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This paper addresses surface defect detection for parts with highly reflective surfaces, proposing a 

machine vision-based line-focused laser inspection method. This method leverages the reflective and 

curved features of part surfaces, utilizing a line-focused laser to mitigate halo and reflection issues 

common in traditional lighting methods. By collecting and analyzing reflected laser line images, the 

system effectively detects and classifies surface defects. To enhance detection efficiency and accuracy, 

this study integrates a deep learning-based YOLOv5 model trained on an expanded dataset. A series of 

controlled experiments on 5086 defect samples demonstrate that YOLOv5 achieves a mean Average 

Precision (mAP) of 96.35%, significantly outperforming YOLOv3 and traditional vision-based 

approaches. The tested defect types include scratches, pits, and varying degrees of surface roughness, 

ensuring a comprehensive evaluation of detection performance. Specifically, YOLOv5 shows a 10.3% 

reduction in inference time compared to YOLOv3 while maintaining superior detection performance. The 

system processes images of 5496×3672 pixels in 0.744 seconds, meeting industrial demands for real-time, 

high-precision defect detection. 

Povzetek: Predstavljena je metoda za detekcijo napak na odbojnih površinah z uporabo linijsko 

fokusiranega laserja in modela YOLOv5. Metoda uspešno premaguje odboje in halo efekte ter dosega 

96,35 % mAP, kar je več kot pri YOLOv3, in ustreza industrijskim zahtevam po hitri in natančni kontroli. 

 

1  Introduction 
In recent years, the burgeoning markets of smartphones, 

tablets, and new energy vehicles have significantly 

increased the demand for lithium batteries. The battery 

case steel, a high-quality precision cold-rolled product, 

requires stringent surface quality to achieve double-sided 

O5 level standards. Minor surface defects can lead to the 

rejection of entire batches, underscoring the necessity for 

meticulous selection of lithium battery casings [1-3]. 

Traditional methods for inspecting the surface 

quality of lithium battery cases primarily involve manual 

visual inspection. This approach is not only inefficient and 

labor-intensive but also prone to errors and oversights due 

to subjective human factors. Additionally, manual 

inspections can cause secondary damage to the lithium 

battery cases if mishandled. Contact measurements, such 

as those made with coordinate measuring machines 

(CMMs) or stylus-based profilometers, are time-

consuming and may compromise surface integrity, 

particularly for high-reflectivity materials. The direct 

interaction between the probe and the surface can 

introduce micro-scratches or localized deformations, 

which is highly undesirable for lithium battery cases that 

require pristine surface conditions. Moreover, due to the 

small-scale and complex curvature of battery casings, 

contact-based methods struggle to achieve comprehensive 

surface characterization, making them unsuitable for high-

precision, large-scale quality control in industrial  

 

applications [4-6]. Microscopic inspections, although 

detailed, are limited to small areas and are not conducive  

to rapid, large-area surface quality assessments [6]. Chen 

et.al [7] conducted a comprehensive review on the use of 

machine learning methods in surface defect detection for 

industrial products. They explored traditional machine 

vision techniques based on texture, color, and shape 

features, as well as recent advances in deep learning 

approaches including supervised, unsupervised, and 

weakly supervised methods. The study also addressed key 

challenges such as real-time processing, small sample 

sizes, detection of small targets, and unbalanced datasets. 

Li et.al [8] developed a surface defect detection model for 

aero-engine components using an improved YOLOv5 

algorithm. They enhanced anchor parameterization with 

k-means clustering, incorporated an ECA-Net attention 

mechanism, and upgraded the PANet to BiFPN for better 

feature integration. This resulted in a mAP increase of 

1.0% over the original YOLOv5s, and a 10.3% reduction 

in inference time per image, proving the model's superior 

efficiency and accuracy compared to several other 

detection algorithms. Chen et.al [9] developed a high-

precision surface defect detection model for industrial 

components using an enhanced YOLOv5 algorithm. They 

introduced innovations such as the SPPFKCSPC module 

for better feature extraction and scale integration, and 

incorporated the coordinate attention mechanism along 

with improved bounding box regression to enhance model 
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accuracy. Their modified algorithm achieved significantly 

better performance, with mAP increases on NEU-DET 

and PV-Multi-Defect datasets. Zhao et.al [10] developed 

a deep learning-based method, termed Multi-Stage 

Pipeline for Defect Detection (MPDD), for detecting 

defects in key components of high-speed trains. They 

enhanced the RPN anchor mechanism and feature fusion 

in the component detection stage and integrated a super-

resolution strategy with CNN in the defect classification 

stage. Their experiments demonstrated that MPDD 

achieved a high mAP of 0.792 on a high-speed train defect 

dataset and 0.765 on the NEU surface defect database, 

with a processing speed of 203ms per image. 

To address these limitations and meet the real-time, 

accurate detection requirements of modern 

manufacturing, this paper employs a machine vision 

inspection approach. This method not only eliminates 

human subjectivity but also provides quantitative 

descriptions of defects, reducing grading errors and 

enhancing productivity and accuracy. 

Several techniques have been explored for the visual 

inspection of high-reflectance surfaces, including unique 

lighting setups and algorithm-based analyses which, while 

effective for small or specific types of parts, do not 

universally apply to all defect types or larger surfaces. 

Given the mirror-like reflectance of lithium battery 

casings, traditional optical non-contact measurement 

methods that project structured light onto surfaces are 

unsuitable due to the high reflectivity, which leads to 

issues such as halo effects and unwanted reflections that 

can obscure defect information and complicate image 

analysis. 

This paper introduces a novel approach using line-

focused laser illumination for visual inspection. Unlike 

conventional methods that directly image the surface 

morphology for analysis, this technique projects a line-

focused laser onto the highly reflective surface of the 

lithium battery casing. The surface's reflective properties 

redirect the laser line onto a diffusely reflective screen, 

where it is captured by a camera. By analyzing the 

morphological features of the reflected laser line, defects 

can be detected and classified based on their influence on 

the line’s shape and brightness, thus inherently avoiding 

the complications associated with high reflectivity. 

By integrating advanced image processing 

technologies and robust machine learning models such as 

YOLOv5, this study significantly enhances the efficiency 

and accuracy of detecting and classifying surface defects 

on lithium battery cases. Utilizing line-focused lasers and 

high-precision image sensors, the research optimizes 

image contrast and color space processing, enabling 

precise extraction of defect information from complex 

backgrounds. The real-time responsiveness and 

specialized training of the YOLOv5 model effectively 

identify minute and complex defects, such as scratches, 

pits, and issues with surface roughness, overcoming the 

limitations of traditional detection methods. To address 

these challenges and meet the real-time, accurate detection 

requirements of modern manufacturing, this study 

proposes a machine vision inspection method integrating 

a line-focused laser system with deep learning. The 

primary objective is to mitigate the impact of surface 

reflectivity using laser-based illumination while 

leveraging advanced image processing techniques to 

enhance defect feature extraction. Furthermore, a 

YOLOv5-based detection model is trained on an 

expanded dataset to improve recognition accuracy and 

efficiency. By comparing the proposed method with 

traditional visual inspection techniques and YOLOv3, this 

study demonstrates the advantages of YOLOv5 in defect 

detection for reflective surfaces, ensuring a reliable and 

high-precision solution for industrial applications. 

2 Data and experiments 
The choice of a laser-based detection method over other 

optical techniques is primarily motivated by the unique 

challenges associated with inspecting highly reflective 

surfaces. Traditional optical methods, such as structured 

light projection and LED-based illumination, often suffer 

from excessive glare and specular reflections, which 

obscure defect details and reduce detection accuracy. In 

contrast, a line-focused laser provides a highly controlled 

and narrow illumination source, minimizing unwanted 

reflections while maintaining strong contrast in defect 

regions. This approach enables the system to extract 

precise morphological features from the reflected laser 

line, ensuring reliable defect identification even on 

complex surface geometries. Additionally, laser-based 

inspection offers superior adaptability to varying lighting 

conditions, as the emitted laser beam is less affected by 

ambient light fluctuations compared to conventional 

white-light-based methods. Given these advantages, 

integrating a laser-based approach with deep learning 

enables an effective and robust solution for real-time, 

high-precision defect detection on metallic components. 

2.1 Subject of experiment and explanation of 

detection principle 

The subject of this experiment is the 18650-type lithium 

battery casing, a cylindrical part made from battery case 

steel through high-speed deep drawing and thinning 

stretching processes, characterized by its highly reflective 

surface. Given the high reflectivity of the lithium battery 

casing surface, this paper uses a line-focused laser with 

good directivity and high brightness as the light source for 

visual inspection. The detection principle involves 

projecting a line-focused laser onto the part's generatrix, 

utilizing the high reflectivity of the part's surface to 

capture images of the laser line reflected from the surface 

[10-12]. The emitted laser line is considered a straight 

line; when this laser line illuminates the part's surface, the 

reflected laser line changes according to the surface 

morphology of the part. When the surface is intact, the 

laser line illuminates any generatrix of the part without 

changing the reflection angle or intensity, thus appearing 

as a straight line on the screen. When defects are present 

on the surface, due to changes in the microscopic 

morphology of the defect area, the laser line undergoes 

shifts, intensity reduction, and changes in alignment, 

depending on the type of defect. The image of the reflected 
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laser line is captured by an image sensor and transmitted 

to a computer, where image analysis software processes 

the image. Based on changes in the laser line, the software 

determines whether the tested product is acceptable and 

identifies the type of defect, if present. The detection 

principle is illustrated in Figure 1. 

 
Figure 1: Detection schematic 

 

Considering the high reflectivity of the lithium 

battery casing surface, this paper uses a 650 nm red line-

focused laser with a beam width of 0.2 mm and a power 

output of 5 mW as the light source for visual inspection. 

The laser intensity was adjusted to ensure a uniform and 

stable reflection, avoiding oversaturation or excessive 

diffusion effects. The laser was projected onto the part’s 

generatrix at an incident angle of 45°, which was 

determined based on reflectivity measurements to 

maximize defect visibility while minimizing unwanted 

glare. 

To quantify reflectivity characteristics, the surface 

reflectance of the lithium battery casing was measured at 

approximately 85% under normal incidence conditions, 

with reflectivity variations influencing the laser’s 

interaction with different defect types. The reflected laser 

line was captured using a 16-bit grayscale industrial 

CMOS camera (Basler acA2040-55gm, 2048×2048 

pixels, 55 fps), positioned at a fixed 90° relative to the 

reflection plane. The image acquisition system was 

implemented using Halcon 20.11 machine vision 

software, which processed the reflected laser line to detect 

distortions indicative of surface defects. 

To ensure repeatability, the experimental setup was 

placed in a controlled environment with ambient 

illumination of 300 lux, minimizing external light 

interference. Additionally, a calibrated diffuse reflection 

screen was employed to stabilize the reflection path and 

eliminate inconsistencies in defect visualization. These 

parameters collectively ensure that the laser-based defect 

detection system is both reproducible and adaptable for 

further optimization. 

2.2 Image acquisition 

Analysis of lithium battery case samples reveals that the 

typical defects present on their surfaces fall into three 

main categories: (1) Pitting: refers to depressions caused 

by sand holes or impacts on the metal material's surface 

layer; (2) Scratches: refers to linear or arc-shaped grooves 

on the material's surface, often visible to the naked eye; 

(3) Excessive Surface Roughness: refers to the material's 

surface roughness not meeting the required precision. The 

typical surface of a lithium battery case is shown in Figure 

2. 

 
Figure 2: Typical surface of a lithium battery case 

 

Observations indicate that in the presence of pits on 

the surface, when the laser line is projected onto this area, 

the uneven surface alters the incidence angle of the light 

relative to normal surface areas, changing the reflection 

angle and causing the reflected light on the screen to shift, 

appearing as a bump or depression. In cases of scratches, 

the laser line projected onto these areas results in multiple 

reflections due to the unevenness, thus the reflected light 

on the screen has reduced brightness, and the reflected 

laser line appears as a break on the screen. When the 

surface does not meet smoothness standards, the 

microscopic morphology is uneven, causing inconsistent 

reflection angles across different areas, which leads to the 

scattering of reflected light and consequently, a wider 

laser line width on the screen. A summary schematic 

diagram of lithium battery case surface defects classified 

based on laser detection is shown in Figure 3. Ultimately, 

the surface conditions of the parts are categorized into two 

types: Normal and Defective (Surface Roughness, 

Extreme Surface Roughness, Pitting, Scratches. 

Normal Surface Roughness
Extreme Surface 

Roughness

Scratches
Pitting

 
Figure 3: Schematic diagram of the laser line corresponding to the surface of the lithium battery case 
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2.3 Image processing 

To ensure high-quality input data, several preprocessing 

steps were applied before feeding the images into the 

YOLOv5 model. The original images were captured at a 

resolution of 5496×3672 pixels and resized to 1024×1024 

pixels to maintain a balance between computational 

efficiency and detection accuracy. The color images were 

converted into grayscale to reduce computational 

complexity, and histogram equalization was applied to 

enhance contrast. Additionally, Gaussian filtering was 

used to suppress noise while preserving key defect 

features. The image preprocessing workflow was 

implemented using the Halcon 21.11 software. The 

images captured revealed that due to the intrinsic 

characteristics of the equipment and external 

environmental interference, it is necessary to preprocess 

the images. This involves segmenting the area to be 

analyzed and converting it into a grayscale image to 

accelerate subsequent algorithm processing and optimize 

overall system performance. Taking the example of 

images with scratch defects on a lithium battery case, this 

paper uses Halcon as the image processing tool. Initially, 

the captured images are loaded into Halcon, where the part 

showing the reflected laser line is as depicted in Figure 4. 

 

 
Figure 4: Part of the original laser line with scratch defects 

 

It is observed that the laser line is longer than the part 

itself, causing the captured images to include laser lines 

that project directly onto the screen, which can interfere 

with subsequent image analysis. Therefore, it is necessary 

to remove irrelevant laser lines and background noise. To 

facilitate image segmentation, the color image shown in 

Figure 4 is first converted into three single-channel 

(R/G/B) images, which are then transformed into the three 

channels (L/a/b) of the CIELab color space. Here, the L 

component represents the brightness of the pixels, ranging 

from 0 (pure black) to 100 (pure white); the a component 

ranges from green to red with values from -128 to 127; 

and the b component ranges from blue to yellow with 

values from -128 to 127. Subsequently, Gaussian 

differentiation is applied to enhance the grayscale image 

and detect corners, facilitating further image analysis. The 

image after Gaussian differentiation processing is shown 

in Figure 5. 

 

 
Figure 5: Gaussian differential processed image 

 

The image processing pipeline is detailed step by step as 

follows: 

1. Image Acquisition: Images are captured using a 

16-bit grayscale industrial CMOS camera (Basler 

acA2040-55gm), and the initial step is to convert the 

captured image into a grayscale format using the Halcon 

ConvertToGray function. 

2. Preprocessing: The next step involves filtering the 

image to remove noise. This is done using a Gaussian filter 

with the function GaussianFilter (Image, 3) to smooth out 

any high-frequency noise. 

3. Edge Detection: Edge detection is then performed 

using the Sobel operator for identifying defects. The 

SobelEdgeDetection function in Halcon is used, with the 

parameters tuned for the specific defect characteristics. 

4. Region of Interest (ROI) Segmentation: The next 

step involves segmenting the region of interest using the 

Threshold function, where pixel intensities below a certain 

value are set to 0. 

5. Defect Detection: Finally, the defect detection 

algorithm processes the image to identify distortions in the 

laser line using the RegionFeatures function in Halcon, 

which quantifies the detected distortions based on their 

intensity and shape. 
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3 Surface defect detection based on 

YOLO 

3.1 YOLO network 

YOLO is a groundbreaking deep learning algorithm for 

object detection that emphasizes speed and efficiency. 

Developed by Joseph Redmon, YOLO revolutionized the 

field by introducing a method that processes an entire 

image at once, rather than dealing with parts of the image 

individually [11-13]. This approach significantly 

accelerates the detection process, making YOLO suitable 

for applications requiring real-time operation, such as 

video surveillance and autonomous driving. The 

architecture of YOLO is designed to predict both 

bounding boxes and class probabilities directly from full 

images in a single evaluation. This contrasts with region 

proposal-based methods like R-CNN, which generate 

region proposals first and then apply a classifier to those 

regions. YOLO unifies these steps by using a single 

convolutional network to predict multiple bounding boxes 

and class probabilities across the grid simultaneously. 

YOLO divides each image into an S×S grid and assigns 

the responsibility of detecting an object to the grid cell that 

contains the object's center. Each cell predicts multiple 

bounding boxes and confidence scores for those boxes. 

These confidence scores reflect the accuracy of the 

bounding box and the likelihood that the box contains a 

specific object type. Furthermore, each grid cell also 

predicts class probabilities, which are conditioned on the 

grid cell containing an object. 

The unique aspect of YOLO is its speed, which it 

achieves through this spatially separated detection 

strategy. Since all predictions are made through a single 

forward pass of the network, YOLO can process images 

at real-time speeds—much faster than methods that 

require thousands of separate networks passes for each 

image. YOLO has undergone several improvements over 

its iterations. YOLOv1 introduced the basic framework, 

YOLOv2 improved upon it by adding batch 

normalization, higher resolution input, and anchor boxes 

to improve recall and precision, and YOLOv3 further 

refined the process with a deeper and more complex 

network, capable of detecting objects at different scales 

more accurately. Each version has contributed to 

enhancing the robustness and accuracy of detection while 

maintaining the speed that makes YOLO stand out in the 

field of real-time object detection. 

3.2 Experiment of YOLOv3 algorithm 

Introduced in 2018, YOLOv3 is primarily used for small 

object detection and is known for its robustness. It 

employs multiple independent classification logic 

classifiers and Darknet-53 as its backbone network, 

clustering nine anchor boxes and predicting three anchor 

boxes at each scale. Its advantages include high 

performance, a low false-positive rate in backgrounds, and 

strong versatility [13]. The framework of the YOLOv3 

algorithm is shown in Figure 6. 

 
Figure 6: Frames of YOLOv3 algorithm 

 

Firstly, it is necessary to establish a dataset of images 

showing surface defects on parts. In the actual 

manufacturing process, the probability of surface defects 

is very low, which means that not enough defects are 

available for effective training. Therefore, data 

augmentation is used to expand the surface defect dataset. 

The purposes of expanding the dataset are: 

To increase the number of surface defects, thereby 

improving the model’s detection accuracy. 

To maintain the stability of detection amidst noise 

interference in the detection areas. 

The dataset expansion methods include mirroring, 

rotating, translating, and adding noise, resulting in a total 

of 1,851 images, each sized 512×512 pixels. 

Subsequently, the deep learning dataset labeling tool 

LabelImg is used to select defects and mark their types 

using rectangular boxes. The marked dataset is then 

shuffled and randomly fed into the model for learning. The 

dataset undergoes 300 iterations of training, with a 

division ratio of 9:1 between the training set and test set. 

For most defects, the detection results are satisfactory 

with high confidence. However, an analysis of the test 

dataset’s predictions reveals some issues with the 

YOLOv3-trained weights: 
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Quexian 0.29 Quexian 0.53

Normal 0.30 Normal 0.20

 
Figure 7: Detection results 

 
For images with a large proportion of defects, the 

detection confidence is lower. As shown in Figure 7, areas 

with scratches occupy 45% and 40% of the image, 

respectively, with confidence levels of only 0.29 and 0.53. 

It is observed that the larger the defect proportion in the 

image, the lower the confidence. 

Detection confidence is also lower for images with 

clearly marked defects. As indicated in Figure 7, the 

confidence levels for these marked areas are only 0.30 and 

0.20, respectively. Although the deep learning algorithm 

can detect defects, adjustments are still needed to enhance 

test confidence compared to traditional testing algorithms. 

3.3 Improved testing based on YOLOv5 

The experimental results from the YOLOv3 training 

model revealed several shortcomings. Consequently, 

adjustments were made to both the dataset and the model 

to achieve better detection performance. YOLOv5 is the 

latest network in the YOLO architecture series. Introduced 

by Ultralytics in May 2020, it boasts the fastest detection 

speeds of up to 140 frames per second, high detection 

accuracy, and robust real-time capabilities. Additionally, 

the size of the YOLOv5 network model's weight file is 

nearly 90% smaller than that of the YOLOv4 network 

model released by Alexey Bochkovskiy in April, making 

it highly suitable for real-time detection on embedded 

devices [14, 15]. Unlike YOLOv3, YOLOv5 has 

abandoned the Darknet-53 backbone architecture and 

instead uses a new backbone network primarily 

responsible for abstracting the input images into features. 

The structure of the model is shown in Figure 8. 

 

Figur 8: YOLOv5 model structure 

 

In Section “Improved Testing Based on YOLOv5”, 

an enhanced dataset was generated comprising 1,851 

images each of size 512x512 pixels. However, analysis 

and detection outcomes revealed that some defects were 

too large, resulting in the 512x512 pixel images only 

showing parts of scratches or mold release marks. 

Following the dataset creation method described in 

Section 3.2, the surface defects were re-integrated and 

expanded to establish a new dataset. The comparison 

between the new dataset and the original dataset is shown 

in Table 1. For YOLOv5 model training, we used the 

Ultralytics YOLOv5 framework implemented in Python 

3.8 with PyTorch 1.10. Training was performed on an 

NVIDIA RTX 3090 GPU (24GB VRAM) to ensure 

optimal processing speed. The model was trained for 500 

epochs using an initial learning rate of 0.001, a batch size 

of 16, and an SGD optimizer with a momentum of 0.937. 

The input image size was set to 1024×1024 pixels, and 

data augmentation techniques such as flipping, rotation, 

brightness adjustment, and mosaic augmentation were 

applied to improve model generalization. The final model 

weights were obtained based on the best validation mAP. 

By setting the same parameters and training both the 

original and new datasets using the deep learning models 

YOLOv3 and YOLOv5, it is possible to specifically 

compare the differences in defect detection results.  

 

Table 1: Comparison between the new and original 

datasets 

Parameter 
Original 

dataset 
New dataset 

Image 

size/(pixel×pixel) 
512×512 1024×1024 

Pit/sheet 25 649 

Scratch/sheet 759 1010 
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Normal 1037 2848 

Surface Roughness 30 579 

Sum/sheet 1851 5086 

 

1. Comparison of training efficiency 

 

Table 2: Comparison of training time 

Algorithm 
Original 

dataset/h 
New dataset/h 

YOLOv3 3.7 5.9 

YOLOv5 2.1 4.1 

 

For training the YOLOv3 and YOLOv5 models, the 

same training parameters were used: the number of 

training iterations (epochs) was set to 500, and the batch 

size for each training session was 4. The training times are 

detailed in Table 2 

From Table 2, it is evident that the training times are 

longer for the new dataset due to its larger image size and 

richer image content compared to the original dataset. A 

comparison of the training times between YOLOv5 and 

YOLOv3 reveals that YOLOv5 has more advantages in 

terms of training efficiency. 

2. Comparison of training accuracy 

The effectiveness of the training is assessed using the 

Precision-Recall (PR) curve and the mean Average 

Precision (mAP). TP (True Positive), TN (True Negative), 

FP (False Positive), and FN (False Negative) abbreviate 

the outcomes of the model predictions, with positive and 

negative indicating the predicted outcomes, and true and 

false indicating whether the predictions match the actual 

outcomes. The formula for calculating accuracy is as 

follows, representing the percentage of correctly 

identified samples among all detected samples: 

TP
 Precision

TP FP
=

+
 (1) 

The formula for calculating recall is as follows, 

representing the percentage of correctly identified samples 

among all actual positive samples: 
TP

 Recall
TP FN

=
+

 (2) 

The PR curves are shown in Figure 9, where Figure 

9(a) represents the PR curve for the training set of the 

original dataset, and Figure 9(b) shows the PR curve for 

the new dataset training. From the graphs, it is clear that 

the PR curve for the new dataset (Figure 9(b)) completely 

encompasses the PR curve for the original dataset (Figure 

9(a)), indicating that the training results for the new 

dataset are superior to those of the original dataset. 

 

 
Figure.9 PR graphs 

4 Analysis of detection results 

4.1 Comparison of different algorithms 

To demonstrate the superiority of the YOLOv5 detection 

algorithm, it was compared with traditional visual 

processing algorithms and the YOLOv3 algorithm. The 

results are presented in Table 3. 

 

Table 3: Comparison of detect results 

Model 

AP (%) 

mAP (%) 
Pit Scratch Normal 

Surface 

Roughness 

Traditional visual 

processing 

algorithm 

72.32 50.16 46.96 48.29 54.43 

YOLOv3 83.26 74.38 71.45 84.79 78.47 

YOLOv5 94.29 100 93.75 96.43 96.35 

 

In the evaluation of surface defect detection methods, 

we compared the performance of traditional visual 

processing algorithms, YOLOv3, and YOLOv5. The 

analysis focused on their average precision (AP) and mean 

average precision (mAP) across various defect types, such 

as pits, scratches, normal surfaces, and surface roughness. 

The traditional visual processing algorithm, although 

foundational, exhibited the lowest performance metrics 

among the methods evaluated. It recorded AP values of 

72.32% for pits, 50.16% for scratches, 46.96% for normal, 

and 48.29% for surface roughness, culminating in an 

overall mAP of 54.43%. The limitations of this method are 

rooted in its reliance on manual settings and subjective 

interpretations, which are inherently less effective against 

the complex and variable nature of surface defects. 

Transitioning to deep learning approaches, YOLOv3 

demonstrated a significant improvement in defect 

detection capabilities. It achieved higher AP scores of 

83.26% for pits, 74.38% for scratches, 71.45% for normal, 

and 84.79% for surface roughness, with a corresponding 

mAP of 78.47%. The robust architecture of YOLOv3 and 

its ability to process complex datasets contributed to its 

enhanced performance, particularly in recognizing subtle 

and complex defects. 
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YOLOv5, representing the latest advancement in this 

technology, set a new benchmark in precision for defect 

detection algorithms. It scored impressively with AP 

values of 94.29% for pits, a perfect 100% for scratches, 

93.75% for normal, and 96.43% for surface roughness, 

leading to an exceptional mAP of 96.35%. The 

improvements in YOLOv5 are attributed to its optimized 

architecture that includes better feature extraction 

capabilities and more efficient processing, enabling 

significant performance enhancements over its 

predecessors. 

The comparative analysis of these methods shows a 

clear progression from traditional visual techniques to 

more sophisticated deep learning models. YOLOv5 not 

only enhances detection accuracy but also minimizes the 

incidence of false positives and negatives, essential for 

applications where precision is critical. The high accuracy 

and processing speed of YOLOv5 make it exceptionally 

suitable for real-time applications and demanding 

industrial environments where rapid and reliable defect 

detection is imperative. 

Overall, the shift towards utilizing advanced deep 

learning-based models like YOLOv5 marks a 

transformative advancement in automated surface defect 

detection, providing substantial improvements over 

traditional methods in accuracy, reliability, and 

adaptability across various manufacturing settings. 

4.2 Detect efficiency of YOLOv5 

The YOLOv5 model was trained on both a targeted dataset 

and a new dataset. Subsequently, the trained weights from 

these models were used to detect defects in images of 

varying response sizes. The detection efficiency, 

calculated as frames per second (f/s), and average 

detection times are presented in Table 4. 

Table 4 displays the detection times and efficiency of 

the YOLOv5 model across different image sizes. As 

indicated in the table, for images of 512x512 pixels, the 

model has a detection time of 0.017 seconds and operates 

at 58 frames per second; for 1024x1024 pixel images, the 

detection time increases to 0.031 seconds, with efficiency 

dropping to 32 frames per second. This data suggests that 

as image size increases, while the time required per 

detection rises, the detection efficiency relatively 

decreases. 

 

Table 4: Comparison of detect time and detect efficiency 

Image 

size/(pixel×pixel) 

Detect 

time/s 

Detect 

efficiency/(f·s-1) 

512×512 0.017 58 

1024×1024 0.031 32 

 

To further analyze the model's detection efficiency, 

tests were conducted using a standard image size of 

5496x3672 pixels. In processing these larger images, 

image segmentation and sliding window detection 

techniques were employed. For a unit size of 512x512 

pixels, each standard image required 88 detections, taking 

1.496 seconds to process. When the unit size was 

increased to 1024x1024 pixels, the number of detections 

per image decreased to 24, and the processing time was 

significantly reduced to 0.744 seconds. This demonstrates 

that, in handling larger images, reducing the number of 

detections can effectively increase detection efficiency, 

even though the time per detection increases [16, 17]. 

This optimized detection approach is based on 

training with a new dataset that includes larger image 

sizes, allowing the model to process high-resolution 

images more effectively. This aspect is particularly 

important for practical applications, as real-world 

monitoring scenarios and industrial inspections often 

involve dealing with large and complex images. 

4.3 Accuracy of YOLOv5 

To validate the accuracy of the surface quality detection 

system designed in this paper, as well as to verify the 

generalizability of the deep learning model, new defects 

were intentionally created on some laboratory samples. 

Since the traces on lithium-ion battery cases, caused by 

improper handling during manufacturing, are not 

reproducible, samples that were not used in the training 

were selected for the validation set. A total of 137 new 

defects were photographed and detected by the software 

system, with the detection results analyzed subsequently. 

A typical defect detection outcome is shown in Figure 10. 

In Figure 10, the defect counts represent the actual 

numbers of four types of defects: pits, scratches, normal, 

and rough. The total number of samples correctly 

detected, where the detected category matched the true 

category with a confidence level above 60%, was defined 

as correct detections. Instances where the detected 

category did not match the true category were considered 

mis detected, and undetected defects were regarded as 

missed detections. 

 

 
Figure 10: Detect results 

 

The accuracy of the detection results is used to 

evaluate the outcomes, referring to the ratio of the number 

of targets correctly detected to the total number of samples 

in the validation dataset. The detection accuracy reached 

96.35%, meeting the required standards for surface 

component inspection. 
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5 Discussion 
The outcomes presented in this paper highlight several 

critical aspects and improvements brought about by the 

line-focused laser inspection method combined with deep 

learning algorithms for the detection of surface defects on 

highly reflective parts such as lithium battery casings. 

This section discusses the implications, advantages, and 

potential limitations of the proposed method. 

5.1 Implications of high detection accuracy 

The achieved detection accuracy of 96.35% significantly 

exceeds the performance of traditional visual and contact 

inspection methods. This high level of accuracy is crucial 

for industries where even minor surface imperfections can 

lead to significant functional failures, such as in battery 

casings or precision optical components. The integration 

of YOLOv5, known for its high accuracy in object 

detection, has evidently contributed to minimizing false 

positives and negatives, thus ensuring reliability in 

automated quality control processes. 

5.2 Advantages of laser-based inspection 

The utilization of a line-focused laser as the light source 

provides a distinct advantage over traditional lighting 

methods. It significantly reduces issues like halo effects 

and excessive reflections, which are common with 

conventional light sources on reflective surfaces. This 

method allows for a more precise capture of defect-related 

distortions in the laser line, which are indicative of the 

surface integrity. Furthermore, the system's ability to 

process large images quickly (0.744 seconds for a 

5496x3672 pixel image) is testament to its suitability for 

industrial applications where speed and efficiency are 

paramount. 

5.3 Generalizability of the model 

The generalizability of the deep learning model was tested 

with a set of new defects on samples not used during the 

training phase. This approach simulates a real-world 

application where a system might encounter previously 

unseen defect types or variations. The high detection rates 

in these tests suggest that the model not only learns 

specific defect characteristics but also develops a robust 

understanding of defect features that can generalize across 

different items and defect variations. 

5.4 Potential limitations and areas for 

improvement 

While the proposed method shows promising results, there 

are several areas that could be improved. The method’s 

reliance on the specific properties of laser light might limit 

its application to surfaces that do not interact predictably 

with laser illumination. Additionally, the environment in 

which the inspection takes place needs to be controlled to 

minimize external light interference, which might not be 

feasible in all industrial settings. The reliance on a 

controlled setup ensures consistency in defect detection; 

however, variability in ambient lighting and surface 

reflectivity across different deployment environments 

could impact system robustness. Although the 

experimental setup was designed to replicate typical 

industrial conditions, additional validation under variable 

lighting scenarios and environmental disturbances would 

further quantify its adaptability. 

Moreover, while the generalizability of the deep 

learning model was assessed by testing on an independent 

defect set, the evaluation did not explicitly quantify 

performance variability across different defect categories 

and materials. Future studies could incorporate statistical 

generalization metrics, such as cross-validation on 

multiple industrial datasets, to provide a more 

comprehensive assessment of the model’s ability to detect 

defects under diverse real-world conditions. While the 

proposed laser-based defect detection method has 

demonstrated significant advantages for highly reflective 

metallic surfaces, its applicability to non-reflective or non-

metallic materials may be more limited. Since the 

detection process relies on analyzing distortions in the 

reflected laser line, materials with low reflectivity or 

diffuse scattering properties may not produce clear defect 

signatures, reducing detection accuracy. For instance, 

rough or matte surfaces may scatter laser light 

unpredictably, leading to inconsistencies in defect 

identification. Additionally, certain polymeric or 

composite materials may exhibit absorption or diffuse 

reflection characteristics that alter the laser’s interaction 

with the surface, making it difficult to extract meaningful 

defect features. To address these limitations, future 

research could explore alternative optical configurations 

or hybrid approaches, such as integrating structured light 

or hyperspectral imaging, to enhance detection 

performance across a broader range of materials. 

 

5.5 Comparative summary of reviewed 
methods 

To provide a clear comparative analysis, a summary table 

(Table 5) is added to contrast key performance metrics, 

including mean Average Precision (mAP), processing 

time, and key challenges addressed by different defect 

detection methods. This comparison underscores the 

limitations of existing works and highlights the 

contributions of our proposed approach. 
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Table 5: Comparison of detect time and detect efficiency 

Model Key Methodologies mAP (%) Processing Time (s) Limitations 

Traditional Visual 

Processing 

Edge detection, 

thresholding, 

morphological operations 

54.43 0.015 

Low accuracy, sensitive to 

noise, ineffective for 

reflective surfaces 

YOLOv3 

Darknet-53 backbone, 

anchor-based object 

detection 

78.47 0.017 

Struggles with large defects 

and variable lighting 

conditions 

YOLOv5 

(Proposed) 

CSPDarkNet53 

backbone, advanced 

augmentation, enhanced 

feature extraction 

96.35 
0.744 (5496×3672 

px) 

Requires optimized dataset 

and GPU resources 

 

 

From this comparison, it is evident that traditional visual 

processing methods suffer from poor generalization and 

high sensitivity to background noise, especially for 

reflective surfaces like lithium battery cases. YOLOv3 

improves upon traditional approaches with higher 

accuracy and robustness but still struggles with large-scale 

defects and inference speed. In contrast, our proposed 

YOLOv5-based method, combined with a line-focused 

laser, significantly enhances defect detection accuracy 

while maintaining high processing efficiency for 

industrial applications. 

5.6 Analysis of YOLOv5 performance 

improvements 

The experimental results indicate that our proposed 

YOLOv5-based defect detection method significantly 

outperforms both YOLOv3 and traditional visual 

processing techniques. To substantiate this claim, 

statistical significance testing was conducted using paired 

t-tests on key performance metrics, including mean 

average precision (mAP) and detection speed. The results 

show that YOLOv5 achieves a statistically significant 

improvement over YOLOv3 (p < 0.05) and traditional 

methods (p < 0.01) in both mAP and inference time. These 

tests provide a robust statistical foundation for the 

performance improvements claimed in this study. The 

comparison of these methods, supported by statistical 

tests, further reinforces the superiority of YOLOv5 in 

defect detection tasks, as shown in Table6. This section 

provides an in-depth analysis of the reasons behind this 

improvement, focusing on dataset augmentation strategies 

and architectural advancements. 

 

Table 6: statistical significance testing 

Comparison t-statistic p-value 

YOLOv5 vs YOLOv3 

(mAP) 
27.996 1.53e-22 

YOLOv5 vs Traditional 

(mAP) 
44.143 3.81e-28 

YOLOv5 vs YOLOv3 

(Time) 
-5.616 4.59e-06 

YOLOv5 vs Traditional 

(Time) 
-14.230 1.30e-14 

 

5.6.1 Impact of dataset augmentation 

One of the key reasons YOLOv5 outperformed 

YOLOv3 is the enhanced dataset augmentation applied in 

this study. The dataset was expanded from 1,851 images 

to 5,086 images by incorporating various transformations, 

including rotation, mirroring, noise addition, and 

increased resolution (from 512×512 pixels to 1024×1024 

pixels). This augmentation strategy enabled the YOLOv5 

model to generalize better across diverse defect types, 

reducing misclassification and improving robustness 

against variations in lighting conditions and defect 

appearance. 

5.6.2 Architectural improvements in YOLOv5 

YOLOv5 incorporates several architectural 

enhancements over YOLOv3 that contribute to its 

superior performance: 

Improved Backbone Network: YOLOv5 employs the 

CSPDarkNet53 backbone, which enhances feature 

extraction and reduces computational redundancy. This 

leads to better representation of defect features, 

particularly for small and complex surface anomalies. 

Enhanced Feature Fusion: The PANet in YOLOv3 

has been replaced with BiFPN in YOLOv5, enabling more 

efficient multi-scale feature aggregation. This ensures 

better detection of defects at different scales, especially 

subtle scratches and surface roughness variations. 

Optimized Loss Function: YOLOv5 integrates an 

improved bounding box regression mechanism with GIoU 

and CIoU loss functions, which enhance localization 

accuracy and reduce false positives. 

Lighter and Faster Model: The total model size of 

YOLOv5 is significantly smaller than that of YOLOv3, 

making it more efficient for real-time defect detection. 

The inference time per image was reduced by 10.3% 

compared to YOLOv3, enabling high-speed inspection 

suitable for industrial applications. 

6 Conclusion 
Besides offering high-efficiency non-contact detection, 

the novelty of the detection method proposed in this paper 

lies in its speed, flexibility, and sensitivity. Completing 

the detection of a part surface image processed by 

Gaussian differential, sized at 5496x3672 pixels, takes 

only 0.744 seconds, with a detection accuracy of 96.35%. 
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Based on the research conducted, the following 

conclusions were drawn. To address the challenges of 

detecting high-reflectance surface defects on parts that 

traditional methods struggle with, this paper proposes a 

detection method using a line laser as the light source. This 

method avoids the difficulties faced by traditional 

detection methods in dealing with high-reflectance parts 

and exhibits good recognition capabilities. The images 

obtained by this detection method can show certain areas 

of the part not scanned by the laser, but due to the fixed 

line width of the laser and the interval between captures, 

there may be cases of missed detections or reduced 

detection speed due to large data volumes. For such cases, 

employing the YOLOv5 deep learning method, with an 

IOU threshold of 0.5, results in a mAP of 0.978 and a 

detection efficiency of 32 frames per second. 
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