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In light of the proliferation of cybercrimes, the effective identification and mitigation of such online 

criminal activities has emerged as a significant challenge within the domain of network security. 

Therefore, this study introduces dilated convolution technology, self-attention mechanism, convolutional 

neural network and long short-term memory network, and proposes an overlapping traffic recognition 

model based on improved convolutional neural network and an online crime recognition model with long 

short-term memory network. In the traffic segmentation model test, the recall rate, F1 value, and error 

rate of the model under normal traffic conditions were 91.43%, 93.46%, and 92.43%, respectively. The 

error rate was 4.15%. The accuracy of the online crime recognition model for malware propagation and 

illegal transactions was 96.54% and 92.87% respectively. In the concept drift test, when the training time 

and test time interval was 60 days, the accuracy of the model was 48.67% higher than that of the long 

short-term memory network. Compared with the mainstream framework and traditional methods, its 

accuracy in high traffic scenarios was 94.78%, the error rate was 3.89%, and the P-value was < 0.05. In 

the final simulation test, the model could effectively identify illegal software transactions. The results 

show that the proposed model has high accuracy and strong generalization ability in identifying 

overlapping traffic and website fingerprint crimes, and effectively improves the detection ability of 

criminal activities in anonymous networks. 

Povzetek: Predstavljen je model za prepoznavanje spletnega kriminala, ki temelji na konvolucijskih in 

LSTM nevronskih mrežah in z uporabo tehnologije razredčene konvolucije in mehanizma samo-

pozornosti dosega visoko točnost pri segmentaciji prometa in prepoznavanju spletnih kaznivih dejanj.  

Učinkovito izboljšuje zaznavanje kriminalnih aktivnosti v anonimnih omrežjih. 

 

1 Introduction 
With the rapid development of Internet technology, the 

increasing complexity and openness of cyberspace have 

brought unprecedented opportunities and challenges to 

society [1]. The emergence and popularization of 

anonymous networks provide an important guarantee for 

users' privacy protection in the network. However, it also 

makes some wrongdoers utilize anonymous networks to 

engage in various criminalactivities, among which the 

anonymous communication system represented by the 

onion router (Tor) is particularly typical [2]. Tor network 

realizes the high anonymity of user identity and 

communication content through multi-layer encryption 

and node forwarding techniques, which is widely used for 

legitimate purposes such as protecting user privacy and 

preventing network surveillance. However, the 

anonymity of Tor network is also used by some criminals 

to circumvent legal supervision and become a hotbed for 

cybercriminal activities, such as illegal trading, malware 

distribution, hacking and other behaviors [3]. In this 

context, applying overlapping traffic segmentation and 

website fingerprinting (WF) technology to collect 

potential criminal evidence and detect abnormal behavior 

in an early stage in order to identify and combat online 

criminal behavior in anonymous networks has become a  

 

key issue that needs to be addressed urgently. At the same 

time, the industry's research on anonymous network 

traffic analysis and criminal behavior identification is 

also deepening and developing. Wang Y et al. proposed a 

deep learning-based intrusion detection system SMSO-

CNN to address the security risks and privacy issues 

caused by the transmission of large amounts of data in 

wireless networks. The system combined the spider 

monkey swarm optimization algorithm and CNN to 

improve the ability to identify network attacks. The 

results showed that the system was superior to LSTM and 

other methods in terms of accuracy [4]. Gu X et al. 

proposed an online defense strategy based on non-

targeted adversarial patches to address the limitations of 

existing WF attack defense methods in practical 

applications. Experiments indicated that the model 

achieved 95.50% defense accuracy and 12.57% time 

overhead in real-time traffic [5]. To address the problem 

of high dimensionality of cybercrime data, Rawat R et al. 

proposed a feature selection method based on multi-

objective evolutionary algorithm (MOEA) and combined 

it with NSGA-II to reduce data dimensionality and 

identify the most relevant features. The experimental 

results indicated that this method effectively improves the 

efficiency of data processing [6]. Xian K proposed an 
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improved WF fingerprint recognition algorithm to solve 

the problem of identifying encrypted traffic in virtual 

private networks. Moreover, it combined it with an 

optimized capsule neural network model CapsNet to 

classify encrypted traffic. The research results showed 

that this method was superior to the random forest 

algorithm in terms of recognition accuracy and 

convergence speed, with a recognition rate of 99.98% [7]. 

Milad N et al. proposed a blind adversarial perturbation 

algorithm to address the problem that traffic analysis 

technology based on deep neural networks (DNN) was 

vulnerable to adversarial perturbation attacks. By 

remapping functions to create adversarial perturbations 

independent of network connections, the algorithm was 

applied to real-time anonymous network traffic analysis 

to defeat WF identification and traffic association 

classifiers. The experimental results indicated that this 

method was applicable to a variety of traffic classifier 

types. The robustness test of existing countermeasures 

performed poorly [8]. 

Because of their superior 2D data processing 

capabilities, convolutional neural networks (CNNs) are 

frequently utilized in image categorization and target 

recognition applications. Yesodha K et al. suggested a 

novel intrusion detection system incorporating CNN, 

fuzzy temporal rules, and an artificial bee colony 

optimization algorithm for the security vulnerability 

problem in wireless sensor network communication with 

the goal of improving the classifier's performance. Based 

on experimental assessments, the model performs better 

in terms of increased accuracy and decreased false alarm 

rate than popular classification algorithms like long short-

term memory (LSTM) [9]. A CNN intrusion detection 

technique based on data imbalance was presented by Gan 

B et al. to address the hazards to network security brought 

on by recurrent network intrusions. The findings revealed 

that, with an implementation time of 1.42 seconds, the 

method attained an average accuracy of 98.73% in binary 

and multi-classification identification [10]. An intelligent 

prediction technique for security performance was 

suggested by Xu L et al. to address security concerns in 

mobile IoT healthcare networks. To increase the CNN 

model's adaptability to nonlinear medical large data, the 

study combined a four-branch beginning block with a 

four-layer convolution. The results indicated that the 

intelligent algorithm improved the security performance 

prediction accuracy by 20% and had better prediction 

performance [11]. Yan F. et al. addressed the issue of 

inadequate training samples and sample class imbalance 

in intrusion detection systems by proposing an intrusion 

detection system based on migration learning and 

integrated learning. The two fundamental learning models 

that were selected were Xception and Inception. A tree-

structured estimator was used to tune the hyperparameters 

[12]. Finally, the study summarizes the research areas, 

indicator test results, and limitations of the above 

literature review. The results are shown in Table 1 below. 

 

Table 1: Literature summary table 

Study Methodology Performance Metric Shortcomings 

Wang Y et al. 

[4] 

Intrusion detection system based 
on SMSO-CNN 

Higher accuracy than LSTM 
and nearest neighbor algorithms 

Not designed for anonymous 

network traffic, struggles with 

overlapping traffic 

Gu X et al. [5] 
Fingerprint defense strategy of 

online website based on Grad-CAM 

95.50% defense accuracy, 

12.57% time overhead 

Focuses on defense tasks, does not 

address abnormal behavior recognition 
in anonymous networks 

Rawat R et al. 

[6] 

Feature selection method based 
on MOEA combined with NSGA-II 

for dimensionality reduction 

Effectively improves data 

processing efficiency 

Focused on feature selection, lacks 

real-time traffic analysis 

Xian K et al. 

[7] 

Optimized fingerprint recognition 

for encrypted traffic based on CapsNet 

SSL VPN traffic recognition 
rate of 99.98%, recall rate of 

99.98% 

Effective for encrypted traffic 
classification but lacks ability to handle 

complex anonymous traffic patterns 

Milad N et al. 

[8] 

Blind adversarial perturbation 

algorithm to defeat DNN-based traffic 

analysis methods 

Demonstrated high 

effectiveness across multiple traffic 

classifiers 

Robustness testing performs poorly 

Yesodha K et 

al. [9] 

Intrusion detection system based 

on FT-ABC-CNN 

Low false alarm rate, higher 

classification accuracy than long 
short-term memory networks 

Limited to generic network 

features, cannot handle overlapping 
traffic patterns 

Gan B et al. 

[10] 

Intrusion detection method based 
on CNN-IDMDI 

Average binary and multi-
class accuracy of 98.73% 

Lacks temporal feature extraction, 

struggles with dynamic and complex 

behaviors 

Xu L et al. 

[11] 

Improved CNN for IoT-enabled 
security performance prediction 

Improves prediction accuracy 
by 20% 

Focused on IoT, does not consider 

dynamic features of anonymous 

networks 
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Yan F et al. 

[12] 

Intrusion detection system based 

on TL-CNN-IDS 

Significantly improves 

accuracy 

Limited datasets, does not address 
overlapping traffic or anonymous 

network issues 

 

Combined with Table 1, most studies have some 

shortcomings while improving the ability of traffic 

classification and behavior recognition. First, the majority 

of extant methods prioritize comprehensive network 

traffic monitoring, yet they are deficient in their capacity 

to discern intricate and clandestine criminal activities. 

This is particularly problematic in anonymous network 

environments, where traditional rule-based matching 

methods are challenging to implement effectively to 

detect anomalous behaviors indicative of specific 

criminal activities. Second, many traffic analysis methods 

often have a high false alarm rate in practical 

applications, which makes it difficult for law enforcement 

agencies to respond quickly when faced with massive 

alarm information. In addition, these methods have low 

computational efficiency and are difficult to meet the 

requirements of real-time monitoring of large-scale 

network traffic. In view of this, this study introduces the 

hollow convolution technology in CNN and proposes a 

Tor overlapping traffic segmentation model based on the 

hollow convolution convolutional neural network 

(CNNH). At the same time, combining the attention 

mechanism, CNN, and LSTM, an online criminal 

behavior recognition model based on multi-core 

convolutional neural networks and long short-term 

memory networks (MCNN-LSTM) is proposed. The 

model analyzes network traffic characteristics, accurately 

identifies the websites visited by users, and effectively 

identifies anomalous network behaviors related to 

criminal activities, becoming a powerful auxiliary tool for 

online crime investigation. 

The main contributions of the study are as follows: 

First, the MCNN-LSTM model based on the combination 

of multi-core convolution and LSTM network is 

proposed. By using multi-module collaborative 

optimization, the modeling capabilities of spatial features 

and time series features are integrated to improve the 

theoretical framework and method design of network 

traffic anomaly detection. Second, the self-attention 

mechanism (SAM) is introduced into the model 

architecture, which can dynamically focus on key 

features and improve the model's adaptability to dynamic 

environments. Finally, a multi-scale feature extraction 

method is proposed to capture multi-scale spatial features 

based on the multi-core convolution module. 

2 Methods and materials 

2.1 Online crime and its challenge 

Online criminals often use the anonymity, privacy 

protection and global characteristics of the Internet to 

carry out various illegal activities, including illegal 

gambling, online transactions, money laundering, 

malware propagation, etc. Studies have shown that the 

economic losses caused by cybercrime worldwide each 

year have reached hundreds of billions of dollars, which 

has brought a huge burden to the global economy [13]. 

The diversity and complexity of cybercrime make 

traditional legal supervision and law enforcement 

methods face huge challenges in dealing with these 

behaviors. 
Among online crimes, online gambling is a relatively 

common type. Criminals attract users to participate in 

online gambling activities by setting up and operating 

illegal gambling websites. These websites usually rely on 

anonymous networks, such as the Tor network or 

cryptocurrency payments, which greatly improves their 

concealment and evades legal supervision. This makes it 

difficult for law enforcement agencies to track and collect 

evidence, making it difficult to effectively combat these 

criminal activities. Online prostitution is also an illegal 

activity carried out using the Internet. Criminals usually 

promote and trade through dark web platforms to avoid 

tracking. In addition, illegal transactions are also an 

important aspect of online criminal activities. Criminal’s 

trade prohibited items such as drugs, weapons, and 

counterfeit goods in anonymous markets such as the dark 

web. Such markets often rely on complex encryption 

technology and anonymous payment methods to conduct 

transactions, making it extremely difficult for law 

enforcement agencies to investigate. Another important 

form of online crime is the spread of malware. Malware 

includes ransomware, phishing software, etc., which can 

be spread through various network channels and pose a 

serious threat to individuals, enterprises and even 

government agencies. The spread of malware can not 

only steal personal privacy information, but also lead to 

the loss of core corporate data, and in serious cases, even 

endanger national security. Every year, the number of 

data leaks caused by malware is huge, and the economic 

losses caused are difficult to estimate [14]. In addition, 

with the popularization of IoT technology, cyber attacks 

on smart devices are also on the rise, further expanding 

the scope of online criminal activities. 

Faced with these challenges, traditional legal and law 

enforcement methods are unable to cope with the high 

concealment and transnational nature of online crimes. 

Researchers and law enforcement agencies have begun to 

rely on advanced technical means, especially recognition 

algorithms based on network traffic analysis and deep 

learning. Through these technologies, researchers can 

extract useful features from massive amounts of network 

data to identify and track criminal behavior. In recent 

years, more and more research has been devoted to 

improving traffic analysis methods to improve the ability 

to detect complex cybercrime, especially crimes in 

anonymous networks. In the future, with the further 

development of technology, more intelligent detection 

systems for online criminal behavior will be widely used 

to better cope with the growing network threats. 
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Online crime identification is the process of locating 

and assessing possible illegal activity, such as online 

gambling, malware distribution, and illegal transactions, 

by analyzing network traffic, user behavior patterns, and 

data characteristics. Unlike traditional network traffic 

analysis, online crime identification focuses more on the 

complex characteristics of criminal behavior hidden in 

anonymous networks, often involving protocol abuse, 

encrypted data streams, and anomalous behavior patterns. 

Anomalous network behavior usually manifests itself in 

the form of anomalous network traffic patterns, including 

but not limited to the following. On the Tor network, 

high-frequency, short-duration access patterns may 

reflect scanning attacks. Abnormal packet intervals or 

excessively large packet sizes may indicate covert 

channel communications. Sudden changes in traffic 

characteristics may indicate malware activity. In this 

context, this study will explore a network traffic analysis 

method based on deep learning and explore its 

application potential in identifying anomalous network 

behavior in the early stage of online crimes. 

2.2 CNN-based model construction for tor 

overlapping traffic segmentation 

With the development of anonymous communication 

technology, Tor network is widely used for both legal and 

criminalactivities due to its strong anonymity and privacy 

protection [15]. Tor achieves anonymity in 

communications by dividing user communications into 

multiple data packets, transmitting them through multiple 

relay nodes, and encrypting and decrypting the data 

packets. The high privacy of anonymous networks makes 

them an important tool for legitimate users to protect their 

privacy, but they also provide shelter for various 

criminalactivities, such as online gambling, online 

prostitution, and illegal transactions. These crimes not 

only cause great social harm, but also bring great 

challenges to law enforcement agencies in identification 

and tracking. At the same time, this anonymity also 

makes traffic analysis and identification more difficult, 

especially in the case of overlapping traffic. Overlapping 

traffic segmentation refers to the technique of decoupling 

and segmenting the traffic when the communication data 

of multiple users are transmitted simultaneously over the 

same communication link in an anonymous network 

environment. In contrast to the broader approach of 

network traffic analysis, the concept of overlapping 

traffic segmentation entails the identification of the traffic 

aliasing relationship between disparate users and the 

extraction of characteristic information from the traffic of 

particular users. This facilitates the detection of potential 

abnormal behavior. The flow of traditional overlapping 

traffic segmentation is shown in the following Figure 1. 
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Figure 1: The basic process of overlapping traffic segmentation 

 

As shown in Figure 1, first identify the key segmentation 

points in the traffic, and use these segmentation points to 

segment the traffic and extract feature points related to 

specific behavior patterns. Then, the segmented traffic 

segments are recognized and classified, and finally 

further processing is performed based on the recognition 

results. CNN has a strong feature extraction capability 

and is suitable for handling overlapping traffic in network 

traffic. Online criminal activities are often accompanied 

by complex network traffic patterns that may overlap 

with normal traffic, increasing the difficulty of 

identification. By using convolution kernels to extract 

local features from input traffic, CNN can effectively 

separate and identify abnormal behavior patterns in 

overlapping traffic, thereby helping to detect potential 

criminal activities, such as suspicious transaction requests 

or abnormal data packet transmissions. Therefore, the 

study will construct overlapping traffic segmentation 

model based on CNN. CNN applies convolutional kernel 

to extract local features by sliding window approach, the 

calculation is shown in Equation (1) [16]. 

 

1 1

, ,( ),( ) ,
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i j behavior i m j n m n
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= +  (1) 

In Equation (1), ,i jY  represents the value of the 

output feature map at position ( , )i j . ,( ),( )behavior i m j nX + +  is 

the element in the input feature map. ,m nW  represents the 

weight matrix element of the convolution kernel. The 

training model can automatically adjust the weight to 

better capture specific behavior features. b  is the bias 

term. M  and N  denote the height and width of the 

convolution kernel. Equation (2) illustrates why the 

rectified linear unit (ReLU), which is easy to understand, 

quick to compute, and capable of handling deep 

networks, is chosen as the activation function.  

 

( ) ( )0,f x max x=   (2) 

 

In Equation (2), x  denotes the value input to the 

activation function after the convolution operation. In the 

next pooling stage, the expression is shownin Equation 

(3) [17]. 
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_max( )behavior feature
window

P X=   (3) 

 
In Equation (3), P  is the maximum value of the 

pooling window. _behavior featureX  is the element of the input 

feature map, which includes behavior features extracted 

from network traffic such as transmission frequency and 

directional features. Through downsampling, the pooling 

procedure shrinks the FM's size, lowering computational 

cost and enhancing the model's resilience. Finally, the 

fully connected layer (FCL) expression is shown in 

Equation (4) [18]. 

 

, ,trade malware anomaly

z Wz b

z z z z

= +

    =  

   (4) 

 

In Equation (4), z  is the input high-dimensional 

feature vector, and W  is the weight matrix of the fully 

connected layer. z  contains a combination of multiple 

behavioral features, and tradez , malwarez , and anomalyz  

represent features related to illegal transactions, malware 

propagation, and other abnormal behaviors, respectively. 

Among the most often utilized loss functions in 

classification problems is the cross-entropy loss function. 

Equation (5) illustrates its expression by calculating the 

difference between the probability distribution (PD) of 

the real labels and the PD predicted by the model. 

 

_
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ˆ( log( ))
N

behavior feature i i

i

L w y y
=

= −   (5) 

In Equation (5), L  is the loss value. _behavior featurew  

represents the weight factor related to the behavior 

characteristics. N  represents the number of samples, iy  

is the true label, and i  represents the actual category 

corresponding to the sample, that is, whether it is an 

illegal activity. ˆ
iy  is the probability distribution predicted 

by the model. By adding the weight factor of the behavior 

characteristics, the model can more effectively focus on 

the characteristics related to the criminal behavior, 

thereby improving the recognition effect of the model in 

specific criminal behavior scenarios. 

Due to the highly encrypted and complex time series 

characteristics of Tor traffic, the study introduces the 

hollow convolution technique, by introducing cavities in 

the convolution kernel. That is, extending the receptive 

field without adding more parameters by adding gaps 

between the convolution kernel's parts. Hollow 

convolution (also known as expanded convolution) is a 

technique that expands the receptive field by inserting 

holes in the convolution kernel, capturing a wider range 

of features without increasing the number of parameters. 

This method helps the model handle long-range 

dependencies while maintaining computational efficiency, 

as shown in Figure 2. 
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Figure 2: Multi-scale feature extraction using dilated convolution 

 

Figure 2(a), (b), and (c) represent the convolutional 

kernel arrangement with convolutional expansion rate of 

1, 2, and 4, respectively. In Figure 2(a), when the 

convolutional expansion rate is 1, the convolutional 

kernel size is 3×3, which is the same as the conventional 

convolutional kernel, and the sensory field only covers 

the local area. In Figure 2(b) with a convolution 

expansion rate of 2, the convolution kernel sense field 

expands to 7×7, but the actual parameters remain 3×3. In 

Figure 2(c) with a convolution expansion rate of 4, the 

sense field further expands to 15×15, and the number of 

parameters remains the same. Null convolution can 

effectively extract multi-scale information and remote-

dependent features without increasing the computational 

complexity, and is suitable for processing complex 

features in Tor traffic. 

In the rest of the model, batch normalization is first 

introduced after each convolutional layer to accelerate 

convergence and improve generalization. Second, a larger 

range of contextual information is captured by expanding 

the sensory field by the application of null convolution. 

Moreover, to prevent overfitting, a Dropout layer is 

introduced to enhance model robustness. Furthermore, to 

better handle the complex aspects of Tor traffic, a deep 

network structure is built by stacking numerous 

convolutional, pooling, and FCLs. Therefore, the 

structure of the overlapping traffic segmentation model of 

CNNH is shown in Figure 3 below. 
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Figure 3: Overlapping traffic segmentation model based on CNNH 

 

As shown in Figure 3, the process of the CNNH 

overlapping traffic segmentation model consists of four 

parts. First, the input layer receives the original Tor 

traffic data and passes it to the CNN layer. The CNN 

layer extracts representative features from the input 

traffic through a series of convolution operations and 

pooling operations, including network behavior features 

such as packet size, transmission time interval, and 

transmission frequency. These extracted features are then 

passed to the FCL, where the features are further 

comprehensively analyzed to generate a high-dimensional 

feature vector. Finally, the output layer completes the 

prediction and classification of the traffic segmentation 

results based on the output of the FCL, helping the model 

distinguish between legitimate traffic and potential 

criminal behavior. To facilitate understanding of the 

specific implementation of the CNNH model, the pseudo 

code is given below, as shown in Figure 4. 

 

# Pseudocode for CNNH Model

# Input: Network traffic data (X), labels (Y)

# Output: Predicted labels (Y_hat)

# Step 1: Data Preprocessing

X_preprocessed = preprocess_data(X)  # Normalize and extract features

# Step 2: Dilated Convolution (Hollow Convolution) Module

def DilatedCNN_Module(X):

    Conv1 = Conv2D(filters=32, kernel_size=(3, 3), dilation_rate=1, activation='relu')(X)

    Conv2 = Conv2D(filters=64, kernel_size=(3, 3), dilation_rate=2, activation='relu')(Conv1)

    Conv3 = Conv2D(filters=128, kernel_size=(3, 3), dilation_rate=4, activation='relu')(Conv2)

    PooledFeatures = MaxPooling2D(pool_size=(2, 2))(Conv3)

    return PooledFeatures

X_dilated = DilatedCNN_Module(X_preprocessed)

# Step 3: Fully Connected Layers for Classification

def ClassificationHead(X):

    Dense1 = Dense(units=64, activation='relu')(X)

    Output = Dense(units=num_classes, activation='softmax')(Dense1)

    return Output

Y_hat = ClassificationHead(X_dilated)

# Step 4: Model Training

model = compile_model(optimizer='adam', loss='categorical_crossentropy')

model.fit(X_preprocessed, Y, epochs=50, batch_size=32)

# Pseudocode for CNNH Model

 

Figure 4: Overlapping traffic segmentation model based on CNNH 

 

The pseudo code in Figure 4 shows the workflow of 

the CNNH model in complex network traffic feature 

extraction. The model effectively expands the receptive 

field through the hole convolution module. Therefore, it 

can reduce information loss while maintaining the 

integrity of spatial features. 
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2.3 Research on online criminal behavior 

recognition model based on LSTM and 

CNN 

CNN for traffic segmentation, although excellent in 

spatial feature extraction, still suffers from recognition 

limitations when confronted with time-series features in 

Tor traffic. In contrast, LSTM, as a recurrent neural 

network that excels in processing sequence data, is 

suitable for the field of network traffic analysis due to its 

powerful modeling capability of time series features [19]. 

In online criminal behaviors, such as cyber attacks or 

illegal transactions, specific time patterns are often 

shown, such as persistent illegal access attempts or 

regular small-amount fund transfers. By analyzing the 

time series features in network traffic, LSTM can identify 

the regularity of these criminal behaviors and provide 

support for crime prevention by predicting future 

behavior trends. Therefore, the study will try to combine 

CNN and LSTM and introduce the SAM to extract and 

classify important features. 

In the overall process design, the input data is first 

processed through a data encoding module to convert the 

raw data into a form suitable for model input. Then, it is 

passed through the SAM module in order to enhance the 

attention to the key features. Then, CNN and LSTM 

modules perform feature extraction and time series 

analysis on the data processed by the attention 

mechanism, to capture behavioral patterns that recur over 

long periods of time. Finally, the model outputs the 

recognition results to realize the recognition of WF. In 

the data encoding module, the training data is shown in 

Equation (6).  

 

 1 1 2 2( , ), ( , ),..., ( , )

(1, 1,1, 1,...,1)

n nT X G X G X G

X

=


= − −
   (6) 

 

In Equation (6), T  denotes the training data set. 
nX  

and 
nG  denote the n th traffic instance and website class 

label, respectively. One-Hot encoding, a popular 

encoding technique in neural network multi-classification 

tasks, is crucial for guaranteeing the classification 

model's accuracy, preventing label misrepresentation, and 

increasing computational efficiency. Therefore, One-Hot 

state bits are used for encoding. Further, in the SAM 

module, the correlation matrix of the input sequence is 

first calculated as shown in Equation (7) [20]. 

 

  

  

 

v
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




   (7) 

 

In Equation (7), V , K , Q denote the value, key, and 

query matrices, respectively. 
vW , 

kW , and qW all denote 

the initial weight matrices, which correspond to the value, 

key, and query weight matrices, respectively. These 

matrices project the input sequences into different vector 

spaces for subsequent computation of the attention 

scores. The attention score is shown in Equation (8). 

 

1

( , )
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i j

j
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=

=
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In Equation (8), 
ia  denotes the i th attention weight. 

jv is the element at the j th position in the value vector 

V . Thus, Figure 5 shows a schematized version of the 

SAM structure. 
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Figure 5: Self attention mechanism layer structure 

In Figure 5, the input sequence X  is first converted 

to value matrix V , key matrix K , and query matrix Q  

through three weight matrices 
vW , 

kW , and qW , 

respectively. Then, the Q  and K  calculate the 

correlation through dot-product operation, and the result 

is inputted into the Softmax function (SF) to generate the 

attention weights 
ia after scaling. These attention weights 

are used to weight the corresponding elements in the V  

elements, and finally the weighted value matrix is passed 

through a summation operation to obtain the output. By 

using this approach, the model can dynamically 

concentrate on important features according to how 

important each segment of the input sequence is. This 

successfully boosts the model's performance when 

processing complex data and improves its capacity to 

capture vital information. Finally, in the CNN and LSTM 

module, the resulting feature sequence is spliced into a 

two-dimensional feature matrix. Then the one-

dimensional maximum pooling layer (PL) is connected 

for data dimensionality reduction processing, and the 

expression is shown in Equation (9). 

 

, 5 1 1 2max( , , , )l l l l l

i h j j j jY Z Z Z Z= − + +=  (9) 

 

In Equation (9), , 5

l

i hY =  then denotes the result of the 

pooling operation via the convolution kernel of 5. 
l

jZ , 

2

l

jZ + , and 2

l

jZ +  all denote the neighboring feature values 

in the previous layer of l . Subsequently, the extracted 

spatial features are fused as shown in Equation (10). 

 

, 3 , 4 , 5( , , )l l l l

j i h i h i hF concat Y Y Y= = ==   (10) 

 

In Equation (10), 
l

jF  denotes the fused features after 

convolution and pooling. , 3

l

i hY = , , 4

l

i hY = , and , 5

l

i hY =  denote 
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the i th output of the pooling of the l th layer with 

convolution kernel size 3, 4, and 5, respectively. Equation 

(11) illustrates how the data is put into the LSTM to 

extract the temporal features once the fusion is finished. 

 

1( )t h t x th W h W x b −= + +  (11) 

 

In Equation (11), 
th  and 

1th −
 represent the hidden 

states of the current time step and the previous time step, 

respectively, that is, the contextual information of the 

behavioral features at the current moment. For identifying 

criminal behavior, the information of the previous time 

step, such as the occurrence of certain abnormal 

behaviors at the previous moment, can help predict 

whether the behavior at the current moment is abnormal. 

tx  represents the input features of the current time step, 

and 
hW  represents the weight matrix of the hidden state, 

which can learn how to transfer the criminal behavior 

features of the previous moment to the current moment. 

xW  is the weight matrix of the input features, which is 

used to weight the input features of the current time step. 

These weights can learn the importance of different 

behavioral features in predicting criminal behavior. b  is 

the bias term, and   is the activation function. By 

introducing nonlinearity, the model can capture complex 

behavioral patterns. Finally, the model further fuses 

spatial features, temporal features and behavioral features 

to form a unified feature representation. Specifically, 

spatial features are extracted through the convolution 

layer, temporal features are captured through the LSTM 

layer, and behavioral features are extracted based on 

high-risk behavior patterns in traffic. The fused feature 

representation is shown in Equation (12). 

 

spatial temporal behavioralz z z z  = + +  (12) 

 

In Equation (12), spatialz  represents the spatial 

features extracted by the convolution layer, which can 

help identify local anomalies in network traffic. temporalz  

represents the temporal features extracted by the LSTM 

layer, which captures recurring patterns in the time 

dimension, especially high-frequency packet transmission 

behaviors. 
behavioralz  represents the high-level features 

obtained by the behavioral feature extraction mechanism, 

which reflects specific behavioral patterns such as 

malware propagation and illegal transactions.  ,  , and 

  are all weighting factors. The weights are adjusted 

according to the importance of different features to 

ensure the sensitivity of the model to specific behavioral 

patterns. Therefore, the improved CNN-LSTM structure 

is shown in Figure 6 below. 
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Figure 6: The structure and temporal feature fusion of the MCNN-LSTM Model 
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In Figure 6, first, the input sequence passes through 

multiple convolutional layers, each with a different 

convolutional kernel size to capture different scale 

features in the input data. Subsequently, a PL is used to 

downsample the convolved FMs, so decreasing their size 

and, consequently, the computational complexity. Then, 

the multi-scale features are integrated through a fusion 

layer to form a unified feature representation, helping the 

model capture more comprehensive traffic information. 

Immediately afterward, these features are passed to the 

LSTM layer. The LSTM layer specializes in processing 

time-series data and is able to capture long-range 

dependencies in the data. Subsequently, the high-

dimensional features output from the LSTM layer are 

expanded into one-dimensional vectors through the 

Flatten layer. Finally, the output of the classification or 

regression task is carried out through the FCL, thereby 

identifying potential criminal behavior in network traffic. 

Therefore, according to the above calculations, the online 

criminal behavior recognition process based on MCNN-

LSTM is shown in Figure 7. 
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Figure 7: Online criminal behavior identification process 

 

As shown in Figure 7, first, during the training phase, 

the preservation model is trained using the binary and 

multi-classification datasets created from the network 

traffic data, respectively. In the recognition phase, the 

input network traffic is first processed by the open-world 

MCNN-LSTM to determine whether it is labeled in the 

accusation domain. If the traffic belongs to the accusation 

domain, it enters the open-world label processing and is 

recognized using the closed-world MCNN-LSTM. If it 

does not belong to the accusation domain, it enters the 

closed-world labeling processing. Through the staged 

processing, the model is able to process the open-world 

and closed-world labels separately, thus improving the 

accuracy and efficiency of the recognition. To intuitively 

demonstrate the implementation process of the MCNN-

LSTM model, its pseudo code is given below, as shown 

in Figure 8. 
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# Pseudocode for MCNN-LSTM Model

# Input: Network traffic data (X), labels (Y)

# Output: Predicted labels (Y_hat)

# Step 1: Data Preprocessing

X_preprocessed = preprocess_data(X)  # Normalize and extract features

# Step 2: Multi-Scale Convolution (MCNN) Module

def MCNN_Module(X):

    Conv1 = Conv2D(filters=32, kernel_size=(3, 3), activation='relu')(X)

    Conv2 = Conv2D(filters=64, kernel_size=(5, 5), activation='relu')(Conv1)

    Conv3 = Conv2D(filters=128, kernel_size=(7, 7), activation='relu')(Conv2)

    CombinedFeatures = concatenate([Conv1, Conv2, Conv3])

    PooledFeatures = MaxPooling2D(pool_size=(2, 2))(CombinedFeatures)

    return PooledFeatures

X_spatial = MCNN_Module(X_preprocessed)

# Step 3: Temporal Feature Extraction with LSTM

def LSTM_Module(X):

    LSTM_output = LSTM(units=128, return_sequences=True)(X)

    return LSTM_output

X_temporal = LSTM_Module(X_spatial)

# Step 4: Self-Attention Mechanism (SAM)

def SelfAttention(X):

    Q = dot(X, Wq)  # Query matrix

    K = dot(X, Wk)  # Key matrix

    V = dot(X, Wv)  # Value matrix

    AttentionScores = Softmax(dot(Q, K.T) / sqrt(d_k))  # Scaled Dot-Product Attention

    Output = dot(AttentionScores, V)  # Weighted sum of values

    return Output

X_attention = SelfAttention(X_temporal)

# Step 5: Fully Connected Layers for Classification

def ClassificationHead(X):

    Dense1 = Dense(units=128, activation='relu')(X)

    Output = Dense(units=num_classes, activation='softmax')(Dense1)

    return Output

Y_hat = ClassificationHead(X_attention)

# Step 6: Model Training

model = compile_model(optimizer='adam', loss='categorical_crossentropy')

model.fit(X_preprocessed, Y, epochs=50, batch_size=32)

# Pseudocode for MCNN-LSTM Model

 

Figure 8: Schematic diagram of MCNN-LSTM pseudo code 

 

This pseudo code in Figure 8 clearly shows the main 

modules of the MCNN-LSTM model and their interaction 

process. First, the multi-core convolution module 

captures the multi-scale features of the input data and 

combines the pooling layer to reduce the computational 

complexity. Subsequently, the LSTM module is 

employed to model the time series features, with the self-

attention mechanism further emphasizing the key features 

to enhance the classification performance. Finally, the 

network traffic classification is completed by the fully 

connected layer. 

3 Results 

3.1 Performance testing of overlapping 

traffic segmentation model for CNNH 

The study began by setting up a suitable 

experimental environment to meet the computational 

requirements of the experiment. The experiment uses 

Windows 10 operating system with a 12-core Xeon 

Platinum 8163 processor and a graphics card NVIDIA 

Tesla P100-16GB. The model development language is 

Python 3.7. The study selects the CW200 dataset as the 

experimental object, which contains a variety of normal 

and abnormal traffic with high noise and complex traffic 

patterns, meeting the needs of overlapping traffic 

segmentation and abnormal behavior identification in 

anonymous networks. The diversity of protocol 

distribution and user behavior is taken into account 

during data collection in order to mimic traffic patterns in 

real-world scenarios as closely as possible. The dataset 

collects traffic data from 200 different websites accessed 

through the Tor network in a closed world. Each site has 

2,500 traffic accesses, which are divided into training and 

test sets in a 6:4 ratio. A stratified sampling method is 

used to ensure that the proportions of the training and test 

sets are consistent in terms of protocol type, traffic 

feature distribution, and attack type, thus avoiding the 

bias of the model performance evaluation due to uneven 
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data distribution. In addition, to reduce the risk of 

overfitting, the dropout regularization technique is 

introduced into the experiment, and the diversity of the 

training data is improved by data enhancement. Among 

them, normal traffic accounts for 60%, abnormal traffic 

accounts for 40%, and is further divided into four 

categories: Trojans, Worms, Viruses, and Adware. The 

proportion of category samples is balanced and covers a 

variety of network protocols and anonymous network 

scenarios. Data cleaning, feature extraction, and 

standardization are performed during data preprocessing, 

and traffic behavior patterns are labeled as normal or 

abnormal. First, the settings of each parameter in CNNH 

are shown in Table 2 below. 

 

Table 2: Model parameter settings 

Parameter Value 

Input dimension 5000 

Network architecture layers 12 

Batch size 256 

Epochs 50 

Gradient optimization function Adam 

Learning rate 0.001 

Dropout 0.4 

 

Table 2 shows the settings for input dimension, 

network architecture layers, training details, optimizer, 

learning rate and Dropout rate, respectively. The study 

uses CNN, dilated CNN (DC-CNN), and multi-layer 

perceptron with dilated convolution (MLP-DC) as 

comparison models. When criminal activities are carried 

out in anonymous networks, criminal behavior is often 

hidden in normal traffic. A high segmentation accuracy 

means that the model can more accurately distinguish 

normal network behavior from potential criminal 

behavior, and can more accurately capture traffic patterns 

related to criminal activities such as illegal transactions 

and malware propagation, thereby reducing false 

positives and improving the effectiveness of crime 

identification. Therefore, the traffic segmentation 

accuracy is used as an indicator, and the test results are 

shown in Figure 9. 
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Figure 9: Accuracy trends on training and test sets for different models 

 

Figure 9(a) and (b) show the accuracy of CNN, DC-

CNN, MLP-DC, and CNNH with the iterations on the 

training set and test set, respectively. In the case of 

malware propagation, the model identified multiple 

suspicious data packets through high-precision traffic 

segmentation. The transmission frequency and time 

characteristics of these data packets are highly consistent 

with known malware propagation behaviors, thereby 

enabling law enforcement to swiftly identify the source of 

the behavior. 

In Figure 9(a), when the number of iterations is 50, 

the accuracy of CNN, DC-CNN, MLP-DC and CNNH 

models on the training set is 0.85, 0.89, 0.91, 0.97, 

respectively. In Figure 9(b), the accuracy of the four 

models on the test set are 0.83, 0.85, 0.87, 0.92, 

respectively. DC-CNN and MLP-DC introduce the 

advantage of null convolution to extract deep features 

more comprehensively. To verify whether the difference 

in accuracy between different models on the training and 

test sets is statistically significant, a paired t-test is 

performed on the normalized accuracy and the 95% 

confidence interval is calculated, as shown in Table 3. 
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Table 3: Statistical significance analysis 

Dataset Model Comparison 

Normalized 

accuracy 

difference (%) 

95% 

confidence interval 

(%) 

P-value 
Statistical 

significance 

Trainin

g set 

CNNH vs. CNN 12 [10.2, 13.8] < 0.01 Significant 

CNNH vs. DC-CNN 8 [6.4, 9.6] < 0.05 Significant 

CNNH vs. MLP-DC 6 [4.7, 7.3] < 0.05 Significant 

Testing 

set 

CNNH vs. CNN 9 [7.5, 10.5] < 0.01 Significant 

CNNH vs. DC-CNN 7 [5.6, 8.4] < 0.05 Significant 

CNNH vs. MLP-DC 5 [3.8, 6.2] < 0.05 Significant 

 

The statistical analysis results in the table show that 

the accuracy improvement range of CNNH on the 

training set is from +6.0% to +12.0%, and the 

improvement range on the test set is from +5.0% to 

+9.0%. The P-values for all comparisons are less than 

0.05, indicating statistical significance. In addition, the 95% 

confidence interval indicates that the range of differences 

is relatively stable. Subsequently, the segmentation effect 

of each model under different traffic flows is shown in 

Table 4 below. 

 

Table 4: Performance evaluation indicators for each algorithm 

Index 
CNN DC-CNN MLP-DC CNNH 

Normal Attack Normal Attack Normal Attack Normal Attack 

P/% 83.52 85.67 86.14 88.43 88.79 90.57 91.43 93.45 

R/% 84.67 86.82 88.53 89.92 90.35 91.74 93.46 94.32 

FPR/

% 
13.65 12.34 10.74 9.98 8.96 7.43 4.15 3.07 

F1/% 84.09 86.24 87.32 89.17 89.56 91.15 92.43 93.88 

AUC 0.769 0.788 0.812 0.828 0.839 0.846 0.928 0.935 

Time/

s 
12.34 13.02 15.89 16.58 19.65 20.23 18.41 19.12 

Resource 

consumpti

on/% 

68.54 69.85 72.32 73.46 75.69 76.78 70.17 71.54 

 

Table 4 displays the performance comparison of the 

models for segmentation under Normal and Attack 

traffic. False positive rate (FPR) is critical in law 

enforcement contexts, as a high FPR could lead to 

misidentifying benign traffic as criminal activity, 

resulting in wasted resources. The CNNH model has 

significantly higher values for P, R, F1 and AUC. 

Especially, the P-value of CNNH reaches 93.45% and the 

R value is 94.32% under Attack traffic. Meanwhile, the 

FPR of CNNH is only 4.15%, indicating that it can 

effectively reduce the false alarms. However, with the 

increase of model complexity, the resource consumption 

rate and calculation time of CNNH increase accordingly, 

reaching 71.54% and 19.12s, respectively. Although its 

resource requirements are high, the significant 

improvements in accuracy and sensitivity make up for 

this shortcoming. In contrast, the traditional CNN is at a 

lower level in all performance indicators. However, its 

resource consumption rate and computation time are low, 

which makes it suitable for scenarios with limited 

computational resources. The proposed model has been 

demonstrated to effectively reduce the FPR, ensuring 

higher accuracy and reliability in identifying criminal 

behavior. Furthermore, it has been shown to facilitate the 

optimization of resource allocation and action decisions. 

In the experiment, the recall rate is equivalent to the 

sensitivity, i.e., the proportion of actual anomalous traffic 

that is correctly detected. In practical scenarios, this 

balance of performance is critical. Maintaining sensitivity 

ensures that abnormal behavior is not ignored due to low 

detection capabilities. Further analysis of the 

experimental results shows that false positives occur 

mainly in normal traffic with high access frequency, such 

as normal data transmission of certain legitimate 

protocols being misclassified as abnormal traffic. This 

may be due to the similarity between the characteristics 

of high-frequency access patterns and abnormal traffic. 

False negatives, on the other hand, are mainly 

concentrated on abnormal traffic with weaker 

characteristics or close to normal traffic characteristics, 

such as covert adware traffic. False positives can lead to 

reduced efficiency in resource allocation, while false 

negatives can cause some potential threats to be ignored. 

3.2 Online crime recognition experiment 

based on MCNN-LSTM 

In the hyperparameter setting of MCNN-LSTM, the 

learning rate is optimized in the range of 0.0001 to 0.01 

by grid search and finally selected as 0.001. The batch 

size is set to 32. The number of hidden layer nodes is set 

to 128, which can effectively capture the time series 

characteristics of traffic data. The time step is set to 20. 

Adam is used as the optimizer to improve the training 

efficiency. The number of training rounds is set to 50, 

and the early stopping strategy is combined to avoid 



Online Criminal Behavior Recognition Based on CNNH… Informatica 49 (2025) 127–144   139 

overfitting. To improve the generalization ability of the 

model, Dropout is added to the network and the ratio is 

set to 0.3. The study labeled the traffic data set according 

to different crime types, mainly including three types of 

crimes: online fraud, malware propagation, and illegal 

transactions. multi-layer perceptron convolutional neural 

network (MLP-CNN), long short-term memory with 

attention mechanism (LSTM-Att), and LSTM are 

selected as comparison algorithms. First, the accuracy test 

results of the four models for different types of online 

criminal behaviors are shown in Figure 10 below. 
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Figure 10: Model performance in crime type identification 

In Figure 10, the MCNN-LSTM model showed the 

best accuracy, especially in the identification of malware 

propagation and illegal transactions, reaching 96.54% and 

92.87% respectively. This is because MCNN-LSTM 

combines the spatial feature extraction capability of CNN 

with the temporal feature capture capability of LSTM, 

and can better handle the complex patterns and temporal 

dependencies in criminal behavior. Although LSTM-Att 

improves the focus on important features by introducing 

the attention mechanism, its spatial feature extraction 

capability is weak, so it is still inferior to MCNN-LSTM 

in multi-dimensional feature extraction. LSTM has the 

worst performance among the three crime types, 

especially in the identification of malware propagation, 

which is only 87.43%. Subsequently, to evaluate the 

performance of each model in crime prediction and 

prevention, the following indicators are used: prediction 

accuracy, early warning time (early warning time is 

defined as the time interval between the first detection of 

an abnormal traffic pattern by the model and the actual 

occurrence of the attack behavior), precision, FPR, mean 

detection time, and area under the receiver operating 

characteristic curve (AUC). The results are shown in 

Table 5 below. 

 

Table 5: Performance comparison of models in crime prediction and early warning tasks 

Metrics LSTM 
MLP-

CNN 

LSTM-

Att 
MCNN-LSTM 

Prediction Accuracy /% 80.45 84.67 88.76 92.43 

Average Early Warning Time 

/Minutes 
15 18 25 30 

Precision /% 79.87 83.54 87.34 91.23 

False Positive Rate /% 9.67 8.23 6.45 5.12 

Mean Time to Detect /Seconds 42.8 35.6 28.1 24.3 

AUC 0.835 0.874 0.915 0.945 

 

In Table 5, MCNN-LSTM shows the best 

comprehensive performance. Compared with other 

models, MCNN-LSTM achieved a prediction accuracy of 

92.43%, which is significantly higher than LSTM's 

80.45% and MLP-CNN's 84.67%. Although LSTM-Att 

introduces the attention mechanism, its spatial feature 

extraction capability is insufficient, resulting in the 

advance warning time and prediction accuracy being 

inferior to MCNN-LSTM. In addition, MCNN-LSTM 

can warn of criminal behavior 30 minutes in advance, this 

capability is mainly due to the model's deep modeling of 

time series characteristics. In particular, the introduction 

of the SAM further enhances the model's ability in key 

feature extraction, enabling it to quickly focus on 

abnormal behavior features and reduce the interference of 

irrelevant features. The accuracy of MCNN-LSTM is also 

better than other models, with the lowest false positive 

rate of only 5.12%. The model performs well in reducing 

false positives. In contrast, LSTM has a higher false 

positive rate of 9.67%, due to the lack of spatial feature 

modeling, its adaptability to traffic pattern changes is 

poor and the false alarm rate is significantly high. In 

terms of average detection time, the MTTD of MCNN-

LSTM is 24.3 seconds, which is better than 28.1 seconds 

of LSTM-Att and 35.6 seconds of MLP-CNN, which 

further proves the real-time detection capability of the 

model. 
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Finally, the concept of concept drift is used to 

evaluate the robustness and adaptability of the models in 

the face of changing data distributions. Conceptual drift 

refers to the phenomenon that the data distribution 

changes over time. Its practical application is due to the 

fact that the traffic pattern, feature distribution, and user 

behavior of a website may change over time. The drift 

simulation involves the gradual adjustment of the ratio of 

normal traffic to abnormal traffic, thereby reflecting the 

dynamic changes in network attack behaviors. The 

protocol-related features (e.g., packet length, time 

interval) are subject to random changes, thereby 

simulating fluctuations in protocol usage and traffic 

characteristics. Furthermore, the incorporation of novel 

attack types at various temporal points serves to mirror 

the progression of attack patterns. These designs are 

intended to closely mirror the evolving trends in the 

actual network environment, thereby facilitating the 

evaluation of the model's efficacy in handling long-term 

distribution shifts. The results are shown in Figure 11. 
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Figure 11: Impact of concept drift on model accuracy over time 

Figure 11 shows the model accuracy of the four 

models under training time and testing time of 5, 10, 20, 

and 60, respectively. As the interval time increases, the 

concept drift leads to different degrees of decrease in the 

accuracy of each model. A lower drop value suggests that 

the model is more flexible and can continue to perform 

well in classification even when concepts diverge. When 

the interval between training and testing events is 60 

days, the recognition accuracies of LSTM, MLP-CNN, 

LSTM-Att, and MCNN-LSTM models are 60.2%, 73.8%, 

80.7%, and 89.5%, respectively. The advantage of 

MCNN-LSTM in dynamically changing environments 

lies in its optimized model architecture. The multi-kernel 

convolution module extracts multi-scale spatial features 

by convolution kernels of different sizes. The SAM 

dynamically focuses on key features to reduce 

interference. It works in conjunction with time series 

modeling to significantly improve adaptability to 

dynamic changes in the traffic feature distribution. In 

contrast, LSTM lacks spatial feature extraction 

capabilities and relies only on time series modeling, 

resulting in high sensitivity to changes in traffic patterns 

and rapid loss of accuracy. MLP-CNN is biased toward 

fixed patterns in feature extraction and has insufficient 

adaptability to concept drift. 

Finally, several representative models including 

time-series Transformer, spatial-temporal graph 

convolutional network and transformer framework (ST-

GCN+Transformer), bidirectional long short-term 

memory with attention mechanism (BiLSTM+Attention), 

random forest and principal component analysis 

(RF+PCA), and K-nearest neighbor (KNN) are selected 

for comparison. These five models cover the hybrid 

framework and transformer method in modern deep 

learning, as well as the classic algorithms of traditional 

machine learning and non-deep learning. It can fully 

reflect the advantages and disadvantages of different 

technical routes in network traffic analysis. The dataset 

used is the representative open world network traffic 

dataset CIC-IDS2017. It records normal traffic and 12 

malicious attack behaviors, has 80 traffic features, and 

has highly complex traffic patterns and open network 

environment characteristics. The results are shown in 

Table 6. 
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Table 6: Performance comparison and scalability testing of models under different traffic loads 

Traffic 

condition 
Model Name 

Accuracy 

/% 

FPR 

/% 

Average 

processing 

time 

(ms/sample) 

Accurac

y at 300% 

data 

expansion 

/% 

P-

value 

Small 

traffic 

(10% 

data) 

MCNN-LSTM 96.78 2.95 18.6 94.12 < 0.05 

Time-series 

Transformer 
95.23 3.21 17.5 92.45 < 0.05 

ST-

GCN+Transformer 
95.78 3.1 20.9 93.34 < 0.05 

BiLSTM+Attention 92.67 4.89 19.2 89.45 < 0.05 

Random 

Forest+PCA 
88.23 7.34 14.7 86.34 < 0.05 

KNN 84.12 9.78 15.9 82.45 < 0.05 

Mediu

m traffic 

(50% 

data) 

MCNN-LSTM 95.89 3.45 20.8 93.34 < 0.05 

Time-Series 

Transformer 
94.12 3.89 18.3 91.67 < 0.05 

ST-

GCN+Transformer 
94.78 3.56 21.2 92.78 < 0.05 

BiLSTM+Attention 90.78 5.45 19.6 88.01 < 0.05 

Random 

forest+PCA 
86.34 8.12 15.2 84.78 < 0.05 

KNN 82.45 10.78 16.5 79.67 < 0.05 

High 

traffic 

(100% 

data) 

MCNN-LSTM 94.78 3.89 22.5 92.12 < 0.05 

Time-series 

Transformer 
93.12 4.12 19.9 90.56 < 0.05 

ST-

GCN+Transformer 
93.78 4.01 22.8 91.45 < 0.05 

BiLSTM+Attention 89.34 6.12 20.3 87.12 < 0.05 

Random 

forest+PCA 
84.89 9.34 15.8 82.45 < 0.05 

KNN 81.12 11.78 16.7 78.34 < 0.05 

 

In table 6, MCNN-LSTM shows high accuracy in all 

traffic load scenarios, reaching 96.78% in small traffic 

scenarios and maintaining 94.78% in high traffic 

scenarios. Moreover, it demonstrated strong classification 

capabilities with an FPR of 3.89%. This is mainly due to 

its multi-module synergy combining CNN and LSTM, 

which can effectively capture the complex relationship 

between spatial and temporal features. Time-series 

Transformer and ST-GCN+Transformer also perform 

similarly in terms of FPR and accuracy. The global 

modeling capabilities of these two models allow them to 

perform well in dynamic network scenarios. The 

accuracy of the BiLSTM+attention model is subject to a 

significant decrease in high-traffic scenarios due to the 

limitations of the feature extraction method. In contrast, 

the KNN and Random Forest methods demonstrate a 

higher degree of suitability for small-scale data sets. 

However, when the data is expanded to 300%, the 

accuracy undergoes a substantial decline, indicating a 

lack of adaptability to large-scale, complex scenarios. 

3.3 Simulation test 

In online criminal behavior on anonymous networks, the 

illegal software trading market is active, and many 

websites specialize in the illegal sale of pirated software. 

The illegal sale of pirated software not only violates 

intellectual property laws, but also involves illegal 

transactions and fund transfers through anonymous 

networks, which is a common and widespread form of 

online crime. Such websites conduct transactions through 

encrypted networks and anonymous payment systems, 

and users can purchase unauthorized commercial 

software, hacking tools, and cracked software. On one of 

the websites, called Dark Web Software Mall, about 

4,000 users visit and trade every day. The website uses 

encrypted communication protocols and anonymous 

payment methods such as Bitcoin. 

The experiment uses web crawler technology to 

capture network traffic data from the website for 10 days, 

with a total of 400,000 packets, of which 200,000 packets 

are directly related to illegal software transactions, 

including user login, browsing illegal software, ordering, 

and anonymous payment. At the same time, for 

comparison, the study also obtains traffic data from legal 

e-commerce platforms in the same period, totaling 

150,000 packets, which are related to browsing and 

purchasing legal software. Traffic capture and model 

training are performed on a server running the Linux 
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operating system, with a 16-core CPU, 32GB memory, 

and 500GB storage space. The experiment uses the 

Wireshark tool to capture network traffic to ensure the 

accuracy and integrity of the data. The traffic data 

includes parts obtained from legal e-commerce websites 

and illegal software trading websites, with a total of 

400,000 packets. To ensure that the model can effectively 

identify traffic behaviors related to illegal software 

transactions, the study preprocesses the data, removed 

noise, and extracted key features, including packet size, 

time interval, and transmission direction. By analyzing 

the traffic characteristics, the model is further used to 

distinguish the network traffic of legal software 

transactions, and illegal software sales. The results are 

shown in Table 7 below. 

 

Table 7: Detection results of illegal software transactions compared to legitimate traffic 

Metric Detection results 
Legitimate traffic 

(control group) 

Illegal software 

transaction traffic 

Large-scale software 

downloads (times/day) 

Average of 3.2 

detections/day 
0.5-1.1 times/day 8.7-12.3 times/day 

Frequent small anonymous 

payments (transactions/day) 

Average of 1.8 

transactions/day 
1.3-2.2 times/day 

20.6-30.4 

times/day 

Abnormal data packet 

transmission (data volume/day) 

Average detection 

of 100 MB/day 
75.4 MB/day 502.6 MB/day 

Average file size of downloads 

(MB) 
15.3 MB 10.7 MB 50.8 MB 

Anonymous payment amount 

(per transaction) 
Average of $512.4 $ 52.3 - $ 98.5 $ 10.7 - $ 49.6 

 

The experimental results show that the model can 

effectively identify illegal software transactions. First, in 

the detection of large-scale software downloads, there are 

an average of 8.7 to 12.3 large file downloads per day in 

illegal transaction traffic, while there are only 0.5 to 1.1 

downloads in legal traffic. Secondly, frequent small 

anonymous payments have also become an important 

feature for identification. An average of 20.6 to 30.4 

small payments are made per day in illegal transaction 

traffic, while legal transactions are only about 1.8. In 

addition, the transmission volume of abnormal data 

packets in illegal traffic far exceeds the normal range, 

with an average of 502.6MB of data transmitted per day, 

while the transmission volume of legal traffic is about 

75.4MB. 

Through the traffic identification of criminal 

behavior, technology not only provides analysis results, 

but more importantly, it helps law enforcement agencies 

take quick action. The proposed model provides 

categorized anomalous traffic patterns and their 

associated characteristics, such as traffic types and time 

intervals, which can help law enforcement identify 

potential threats and prioritize suspicious behavior for 

further investigation. 

4 Discussion 

The CNNH model showed excellent performance in 

the overlapping traffic segmentation task, with 

precision and recall reaching 91.43% and 93.46%, 

respectively, and a false positive rate of only 4.15%. In 

contrast, DC-CNN and MLP-DC each had an accuracy 

lower than 87% due to their limited feature extraction 

capabilities. The main reason for this performance 

difference was that CNNH achieved effective 

extraction of multi-scale features by introducing atrous 

convolution technology. Second, the accuracy trends 

of different models on the training and test sets. As the 

number of iterations increases, the normalized 

accuracy of CNNH reached 97% and 92% on the 

training and test sets, respectively. In addition, the 

statistical significance analysis further proved the 

reliability of these performance differences, with P-

values less than 0.05 for all comparisons. The 

prediction accuracy of the MCNN-LSTM model 

reached 92.43%, the precision was 91.23%, the false 

positive rate was 5.12%, and it could achieve a 30-

minute early warning capability. In comparison, the 

accuracy of the traditional LSTM model and the MLP-

CNN model under complex traffic patterns was 

84.67% and 80.45%, respectively. 

Finally, compared to traditional methods, the 

proposed model showed significant advantages in 

scalability and dynamic adaptability. Traditional 

methods had acceptable performance on small data 

sets, but their accuracy was less than 80% in high-load 

traffic scenarios, making it difficult to effectively 

capture dynamic characteristics in complex network 

environments. In contrast, by combining deep learning 

technology, MCNN-LSTM not only performed stably 

in highly complex scenarios, but also provided early 

warning capabilities for criminal behavior, showing a 

wide range of practical application potential. 

5 Conclusion 
Through real-time monitoring of network traffic, the 

system can detect potential risks before criminal activities 

occur. In view of this, this study proposed a CNNH-based 
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Tor overlapping traffic segmentation model and an 

MCNN-LSTM website fingerprint recognition model. 

The performance test results indicated that the average 

segmentation accuracy of CNNH was 95.05% when the 

number of iterations was 50. Under Attack traffic, the P, 

R, F1, and AUC values of CNNH were 93.45%, 94.32%, 

93.88%, and 0.935, respectively. The FPR was only 

3.07%, which was better than the comparison model. Its 

computational time consumption was 19.12s, and the 

resource consumption rate was 71.54%. In the MCNN-

LSTM performance test, its recognition accuracy for 

malware propagation and illegal transactions reached 

96.54% and 92.87% respectively. In the prediction 

experiment results, the prediction accuracy of MCNN-

LSTM was 92.43%, and it could issue an early warning 

30 minutes in advance, with a false positive rate of only 

5.12% and a detection time of only 24.3s. In terms of 

computational time consumption, the MCNN-LSTM 

model consumes 102ms per round of training. In the 

concept drift test, the recognition accuracy of the MCNN-

LSTM model was 89.5% when the training and testing 

events were separated by 60 days. This shows that the 

proposed model in the study had excellent recognition 

accuracy and robustness. 

6 Limitations and future research 
The proposed MCNN-LSTM model performs well in 

anonymous network traffic analysis, but it still has some 

limitations. As the model complexity increases, CNNH 

and MCNN-LSTM have high computational resource and 

time consumption requirements, and may be difficult to 

deploy in real-time in hardware resource-constrained 

environments. The study simulated concept drift by 

adjusting feature distribution, protocol variations, and 

attack types, but drift in real-world scenarios may be 

more complex, such as sudden changes in user behavior 

or nonlinear changes in traffic patterns. In addition, 

advanced attackers may confuse traffic patterns by 

disguising malicious traffic or using complex encryption 

techniques to increase the difficulty of detection. For 

highly dynamic features or low-frequency anomalous 

behavior, the model may run the risk of failing to detect 

them. Although the false positive rate has been reduced, it 

may still cause false alarms that affect monitoring 

efficiency. In addition, the model may cause privacy 

issues when applied to anonymous network monitoring, 

such as excessive monitoring or false alarms that result in 

innocent users being tagged. The scope of monitoring 

must be strictly limited and privacy regulations must be 

followed. 

Future research will focus on optimizing the 

performance and practical value of the model. First, 

through the lightweight design of the model and the 

distributed computing architecture, the computational and 

memory consumption can be reduced, and the scalability 

of large-scale real-time monitoring can be improved. 

Second, by combining long-term real Tor traffic data, the 

adaptability of the model in complex concept drift 

scenarios will be verified, and the robustness of the 

model against obfuscation strategies will be improved 

through adversarial training and multimodal data fusion. 

In addition, integrating data from multiple sources, such 

as user behavior logs and vulnerability information, can 

improve the ability to detect low-frequency anomalous 

behavior. In terms of privacy protection, future work will 

introduce data encryption and anonymization processing 

technologies, and combine the context post-processing 

mechanism to optimize false positive control to ensure 

the credibility and legality of the model application. 

Future research will also explore the applicability of the 

model in other potential application areas. For example, 

in enterprise network security, MCNN-LSTM can be 

used to detect abnormal traffic and potential attack 

behavior in the enterprise internal network, helping to 

improve security protection capabilities. At the same time, 

future research must focus on the ethical and privacy 

implications of model deployment, strictly adhere to 

relevant laws and regulations, and ensure the social 

responsibility and legality of the technology. 
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