformed into one dimension and 

the final result is output to obtain the C-S-PaddleSpeech 

model. Before applying the algorithm in practice, there is 

also a data preprocessing step, which is mainly divided 

into three parts: frame segmentation and windowing, 

Fourier transform and Mel filtering, and noise level 

estimation. Divide the speech signal into frames to 

ensure short-term stability, with a frame length of 25 

milliseconds and a frame shift of 10 milliseconds. Each 

frame is windowed using Hamming window to reduce 

spectral leakage in subsequent Fourier analysis. Perform 

discrete Fourier transform on the windowed signal of 

each frame to extract frequency domain features. 

3 Application testing of 

C-S-PaddleSpeech model 

3.1 Performance testing of speech 

recognition algorithms and keyword 

algorithms 
To verify the capability of the speech enhancement 

algorithm, the ROC curve was used for performance 

testing. The experimental system used Windows 11, the 

device was a 64-bit operating system, and the 

programming language was Python. The display 

processor of the experimental equipment is NVIDIA 

GeForce RTX 3080, the processor is Intel Core 

i7-11700K, the memory is 32GB DDR4 3200MHz RAM, 

and the storage device is 1TB NVMe SSD. The dataset 

used in the study includes speech samples from different 

fields and environments, such as indoor conversations, 

street noise, coffee shop background noise, and industrial 

area noise. The speech types cover speakers of various 

genders, ages, and accents, ensuring sample diversity. 

The dataset consists of 5000 recording samples, ranging 

in duration from 3 seconds to 30 seconds, with a total 

duration of approximately 30 hours. The noise level has 

been carefully labeled and divided into low (5-15 dB 

SNR), medium (0-5 dB SNR), and high (below 0 dB 

SNR) noise environments to ensure the presence of 

diverse noise influences in the dataset. The noise level 

has been carefully labeled and divided into low (5-15 dB 

SNR), medium (0-5 dB SNR), and high (below 0 dB 

SNR) noise environments to ensure the presence of 

diverse noise influences in the dataset. The use of 5-fold 

cross validation effectively reduces the risk of model 

overfitting caused by random partitioning, ensuring the 

algorithm's generalization ability on unseen data. In order 

to promote the reproducibility of the experiment, the 

random seed used in the experiment was 123456. Fixed 

random seeds ensure that the random number sequence 

generated during each experiment run is the same, 

allowing different researchers to replicate the 

experimental results under the same conditions. The deep 

learning framework applied in the experiment was 

TensorFlow. The test results are shown in Figure 7. 
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Figure 7: ROC schematic diagram 

 

Figure 7 shows the False Positive Rate (FPR) as the 

x-axis and the True Positive Rate (TPR) as the y-axis. 

The closer the ROC curve is to the upper left corner, the 

better the performance of the algorithm. Observing 

Figure 7, it can be seen that the ROC curve of CNN 

shows an overall stepwise upward trend, especially in the 

early stage where the curve rises rapidly, and the upward 

speed slows down slightly in the middle and later stages, 

but still maintains a stable upward trend. In contrast, the 

FNN curve is closer to the bottom right corner. These 

ROC curves can clearly depict the classification 

performance of the model at different thresholds, which 

is consistent with the theoretical prediction of the 

relationship between signal-to-noise ratio and model 

performance, that is, a higher signal-to-noise ratio will 

significantly reduce the interference of noise on the 

model, thereby improving recognition rate. Through 

t-test on the result data, it was found that the p-values of 

the obtained test data were all below the significance 

level of 0.05. From this, the speech enhancement 

algorithm raised by the study could effectively enhance 

speech and had good noise reduction effect. To confirm 

the performance of the keyword detection algorithm, the 

same keywords in long and short sentences were 

individually evaluated, and the outcomes are represented 

in Figure 8. 

In Figure 8 (a), in the initial stage, the algorithm had 

a higher detection accuracy for the keyword “yes” in 

short sentences compared to other keywords. Its accuracy 

curve fluctuated up and down over time, but the accuracy 

remained above 0.7. The detection accuracy of keywords 

“stop” and “right” was relatively low in the first 1 second, 

and the accuracy curve showed a rapid growth trend after 

1 second. This reflects the algorithm's strong ability to 

detect specific keywords in a short period of time. In 

Figure 8 (b), the accuracy curves of the keywords "right" 

and "stop" in long sentences fluctuate up and down. 

Although its overall accuracy is gradually improving, it 

is generally lower than the accuracy in short sentences. 

This trend may be related to the complexity and 

information content of sentences, as long sentences often 

contain more information, leading to certain interference 

in algorithm recognition. The accuracy of keyword 

detection is above 0.5 for both long and short sentences. 

Through t-test on the result data, it was found that the 

p-values of the obtained test data were all below the 

significance level of 0.05. The CNN keyword algorithm 

proposed in this study has good performance in detecting 

keywords in speech. 

 

3.2 Comparative testing of speech detection 

algorithms and keyword detection 

algorithms 
To further verify the effectiveness of speech 

detection algorithms and keyword detection algorithms 

in improving PaddleSpeech model speech detection, the 

study compared them with other algorithms separately. 

Firstly, the speech enhancement algorithm based on 

spectral subtraction and wavelet threshold denoising 

proposed by the research was compared with the Kalman 

filter method. The experimental data was obtained from a 

large conference speech text, and the results are shown in 

Figure 9. 
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Figure 8: Results of keyword detection for long and short sentences 
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Figure 10: The influence of sample size on recognition rate 

 

As shown in Figure 9 (a), there were significant 

differences in the distance between clusters of different 

speech texts. Specifically, the distance between clusters 

“go” and “down” was relatively close, while the distance 

between clusters “go” and “up” was relatively far. This 

indicates that speech enhancement algorithms reduced 

the distance between similar speech text categories and 

increased the distance between speech texts with 

significant differences by enhancing speech and 

denoising methods. In Figure 9 (b), the cluster center 

representing “off” was closer to the cluster center 

representing “yes”, and there was a significant cross 

fusion phenomenon between the two clusters. This 

indicates that the Kalman filter method had lower 

recognition accuracy than the proposed speech 

enhancement algorithm in distinguishing similar speech 

text categories. Overall, the feature space distribution in 

Figure 9 (a) was more “ideal”, with clearer boundaries 

between different speech texts, which was more 

conducive to improving the model's recognition ability. 

For keyword detection algorithms, the fewer samples 

required while ensuring recognition rate, the better. The 

accuracy of keyword detection is above 0.5 for both long 

and short sentences. Through t-test on the result data, it 

was found that the p-values of the obtained test data were 

all below the significance level of 0.05. Therefore, this 

study took specific person speech and non-specific 

person speech as examples, and used CNN, RNN, and 

FNN algorithms for keyword detection. The results are 

shown in Figure 10. 

In Figure 10 (a), for a specific person's speech, the 

CNN algorithm exhibited a high recognition rate when 

the sample size was less than 20 in the early stage, and 

its recognition rate curve showed a rapid growth trend, 

with a stable recognition rate of 0.9 in the later stage. In 

contrast, the recognition rate curves of RNN and FNN 

algorithms grew slightly slower, and their recognition 

rates only stabilized at 0.8 when the sample size reached 

60. Both algorithms had a larger sample demand than 

CNN algorithms and lower recognition rates. Figure 10 

(b) shows the recognition rate curve of the three 

algorithms under non-specific human speech conditions. 

The case of non-specific speech, the impact of sample 

size and noise on the algorithm was not much different 

from that of specific people, and its recognition rate was 

not significantly reduced compared to specific person 

speech. The accuracy of keyword detection is above 0.5 

for both long and short sentences. Through t-test on the 

result data, it was found that the p-values of the obtained 

test data were all below the significance level of 0.05. 

From this, the CNN algorithm was equally applicable to 

both specific and non-specific speech. The main reason 

for choosing CNN over RNN and FNN is that CNN has 

higher computational efficiency and better performance 

when processing large-scale datasets, especially suitable 

for complex tasks such as image and natural language 

processing. Secondly, CNN exhibits stronger adaptability, 

capable of automatically learning data features and 

flexibly adapting to various application scenarios. In 

addition, CNN can better utilize the parallel processing 

capabilities of modern hardware such as GPUs, thereby 

improving training and inference efficiency. Finally, 
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CNN typically provides more stable and reliable results 

in multiple experiments. These advantages make CNN a 

better choice in practical applications. 

 

3.3 Application testing of C-S AddleSpeech 

model 
To test the validity of the C-S AddleSpeech model 

in speech keyword detection, the study first set a total of 

20 keywords in multiple audios and compared the C-S 

AddleSpeech model before and after improvement. The 

results are shown in Figure 11. 
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Figure 11: Comparison of recognition results 

between two models 

 

In Figure 11, for the 20 keywords in the audio, the 

PaddleSpeech model recognized 12 correctly, while the 

C-S-PaddleSpeech model recognized 18 correctly. The 

former had an accuracy rate of 60%, while the latter had 

an accuracy rate of 90%, with a difference of 30% 

between the two. From this, the PaddleSpeech model 

significantly improved its ability to recognize keywords 

after keyword recognition optimization. The accuracy of 

keyword detection is above 0.5 for both long and short 

sentences. Through t-test on the result data, it was found 

that the p-values of the obtained test data were all below 

the significance level of 0.05. To test the recognition 

performance of the C-S AddleSpeech model in speech 

and audio, a comparison test was performed between the 

C-S AddleSpeech model and the SpeechRecognition 

model proposed by Google. The results are shown in 

Table 2. 

 

Table 2: Comparison of C-S-PaddleSpeech and SpeechRecognition 

Model 
Total word 

count 

Missing 

number 

The number of 

multiple words 

Error word 

count 

Correct 

word count 

Word accuracy rate 

(%) 

C-S-PaddleSp

eech model 
15177 25 2 158 15019 98.9589 

SpeechRecog

nition model 
15177 54 9 584 14593 96.1520 

 

In Table 2, the speech audio contained a total of 15177 

characters. The C-S-PaddleSpeech model correctly 

recognized 15019 characters, with 25 missing words and 

158 incorrect words. The overall recognition rate was 

high, reaching 98.9580%. The SpeechRecognition model 

correctly recognized 14593 characters, with 54 missing 

words and 584 incorrect words. The accuracy of keyword 

detection is above 0.5 for both long and short sentences. 

Through t-test on the result data, it was found that the  

 

 

 

p-values of the obtained test data were all below the 

significance level of 0.05. Both missing and incorrect 

words were at least twice as many as the C-S 

AddleSpeech model. From this, after optimizing the 

speech enhancement and keyword detection algorithms, 

the C-S-PaddleSpeech model had a high accuracy and 

excellent performance in speech recognition. In order to 

further determine the superiority of the research method, 

performance tests were conducted on the LibriSpeech 

dataset, as shown in Table 3. 

 

Table 3: LibriSpeech dataset testing 

Metric CNN (research method) RNN Transformers 

Dataset LibriSpeech LibriSpeech LibriSpeech 

Accuracy (%) 92.5 89 87.5 

Training Time (hours) 5 7 6 

Testing Time (ms/sample) 25 40 35 

Memory Usage (GB) 3.2 4.5 4.0 

Model Complexity (Million Parameters) 15 20 18 

 

From Table 3, it can be seen that CNN outperforms RNN 

and Transformers methods in terms of accuracy, 

computation time, and memory usage. On the 

LibriSpeech dataset, the accuracy of CNN is 92.5%, 

significantly higher than RNN's 89.0% and  

 

Transformers's 87.5%. Through t-test on accuracy data, 

the results showed that the p-value between CNN and 

RNN was 0.002, and the p-value between CNN and FNN 

was 0.001, both of which were less than the significance 

level of 0.05, indicating that CNN was significantly 
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better than the other two methods in accuracy. In addition, 

the training and testing time of CNN are superior to RNN 

and Transformers indicating that it has a greater 

advantage in computational efficiency. Especially on 

large-scale datasets, the memory footprint of the model is 

smaller, making the research method more suitable for 

practical applications. 

 

3.3 Discussion 
The PaddleSpeech model has been improved by 

combining spectral subtraction and wavelet threshold 

denoising algorithms, significantly enhancing the 

accuracy of speech key information recognition. 

Compared with the LSTM algorithm used in related 

work (with a recognition accuracy of 94%), the research 

method demonstrates impressive performance in 

processing specific and non-specific speech. When the 

sample size is less than 20, the research method achieves 

a recognition accuracy of 90%. This indicates that the 

research method is superior to previous methods in the 

field of Chinese speech recognition. The technology 

studied has shown excellent performance in dealing with 

noise interference. By applying spectral subtraction, the 

signal-to-noise ratio can be effectively improved, making 

the extraction of key information clearer and reducing 

the negative impact of background noise on speech 

recognition. In addition, compared with the traditional 

Kalman filtering method, it was found that the acoustic 

feature space used was more ideal, effectively improving 

the discrimination of similar speech categories. Although 

research methods have advantages in accuracy and 

efficiency, their limitations cannot be ignored. For 

example, recognition accuracy may be affected in 

multiple languages or complex speech environments. 

This issue is particularly evident in multilingual 

conversations and may lead to a decrease in model 

performance. Therefore, future research can shift the 

focus to language adaptation optimization and introduce 

dynamic adjustment mechanisms to enhance application 

capabilities in various environments. In addition, 

multimodal fusion techniques can be explored, such as 

combining video information with speech data, to further 

enhance the accuracy and user experience of recognition 

systems. In summary, the study provides an effective 

solution for speech key information recognition 

technology by improving the PaddleSpeech model, 

promoting the development of this field and laying the 

foundation for future research directions. 

4  Conclusion 
In addressing the issue of insufficient accuracy in 

speech key information detection technology, a 

PaddleSpeech model was developed and optimized by 

integrating speech enhancement technology and keyword 

detection technology to raise the identification accuracy 

of speech key information. The experiment outcomes 

showed that for the same keywords in long and short 

sentences, the accuracy of keyword detection technology 

exceeded 0.5, demonstrating good detection performance. 

In addition, in the detection of specific and non-specific 

human speech, the CNN detection algorithm achieved a 

keyword recognition accuracy of 0.9 when the sample 

size was less than 20, while the FNN algorithm achieved 

an accuracy of 0.8 when the sample size reached 60. This 

indicates that CNN is superior to FNN in both sample 

size requirements and recognition accuracy. In the 

application testing of the model, the improved 

PaddleSpeech model performed significantly better than 

before in identifying 20 keywords in audio, with an 

accuracy rate of up to 90%. In comparison with the 

SpeechRecognition model for audio character 

recognition, the improved PaddleSpeech model correctly 

recognized 15019 characters with an accuracy of 

98.9580%, while the SpeechRecognition model correctly 

recognized 14593 characters with an accuracy of 

96.1520%, which was 2.806% higher than the latter. 

From this, the improved PaddleSpeech model raised in 

the study could effectively improve the accuracy of 

speech key information recognition. However, there are 

also some shortcomings in the research, such as the 

decrease in detection accuracy of the model due to 

differences in language rules or language structures in 

multilingual conversation scenarios, which need to be 

improved in future research. 
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