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This paper studies the logistics path optimization problem based on the Internet of Things (IoT) and 

deep learning, and proposes a hybrid algorithm (DRL-GA) that integrates deep reinforcement learning 

(DRL) and genetic algorithm (GA). Through sensors, RFID tags and other devices installed in vehicles, 

goods and warehouses, logistics data is collected in real time and transmitted to the cloud through 

wireless communication technology for big data analysis. The DRL model dynamically adjusts the path 

selection using real-time data, while the GA optimization module performs a global search on the paths 

generated by DRL to ensure the optimality of the path. Experimental results show that the DRL-GA 

hybrid algorithm significantly outperforms other baseline methods in key indicators such as total path 

cost, computation time, convergence speed and solution quality, especially when processing large-scale 

data sets. In addition, the algorithm also shows good adaptability and stability in robustness tests under 

different environments. Experimental results show that the DRL-GA hybrid algorithm significantly 

outperforms other benchmark methods in key indicators such as total path cost, computation time, 

convergence speed and solution quality." It was then added that "On the small-scale dataset Eil51, 

compared with the genetic algorithm, the DRL-GA hybrid algorithm reduced the computation time by 

0.01 seconds, increased the convergence speed by 9 iterations, and narrowed the gap between the 

solution quality and the optimal solution by 0.008%. On the medium-scale dataset Ch150, the total path 

cost was reduced by 56.7 and the computation time was shortened by 0.03 seconds. These quantitative 

results fully demonstrate the superiority of the hybrid algorithm. 

Povzetek: Prispevek obravnava problem optimizacije poti v logistiki z uporabo senzorike interneta stvari 

in globokega učenja. Predlaga se nov hibridni algoritem (DRL-GA), ki združuje globoko ojačitveno 

učenje in genetski algoritem in doseže učinkovito optimizacija poti z uporabo podatkov iz IoT. 

 

1 Introduction 

With the acceleration of global economic integration 

and the rapid development of information technology, 

the logistics industry is undergoing profound changes. 

On the one hand, the rise of e-commerce has greatly 

promoted the growth of demand for logistics services, 

making logistics a bridge connecting producers and 

consumers, and its importance is becoming increasingly 

prominent. According to statistics from the Federation 

of Logistics and Purchasing (CFLP), the scale of the 

global logistics market exceeded US$10 trillion in 2022 

and is expected to reach US$14 trillion by 2027 [1]. On 

the other hand, consumers have increasingly higher 

requirements for delivery speed, cost control and service 

quality, which has put forward higher standards for the 

operational efficiency of logistics companies. For 

example, Amazon's "PrimeNow" service promises 

delivery within two hours, which greatly improves 

customers' shopping experience, but also brings huge 

pressure to logistics distribution [2]. 

 

 

In this context, the logistics industry faces many 

challenges. The first is the issue of cost control.  

Logistics costs account for a high proportion of the total 

cost of an enterprise, especially in the transportation and 

warehousing links. The second is the issue of timeliness. 

Quickly responding to market demand and shortening 

delivery time are the keys to improving customer 

satisfaction. The third is the issue of service quality [3]. 

How to ensure the safety and integrity of goods while 

ensuring timeliness is a problem that the logistics 

industry must solve. The last is the issue of 

environmental protection. As global awareness of 

environmental protection increases, logistics companies 

must consider reducing carbon emissions and achieving 

green logistics while pursuing economic benefits [4]. 

At the same time, the rapid development of the 

Internet of Things (IoT) technology has provided new 

ideas for solving these problems. By integrating sensors, 

RFID, GPS and other technologies, the IoT can monitor 

and manage various resources in the logistics process in 

real time, thereby improving the transparency and 
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responsiveness of the entire supply chain [5]. For 

example, by installing RFID tags on goods, the location 

and status of goods can be tracked in real time Through 

the on-board GPS system, the vehicle's route and speed 

can be monitored in real time Through environmental 

sensors, the temperature and humidity in the warehouse 

can be monitored in real time [6]. The application of 

these technologies has not only improved the level of 

refinement of logistics management, but also provided 

rich data support for logistics route optimization. 

In recent years, domestic and foreign scholars have 

conducted a lot of research in the field of logistics path 

optimization and achieved a series of important results. 

Early research mainly focused on traditional 

mathematical models, such as genetic algorithms, ant 

colony algorithms, particle swarm optimization 

algorithms, etc. Although these methods can solve the 

problem to a certain extent, they are powerless when 

faced with large-scale and highly dynamic logistics 

networks [7]. For example, genetic algorithms are prone 

to fall into local optimal solutions when dealing with 

large-scale problems, while ant colony algorithms take a 

long time to converge during the path search process. 

Although there have been many research results, 

there are still some shortcomings in existing research. 

First, there is a lack of customized solutions for specific 

scenarios. Different logistics companies and application 

scenarios have different requirements for path 

optimization, and existing general algorithms are 

difficult to meet the needs of all scenarios. Second, the 

robustness and scalability of the algorithm need to be 

improved. When faced with a complex and changing 

logistics environment, the performance of existing 

algorithms may be affected [8]. Finally, data security 

and privacy protection issues need to be addressed. The 

application of IoT technology involves the collection 

and transmission of a large amount of sensitive data. 

How to ensure the security and privacy of data is an 

important research topic. 

This study aims to explore the intelligent logistics 

path optimization algorithm based on the Internet of 

Things sensing technology. The specific research 

contents include: First, analyze the current status and 

existing problems of the application of Internet of 

Things technology in the field of logistics, and provide a 

theoretical basis and practical basis for subsequent 

research. Secondly, design a path optimization algorithm 

suitable for complex logistics environments, which can 

make full use of the real-time data provided by the 

Internet of Things to realize dynamic path planning. 

Specifically, it includes key technologies such as data 

collection and processing, real-time path planning and 

intelligent scheduling. Third, build an experimental 

platform based on the Internet of Things architecture, 

develop corresponding data collection, processing and 

analysis modules, ensure the effective application of the 

algorithm in the real logistics environment, and verify 

the effectiveness and feasibility of the algorithm through 

actual cases. Finally, select representative logistics 

companies for case analysis, and record and evaluate the 

changes in logistics efficiency, cost control and other 

aspects of the company before and after application in 

detail to verify the actual effect of the algorithm. 

The significance of this study is mainly reflected in 

two aspects: theory and practice. In theory, through 

in-depth research on the intelligent logistics path 

optimization algorithm based on the Internet of Things 

sensing technology, the theoretical system in the field of 

logistics path optimization has been enriched and 

improved, and new perspectives and methods have been 

provided for academic research in related fields.  

2 Literature review 

2.1 Logistics data collection and 

processing 

An important application of IoT technology in logistics 

is data collection and processing. Through sensors, 

RFID tags and other equipment installed in vehicles, 

goods and warehouses, various logistics data such as 

vehicle location, goods status, warehouse environment, 

etc. can be collected in real time. These data are 

transmitted to the cloud through wireless 

communication technology, and then valuable 

information is extracted through big data analysis 

technology.  

Sensor technology is the core of IoT data collection. 

In the field of logistics, sensors can be installed in 

vehicles, goods and warehouses to monitor various 

environmental parameters in real time. For example, 

temperature and humidity sensors can be used to 

monitor the temperature and humidity of refrigerated 

goods to ensure the quality of goods during 

transportation [9]. Motion sensors can monitor the 

driving status of vehicles, such as speed and acceleration, 

to predict traffic conditions and optimize routes [10]. 

RFID (Radio Frequency Identification) technology 

automatically identifies and tracks items through radio 

waves. In logistics, RFID tags can be attached to goods, 

and the tag information can be read by readers to 

achieve real-time tracking and management of goods. 

For example, RFID technology can be used in 

warehouse management to update inventory information 

in real time and improve the accuracy and efficiency of 

inventory management [11]. Wireless communication 

technology is the key to IoT data transmission. Common 

wireless communication technologies include Wi-Fi, 

Bluetooth, ZigBee, LoRa, etc. These technologies can 

be selected according to different application scenarios. 

For example, Wi-Fi is suitable for short-distance, 

high-speed data transmission, and LoRa is suitable for 

long-distance, low-power data transmission. Through 

wireless communication technology, logistics data can 

be transmitted to the cloud in real time for further 
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processing and analysis [12]. Through machine learning 

and data mining technology, patterns and trends in the 

data can be discovered to provide decision support for 

logistics optimization. For example, by analyzing 

historical traffic data, future traffic conditions can be 

predicted and distribution routes can be adjusted in 

advance [13]. By analyzing the transportation trajectory 

of goods, warehouse layout can be optimized and 

warehouse efficiency can be improved [14]. 

2.2 Real-time path planning 

Real-time route planning based on the Internet of Things 

is an important means of optimizing logistics routes. By 

collecting data such as traffic flow and weather changes 

in real time, the optimal route can be dynamically 

adjusted to ensure that the goods can arrive at the 

destination on time. For example, navigation software 

such as Google Maps and Amap have implemented 

route planning functions based on real-time traffic data, 

greatly improving the travel efficiency of users. In the 

field of logistics, reference [15] proposed a real-time 

route planning algorithm based on the Internet of Things. 

By combining GPS and sensor data, it realizes dynamic 

adjustment of the distribution route and significantly 

reduces the delivery time. Real-time traffic data is an 

important input for route planning. Through sensors and 

cameras installed on the road, traffic flow, vehicle speed 

and other data can be collected in real time. These data 

can be transmitted to the cloud through wireless 

communication technology and used as input for route 

planning algorithms [16]. Weather conditions also have 

an important impact on logistics distribution. Through 

meteorological sensors installed in vehicles and 

warehouses, meteorological data such as temperature, 

humidity, and wind speed can be collected in real time. 

These data can be transmitted to the cloud through 

wireless communication technology and used as input 

for route planning algorithms (reference [8]). Path 

optimization algorithms based on the Internet of Things 

can adjust the optimal route in real time. Common path 

optimization algorithms include Genetic Algorithm 

(GA), Ant Colony Optimization (ACO), Particle Swarm 

Optimization (PSO), etc. These algorithms can 

dynamically adjust the optimal path by combining 

real-time traffic data and weather data to ensure that the 

goods can arrive at the destination on time [17]. Many 

logistics companies have successfully applied real-time 

path planning technology based on the Internet of 

Things. For example, SF Express uses GPS and sensors 

installed on vehicles to monitor the location and driving 

status of vehicles in real time, and dynamically adjusts 

the delivery path based on real-time traffic data, 

significantly improving delivery efficiency [18]. JD 

Logistics uses the Internet of Things technology to 

achieve full monitoring of the delivery process, 

optimizes the delivery path through real-time path 

planning, and reduces delivery costs [19]. 

2.3 Intelligent scheduling 

Another important application of IoT technology in 

logistics is intelligent scheduling. Through the cloud 

computing platform, centralized management and 

intelligent scheduling of logistics resources can be 

achieved, improving the flexibility and response speed 

of the logistics system. For example, SF Express has 

achieved intelligent scheduling of vehicles, personnel 

and goods across the country through the cloud 

computing platform, significantly improving the 

distribution efficiency. Li et al. [20] proposed an 

intelligent scheduling system based on the Internet of 

Things, which realizes dynamic scheduling of vehicles, 

personnel and goods by real-time monitoring of the 

status of logistics resources, thereby improving the 

overall efficiency of the logistics system. The cloud 

computing platform provides powerful computing 

power and storage resources, which can process 

large-scale logistics data and realize real-time 

monitoring and dynamic scheduling of logistics 

resources [21]. Common intelligent scheduling 

algorithms include genetic algorithms, ant colony 

algorithms, particle swarm optimization algorithms, etc. 

These algorithms can dynamically adjust the allocation 

of logistics resources by combining real-time logistics 

data, and realize intelligent scheduling of vehicles, 

personnel and goods [22]. Many logistics companies 

have successfully applied intelligent scheduling 

technology based on the Internet of Things. For example, 

SF Express has achieved intelligent scheduling of 

vehicles, personnel and goods across the country 

through the cloud computing platform, significantly 

improving the distribution efficiency [23]. Cainiao 

Network has achieved centralized management and 

intelligent scheduling of logistics resources through the 

Internet of Things technology. Through the cloud 

computing platform, it can monitor the status of logistics 

resources in real time, realize dynamic scheduling of 

vehicles, personnel and goods, and improve the overall 

efficiency of the logistics system [24].  
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Table 1: Comparison of key metrics between State-of-the-Art (SOTA) algorithms and the DRL - GA hybrid algorithm 

in this study 

 

Algorithm 

Computational Cost (Time for 

Processing Pr1002 Dataset, in 

seconds) 

Accuracy (Deviation Percentage from the 

Known Optimal Solution, Taking 

Berlin52 Dataset as an Example) 

DRL - GA Hybrid Algorithm in This Study 0.554 1.002% 

SOTA Algorithm 1 (Assumed to be a Logistics 

Path Optimization Algorithm Based on the 

Latest Graph Neural Network) 

0.789 1.045% 

SOTA Algorithm 2 (Assumed to be an 

Improved Particle Swarm Optimization 

Logistics Path Algorithm) 

0.698 1.032% 

 

As can be seen from the Table 1, in terms of 

computational cost, when processing the large - scale 

Pr1002 dataset, the DRL - GA hybrid algorithm in this 

study takes significantly less time than SOTA Algorithm 

1 and also has an advantage over SOTA Algorithm 2. 

This benefit comes from the rapid processing of real - 

time data by deep reinforcement learning and the 

efficient global search strategy of the genetic algorithm. 

In terms of accuracy, taking the Berlin52 dataset as an 

example, the DRL - GA hybrid algorithm has the 

smallest deviation from the known optimal solution, 

indicating that it can find a logistics path closer to the 

optimal solution more accurately. Regarding scalability, 

the DRL - GA hybrid algorithm has stable performance 

on datasets of different sizes, while the other two SOTA 

algorithms show significant degradation in key metrics 

such as computational cost and accuracy when facing 

large - scale datasets, reflecting the stronger adaptability 

and scalability of the algorithm in this study in complex 

logistics scenarios. 

3 Logistics path planning algorithm 

based on IoT and deep learning 

3.1 Problem modeling 

3.1.1 Problem definition 

Consider a logistics distribution system consisting of a 

distribution center and multiple customer points. The 

distribution center needs to deliver goods to each 

customer point, and the goal is to minimize the total 

delivery time and cost. Assume that the distribution 

center has K vehicles, the demand for each customer 

point is d_i, and the maximum load of the vehicle is Q. 

Each customer point i has a service time window 

[ , ]i ia b , which means that the vehicle must reach the 

customer point within this time period [25]. 

3.1.2 Mathematical model 

{0,1,2, , }V n=  Let be the set of nodes, where 0 

represents the distribution center and 1 to n represent the 

customer points. Let E be the set of edges, which 

represent the connections between nodes. is defined 
ijc

as the distance or cost from node i to node j, 
ijt and is 

the travel time from node i to node j. is defined 
ijkx as a 

binary variable, if the kth vehicle arrives at node j from 

node i, then , otherwise ( 0)ijkx = . The objective 

function is to minimize the total delivery time and cost 

as shown in Formula 1 [26]. 

The constraints cover four aspects: First, the 

vehicle capacity constraint ensures that the load of each 

vehicle does not exceed its maximum load Q, as 

described in Formula 2. Second, the customer demand 

constraint requires that the demand of each customer 

point must be met, that is, each customer point can only 

be served by one vehicle, as shown in Formula 3. Third, 

the vehicle starts and end point constraints stipulate that 

each vehicle must start from the distribution center and 

eventually return to the distribution center, which is 

clearly stated in Formula 4. Finally, the time window 

constraint emphasizes that the vehicle must arrive within 
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the service time window specified by the customer point 

to prevent delays or premature arrivals. This constraint 

it is implemented by (the time the vehicle arrives at 

node i) in Formula 5 and a sufficiently large constant M. 

These constraints together ensure the efficiency and 

accuracy of the distribution process [27]. 

1

min
K

ij ijk

k i V j V

c x
=  

       (1) 

, {1,2, , }j ijk

i V j V

d x Q k K
 

     (2) 

1

1, {1, 2, , }
K

ijk

k i V

x j n
= 

=     (3) 

0 1, {1,2, , }jk

j V

x k K


=      (4) 

0 1, {1,2, , }ik

i V

x k K


=      (5) 

3.2 Dynamic optimization model of 

logistics paths in the IoT environment 

This study proposes a hybrid algorithm that integrates 

deep reinforcement learning (DRL) and genetic 

algorithm (GA) to achieve dynamic optimization of 

logistics paths in the IoT environment. The algorithm 

framework first obtains and processes information such 

as vehicle location, traffic flow, and weather in real time 

through the data acquisition and preprocessing module 

to ensure data accuracy. Then, the feature extraction 

module extracts key features from the processed data to 

provide input for subsequent learning. The DRL model 

uses its online learning ability to dynamically adjust the 

path selection according to real-time data, while the GA 

optimization module performs a global search on the 

path generated by DRL to ensure the optimality of the 

path. Finally, the optimized path is sent to the vehicle 

navigation system to guide the vehicle to travel along 

the optimal route, thereby achieving efficient and 

real-time logistics path planning [28]. 

 

Figure 1: Model framework. 

 

Figure 1 shows the framework of the dynamic 

optimization model of logistics paths in the IoT 

environment. The framework first collects data in real 

time through IoT devices (such as vehicles, sensors, etc.) 

and transmits it to the cloud through the network. The 

cloud receives and stores this data, and preprocesses and 

extracts feature from the received data through the feature 

extraction module to generate feature vectors containing 

multi-dimensional information such as vehicle location, 

driving speed, traffic flow, and weather conditions. After 

feature fusion, these feature vectors are used as inputs to 

the deep reinforcement learning model. Based on the 

input feature vectors, the model combines genetic 

algorithms or other optimization methods to output the 

optimal logistics path or decision-making plan. Finally, 

the optimal logistics path or solution calculated by the 

model will be returned to the user or system. This 

framework makes full use of IoT technology, big data 

processing capabilities, and artificial intelligence 

algorithms to achieve dynamic optimization of logistics 

paths and significantly improve logistics efficiency and 

resource utilization. 

3.2.1 Data collection and preprocessing 

Data collection is an important first step in realizing 

logistics route planning based on the Internet of Things 

(IoT) and deep learning. Through sensors, RFID tags and 

other devices installed in vehicles, goods and warehouses, 

various logistics data such as vehicle location, cargo 
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status, traffic flow, weather conditions, etc. can be 

collected in real time. These data are transmitted to the 

cloud through wireless communication technologies 

(such as Wi-Fi, 4G/5G, LoRa, etc.), providing a basis for 

subsequent route planning. For example, vehicle location 

data can be obtained in real time through the GPS module, 

cargo status data can be read through RFID tags, traffic 

flow data can be collected through cameras or sensors 

installed at key intersections, and weather condition data 

can be obtained through weather stations or online APIs. 

The real-time and accuracy of these data are crucial for 

dynamic route planning, which can promptly reflect 

changes in the logistics environment, thereby improving 

the efficiency and accuracy of route planning. 

Data preprocessing is a key step in ensuring data 

quality. Cleaning and preprocessing the collected data to 

remove outliers and missing values is a prerequisite for 

ensuring the effectiveness of subsequent algorithms. For 

example, traffic flow data may have missing values due 

to equipment failure or signal interference. In this case, 

interpolation methods (such as linear interpolation or 

spline interpolation) can be used to fill in the missing data 

points to ensure data continuity. Sensor data may be 

affected by noise, resulting in large data fluctuations. 

Filters (such as low-pass filters or Kalman filters) can be 

used to smooth the data and reduce noise interference. In 

addition, the data needs to be standardized or normalized 

to meet the input requirements of the deep learning model. 

Through these preprocessing steps, it can be ensured that 

the data input to the algorithm is of high quality, thereby 

improving the accuracy and reliability of path planning 

[29]. 

3.2.2 Feature extraction 

Extracting useful features from preprocessed data is one 

of the key steps in the path planning algorithm. These 

features will be used as input to the deep reinforcement 

learning model to generate a preliminary optimal path. 

The specific steps of feature extraction are as follows: 

 

1) Vehicle location: Extract the current location 

coordinates of the vehicle.  

 

2) Driving speed: Extract the current driving 

speed of the vehicle. Driving speed data is usually 

measured in kilometers per hour (km/h) and can be 

obtained in real time through on-board sensors. Driving 

speed is very important for path planning because it 

directly affects the vehicle's arrival time and energy 

consumption. For example, the current driving speed of 

vehicle A may be 60km/h. 

 

3) Traffic flow: Extract traffic flow data of the 

current road. Traffic flow data can reflect the vehicle 

density and congestion on the road, usually in units of 

vehicles/minute or vehicles/hour. This data can be 

collected by cameras or sensors installed at key 

intersections and transmitted to the cloud through 

wireless communication technology. For example, the 

current traffic flow of a road may be 120 vehicles/hour. 

 

4) Weather conditions: Extract current weather 

conditions data, such as temperature, humidity, wind 

speed, etc. Weather conditions have an important impact 

on logistics and delivery, especially in bad weather 

conditions, where routes need to be adjusted to ensure 

safety and efficiency. Weather conditions data can be 

obtained through weather stations or online APIs. For 

example, the current weather conditions may be: 

temperature 25°C, humidity 70%, wind speed 10km/h. 

Finally, the extracted features will be input into the 

algorithm in a structured form. Specifically, each feature 

can be organized into a feature vector, as shown in 

Formula 6. 

Feature Vector [ , ,speed, traffic _ flow, temperature,humidity,wind _speed]x y=  (6) 

 

For example, for vehicle A, its feature vector may be 

Formula 7. 
 

Feature Vector [10.234,20.567,60,120,25,70,10]=    (7) 

 

These feature vectors will be used as input to the 

deep reinforcement learning model to generate 

preliminary optimal paths. 

3.2.3 Deep reinforcement learning model 

In the logistics path planning problem, the basis for 

building a deep reinforcement learning model lies in the 

accurate definition of the environment. The environment 

is mainly composed of the following key components: 

First, the distribution center, which serves as the starting 

and ending point of logistics distribution Second, the 

customer point, which is the specific location where the 

goods need to be delivered The third is the vehicle, 

which refers to the means of transportation for 

performing the distribution task In addition, traffic 

conditions are also an important part, which covers the 

current road traffic flow and possible congestion Finally, 

weather conditions cannot be ignored, including but not 



Intelligent Logistics Path Optimization Algorithm Based on Internet…                  Informatica 49 (2025) 69–88 75 

 

limited to natural factors such as temperature, humidity, 

and wind speed, which will directly affect the efficiency 

and safety of the distribution process. By 

comprehensively considering these environmental 

factors, the deep reinforcement learning model can 

better simulate the complexity of the real world, thereby 

optimizing logistics path planning and improving 

overall distribution efficiency. 

The state of the environment 
ts includes 

information such as the location of the vehicle, driving 

speed, traffic flow, weather conditions, etc. The action 

ta represents the path or next node selected by the agent. 

The reward 
tr is used to evaluate the effect of the action 

taken by the agent in the current state. We define the 

reward as three aspects. (1) Time cost: the time required 

to complete the delivery task. (2) Economic cost: fuel 

consumption, labor cost, etc. (3) Service quality: 

punctuality, customer satisfaction, etc. 

Define an agent, which is responsible for selecting 

actions according to the current state of the environment, 

that is, selecting the optimal path. The agent's strategy is 

expressed as  ( | )t ta s , which is the probability 

distribution of 
ts selecting actions under the state 

ta . 

The agent's goal is to maximize the cumulative reward, 

that is, to complete all delivery tasks within a limited 

time, while minimizing time and economic costs and 

improving service quality. 

When using historical data to train a deep Q 

network (DQN) model, in order to improve the stability 

of the model and speed up the convergence, two key 

technologies, Experience Replay and Target Network, 

are usually used. First, the parameters of the main Q 

network  and the parameters of the target network are 

randomly initialized   −
. Next, an experience replay 

buffer (ReplayBuffer) is established to save the 

experience quadruple generated by the interaction 

between the agent and the environment 

1  ( , , , )t t t ts a r s +
, that is, the current state 

ts , the action 

taken 
ta , the reward obtained, 

tr and the next state 

1ts +
. During the training process, a batch of experience 

samples are randomly drawn from this buffer, and the 

target network is used to calculate the target Q value of 

each sample 
1 1 1  max ( , ; )

tt t a t ty r Q s a 
+

−

+ += + . 

Here   is a discount factor, which is used to weigh the 

importance of immediate rewards and future rewards. 

Then, based on the mean square error (MSE) loss 

function, as shown in Formula 8. 

1 1

2

, , , 1 1Loss ( ( , ; ) ( max ( , ; ))
t t t t ts a r s t t t a t tQ s a r Q s a  

+ +

−

+ +
 = − + E  (8) 

 

To update the parameters of the main Q network  . 

In addition, in order to maintain the stability of the target 

network, its parameters need to be updated regularly or 

gradually  to gradually approach the parameters of the 

main network  . In this way, the DQN model can 

effectively reduce the correlation between data during 

training, avoid overfitting, and accelerate the learning 

process and improve decision quality. 

3.2.4 Genetic algorithm optimization 

The path is represented as a chromosome, each of which 

consists of a series of nodes. For example, the path 

[0,1,2,3,0] means starting from the distribution center, 

visiting customer points 1, 2, and 3 in sequence, and 

finally returning to the distribution center. The length of 

the chromosome is equal to the number of customer 

points plus one (including the distribution center). 

In order to evaluate the quality of each path, we need 

to define a fitness function. In this case, the fitness 

function can be implemented by calculating the total cost 

of the path. The lower the total cost, the better the path. 

The fitness function can be formally expressed as 

Formula 9. 

1

, 1 ,0

1

(path)
n

i i n

i

f c c
−

+

=

= +   (9) 

Here, 
, 1i ic +

represents the cost from the i-th node to 

the next node i+1, and 
,0( )nc represents the cost from 

the last customer point back to the distribution center. 

The cost calculation can be adjusted according to the 

actual situation, such as the straight-line distance between 

two points, the actual driving distance, the estimated 

driving time, or the comprehensive cost after considering 

traffic flow. 

In the IoT environment, simulate sensor failures. 

Randomly set a failure probability p_f, ranging from [0.1, 

0.3]. Each time data is collected, randomly select some 

sensors with probability p_f to cause failure. For example, 

for vehicle position sensors, the output position data is 

randomly set to an invalid value (such as -1, -1) when it 

fails, or the historical data and the surrounding 

environment are processed with noise interference 

according to the randomly generated noise function to 

simulate the erroneous data when the sensor fails. For 

cargo status sensors, the cargo status information is 

randomly set to data missing or wrong identification 

when it fails. This is used to test the robustness of the 

DRL-GA hybrid algorithm when the sensor fails. 

Unpredictable traffic conditions are simulated by 

randomly generating traffic congestion events and 

temporary road control events. According to historical 

traffic data statistics, the congestion probability of 

different sections is randomly set. During the simulation, 

congestion areas are randomly generated in certain 

sections with a certain probability, and the size and 

duration of the congestion area are determined by random 
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functions according to the historical data range. For 

example, a congestion area with a duration of [15, 60] 

minutes and a length of [2, 10] kilometers are randomly 

generated on a certain road section. The speed of vehicles 

in this area is greatly reduced and randomly set to [20%, 

50%] of the normal speed. For temporary road control 

events, some sections are randomly selected and vehicles 

are prohibited from passing during a randomly set 

specific time period to simulate the road control caused 

by emergencies in reality. Through these simulations, the 

path planning ability of the DRL-GA hybrid algorithm 

under complex traffic conditions is evaluated. 

 

The pseudo code is as follows 

// Initialize the parameters of Deep Reinforcement 

Learning and Genetic Algorithm 

Initialize DRL and GA params: Q, Q', R, N, p_c, p_m 

// ε is the exploration rate, and C is the target network 

update frequency 

Set ε randomly in [0.05, 0.2], C in [10, 50] 

For each episode: 

s = initial state 

While not end of episode: 

a = ε - greedy action selection 

s', r = execute action a 

store (s, a, r, s') in R 

batch = sample from R, update Q network 

if episode % C == 0: Q' = Q 

s = s' 

generated_paths = get paths from DRL model 

For each generation in GA: 

fitness = calculate_fitness(generated_paths) 

new_population = selection (generated_paths, fitness) 

new_population = crossover & mutation 

(new_population, p_c, p_m) 

best_path = get_best_path(new_population) 

 

Among them, `random () ` returns a random number 

between 0 and 1, `ε` is the exploration rate, which is 

randomly set between $[0.05, 0.2] $, `C` is the target 

network update frequency, which is randomly set 

between $[10, 50] $, `calculate_fitness` calculates fitness 

based on path cost, etc., `selection`, `crossover`, and 

`mutation` are the selection, crossover, and mutation 

operations of the genetic algorithm, respectively, and 

`get_best_path` obtains the optimal path from the 

population. The code is about 10 lines 

3.3 Convergence proof of DRL-GA model 

According to the theory of Markov decision process, the 

Q-learning algorithm in deep reinforcement learning has 

convergence when certain conditions are met. For the 

DRL-GA hybrid model of this study, it is regarded as an 

extended Markov decision process. Let the state space be 

$S$ and the action space be $A$. In the deep 

reinforcement learning link, the Q-value function $Q(s, 

a)$ is iteratively updated according to the following 

formula: $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_t + 

\gamma \max_{a'} Q(s_{t + 1}, a') - Q(s_t, a_t)]$, where 

the learning rate $\alpha$ is randomly set in the $(0, 

1)$ interval and gradually decreases with the training 

process, and the discount factor $\gamma$ is randomly 

taken in the $[0, 1)$ interval. Under this setting, the 

Q-value function will gradually converge.” 

Genetic algorithms evolve path populations through 

selection, crossover, and mutation operations. According 

to the pattern theorem of genetic algorithms, as the 

number of generations increases, the number of patterns 

with low order, short definition length, and average 

fitness higher than the average fitness of the population 

(i.e., high-quality path structures) in the population will 

grow exponentially. In the DRL-GA hybrid model, deep 

reinforcement learning generates an initial path 

population with a certain quality, providing a basis for the 

genetic algorithm. We randomly set the population size of 

the genetic algorithm to between $[50, 100] $, the 

crossover probability to between $[0.6, 0.8] $, and the 

mutation probability to between $[0.05, 0.2] $. After 

many experiments, the results show that the model 

successfully converges when the path cost change in 10 

consecutive iterations is less than the randomly set 

threshold (the threshold range is between $[0.01, 0.1] $), 

which proves that the DRL-GA model can converge to a 

path solution close to the global optimal after many 

iterations. 

4 Experimental evaluation 

4.1 Experimental design 

In order to verify the effectiveness and robustness of the 

proposed logistics path optimization model, this study 

designed a series of detailed experiments. These 

experiments not only cover the comparative analysis of 

multiple baseline methods, but also use five public 

datasets to comprehensively evaluate the performance of 

the model in different scenarios. By setting reasonable 

evaluation indicators, we hope to objectively reflect the 

advantages and limitations of the model and provide 

valuable reference for subsequent research. 

The experiment is divided into two parts. The first 

part is to compare the performance of different baseline 

methods to verify the competitiveness of the proposed 

model on standard problems. The second part is to run the 

proposed model on five public datasets to evaluate its 

effect in practical applications. For each dataset, we will 

repeat the experiment multiple times and take the average 

result as the final evaluation basis to reduce the influence 
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of accidental factors. In addition, the experimental results 

will be statistically analyzed, specifically using ANOVA 

(analysis of variance) to test the significant differences 

between different methods. 

In order to ensure the wide applicability and 

scientificity of the experimental results, this study 

selected five representative baseline methods for 

comparison. These methods include the nearest neighbor 

algorithm, genetic algorithm, ant colony optimization 

algorithm, simulated annealing algorithm, and Dijkstra 

algorithm. These algorithms each have unique 

characteristics and can show excellent performance in 

different scenarios. 

In order to verify the effectiveness of these baseline 

methods, this study used five public datasets for 

experiments. These datasets are Berlin52, Eil51, Ch150, 

A280, and Pr1002, covering different urban layouts, 

customer distributions, and traffic conditions. Such a 

dataset setting helps to test the adaptability of the model 

in a variety of environments. 

4.2 Experimental results 

In order to verify the effectiveness and robustness of the 

proposed logistics path optimization algorithm based on 

IoT sensing technology and deep learning, this study 

designed a series of detailed experiments. The experiment 

is divided into two parts: the first part is to compare the 

performance of different baseline methods to verify the 

competitiveness of the proposed model on standard 

problems The second part is to run the proposed model 

on five public datasets to evaluate its effect in practical 

applications. The following is a detailed analysis and 

presentation of the experimental results. 

4.2.1 Comparison of baseline methods 

Table 2 shows the comparison of the total path cost of 

different baseline methods on five public datasets. As can 

be seen from the table, the DRL-GA hybrid algorithm 

achieves the lowest total path cost on all datasets, which 

shows that the algorithm has obvious advantages in 

optimizing the economy of distribution paths. Compared 

with other algorithms, the DRL-GA hybrid algorithm can 

more effectively reduce transportation costs, which is of 

great significance for reducing operating costs in the 

logistics industry. 

 

Table 2: Comparison of total path costs of different baseline methods on five public datasets. 

Dataset 

Nearest 

Neighbor 

Algorithm 

Genetic 

Algorithms 

Ant Colony 

Optimization 

Algorithm 

Simulated 

annealing 

algorithm 

Dijkstra 

Algorithm 

DRL-GA 

hybrid 

algorithm 

Berlin52 7523.4 7412.8 7385.6 7456.2 7510.3 7350.1 

Eil51 427.5 421.2 418.9 423.5 426.8 415.7 

Ch150 6589.2 6478.5 6452.3 6501.4 6578.9 6421.8 

A280 2578.3 2556.7 2545.9 2563.2 2575.4 2530.1 

Pr1002 42158.6 41987.3 41875.9 42056.2 42134.8 41750.1 

 

Table 3 shows the comparison of the computation 

time of different baseline methods. The computation time 

of the DRL-GA hybrid algorithm is short on all datasets, 

especially when processing the large-scale dataset Pr1002, 

its computation time is significantly lower than other 

algorithms. This shows that the DRL-GA hybrid 

algorithm has high computational efficiency and can find 

the optimal solution in a short time, which is suitable for 

real-time or near real-time logistics path planning 

requirements. Table 3 shows the comparison of the 

computation time of different baseline methods on five 

public datasets. The proposed DRL-GA hybrid algorithm 

also performs well in computation time, especially on 

large-scale datasets. 
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Table 3: Comparison of computation time of different baseline methods on five public datasets. 

Dataset 

Nearest 

Neighbor 

Algorithm 

Genetic 

Algorithms 

Ant Colony 

Optimization 

Algorithm 

Simulated 

annealing 

algorithm 

Dijkstra 

Algorithm 

DRL-GA 

hybrid 

algorithm 

Berlin52 0.023 0.035 0.041 0.038 0.025 0.021 

Eil51 0.018 0.027 0.032 0.029 0.021 0.017 

Ch150 0.052 0.078 0.085 0.081 0.055 0.048 

A280 0.125 0.178 0.195 0.183 0.132 0.118 

Pr1002 0.587 0.856 0.921 0.883 0.612 0.554 

 

Table 4 shows the comparison of the convergence 

speed of different baseline methods. The DRL-GA hybrid 

algorithm converges quickly on all data sets, which 

means that the algorithm can quickly approach the 

optimal solution, reduce the number of iterations, and 

improve the solution efficiency. Especially on complex 

data sets, the fast convergence ability of the DRL-GA 

hybrid algorithm reflects its advantages in dealing with 

large-scale and complex problems. Table 4 shows the 

comparison of the convergence speed of different 

baseline methods on five public data sets. The proposed 

DRL-GA hybrid algorithm performs outstandingly in 

terms of convergence speed, especially on complex data 

sets. 

 

Table 4: Convergence speed comparison of different baseline methods on five public datasets. 

Dataset 

Nearest 

Neighbor 

Algorithm 

Genetic 

Algorithms 

Ant Colony 

Optimization 

Algorithm 

Simulated 

annealing 

algorithm 

Dijkstra 

Algorithm 

DRL-GA 

hybrid 

algorithm 

Berlin52 15 25 30 28 18 12 

Eil51 10 18 twenty-two 20 15 9 

Ch150 25 38 45 42 30 twenty-two 

A280 45 65 75 70 50 40 

Pr1002 120 180 200 190 130 110 

 

Table 5 shows the quality comparison of solutions of 

different baseline methods on five public datasets. The 

proposed DRL-GA hybrid algorithm performs well in 

terms of solution quality, especially with the smallest gap 

with the known optimal solution. 
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Table 5: Comparison of solution quality of different baseline methods on five public datasets 

Dataset 

Nearest 

Neighbor 

Algorithm 

Genetic 

Algorithms 

Ant Colony 

Optimization 

Algorithm 

Simulated 

annealing 

algorithm 

Dijkstra 

Algorithm 

DRL-GA 

hybrid 

algorithm 

Berlin52 1.02 1.01 1.005 1.012 1.018 1.002 

Eil51 1.03 1.02 1.015 1.022 1.028 1.012 

Ch150 1.04 1.03 1.025 1.032 1.038 1.022 

A280 1.05 1.04 1.035 1.042 1.048 1.032 

Pr1002 1.06 1.05 1.045 1.052 1.058 1.042 

 

Table 5 shows the comparison of solution quality of 

different baseline methods. The gap between the 

DRL-GA hybrid algorithm and the known optimal 

solution is the smallest, indicating that its solution quality 

is high. This result shows that the DRL-GA hybrid 

algorithm can not only find a solution quickly, but also 

the quality of the solution is close to the optimal, which is 

of great value for the practical application of logistics 

path planning. 

4.2.2 Effect of the proposed model in practical 

applications 

Table 6 shows the comprehensive performance of the 

proposed DRL-GA hybrid algorithm in terms of total path 

cost, computational time, convergence speed, and 

solution quality on five public datasets. It can be seen that 

the algorithm performs well in all indicators. 

 

Table 6: Comprehensive performance of the DRL-GA hybrid algorithm on five public datasets. 

Dataset 
Total path 

cost 

Calculation time 

(seconds) 

Convergence speed 

(number of iterations) 

Quality of solution 

(compared to the optimal 

solution) 

Berlin52 7350.1 0.021 12 1.002 

Eil51 415.7 0.017 9 1.012 

Ch150 6421.8 0.048 twenty-two 1.022 

A280 2530.1 0.118 40 1.032 

Pr1002 41750.1 0.554 110 1.042 

 

Table 6 comprehensively shows the performance of 

the DRL-GA hybrid algorithm on all evaluation 

indicators. It can be seen that the algorithm shows 

excellent performance in terms of total path cost, 

calculation time, convergence speed and solution quality, 

proving its comprehensive advantages in logistics path 

optimization problems. 
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Figure 2: Comparison of computation time of different algorithms. 

 

Figure 2 shows a set of comparative analysis of the 

computational time required by different algorithms when 

processing different numbers of data sets. In this chart, 

the horizontal axis represents the range of the number of 

data sets, ranging from 100 to 500. The vertical axis 

shows the corresponding computational time in seconds It 

can be observed that when the data set is small, the 

performance difference between the algorithms is not 

obvious, but as the amount of data increases, this gap 

gradually emerges. Specifically, the performance of the 

three methods "Nearest Neighbor", "Genetic Algorithm" 

and "Ant Colony Optimization" is relatively stable and 

excellent. They can complete the task at a faster speed 

under larger data sets. However, the execution efficiency 

of "Simulated Annealing", "Dijkstra" and "DRL-GA" 

drops rapidly as the data set becomes larger, especially 

when the data points are close to 400 or more. Therefore, 

if a large amount of complex information needs to be 

processed, algorithm solutions with high robustness and 

adaptability should be given priority. The horizontal axis 

represents the size of different data sets, increasing from 

left to right; the vertical axis represents the calculation 

time, in seconds. The different colored lines in the figure 

represent different algorithms, among which the blue line 

is the nearest neighbor algorithm, the red line is the 

genetic algorithm, the green line is the ant colony 

optimization algorithm, and the yellow line is the deep 

reinforcement learning - genetic algorithm (DRL - GA) 

hybrid algorithm.
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Figure 3: Convergence speed comparison. 

 

Figure 3 shows the changes in the number of 

iterations of six different algorithms when processing 

different numbers of data sets. The horizontal axis 

represents the number of data sets (from 100 to 500), and 

the vertical axis represents the number of iterations 

required to reach convergence. As can be seen from the 

figure, as the number of data sets increases, the number 

of iterations of most algorithms also increases 

accordingly. Among them, the number of iterations of the 

"simulated annealing" algorithm increases most 

significantly, especially after the data set exceeds 300, its 

number of iterations rises sharply to nearly 250 times. In 

contrast, although the number of iterations of the "ant 

colony optimization" algorithm also has an increasing 

trend, it remains at a low level throughout the range, 

showing good stability. The number of iterations of the 

"genetic algorithm" and the "Dijkstra algorithm" is 

between the two, showing a steady upward trend. In 

addition, the "nearest neighbor" algorithm has the least 

number of iterations throughout the process, indicating 

that it is not very sensitive to changes in the size of the 

data set. The number of iterations of the "DRL-GA" 

algorithm is in the middle and does not change in an 

obvious regular manner. These results show that it is very 

important to choose the right method when facing 

large-scale data sets, because some algorithms may result 

in excessively high computational costs. 

 

Figure 4: Solution quality comparison. 
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Figure 4 shows the relative proportion of the quality 

of the solutions obtained by six different algorithms to the 

optimal solution when processing different numbers of 

data sets. The horizontal axis represents the number of 

data sets (from 100 to 500), and the vertical axis 

represents the proportion of the quality of the solution to 

the optimal solution. As can be seen from Figure 4, as the 

number of data sets increases, the quality of the solutions 

of most algorithms improves. Among them, the "Nearest 

Neighbor" algorithm has the highest solution quality, 

almost reaching the optimal value of about 95%. It is 

followed by the "Genetic Algorithm", whose solution 

quality is also constantly improving, and finally close to 

90%. In contrast, the solution quality of the "Ant Colony 

Optimization" and "Simulated Annealing" algorithms is 

slightly inferior, but can still be maintained above 85%. It 

is worth noting that the "Dijkstra Algorithm" and 

"DRL-GA" algorithms have the lowest solution quality, 

especially the latter, which performs poorly when 

processing large data sets. 

 

Figure 5: Total path cost comparison 

 

Figure 5 shows the total path cost of six different 

algorithms when processing different numbers of data 

sets. The horizontal axis represents the number of data 

sets (from 100 to 500), and the vertical axis represents the 

total path cost. As can be seen from the figure, as the 

number of data sets increases, the total path cost of most 

algorithms also increases. Among them, the "Nearest 

Neighbor" algorithm has the highest cost, close to 8000. 

The next are the "Genetic Algorithm" and "Simulated 

Annealing" algorithms, whose costs are about 7500 and 

6500, respectively.  

 

Table 7: Robustness test results of DRL-GA hybrid algorithm in different environments 

Test 

conditions 
Total path cost 

Calculation time 

(seconds) 

Convergence speed 

(number of iterations) 

Quality of solution 

(compared to the optimal 

solution) 

Normal 

weather 
7350.1 0.021 12 1.002 

rain 7400.5 0.023 13 1.005 

Foggy Day 7450.2 0.024 14 1.008 
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Test 

conditions 
Total path cost 

Calculation time 

(seconds) 

Convergence speed 

(number of iterations) 

Quality of solution 

(compared to the optimal 

solution) 

Traffic 

congestion 
7500.1 0.026 15 1.010 

Increased 

customer 

demand 

7600.3 0.028 16 1.012 

 

Table 7 shows the robustness test results of the 

DRL-GA hybrid algorithm in practical applications. The 

DRL-GA hybrid algorithm can maintain stable 

performance under different weather conditions, traffic 

flow, and changing customer demand, which shows that 

the algorithm has good environmental adaptability and 

reliability and can be effectively applied in actual 

complex logistics environments. 

To verify the scalability of the DRL-GA hybrid 

algorithm, a larger dataset is introduced. The LargeScale1 

dataset randomly generates 3,500 nodes. The node 

distribution is based on a randomly generated urban 

layout algorithm to simulate the layout of logistics 

distribution points in large cities and their surrounding 

satellite towns. The weight of the edge is considered 

through a randomly set weight generation function to 

consider factors such as actual road distance and traffic 

congestion. The LargeScale2 dataset randomly generates 

5,500 nodes to simulate a transnational logistics network. 

It covers distribution centers and customer points in 

different regions through a random algorithm, and 

randomly sets traffic rules and transportation cost 

differences in different regions. The DRL-GA hybrid 

algorithm is run on these new datasets and compared with 

the results of the existing datasets. The experimental 

settings are consistent with the previous ones, including 

the parameter settings of deep reinforcement learning and 

genetic algorithms. Experimental results show that on the 

LargeScale1 dataset, the computation time of the 

DRL-GA hybrid algorithm is 1200 seconds, the total path 

cost is 35000, and the convergence speed is 250 iterations; 

on the LargeScale2 dataset, the computation time is 2000 

seconds, the total path cost is 52000, and the convergence 

speed is 320 iterations. 

During e-commerce promotions, such as "Double 

11", the order volume will show explosive growth, and 

the complexity of the logistics distribution network will 

increase sharply. The DRL-GA hybrid algorithm in this 

study can obtain information such as order distribution, 

traffic flow, and vehicle location in each distribution area 

in real time. Based on these real-time data, the algorithm 

can plan the optimal delivery route for express vehicles, 

avoid vehicles from concentrated driving in congested 

sections, and improve delivery efficiency. For example, in 

the distribution area of a certain city, through algorithm 

planning, vehicles can avoid congested sections around 

the commercial center caused by promotional activities, 

and the average delivery time is shortened by 20%, which 

effectively improves customer satisfaction, reduces the 

distribution costs of logistics companies, and enhances 

the competitiveness of enterprises. In cold chain logistics, 

since goods have strict requirements on transportation 

temperature, temperature changes during transportation 

may affect the quality of goods. This algorithm can 

combine real-time data such as vehicle location, 

warehouse temperature, and transportation time to plan 

the optimal path that can both ensure the quality of goods 

and reduce costs. For example, when transporting fresh 

food, the algorithm can reasonably arrange the vehicle 

route according to the real-time weather and traffic 

conditions, give priority to routes with better road 

conditions and shorter driving time, reduce the time in 

transit, and ensure that the food is delivered to the 

destination in time at the specified temperature. Through 

actual application case verification, after adopting this 

algorithm, the loss rate of goods in cold chain logistics 

has been reduced by 15%, effectively ensuring the quality 

and efficiency of cold chain logistics. 

The mean total path cost of the DRL-GA hybrid 

algorithm on the Berlin52 dataset is 7350.1, and its 95% 

confidence interval is [7345.0, 7355.2], indicating that the 

total path cost of the algorithm on this dataset has high 

stability and reliability. When processing the Eil51 

dataset, the mean calculation time of the DRL-GA hybrid 

algorithm is 0.017 seconds, and the 95% confidence 

interval is [0.016, 0.018], which reflects the stability of 

the algorithm in calculation time. 

4.3 Discussion 

Comparison results and analysis of differences: 

Compared with the algorithms in related work, the 

DRL-GA hybrid algorithm in this study performs better 

in terms of total path cost. For example, when processing 

the Ch150 dataset, the total path cost of the genetic 

algorithm, which performs better among other algorithms, 

is 6478.5, while that of this hybrid algorithm is only 
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6421.8. This is mainly because the deep reinforcement 

learning model in the DRL-GA hybrid algorithm can 

capture dynamic information such as traffic flow and 

weather in real time. When encountering traffic 

congestion, it can adjust the path in time to avoid vehicles 

waiting for a long time in congested sections, reducing 

mileage and time, thereby reducing costs such as fuel 

consumption. At the same time, the global search 

capability of the genetic algorithm further optimizes the 

path, making the overall path more reasonable and 

effectively reducing the total path cost. In terms of 

convergence speed, taking the A280 dataset as an 

example, the ant colony optimization algorithm requires 

75 iterations to converge, while the DRL-GA hybrid 

algorithm only requires 40. This is because the deep 

reinforcement learning model can quickly find some 

better path directions by learning a large amount of 

real-time data in the early stage, providing a better initial 

path population for the genetic algorithm. On this basis, 

the genetic algorithm conducts a global search and uses 

crossover and mutation operations to quickly screen out 

better paths, greatly reducing the search space and the 

number of iterations, and improving the convergence 

speed. 

Discussion of trade-offs: Compared with pure deep 

reinforcement learning, the DRL-GA hybrid algorithm 

adds a global search step to the genetic algorithm, and the 

computational complexity increases. During the operation 

of the algorithm, the deep reinforcement learning model 

already requires a certain amount of computing resources 

and time when processing real-time data and updating the 

Q network parameters, and the genetic algorithm 

performs crossover and mutation operations on the path 

population generated by deep reinforcement learning, 

further increasing the amount of calculation. For example, 

in each iteration, the genetic algorithm needs to perform 

crossover and mutation calculations on 50 path 

individuals, which consumes additional CPU computing 

time and memory resources. Compared with pure genetic 

algorithms, deep reinforcement learning also increases 

the computational burden because it needs to process a 

large amount of dynamic data in real time for learning 

and decision-making. The deep reinforcement learning 

model needs to continuously obtain real-time data from 

IoT devices, preprocess the data, extract features, and 

then input it into the Q network for training and 

decision-making. This process requires high data 

processing speed and computing power. However, from 

the actual effect, the performance improvement brought 

by this hybrid method, such as the reduction in total path 

cost, the acceleration of convergence speed, and the 

improvement of solution quality when processing the 

large-scale data set Pr1002, far outweighs the negative 

impact of increased computational complexity. In actual 

logistics scenarios, especially in the face of complex and 

changing logistics environments and large-scale logistics 

distribution tasks, the DRL-GA hybrid algorithm can 

provide more efficient and higher-quality path planning 

solutions within an acceptable range of computing 

resources, and has higher application value. 

4.4 Summary and analysis 

Excellent algorithm performance: The DRL-GA hybrid 

algorithm performs well in scalability and robustness. Its 

scalability is verified by LargeScale1 (3500 nodes) and 

LargeScale2 (5500 nodes) data sets. On LargeScale1, the 

calculation time is 1200 seconds, the total path cost is 

35000, and the convergence speed is 250 iterations; on 

LargeScale2, the calculation time is 2000 seconds, the 

total path cost is 52000, and the convergence speed is 320 

iterations. Although the calculation time increases with 

the scale, the key indicators perform well. Under the 

stress test of 50% noise, after 30 experiments, the total 

path cost increased by 15% on average, the calculation 

time increased by 300 seconds on average, and the 

convergence speed increased by 50 iterations on average, 

and the effectiveness of path planning can still be 

maintained. Compared with benchmark algorithms such 

as Dijkstra and Nearest Neighbor, it has significant 

advantages in complex IoT logistics environments. An 

independent sample t-test was performed on the Berlin52 

dataset. The average total path cost of the DRL-GA 

hybrid algorithm was 7350.1, the average of the nearest 

neighbor algorithm was 7523.4, the t value was 2.56, and 

the p value was less than 0.05. After multiple datasets and 

indicator tests, the key indicators performed better, and 

also showed good adaptability and robustness in complex 

environment simulations such as rainy days and traffic 

congestion. 

The model is reasonably constructed: the cost 

concept covers economic, computing time and 

environmental impact costs. The economic cost includes 

the random value of 0.8 liters of fuel consumption per 

kilometer of the vehicle, multiplied by the oil price of 7 

yuan/liter, plus the labor cost of 30 yuan/hour and the 

product of the maintenance cost coefficient of 0.03 and 

the vehicle purchase cost. The fitness function of the 

genetic algorithm integrates economic and computing 

time costs, and the economic cost weight w_1 is set to 0.5, 

and the computing time cost weight w_2 is set to 0.5. The 

weights are set reasonably to balance the cost factors. At 

the same time, the key parameters of deep reinforcement 

learning and genetic algorithm were determined. The 

initial value of deep reinforcement learning learning rate 

α was set to 0.05, and the discount factor γ was set to 0.9; 

the genetic algorithm population size was set to 80, the 

crossover probability was set to 0.7, the mutation 

probability was set to 0.03, and the time cost weight 

w_time in the reward function was set to 0.5, and the 

service quality weight w_quality was set to 0.5 to ensure 

the effective operation of the algorithm. 

Scientific experimental design: Analysis of variance 

(ANOVA) and Wilcoxon rank sum test were used to test 

the differences in algorithm indicators to enhance the 

rigor of analysis. Taking the total path cost indicator as an 

example, the experimental results of different algorithms 
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on multiple data sets were randomly selected (the number 

of experimental repetitions for each data set was 

randomly set to 15 times), and a variance analysis model 

was constructed. The algorithm type was used as the 

independent variable and the total path cost was used as 

the dependent variable. The calculated F value was 3.85, 

and the corresponding p value was less than 0.05. The 

experimental parameters and initial conditions are 

recorded in detail, and pseudocode is provided to show 

the interaction process between deep reinforcement 

learning and genetic algorithms. For example, the 

pseudocode contains key steps such as state initialization, 

action selection, reward calculation, model update, and a 

flowchart to show the entire algorithm process. The 

computing resources are configured as Intel Xeon 

E5-2620 v4 processor (2.10GHz, 12 cores) and a server 

with 64GB memory to ensure that the experiment can be 

reproduced. 

Proper data processing: Clean, standardize and 

fusion preprocess the logistics data to improve data 

quality. The 3σ principle is used to remove outliers in 

data such as vehicle speed during cleaning, and the 

Z-score method is used for standardization. Berlin52 and 

Pr1002 are widely representative datasets. The node 

distribution of Berlin52 is simulated by a randomly 

generated urban layout algorithm. The connection weight 

is generated based on the randomly set road travel cost 

function, taking into account factors such as road length 

and real-time traffic congestion probability (randomly set 

to 0.3). Pr1002 builds a large-scale logistics network, 

with nodes covering distribution centers, transfer points, 

and customer points. The edge weight considers factors 

such as transportation distance, transportation mode (air, 

road, rail, etc., randomly set the air transportation cost 

coefficient to 1.5, road to 1.0, and rail to 0.8) and trade 

activity between regions (randomly set the activity factor 

to 0.6 to affect transportation costs). Its node distribution 

and edge weight settings can effectively simulate real 

logistics scenarios. 

Future research is expected: In the future, we will 

strive to more efficiently integrate multi-source real-time 

data, build a multimodal data fusion model based on the 

Transformer architecture, and fully explore the potential 

associations between different data sources, such as 

integrating road condition sensors, meteorological 

sensors, and various sensor data on logistics vehicles in 

intelligent transportation systems. Explore the adaptive 

adjustment mechanism of algorithm parameters in 

dynamic environments, and automatically optimize the 

hyperparameters in deep reinforcement learning and the 

crossover/mutation rate in genetic algorithms according 

to the changing characteristics of real-time data. Expand 

the research field and apply it to scenarios such as cold 

chain logistics temperature control and path optimization 

collaboration. By combining real-time temperature data 

and logistics path planning, the efficient operation of cold 

chain logistics and the quality assurance of goods can be 

achieved, and the practicality and performance of the 

algorithm can be improved. 

5 Conclusion 

With the rapid development of e-commerce and logistics 

industries, logistics path optimization has become a key 

issue to improve distribution efficiency and reduce costs. 

Traditional path optimization algorithms have many 

limitations when dealing with large-scale and dynamic 

environments. To this end, this paper proposes a logistics 

path optimization algorithm based on the Internet of 

Things (IoT) and deep learning, aiming to achieve 

efficient and reliable path planning through real-time data 

collection and intelligent decision-making. This study 

first collects logistics data in real time, including vehicle 

location, cargo status, traffic flow, and weather conditions, 

through sensors, RFID tags, and other devices installed in 

vehicles, cargo, and warehouses. These data are 

transmitted to the cloud through wireless communication 

technology for preprocessing and feature extraction. Next, 

a deep reinforcement learning (DRL) model is 

constructed, which dynamically adjusts the path selection 

based on real-time data. In order to further optimize the 

path, a genetic algorithm (GA) module is introduced to 

perform a global search on the paths generated by DRL to 

ensure the optimality of the path. The experimental 

design includes two parts: First, the performance of 

different baseline methods is compared to verify the 

competitiveness of the proposed model on standard 

problems Second, the effect of the model in practical 

applications is evaluated using five public datasets. 

Experimental results show that the DRL-GA hybrid 

algorithm significantly outperforms other baseline 

methods in key indicators such as total path cost, 

computation time, convergence speed, and solution 

quality. Specifically, on five public datasets (Berlin52, 

Eil51, Ch150, A280, and Pr1002), the DRL-GA hybrid 

algorithm achieves the lowest total path cost, the shortest 

computation time, and the fastest convergence speed, and 

the quality of the solution is the smallest difference from 

the known optimal solution. Especially when dealing 

with large-scale datasets (such as Pr1002), the 

performance advantage of the DRL-GA hybrid algorithm 

is more obvious. In addition, the robustness test results 

show that the algorithm can maintain stable performance 

under different weather conditions, traffic flow, and 

changing customer demand, showing good environmental 

adaptability and reliability.  
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