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This study proposes a model based on the Elman neural network and improves it using a Genetic 

Algorithm (GA) to increase the accuracy of construction cost estimation and accurately analyze the 

overspending risk. First, an index system containing multiple dimensions such as building features, 

structural features, project positioning, and project environment is constructed to comprehensively 

capture the key factors affecting construction cost and overspending risk. Second, the Elman neural 

network’s structure and operation are thoroughly examined, and the GA optimizes the network’s weights 

and thresholds to improve the model’s predictive power. On the training set, the optimized GA-Elman 

model demonstrates great prediction accuracy, with relative error (RE) percentages between predicted 

and true values typically falling within ±1%. On the test set, the GA-Elman model performs better than 

the original Elman model in both difference and RE, with a Mean Absolute Percentage Error of 2.75%, a 

decrease of 18.4% compared to the Elman model. These results indicate that the GA-Elman model is more 

accurate in cost prediction and more effective in identifying potential overspending risks. This study 

provides a powerful tool for cost control and budget management in the construction industry and a new 

perspective on the application of neural networks in construction economics. 

Povzetek: Razvit je model za ocenjevanje stroškov gradnje in analizo tveganja prekoračitve stroškov, ki 

temelji na Elmanovi nevronski mreži, optimizirani z genetskim algoritmom. Model je močno orodje za 

obvladovanje stroškov in upravljanje proračuna v gradbeništvu. 

 

1 Introduction  
In the construction industry, cost estimation is the core 

link of project management, directly related to the 

project's economic benefits and risk control. Traditional 

cost estimation methods rely on expert experience and 

historical data. Still, such methods are often influenced by 

subjective judgment and are difficult to adapt to the 

rapidly changing market environment and complex and 

changing engineering conditions [1-3]. Traditional cost 

estimation procedures encounter increasing challenges as 

building projects get larger and more complicated. As a 

result, new techniques and methodologies must be 

introduced immediately to increase estimation efficiency 

and accuracy [4, 5]. 

With the advancement of machine learning (ML) and 

artificial intelligence in recent years, neural networks have 

shown to be a valuable tool for tackling challenging 

forecasting issues. Because of their benefits in processing 

sequence data, recurrent neural networks (RNNs) are 

widely applied across various fields, such as natural 

language processing and time series prediction [6-8]. The 

Elman neural network, as a kind of RNN, enhances the 

network's memory ability by introducing the context layer, 

which makes it perform well in dealing with time-

dependent sequence data [9]. 

This study explores the application of neural networks 

in construction cost estimation and overspending risk 

analysis. A new approach to cost estimating is presented,  

 

which involves creating a building cost model based on 

the Elman neural network and using a Genetic Algorithm 

(GA) to optimize it. This approach can increase cost 

estimating accuracy while evaluating potential 

overspending risk analysis and offering construction 

project management scientific decision assistance. 

The main contribution of this study is the proposal of 

a construction cost estimation model based on the Elman 

neural network combined with a GA, specifically: 

Firstly, GA is applied to optimize the Elman neural 

network, utilizing GA to improve the weights and 

thresholds of the neural network, thereby enhancing the 

model's prediction accuracy and generalization ability. As 

a global search optimization tool, GA can avoid the 

problem of falling into local optimal solutions that is 

common in traditional training processes. 

Secondly, by constructing a comprehensive index 

system and integrating it with the Elman neural network, 

a more accurate method for construction cost prediction is 

provided compared to traditional models. Furthermore, 

the model's applicability in complex construction projects 

is effectively improved through further optimization with 

GA. 

Finally, the study focuses on the prediction of 

construction costs and proposes a new method for 

assessing cost overrun risks. Through the model's dynamic 

memory mechanism, it is possible to analyze the impact 

of historical data on future costs, identify potential risk 
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factors in advance, and provide decision support for 

project management. 

2 Related work 
In the construction industry, the accuracy of cost 

prediction is critical for the project's success. With the 

development of information technology, more and more 

researchers began to explore how to use advanced 

technical means to improve cost prediction accuracy. 

Mahmoodzadeh et al. forecasted the geological conditions, 

construction duration, and cost of tunnels using Gaussian 

Process Regression (GPR), Support Vector Regression 

(SVR), and decision tree models. Through 50% cross-

validation to evaluate the model's performance, it was 

found that GPR was superior to SVR and decision trees in 

prediction accuracy. Hence, GPR was recommended to 

predict future tunnel projects' geological and construction 

time costs [10]. Alshboul et al. used an ML algorithm to 

predict the cost of green buildings, considering the 

influence of related attributes of soft and hard costs. The 

evaluation results showed that eXtreme Gradient Boosting 

(XGBoost) performed best in accuracy, followed by the 

deep neural network (DNN) and random forest (RF) [11]. 

These models could be used as decision-support tools for 

construction project managers and practitioners to 

promote the development of automation research in the 

green building industry. 

Because neural networks can handle complicated 

nonlinear interactions, they have emerged as a potent tool 

for cost prediction problems. Pham et al. proposed an ML 

and optimization framework incorporating artificial neural 

networks (ANNs) and gradient boosting models to 

estimate construction costs and optimize costs under 

budget constraints rapidly [12]. Goodarzizad et al. 

improved the accuracy of construction labor productivity 

models for concrete pouring operations through a hybrid 

model developed by combining ANN and Grasshopper 

optimization algorithms [13]. The study helped to improve 

project efficiency, increase labor productivity, and reduce 

costs. Kim et al. introduced an autoregressive integrated 

moving average (ARIMA)-ANN model to predict 

construction costs. They found that the model provided 

more accurate predictions in most cases, especially for 

long-term forecasting time limits, than standalone 

ARIMA or ANN models [14]. The main contents of the 

above research are summarized in Table 1. 

Table 1: Summary of relevant research contents 

Model Method Dataset Key results 

GPR, SVR, Decision 

tree 

ML method is used to predict 

tunnel geological conditions, 

construction period, and cost. 

The model's performance is 

evaluated by 5-fold cross-

validation. 

Tunnel project data 

GPR has better prediction 

accuracy than SVR and 

decision tree. Meanwhile, it is 

recommended for geological 

and time cost prediction of 

future tunnel projects 

XGBoost, DNN, and 

RF 

By considering soft and hard cost 

attributes, ML methods are used 

to predict green building costs. 

Green building-

related data 

XGBoost performs the best in 

prediction accuracy, with an 

accuracy of 0.96; This Is 

followed by DNN (0.91) and 

RF (0.87), which can provide 

decision support tools for the 

green building industry. 

ANN, gradient 

boosting model 

13 ML regression algorithms are 

employed to estimate 

construction costs and optimize 

costs under budget constraints 

Construction 

configuration dataset 

ANN and gradient boosting 

algorithms perform the best, 

estimating construction costs 

and required resources with 

99% accuracy in less than 1 

second of training time, and 

reducing costs by 7% through 

optimization. 

Hybrid model 

(ANN+Grasshopper 

algorithm) 

The combination of ANN and 

Grasshopper optimization 

algorithm improves the labor 

productivity model of concrete 

pouring operation. 

Labor productivity 

data for 24 

commercial office 

complex projects 

under construction in 

Iran 

The project efficiency is 

improved, labor productivity is 

increased, and costs are 

reduced 

ARIMA-ANN 

model 

The ARIMA model is integrated 

with ANN to predict construction 

costs. 

National and city-

level construction 

cost index 

In most cases, especially in 

long-term forecasting, hybrid 

models have higher prediction 

accuracy than ARIMA or ANN 

models used alone. 
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Although significant progress has been made in 

construction cost estimation, there remain substantial 

limitations in terms of generalization ability and 

overspending risk assessment. Specifically, many models 

rely on specific datasets, making it challenging to maintain 

prediction accuracy in new construction project scenarios. 

For instance, while models like GPR and XGBoost exhibit 

high prediction accuracy on particular datasets, their 

performance may decline significantly when applied to 

cross-dataset scenarios or when handling previously 

unseen complex situations. Existing research tends to 

focus more on cost prediction accuracy, with less 

emphasis on the quantification and identification of 

potential overspending risks. For complex construction 

projects, such models lacking risk assessment abilities 

could lead to delayed cost control decisions. To address 

these shortcomings, this study proposes a construction 

cost estimation model based on the Elman neural network, 

optimized with a GA. The GA enhances the model's global 

search capability by optimizing the initial weights and 

thresholds of the Elman neural network, thereby 

improving its prediction performance across different 

datasets and complex scenarios. The dynamic memory 

mechanism of the Elman neural network enables it to 

capture long-term dependencies in time-series data, 

allowing the analysis of cost trends and forecasting 

potential overspending risks. Moreover, by designing a 

comprehensive overspending risk index system, the model 

can quantitatively identify key factors that lead to cost 

deviations, providing a basis for risk prevention and 

control. 

3 Construction cost estimation model 

based on elman neural network 

3.1 Construction cost estimation and 

construction of overspending risk index 

system 

The study focuses on assembly buildings. The selection of 

indexes affecting the cost and overspending risk is based 

on the principles of comprehensiveness, scientificity, a 

combination of quantitative and qualitative methods, 

dynamics, and operability. These indexes are chosen from 

four aspects: architectural features, structural features, 

project positioning, and project environment. The method 

of literature analysis is used for this selection. The 

quantification of qualitative indexes is carried out [15-17]. 

In constructing the cost estimation and overspending risk 

index system, the selection of each index is based on its 

correlation with construction costs and overspending risk. 

For example, in the case of exterior wall decoration, 

significant differences in the price and construction 

techniques of different materials exist. Paint is relatively 

inexpensive, while materials such as stone and glass 

curtain walls are more costly and have longer construction 

periods, potentially increasing the overspending risk [18]. 

Similarly, the technical personnel level directly influences 

construction efficiency and quality. Low technical levels 

may lead to rework and delays, thus increasing both cost 

and the probability of overspending [19]. Architectural 

features such as floor area and standard floor height 

determine material usage and construction complexity, 

directly affecting the total project cost. Structural features, 

including the prefabrication rate and component 

differentiation, relate to the efficiency and cost control 

capacity of prefabricated construction. Project 

environmental factors, such as project management level 

and transportation distance, reflect the impact of 

management efficiency and logistics on cost. These 

indexes are validated through literature analysis and 

practical engineering experience, demonstrating their key 

role in cost control and overspending risk, thereby 

providing a theoretical foundation for the model's 

scientific and comprehensive nature. The finalized index 

system for assembly construction cost estimation 

prediction is outlined in Table 2. 

Table 2: Construction cost estimation and overspending risk index system and assignment of values 

Primary index Secondary index Nature of the index Assignment of qualitative index 

Architectural 

features 

Number of floors A1 Quantitative index - 

Building area A2 Quantitative index - 

Standard floor height A3 Quantitative index - 

Structural 

features 

Structure type A4 Qualitative index 

1=internally cast and externally 

hung shear wall structure; 2=stacked 

shear wall structure; 3=assembled 

monolithic frame structure; 

4=assembled monolithic shear wall 

structure 

Foundation type A5 Qualitative index 

1 = independent foundation; 2 = pile 

foundation; 3 = raft slab foundation; 

4 = pile raft foundation; 5 = box 

foundation 

Prefabrication rate A6 Quantitative index - 
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Component type A7 Qualitative index 

1 = laminated panels/air 

conditioning panels/drift 

windows/enclosures; 2 = 

prefabricated stairs; 3 = 

beams/columns/shear walls 

Differentiation degree of 

components A8 
Quantitative index - 

Project 

positioning 

Exterior wall decoration A9 Qualitative index 

1=paint; 2=real stone paint; 3=glass 

curtain wall; 4=aluminum panel; 

5=stone 

Interior wall decoration A10 Qualitative index 

1=general plaster; 2=plaster; 3=large 

white; 4=latex paint; 5=wall tiles; 

6=wallpaper 

Ground engineering A11 Qualitative index 
1=concrete topping; 2=ordinary 

tiles; 3=flooring; 4=premium tiles 

Door and window type A12 Qualitative index 

1=plastic steel window + steel door; 

2=aluminum alloy window + steel 

door; 3=plastic steel window + fire 

door; 4=aluminum alloy window + 

fire door 

Project 

environment 

Technical personnel level A13 Qualitative index 
1=excellent; 2=good; 3=medium; 

4=poor 

Project management level A14 Qualitative index 
1=excellent; 2=good; 3=medium; 

4=poor 

Transportation distance A15 Quantitative index - 

In the above index system, the three indexes of 

architectural features are directly related to the building's 

physical size and construction complexity, affecting 

material costs and labor requirements. These in turn affect 

cost control and the risk of overspending. The indexes of 

structural features determine the structural stability and 

construction methods, significantly impacting material 

selection and supply chain management, thus correlating 

with the overspending risk. Project positioning includes 

qualitative indexes such as exterior and interior wall 

decorations, ground engineering, and window and door 

types. These choices affect the building's aesthetics and 

functionality while leading to increased costs, which may 

increase overspending risk if costs are not properly 

controlled. Moreover, indexes in the project environment 

reflect the efficiency of project management and the 

impact of external conditions on costs, which are key 

factors in cost control and risk management. This system 

helps to forecast costs more accurately while identifying 

and controlling factors that may lead to overspending. 

In the above index system, the priority of each index 

varies depending on its impact on costs and overspending 

risks. To ensure that the indicator system can 

comprehensively and scientifically reflect the risk of cost 

overruns, the Analytic Hierarchy Process is used to assign 

weights to each index. The results are exhibited in Table 

3. 

Table 3: Index system weight 

Primary index Weight of primary 

index 

Secondary index Final weight 

Architectural features 0.162 Number of floors A1 0.054 

Building area A2 0.054 

Standard layer height A3 0.054 

Structural features 0.409 Structure type A4 0.128 

Foundation type A5 0.073 

Prefabrication rate A6 0.053 

Component type A7 0.069 

Differentiation degree of 

components A8 
0.086 

Project positioning 0.290 Exterior wall decoration A9 0.044 

Interior wall decoration A10 0.068 

Ground engineering A11 0.121 

Door and window type A12 0.057 

Project environment 0.139 Technical personnel levelA13 0.073 

Project management level A14 0.046 
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Transportation distance A15 0.020 

In Table 3, structural features hold the highest weight 

among the primary indexes, accounting for 40.9%, 

indicating their most significant impact on both 

construction costs and overspending risk. Among these, 

A4 and A8 have relatively higher weights of 0.128 and 

0.086, respectively, reflecting the crucial role of building 

structure complexity and differentiation in cost control. 

The project positioning index ranks second, accounting 

for 29.0%, with A11 having the highest weight of 0.121, 

emphasizing its importance in construction decoration 

costs. The weights for architectural features and project 

environment are relatively lower. However, among the 

secondary indexes, A13 and A2 stand out with weights of 

0.073 and 0.054, respectively, highlighting their influence 

on construction efficiency and total cost prediction. This 

weight allocation method enables the index system to 

more scientifically reflect the contribution of various 

factors to cost and overspending risk, providing a solid 

foundation for subsequent model predictions and risk 

analysis. 

3.2 Elman neural network modeling 

analysis 

The Elman neural network's key feature is the 

incorporation of a context layer, which preserves the 

hidden layer's state from a previous time step [20]. This 

enables the Elman network to process time-series data, 

capturing the dynamics of the input data and the 

underlying temporal relationships, making it suitable for 

time-dependent data prediction tasks such as construction 

costs. The network creates a short-term memory 

mechanism by feeding past information back to the 

current moment, which enhances its ability to model 

nonlinearities in dynamically changing processes. Unlike 

traditional feed-forward neural networks, the Elman 

network has feedback connections between the hidden and 

context layers. These feedback signals allow the network 

to retain information from previous states, providing 

valuable contextual input for subsequent computations [21, 

22]. Figure 1 depicts the Elman neural network's basic 

structure. 
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Figure 1: Schematic diagram of Elman network structure 

 

The core principle of the Elman network is as follows. 

First, the output vector 𝑦(𝑡) of the network is obtained 

from the output vector ℎ(𝑡) of the implicit layer through 

the nonlinear transformation function 𝑔(∗)of the output 

layer with the expression (1): 

𝑦(𝑡) = 𝑔(𝑤ℎ𝑦𝑤𝑐𝑗
𝑦
ℎ(𝑡))  (1) 

𝑤ℎ𝑦  denotes the weight matrix between the hidden 

and output layers. Secondly, the output ℎ(𝑡)  of the 

implicit layer is obtained from the current input 𝑣(𝑡 − 1) 
and the output 𝑐(𝑡)  of the context layer through the 
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nonlinear transformation function 𝑓(∗)  of the implicit 

layer with the expression (2): 

ℎ(𝑡) = 𝑓(𝑤𝑥ℎ𝑣(𝑡 − 1) + 𝑤𝑐ℎ𝑐(𝑡))  (2) 

𝑤𝑥ℎ refers to the weight matrix from the input to the 

hidden layer. 𝑤𝑐ℎ  denotes the weight matrix from the 

takeover layer to the hidden layer. Finally, the output 𝑐(𝑡) 
of the take-on layer is the output ℎ(𝑡 − 1) of the implicit 

layer at the previous time step, that is (3): 

𝑐(𝑡) = ℎ(𝑡 − 1)   (3) 

This structure allows the Elman network to capture 

the temporal dynamics of the input data. For construction 

cost estimation, it means that the network can consider the 

impact of historical cost data on current cost estimates, 

thus improving the accuracy of the predictions. 

Furthermore, the computational flow of the Elman 

network is suggested in Figure 2. 

A series of 
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the maximum number of 
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Initialize the 
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layer
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Calculate hidden layer 
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the receiving layer

Calculation 

error

Calculate the output of 

the context layer

Calculate the output of 

the receiving layer

End

No

Yes

 
Figure 2: Elman network computational flow 

 

In Figure 2, the network initializes the weights of each 

layer as a necessary preparation before training starts. The 

initial setup of these weights significantly impacts the 

learning effectiveness and overall performance of the 

network. Network learning is then built on the input 

samples, which include past construction project cost data 

and other pertinent features. The outputs of the input, 

hidden, and output layers are then computed sequentially. 

Meanwhile, after obtaining the output of the hidden layer, 

the output of the context layer is further computed. In this 

step, the current output of the hidden layer is used as the 

input for the context layer in the next time step. This step 

is the key to the short-term memory mechanism of the 

Elman network, allowing it to retain information from 

previous states while processing sequential data. The 

output layer error is determined by comparing the actual 

cost data with the network's predicted outputs, following 

the computation of outputs across all layers. A critical 

element of supervised learning, this error computation 

(denoted as E) provides the network with feedback for 

adjusting its parameters. Lastly, the error E is utilized to 

check if the maximum number of training steps has been 

completed or if the predefined requirements are met. If the 

error E does not decrease sufficiently, the training cycle 

continues, with the weights being adjusted to reduce the 

prediction error. This process is repeated until the network 

performs adequately or the training reaches the set number 

of iterations. 

In the above step, the error E is used to measure the 

difference between the predicted output of the network, 

𝑦(𝑡), and the desired output as �̂�(𝑡), calculated as (4): 

𝐸 =
1

2
(𝑦(𝑡) − �̌�(𝑡))

𝑇
(𝑦(𝑡) − �̂�(𝑡)) (4) 

To adjust the weights, the partial derivatives of the 

error E with respect to the weights need to be calculated. 

The partial derivatives of the weights 𝑤𝑗𝑖
𝑦

 for the output 

layer are (5): 
𝜕𝐸

𝜕𝑤𝑗𝑖
𝑦 = −(�̂�𝑑,𝑖(𝑡) − 𝑦(𝑡))

𝜕𝑦𝑖(𝑡)

𝜕𝑤𝑗𝑖
𝑦 = −(�̂�𝑑,𝑖(𝑡) − 𝑦(𝑡)𝑔′

𝑗
(∗)𝑥𝑖(𝑡)) (5) 

𝑤𝑗𝑖
𝑦

 y refers to the weight connecting the ith input unit 

and the jth output unit; 𝑔′
𝑗
(∗) represents the derivative of 

the activation function of the output layer; 𝑥𝑖(𝑡) denotes 

the output of the ith input unit at time t. Let 𝜑𝑗
0 =

(�̂�𝑑,𝑖(𝑡) − 𝑦(𝑡)𝑔′
𝑗
(∗), so (6): 

𝜕𝐸

𝜕𝑤𝑗𝑖
𝑦 = −𝜑𝑗

0𝑥𝑖(𝑡), 𝑖 = 1,2,⋯ ,𝑚; 𝑗 = 1,2,⋯ , 𝑛 (6) 
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𝑚 is the number of neurons in the input layer and 𝑛 is 

the number of neurons in the hidden layer. 

Taking 𝐸 as the partial derivative of the input layer 

weight 𝑤𝑗𝑖
𝑥, it can get (7): 

𝜕𝐸

𝜕𝑤𝑗𝑖
𝑥 =

𝜕𝐸

𝜕𝑥𝑖(𝑡)

𝜕𝑥𝑖(𝑡)

𝜕𝑤𝑗𝑖
𝑥 = ∑ (−𝜑𝑗

0𝑤𝑗𝑖
𝑥)𝑓′

𝑖
(∗)𝑣𝑞(𝑡 − 1)𝑚

𝑖=1  (7) 

𝑓′
𝑖
(∗)  denotes the derivative of the hidden layer 

activation function. Let 𝜑𝑗
ℎ = ∑ (−𝜑𝑗

0𝑤𝑗𝑖
𝑥)𝑓′

𝑖
(∗)𝑚

𝑖=1 L, 

then get (8): 
𝜕𝐸

𝜕𝑤𝑗𝑖
𝑥 = −𝜑𝑗

ℎ𝑣𝑞(𝑡 − 1), 𝑖 = 1,2,⋯ ,𝑚; 𝑗 = 1,2,⋯ , 𝑛; 𝑞 = 1,2,⋯ , 𝑟 (8) 

𝑟 is the number of neurons in the splice layer. 

The partial derivative of the connection weight 𝑤𝑗𝑙
𝑐  is 

obtained (9): 
𝜕𝐸

𝜕𝑤𝑗𝑙
𝑐 = ∑ (−𝜑𝑗

0𝑤𝑗𝑖
𝑥)𝑚

𝑖=1
𝜕𝑥𝑖(𝑡)

𝜕𝑤𝑗𝑙
𝑐 , 𝑙 = 1,2,⋯ , 𝑛; 𝑗 = 1,2,⋯ , 𝑛 (9) 

According to the chain rule (10): 
𝜕𝑥𝑗(𝑡)

𝜕𝑤𝑗𝑙
𝑐 =

𝜕

𝜕𝑤𝑗𝑙
𝑐 𝑓𝑗(∑ 𝑤𝑗𝑖

𝑐𝑥𝑐,𝑖(𝑡)
𝑛
𝑖=1 +∑ 𝑤𝑗𝑙

𝑥𝑣𝑖(𝑡 − 1)𝑟
𝑖=1 ) = 𝑓′

𝑗
(∗)𝑥𝑐,𝑖(𝑡) +

∑𝑤𝑗𝑖
𝑦 𝜕𝑥𝑐,𝑖(𝑡)

𝜕𝑤
𝑗𝑙
𝑦  (10) 

The dependence of 𝑥𝑐(𝑡) on the connection weight 

𝑤𝑗𝑖
𝑦

 is ignored, and the following results are obtained (11) 

and (12): 
𝜕𝑥𝑗(𝑡)

𝜕𝑤𝑗𝑙
𝑥 = 𝑓′

𝑗
(∗)𝑥𝑐,𝑙(𝑡) (11) 

𝑓′
𝑗
(∗)𝑥𝑐,𝑙(𝑡) = 𝑓′

𝑗
(∗)𝑥𝑙(𝑡 − 1) + 𝛼 ∗ 𝑓′

𝑗
(∗)𝑥𝑐,𝑙(𝑡) (12) 

𝛼  refers to the forgetting factor. By substituting 

equation (12) into equation (11), it can obtain (13): 
𝜕𝑥𝑗(𝑡)

𝜕𝑤
𝑗𝑙
𝑦 = 𝑓′

𝑗
(∗)𝑥𝑙(𝑡 − 1) + 𝛼 ∗

𝜕𝑥𝑗(𝑡−1)

𝜕𝑤
𝑗𝑙
𝑦  (13) 

Elman's equation (14)-(18) is derived from ∆𝑊 =

−𝜂
𝜕𝐸

𝜕𝑊
: 

∆𝑤𝑗𝑖
𝑦
= 𝜂𝜑𝑗

0𝑥𝑗(𝑡), 𝑖 = 1,2,⋯ ,𝑚; 𝑗 = 1,2,⋯ , 𝑛 (14) 

∆𝑤𝑗𝑞
𝑐 = 𝜂𝜑𝑗

ℎ𝑣𝑞(𝑡 − 1), 𝑗 = 1,2,⋯ , 𝑛; 𝑞 = 1,2,⋯ , 𝑟 (15) 

∆𝑤𝑗𝑙
𝑥 = 𝜂∑ (𝜑𝑗

0𝑤𝑗𝑖
𝑥)

𝜕𝑥𝑗(𝑡)

𝜕𝑤𝑗𝑙
𝑥

𝑚
𝑖=1 𝜑𝑗

0𝑥𝑗(𝑡), 𝑗 = 1,2,⋯ , 𝑛; 𝑙 = 1,2,⋯ , 𝑛 (16) 

𝜂 is the learning rate. Meanwhile, 

𝜑𝑗
0 = (�̂�𝑑,𝑖(𝑡) − 𝑦(𝑡)𝑔′

𝑗
(∗) (17) 

𝜑𝑗
ℎ = ∑ (−𝜑𝑗

0𝑤𝑗𝑖
𝑥)𝑓′

𝑖
(∗)𝑚

𝑖=1  (18) 

Through this calculation process, the Elman network 

can gradually learn the complex relationship between 

building cost data and complete cost prediction. This 

dynamic learning and forecasting mechanism makes the 

Elman network perform well in dealing with time series 

forecasting problems such as construction cost estimation. 

The pseudocode for the Elman model is illustrated in 

Figure 3. 

Algorithm: Elman Neural Network

Input:

    - Training data

    - Learning rate

    - Maximum iterations

Initialization:

    - Randomly initialize weights

    - Set initial context layer to zero

Training:

Repeat until convergence or maximum iterations:

    1. Compute hidden layer output

    2. Update context layer

    3. Compute network output

    4. Calculate error

    5. Backpropagate and update weights

Prediction:

For each input in test data:

    1. Compute hidden layer output

    2. Update context layer

    3. Compute final output
 

Figure 3: The pseudocode for the Elman model 

3.3 Optimization of the Elman model 

based on GA 

Although the Elman neural network has remarkable 

advantages in processing time series data, its performance 

is highly dependent on the initial weight settings and the 

choice of network structure. In addition, the Elman 

network is easily affected by local minimum, which can 

lead to suboptimal solutions and negatively impact 

prediction accuracy and generalization ability [23]. To 

overcome these limitations, GA is introduced to optimize 

the Elman model. Darwin's theory of natural selection and 

the global search principle of biogenetics serve as the 

foundation for GA, an optimization algorithm designed to 

mimic the natural evolution process. Biological evolution 

mechanisms, including natural selection, genetic 

variation, and crossover, are simulated by GA, which is 

extensively used to tackle complicated combinatorial 

optimization problems by gradually improving the quality 

of solutions. GA has strong global search ability and 

adaptability, and can effectively deal with optimization 

problems under high dimensional, nonlinear, and complex 

constraints [24]. The basic idea of GA is to simulate 

natural selection and genetic mechanisms by operating a 

population composed of multiple individuals to produce 

better solutions. Although GA possesses global search 

capabilities and strong adaptability, there are certain 

limitations in its optimization process. GA may encounter 

issues of high computational complexity and time costs 

when dealing with large-scale datasets. Additionally, the 
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convergence speed of GA can be slow, especially in large 

search spaces, where there is a risk of premature 

convergence or falling into local optimal solutions [25]. 

The implementation steps of GA are displayed in Figure 

4. 

Start

Population 

initialization

Computational 

fitness

Check if 

termination 

condition is 

met?

Select Intersect

Variation

Get a new 

population

Yes

No

End

 
Figure 4: GA implementation process 

 

This study uses the GA to optimize the adjustment of 

Elman network weights and thresholds, and the specific 

steps are as follows [26, 27]. 

(1) Population initialization. Several initial 

individuals are randomly generated in the solution space, 

and each individual corresponds to a set of potential 

Elman network weights and thresholds. Each individual 

can be regarded as the coding form of Elman network 

parameters (real number coding), including the connection 

weights between input and hidden layers, hidden and 

output layers, and the threshold of each neuron. 

(2) Fitness calculation. According to the performance 

index of the Elman network (for example, the mean square 

error of construction cost estimation), the fitness of each 

individual is evaluated. The network corresponding to the 

individual performs better on a given task the higher the 

fitness. 

(3) Selection of the operation. Using probability 

techniques like roulette wheel selection, the fittest 

members of the current population are chosen to go into 

the next generation based on their fitness values. This step 

imitates the natural selection process of "survival of the 

fittest" in biology. 

(4) Cross operation. Individuals are randomly paired 

from the selected ones and undergo a single-point 

crossover operation according to a set crossover 

probability (0.6). This involves randomly selecting a 

position in the chromosome and exchanging the gene 

segments before and after that position, generating new 

combinations of weights and thresholds. This method 

improves search efficiency by exploring different 

parameter combinations. 

(5) Mutation operation. A small probability (0.2) is 

used to randomly mutate certain genes of the selected 

individuals. The specific method is to add a random 

disturbance that follows a normal distribution (e.g., with a 

mean of 0 and a standard deviation of 0.1) to the original 

weights or thresholds. Thus, it can increase the diversity 

of the population and avoid local optimal solutions. 

(6) Termination conditions. For one thing, the 

algorithm automatically stops when it reaches the preset 

maximum number of iterations (200 times). For another, 

if the optimal fitness value of the population does not 

improve by more than a predetermined threshold (0.001) 

over a continuous number of generations (20), it is 

considered that the algorithm has converged. In addition, 

the optimization process is terminated early. By 

introducing these clear stopping criteria, the stability of 

the optimization process can be effectively ensured, while 

also enhancing the applicability and reliability of the 

algorithm in practical problems. 

Through the aforementioned optimization process, 

GA can effectively adjust the weights and thresholds of 

the Elman network, improving the model's generalization 

ability and prediction accuracy. The rationality of 

parameter settings is determined through multiple 

experimental tests. Meanwhile, the specific 

implementation of crossover and mutation ensures a high 

degree of repeatability in the study, providing an effective 

modeling tool for complex construction cost estimation 

tasks. 

Figure 5 shows the calculation flow of the finally 

formed GA-Elman model based on GA. 
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Figure 5: Calculation flow of GA-Elman model 

The GA optimization of the Elman neural network 

can reduce the probability of the model reaching local 

optima, and enhance the network's global search ability. 

Meanwhile, it can accelerate the convergence speed of the 

training process and improve the model's prediction 

accuracy. This is especially important for complex 

construction cost estimation tasks. Especially when faced 

with time-related data, the optimized GA-Elman network 

can better capture the dynamic characteristics of data and 

realize more accurate cost estimation and risk prediction. 

3.4 Application of cost estimation model in 

overspending risk 

In the cost management of construction projects, the 

assessment and control of overspending risk is a crucial 

link. The assessment of overspending risk relies on the 

accuracy of cost estimation while requiring scientific 

quantification of risk factors and their weights. The GA-

Elman model can accurately capture the time series 

characteristics of cost data through dynamic memory 

mechanisms, offering vital support for the quantitative 

assessment of overspending risk. Firstly, the assessment 

of overspending risk is based on the cost deviation rate 𝑝, 

and the degree of risk is quantified by the deviation 

between the model's predicted value 𝑐′ and the actual cost 

value 𝑐. The specific calculation reads (19): 

𝑝 =
|𝑐−𝑐′|

𝑐′
× 100%  (19) 

In this context, the higher the deviation rate, the 

greater the overspending risk. Based on this deviation rate, 

the risk can be classified into three levels: low, medium, 

and high, providing decision-makers with a more intuitive 

risk assessment index. 

Furthermore, the model quantifies the key risk factors 

through a comprehensive index system. The index system 

designed in this study encompasses four major dimensions: 

architectural features, structural features, project 

positioning, and project environment. Within each 

dimension, specific indexes are assigned different weights 

to reflect their relative importance in contributing to cost 

overruns. For instance, in the architectural features 

dimension, the "number of floors" and "building area" 

directly influence material and labor costs, with their 

weights determined by principal component analysis. In 

contrast, in the project environment dimension, 

"management level" and "technical personnel level" are 

quantified using fuzzy comprehensive evaluation methods. 

The distribution of risk factor weights follows (20): 

𝑤𝑖 =
𝑣𝑖

𝑣
  (20) 

𝑤𝑖  represents the weight of the ith risk factor, with a 

value range of 0 to 1 and a total weight of 1; 𝑣𝑖 refers to 

the contribution of the ith index to the total deviation; 𝑣 

denotes the total deviation. The GA-Elman model can 

identify and predict the primary risk factors leading to 

overspending through historical data. For example, the 

model can use retrospective analysis to determine that 

material price fluctuations contribute 35% to cost 

deviations, construction delays account for 25%, design 

changes contribute 20%, and other factors make up 20%. 

This detailed quantitative analysis helps managers 

pinpoint key risk sources and provides data support for 

formulating targeted risk control strategies. 
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Additionally, the GA-Elman model simulates the 

impact of different cost control strategies on overspending 

risk. For instance, in the case of significant material price 

fluctuations, the model can simulate cost trends for diverse 

procurement strategies (such as bulk purchasing in 

advance or phased procurement) and assess the mitigation 

effects of each strategy on overspending risk. This data-

driven simulation analysis offers project managers a 

scientific decision-making tool. 

To sum up, the GA-Elman model in overspending 

evaluation provides intuitive risk levels through the 

quantification of cost deviations. Meanwhile, it offers a 

systematic approach to risk identification, assessment, and 

control through the weight allocation to key risk factors 

and simulation analysis. By applying this model in-depth, 

project managers can remarkably improve risk 

management efficiency, reduce economic losses caused 

by overspending, and ultimately enhance the construction 

projects' cost-effectiveness and success rate. 

4 Model Performance verification 

4.1 Data source and experimental design 

To ensure the universality and representativeness of the 

experiment, data are collected from multiple sources, 

ensuring the diversity and reliability of the data. The social 

and economic development level of each region and the 

number of prefabricated buildings built are 

comprehensively considered. The basic data are obtained 

from professional platforms such as the China 

Prefabricated Building Market Analysis Report, 

Prefabricated Building Network, and Zhongce Big Data 

Website. Additionally, data from 45 groups of 

prefabricated building projects in cities such as Beijing, 

Tianjin, Hebei, and Shenyang over the past four years are 

collected. These data cover many dimensions, such as 

architectural features, structural features, project 

positioning, and project environment, offering rich 

information for model training and testing. Taking the 

indexes A1-A3 of architectural features as an example, the 

variance analysis of these data is detailed in Table 4.

 

Table 4: Variance analysis of architectural feature indexes 

Difference 

source 
Sum of Squares Degrees of Freedom Mean Square F P-value F crit 

Row 3,417,030,830 44 77,659,791 1.000 0.488 1.515 

Column 4,022,937,273 2 2,011,468,636 25.902 0.000 3.100 

Error 6,833,762,444 88 77,656,391    

Table 4 shows significant mean differences (P<0.05) 

among variables A1, A2, and A3, while the differences 

between samples are not significant. This indicates that 

different samples have a relatively small impact on the 

results of variance analysis. These data can more 

comprehensively illustrate the distribution characteristics 

of architectural feature data, providing data support for 

model prediction. To enhance the model's generalization 

ability, the gathered data are normalized to remove the 

impact of varying dimensions and ordering. Specifically, 

the Min-Max normalization method is adopted to map the 

data values of each index to the interval [0, 1], and the 

normalization equation is as follows (21):  

𝑋′ =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
   (21) 

X is the original data; 𝑋𝑚𝑖𝑛  and 𝑋𝑚𝑎𝑥  are the 

minimum and maximum values of the index, respectively. 

Through this method, the differences in dimensions and 

magnitudes between different indicators have been 

eliminated, ensuring the stability and accuracy of the 

model during training and testing. The training set 

comprises 36 sets of data; The test set contains 9 sets of 

data, which are randomly selected from the dataset and 

arranged in a 4:1 ratio. Furthermore, to comprehensively 

evaluate the performance and reliability of the model, this 

study further adopts the k-fold cross-validation technique 

(k=5) based on the division of training and testing data. By 

partitioning the dataset k times to ensure that each subset 

participates in training and validation, the potential 

random errors caused by a single partition are effectively 

reduced. In addition, the stability and credibility of the 

model evaluation results are improved. The experimental 

setup and parameter values are shown in Table 5. 

 

Table 5: Experimental environment and parameter 

setting 

Hardware/parameter name Parameter/value 

Operating system Windows10 

CPU AMD R7-5800H 

Basic frequency 3.2 GHz 

Display card RTX3060 

Memory 16 GB 

Hard disc 512 G SSD 

Input layer node 15 

Output layer node 1 

Hidden layer node 10 

Maximum number of iterations 200 

Error tolerance 1×10-5 

Evolutionary algebra 20 

Population size 10 

Cross probability 0.6 

Mutation probability 0.2 

 

Relative Error (RE) and Mean Absolute Percentage 

Error (MAPE) are used as evaluation indexes to evaluate 

the accuracy of prediction results. The calculation 

equations of them are (22) and (23): 

RE =
𝑦′𝑖−𝑦𝑖

𝑦′𝑖
∗ 100%  (22) 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑦𝑖−𝑦′𝑖|

𝑦𝑖

𝑛
𝑖=1   (23) 
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𝑁 represents the number of samples. 𝑦𝑖  and 𝑦′𝑖  refer 

to the predicted and actual values. In the cost estimation 

model, REP measures the difference between the 

predicted and actual costs to evaluate the model's 

prediction performance. MAPE index can directly reflect 

the RE between the actual and predicted values of the 

model, and it is an important index to measure the model's 

prediction performance. 

4.2 Test results of the GA-Elman model 

Firstly, the GA-Elman model is trained, and its training 

result in the training set is presented in Figure 6. 
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Figure 6: Training results of the GA-Elman model in the 

training set 

 

Results in Figure 6 demonstrate that the GA-Elman 

model has good prediction accuracy. This is because the 

predicted values for most samples are extremely close to 

the true values and the RE percentage is typically less than 

1%. However, there are also some samples with large 

prediction errors, such as Samples 14 and 32, with RE 

percentages as high as 9.816% and 24.284%. The reasons 

for these issues may be attributed to several factors. Firstly, 

the data characteristics of these samples may significantly 

deviate from the overall distribution of the training set, 

such as abnormal fluctuations in key factors like material 

prices, construction conditions, or design complexity. For 

instance, Sample 32 may have actual costs that far exceed 

the model's predictions due to the use of certain specific 

processes or unexpected construction delays. Secondly, 

the model may exhibit limitations in handling rare features 

in small samples, especially when these features are not 

adequately represented in the training data, making it 

difficult for the model to capture their nonlinear 

relationships. Additionally, the data preprocessing process 

may not have eliminated the effects of noise or outliers, 

which could also amplify errors. To address the 

aforementioned issues, the following approaches can be 

taken. Firstly, it is necessary to optimize data 

preprocessing methods by employing techniques such as 

denoising and smoothing to improve data quality. 

Meanwhile, the detection and handling of outliers are 

strengthened to reduce the noise interference on the model. 

Secondly, the sample diversity of the training dataset is 

expanded, particularly for samples with rare or abnormal 

features, by increasing the proportion of related data, 

thereby enhancing the model's ability to learn nonlinear 

relationships. Moreover, integrating learning methods or 

hybrid model structures can be introduced to combine the 

advantages of multiple algorithms and improve the 

model's generalization ability. Lastly, for key features 

such as material prices and construction conditions, 

targeted feature engineering strategies can be designed to 

ensure that the model can more accurately capture their 

impacts, thus reducing the occurrence of extreme errors. 

Taking the Elman network, RNN, and SVR as the 

benchmark model, the test set is tested on the GA-Elman 

and benchmark models, respectively, and the results are 

revealed in Figure 7. 

1 2 3 4 5 6 7 8 9

2,000

2,500

3,000

3,500

O
u

tp
u

t 
re

su
lt

Sample number

 True value

 Predicted value _ Elman

 Predicted value _ GA-Elman

 Predicted value _ RNN

 Predicted value _ SVR

 
Figure 7: Comparison between the GA-Elman model and 

benchmark model 

 

On most test samples, the predicted value of the GA-

Elman model in Figure 7 is more similar to the true value. 

The maximum differences between the predicted and 

actual results for the Elman network, RNN, and SVR are 

118.99, 117.65, and 102.94, respectively. The GA-Elman 

model's maximum difference between the predicted and 

true values is 87.21. These results show that the GA-

Elman model optimized by GA has higher prediction 

accuracy and robustness in construction cost estimation, 

thus verifying the effectiveness of GA in neural network 

weight optimization. 

4.3 Comparison of cost estimation results 

before and after Elman model optimization 

To further compare the cost estimation results before and 

after the optimization of the Elman model, the difference 

between the predicted and true value and the RE of the 

four models are calculated, as denoted in Figure 8. 
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Figure 8: Analysis of cost prediction results of four 

models 

 

In Figure 8, the differences and REs of the GA-Elman 

model across all test samples are generally lower than 

those of the Elman model. The mean absolute difference 

between the predicted and actual values for the GA-Elman 

model is 70.93, while for the Elman network, RNN, and 

SVR, they are 86.38, 87.83, and 87.63, respectively. In 

some samples, the GA-Elman model still exhibits 

relatively large errors. The main reasons for these larger 

errors are twofold. First, data irregularity. For instance, 

Sample 8 may have been affected by drastic fluctuations 

in material prices or abnormal construction environments, 

leading to actual costs significantly higher than the 

model's predictions. However, these exceptional 

situations are not adequately represented in the training 

data. Second, model limitations. The GA-Elman model 

has enhanced its ability to capture nonlinear features 

through parameter optimization by GA. Nevertheless, it 

may still be insufficiently responsive to the dynamic 

changes of certain key influencing factors, such as 

unexpected design changes or construction delays. 

Meanwhile, the calculated MAPE for the GA-Elman 

model is 2.75%, which is significantly reduced compared 

to the Elman model's 3.37%. The MAPEs for RNN and 

SVR are 3.46% and 3.45%, respectively, higher than that 

of the GA-Elman model. This further demonstrates the 

effectiveness of GA in optimizing neural network 

parameters and improving prediction accuracy. These 

results show that GA-Elman model is more accurate in 

capturing the complex relationship of construction cost 

data, thus providing more reliable support in cost 

estimation and overspending risk assessment of 

construction projects. 

 

 

 

 

 

 

 

In addition, the training time of the GA-Elman and 

Elman models is compared, and the results are listed in 

Table 6. 

 

Table 6: Comparison of training time between GA-

Elman and Elman models 

Model 

Training dataset 

size (number of 

samples) 

Training 

time 

(seconds) 

Elman 

model 

100 12.36 

500 56.47 

1,000 115.82 

GA-Elman 

model 

100 18.75 

500 72.93 

1,000 142.68 

 

Table 6 indicates that the training time of the GA-

Elman model is slightly higher than that of the traditional 

Elman model, primarily due to the additional optimization 

step introduced by the GA. However, this extra 

computational cost is justified, as the GA-Elman model 

optimizes the network's initial parameters and weights 

through GA, significantly improving both prediction 

accuracy and generalization ability. Specifically, when the 

sample size is small (e.g., 100 samples), the training time 

of the GA-Elman model is 18.75 seconds, only 6.39 

seconds longer than the Elman model. When the sample 

size increases to 1,000, the training time becomes 142.68 

seconds, which is 26.86 seconds longer than the Elman 

model. This increase in training time is acceptable in light 

of the improvements in prediction performance. 

From both a construction and economic perspective, 

the improvements made by the GA-Elman model are 

significant. In construction management, accurate cost 

forecasting is crucial for budget control and risk 

mitigation. The GA-Elman model's high prediction 

accuracy (with a MAPE of only 2.75%) enables it to 

capture the complex nonlinear relationships in 

construction costs, thus providing project managers with 

more reliable decision support. This capability is 

especially beneficial for large and complex projects, as it 

helps reduce overspending risks and delays due to budget 

miscalculations. Additionally, by accurately assessing key 

influencing factors (such as material prices and 

construction conditions), the model helps managers 

identify potential risks earlier, allowing for timely 

adjustments in construction plans and financial allocations. 

From an economic perspective, the application of the 

GA-Elman model in budget optimization remarkably 

improves resource allocation efficiency. Compared to the 

traditional Elman model and other benchmark models, the 

GA-Elman model offers a clear advantage in effectively 

reducing unnecessary financial waste and optimizing 

financial planning. For example, for cost-sensitive 

samples (such as Samples 14 and 32), there is still some 

error. However, the model provides managers with a cost 

estimate closer to the actual values, laying a foundation for 

reasonable financial resource distribution and cash flow 

control. Moreover, the GA-Elman model's ability to 

identify and quantify overspending risk allows enterprises 
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to develop more scientifically-based long-term financial 

strategies, thereby reducing the economic losses caused by 

uncontrollable costs. 

In conclusion, the GA-Elman model has considerable 

potential in construction cost estimation and economic 

risk management. It enhances the intelligence level of 

construction management while providing a reliable tool 

for budget optimization and cost control. The model 

contributes positively to lean management and improved 

economic efficiency in the construction industry. 

4.4 Discussion 

Compared to the existing models summarized in 

Table 1, the proposed GA-Elman model demonstrates 

significant advantages in construction cost estimation and 

overspending risk assessment. In contrast to models such 

as GPR and XGBoost, the GA-Elman model is better 

suited for handling dynamic changes in time series data. 

For instance, while GPR exhibits high accuracy in 

predicting tunnel geological conditions, its sensitivity to 

data scale can lead to decreased computational efficiency 

when dealing with large-scale complex construction 

projects. In comparison, the GA-Elman model, by 

optimizing weights and thresholds through GA, can 

process large-scale data more efficiently while fully 

capturing dynamic changes, thus enhancing the model's 

applicability. 

The comparison with ANNs and gradient boosting 

models indicates that although these models perform well 

in rapid construction cost estimation, they lack capability 

in risk assessment. For example, the gradient boosting 

model primarily focuses on cost optimization and cannot 

effectively identify key risk factors leading to 

overspending. In contrast, the GA-Elman model can 

predict costs and identify key drivers of overspending 

risks (such as fluctuations in material prices and 

construction delays) through its dynamic memory 

mechanism. As a result, it can provide project managers 

with more targeted decision support. 

Compared to hybrid models such as ANN combined 

with the Grasshopper algorithm and ARIMA-ANN 

models, the GA-Elman model performs better in long-

term forecasting and modeling complex data relationships. 

Although the ARIMA-ANN model has certain advantages 

in long-term construction cost estimation, its ability to 

capture nonlinear features is limited. The GA-Elman 

model, by optimizing network structure through the global 

search capability of GA, can better model nonlinear and 

temporal characteristics. Meanwhile, it can achieve 

superior prediction accuracy in practical tests, with the 

MAPE reduced to 2.75%. 

In summary, the GA-Elman model outperforms 

existing models in terms of cost prediction accuracy, 

overspending risk assessment ability, and adaptability to 

complex data. Thus, it offers an innovative solution for 

construction cost management and significant practical 

guidance for budget control and risk management in 

complex engineering projects. 

5 Conclusion 
This study analyzes the application of the GA-Elman 

model in construction cost estimation and overspending 

risk analysis by constructing a construction cost 

estimation model based on the Elman network and 

optimizing the model with GA. It verifies the performance 

of the model through experiments. The conclusions are as 

follows. (1) The GA-Elman model's high prediction 

accuracy is demonstrated by the fact that, on the training 

set, the predicted value on most samples is very near to the 

true value and the RE percentage is typically within 1%. 

(2) When compared to the Elman network, the GA-Elman 

model's projected value is closer to the actual value, and 

on all test samples, the model's difference and RE are 

typically smaller than those of the Elman model. (3) The 

GA-Elman model's MAPE is 2.75%, a considerable 

decrease from the Elman model's 3.37%. It further proves 

the effectiveness of GA in optimizing neural network 

parameters and improving prediction accuracy. In short, 

by optimizing GA, the GA-Elman model increases the 

ability to detect possible overspending, which is crucial 

for efficient cost control and budget management, in 

addition to improving the accuracy of cost prediction. 

Although this study has made some progress in 

construction cost estimation and overspending risk 

assessment, there are still some limitations. First, the 

robustness of the model needs to be enhanced, as extreme 

errors occurring on specific data samples indicate 

insufficient stability. Second, the study only selects certain 

regions and prefabricated buildings, and the limitation of 

the sample range may affect the model's generalization 

ability, making it difficult to apply to other regions or 

different building types. Additionally, there may be biases 

in data selection, such as differences between urban and 

rural projects or the impact of various construction 

technologies (e.g., traditional construction versus modern 

building technologies). These factors could significantly 

affect the model's applicability and accuracy. Future 

research should consider more comprehensive data 

collection, covering a wider range of regions, building 

types, and different construction technologies, to avoid 

biases caused by data limitations, thereby enhancing the 

model's generalization ability and adaptability. At the 

same time, more advanced data preprocessing techniques 

and algorithm optimization methods can be explored to 

improve the model's prediction accuracy and stability, 

providing stronger support for widespread application. 
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