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This paper addresses surface defect detection for parts with highly reflective surfaces, proposing a
machine vision-based line-focused laser inspection method. This method leverages the reflective and
curved features of part surfaces, utilizing a line-focused laser to mitigate halo and reflection issues
common in traditional lighting methods. By collecting and analyzing reflected laser line images, the
system effectively detects and classifies surface defects. To enhance detection efficiency and accuracy,
this study integrates a deep learning-based YOLOV5 model trained on an expanded dataset. A series of
controlled experiments on 5086 defect samples demonstrate that YOLOV5 achieves a mean Average
Precision (mAP) of 96.35%, significantly outperforming YOLOv3 and traditional vision-based
approaches. The tested defect types include scratches, pits, and varying degrees of surface roughness,
ensuring a comprehensive evaluation of detection performance. Specifically, YOLOV5 shows a 10.3%
reduction in inference time compared to YOLOv3 while maintaining superior detection performance. The
system processes images of 5496x3672 pixels in 0.744 seconds, meeting industrial demands for real-time,
high-precision defect detection.

Povzetek: Predstavijena je metoda za detekcijo napak na odbojnih povrsinah z uporabo linijsko
fokusiranega laserja in modela YOLOvVS. Metoda uspesno premaguje odboje in halo efekte ter dosega
96,35 % mAP, kar je vec kot pri YOLOV3, in ustreza industrijskim zahtevam po hitri in natancni kontroli.

1 Introduction

In recent years, the burgeoning markets of smartphones,
tablets, and new energy vehicles have significantly
increased the demand for lithium batteries. The battery
case steel, a high-quality precision cold-rolled product,
requires stringent surface quality to achieve double-sided
05 level standards. Minor surface defects can lead to the
rejection of entire batches, underscoring the necessity for
meticulous selection of lithium battery casings [1-3].
Traditional methods for inspecting the surface
quality of lithium battery cases primarily involve manual
visual inspection. This approach is not only inefficient and
labor-intensive but also prone to errors and oversights due
to subjective human factors. Additionally, manual
inspections can cause secondary damage to the lithium
battery cases if mishandled. Contact measurements, such
as those made with coordinate measuring machines
(CMMs) or stylus-based profilometers, are time-
consuming and may compromise surface integrity,
particularly for high-reflectivity materials. The direct
interaction between the probe and the surface can
introduce micro-scratches or localized deformations,
which is highly undesirable for lithium battery cases that
require pristine surface conditions. Moreover, due to the
small-scale and complex curvature of battery casings,
contact-based methods struggle to achieve comprehensive
surface characterization, making them unsuitable for high-
precision, large-scale quality control in industrial

applications [4-6]. Microscopic inspections, although
detailed, are limited to small areas and are not conducive
to rapid, large-area surface quality assessments [6]. Chen
et.al [7] conducted a comprehensive review on the use of
machine learning methods in surface defect detection for
industrial products. They explored traditional machine
vision techniques based on texture, color, and shape
features, as well as recent advances in deep learning
approaches including supervised, unsupervised, and
weakly supervised methods. The study also addressed key
challenges such as real-time processing, small sample
sizes, detection of small targets, and unbalanced datasets.
Li et.al [8] developed a surface defect detection model for
aero-engine components using an improved YOLOV5
algorithm. They enhanced anchor parameterization with
k-means clustering, incorporated an ECA-Net attention
mechanism, and upgraded the PANet to BiFPN for better
feature integration. This resulted in a mAP increase of
1.0% over the original YOLOV5s, and a 10.3% reduction
in inference time per image, proving the model's superior
efficiency and accuracy compared to several other
detection algorithms. Chen et.al [9] developed a high-
precision surface defect detection model for industrial
components using an enhanced YOLOVS5 algorithm. They
introduced innovations such as the SPPFKCSPC module
for better feature extraction and scale integration, and
incorporated the coordinate attention mechanism along
with improved bounding box regression to enhance model
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accuracy. Their modified algorithm achieved significantly
better performance, with mAP increases on NEU-DET
and PV-Multi-Defect datasets. Zhao et.al [10] developed
a deep learning-based method, termed Multi-Stage
Pipeline for Defect Detection (MPDD), for detecting
defects in key components of high-speed trains. They
enhanced the RPN anchor mechanism and feature fusion
in the component detection stage and integrated a super-
resolution strategy with CNN in the defect classification
stage. Their experiments demonstrated that MPDD
achieved a high mAP of 0.792 on a high-speed train defect
dataset and 0.765 on the NEU surface defect database,
with a processing speed of 203ms per image.

To address these limitations and meet the real-time,
accurate  detection  requirements  of  modern
manufacturing, this paper employs a machine vision
inspection approach. This method not only eliminates
human subjectivity but also provides quantitative
descriptions of defects, reducing grading errors and
enhancing productivity and accuracy.

Several techniques have been explored for the visual
inspection of high-reflectance surfaces, including unique
lighting setups and algorithm-based analyses which, while
effective for small or specific types of parts, do not
universally apply to all defect types or larger surfaces.
Given the mirror-like reflectance of lithium battery
casings, traditional optical non-contact measurement
methods that project structured light onto surfaces are
unsuitable due to the high reflectivity, which leads to
issues such as halo effects and unwanted reflections that
can obscure defect information and complicate image
analysis.

This paper introduces a novel approach using line-
focused laser illumination for visual inspection. Unlike
conventional methods that directly image the surface
morphology for analysis, this technique projects a line-
focused laser onto the highly reflective surface of the
lithium battery casing. The surface's reflective properties
redirect the laser line onto a diffusely reflective screen,
where it is captured by a camera. By analyzing the
morphological features of the reflected laser line, defects
can be detected and classified based on their influence on
the line’s shape and brightness, thus inherently avoiding
the complications associated with high reflectivity.

By integrating advanced image processing
technologies and robust machine learning models such as
YOLOVS, this study significantly enhances the efficiency
and accuracy of detecting and classifying surface defects
on lithium battery cases. Utilizing line-focused lasers and
high-precision image sensors, the research optimizes
image contrast and color space processing, enabling
precise extraction of defect information from complex
backgrounds. The real-time responsiveness and
specialized training of the YOLOV5 model effectively
identify minute and complex defects, such as scratches,
pits, and issues with surface roughness, overcoming the
limitations of traditional detection methods. To address
these challenges and meet the real-time, accurate detection
requirements of modern manufacturing, this study
proposes a machine vision inspection method integrating
a line-focused laser system with deep learning. The
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primary objective is to mitigate the impact of surface
reflectivity using laser-based illumination while
leveraging advanced image processing technigues to
enhance defect feature extraction. Furthermore, a
YOLOv5-based detection model is trained on an
expanded dataset to improve recognition accuracy and
efficiency. By comparing the proposed method with
traditional visual inspection techniques and YOLOV3, this
study demonstrates the advantages of YOLOV5 in defect
detection for reflective surfaces, ensuring a reliable and
high-precision solution for industrial applications.

2 Data and experiments

The choice of a laser-based detection method over other
optical techniques is primarily motivated by the unique
challenges associated with inspecting highly reflective
surfaces. Traditional optical methods, such as structured
light projection and LED-based illumination, often suffer
from excessive glare and specular reflections, which
obscure defect details and reduce detection accuracy. In
contrast, a line-focused laser provides a highly controlled
and narrow illumination source, minimizing unwanted
reflections while maintaining strong contrast in defect
regions. This approach enables the system to extract
precise morphological features from the reflected laser
line, ensuring reliable defect identification even on
complex surface geometries. Additionally, laser-based
inspection offers superior adaptability to varying lighting
conditions, as the emitted laser beam is less affected by
ambient light fluctuations compared to conventional
white-light-based methods. Given these advantages,
integrating a laser-based approach with deep learning
enables an effective and robust solution for real-time,
high-precision defect detection on metallic components.

2.1 Subject of experiment and explanation of
detection principle

The subject of this experiment is the 18650-type lithium
battery casing, a cylindrical part made from battery case
steel through high-speed deep drawing and thinning
stretching processes, characterized by its highly reflective
surface. Given the high reflectivity of the lithium battery
casing surface, this paper uses a line-focused laser with
good directivity and high brightness as the light source for
visual inspection. The detection principle involves
projecting a line-focused laser onto the part's generatrix,
utilizing the high reflectivity of the part's surface to
capture images of the laser line reflected from the surface
[10-12]. The emitted laser line is considered a straight
line; when this laser line illuminates the part's surface, the
reflected laser line changes according to the surface
morphology of the part. When the surface is intact, the
laser line illuminates any generatrix of the part without
changing the reflection angle or intensity, thus appearing
as a straight line on the screen. When defects are present
on the surface, due to changes in the microscopic
morphology of the defect area, the laser line undergoes
shifts, intensity reduction, and changes in alignment,
depending on the type of defect. The image of the reflected
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laser line is captured by an image sensor and transmitted
to a computer, where image analysis software processes
the image. Based on changes in the laser line, the software
determines whether the tested product is acceptable and
identifies the type of defect, if present. The detection
principle is illustrated in Figure 1.

Laser projection
on the scree

Linear laser reflected by
the cylindrical surface of
the device under test

«

Screen Incident linear laser

Lithium battery shell

Rotat

Figure 1: Detection schematic

Industrial camera

Considering the high reflectivity of the lithium
battery casing surface, this paper uses a 650 nm red line-
focused laser with a beam width of 0.2 mm and a power
output of 5 mW as the light source for visual inspection.
The laser intensity was adjusted to ensure a uniform and
stable reflection, avoiding oversaturation or excessive
diffusion effects. The laser was projected onto the part’s
generatrix at an incident angle of 45° which was
determined based on reflectivity measurements to
maximize defect visibility while minimizing unwanted
glare.

To quantify reflectivity characteristics, the surface
reflectance of the lithium battery casing was measured at
approximately 85% under normal incidence conditions,
with reflectivity variations influencing the laser’s
interaction with different defect types. The reflected laser
line was captured using a 16-bit grayscale industrial
CMOS camera (Basler acA2040-55gm, 2048x2048
pixels, 55 fps), positioned at a fixed 90° relative to the
reflection plane. The image acquisition system was
implemented using Halcon 20.11 machine vision
software, which processed the reflected laser line to detect
distortions indicative of surface defects.

To ensure repeatability, the experimental setup was
placed in a controlled environment with ambient
illumination of 300 lux, minimizing external light
interference. Additionally, a calibrated diffuse reflection
screen was employed to stabilize the reflection path and
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eliminate inconsistencies in defect visualization. These
parameters collectively ensure that the laser-based defect
detection system is both reproducible and adaptable for
further optimization.

2.2 Image acquisition

Analysis of lithium battery case samples reveals that the
typical defects present on their surfaces fall into three
main categories: (1) Pitting: refers to depressions caused
by sand holes or impacts on the metal material's surface
layer; (2) Scratches: refers to linear or arc-shaped grooves
on the material's surface, often visible to the naked eye;
(3) Excessive Surface Roughness: refers to the material's
surface roughness not meeting the required precision. The
typical surface of a lithium battery case is shown in Figure
2.

\

Figure 2: Typical surface of a lithium battery case

Observations indicate that in the presence of pits on
the surface, when the laser line is projected onto this area,
the uneven surface alters the incidence angle of the light
relative to normal surface areas, changing the reflection
angle and causing the reflected light on the screen to shift,
appearing as a bump or depression. In cases of scratches,
the laser line projected onto these areas results in multiple
reflections due to the unevenness, thus the reflected light
on the screen has reduced brightness, and the reflected
laser line appears as a break on the screen. When the
surface does not meet smoothness standards, the
microscopic morphology is uneven, causing inconsistent
reflection angles across different areas, which leads to the
scattering of reflected light and consequently, a wider
laser line width on the screen. A summary schematic
diagram of lithium battery case surface defects classified
based on laser detection is shown in Figure 3. Ultimately,
the surface conditions of the parts are categorized into two

types: Normal and Defective (Surface Roughness,
Extreme Surface Roughness, Pitting, Scratches.
[ o———————]
Extreme Surface
Roughness
Scratches

Figure 3: Schematic diagram of the laser line corresponding to the surface of the lithium battery case
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2.3 Image processing

To ensure high-quality input data, several preprocessing
steps were applied before feeding the images into the
YOLOvV5 model. The original images were captured at a
resolution of 5496x3672 pixels and resized to 1024x1024
pixels to maintain a balance between computational
efficiency and detection accuracy. The color images were
converted into grayscale to reduce computational
complexity, and histogram equalization was applied to
enhance contrast. Additionally, Gaussian filtering was
used to suppress noise while preserving key defect
features. The image preprocessing workflow was
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implemented using the Halcon 21.11 software. The
images captured revealed that due to the intrinsic
characteristics of the equipment and external
environmental interference, it is necessary to preprocess
the images. This involves segmenting the area to be
analyzed and converting it into a grayscale image to
accelerate subsequent algorithm processing and optimize
overall system performance. Taking the example of
images with scratch defects on a lithium battery case, this
paper uses Halcon as the image processing tool. Initially,
the captured images are loaded into Halcon, where the part
showing the reflected laser line is as depicted in Figure 4.

Figure 4: Part of the original laser line with scratch defects

It is observed that the laser line is longer than the part
itself, causing the captured images to include laser lines
that project directly onto the screen, which can interfere
with subsequent image analysis. Therefore, it is necessary
to remove irrelevant laser lines and background noise. To
facilitate image segmentation, the color image shown in
Figure 4 is first converted into three single-channel
(R/G/B) images, which are then transformed into the three
channels (L/a/b) of the CIELab color space. Here, the L

component represents the brightness of the pixels, ranging
from O (pure black) to 100 (pure white); the a component
ranges from green to red with values from -128 to 127;
and the b component ranges from blue to yellow with
values from -128 to 127. Subsequently, Gaussian
differentiation is applied to enhance the grayscale image
and detect corners, facilitating further image analysis. The
image after Gaussian differentiation processing is shown
in Figure 5.
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Figure 5: Gaussian differential processed image

The image processing pipeline is detailed step by step as
follows:

1. Image Acquisition: Images are captured using a
16-bit grayscale industrial CMOS camera (Basler
acA2040-55gm), and the initial step is to convert the
captured image into a grayscale format using the Halcon
ConvertToGray function.

2. Preprocessing: The next step involves filtering the
image to remove noise. This is done using a Gaussian filter
with the function GaussianFilter (Image, 3) to smooth out
any high-frequency noise.

3. Edge Detection: Edge detection is then performed
using the Sobel operator for identifying defects. The

SobelEdgeDetection function in Halcon is used, with the
parameters tuned for the specific defect characteristics.

4. Region of Interest (ROI) Segmentation: The next
step involves segmenting the region of interest using the
Threshold function, where pixel intensities below a certain
value are set to 0.

5. Defect Detection: Finally, the defect detection
algorithm processes the image to identify distortions in the
laser line using the RegionFeatures function in Halcon,
which quantifies the detected distortions based on their
intensity and shape.
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3 Surface defect detection based on
YOLO

3.1 YOLO network

YOLO is a groundbreaking deep learning algorithm for
object detection that emphasizes speed and efficiency.
Developed by Joseph Redmon, YOLO revolutionized the
field by introducing a method that processes an entire
image at once, rather than dealing with parts of the image
individually [11-13]. This approach significantly
accelerates the detection process, making YOLO suitable
for applications requiring real-time operation, such as
video surveillance and autonomous driving. The
architecture of YOLO is designed to predict both
bounding boxes and class probabilities directly from full
images in a single evaluation. This contrasts with region
proposal-based methods like R-CNN, which generate
region proposals first and then apply a classifier to those
regions. YOLO unifies these steps by using a single
convolutional network to predict multiple bounding boxes
and class probabilities across the grid simultaneously.
YOLO divides each image into an SxS grid and assigns
the responsibility of detecting an object to the grid cell that
contains the object's center. Each cell predicts multiple
bounding boxes and confidence scores for those boxes.
These confidence scores reflect the accuracy of the
bounding box and the likelihood that the box contains a
specific object type. Furthermore, each grid cell also
predicts class probabilities, which are conditioned on the
grid cell containing an object.

Darknet-53 without FC layer
RESI | RES2 RESS RES8
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The unique aspect of YOLO is its speed, which it
achieves through this spatially separated detection
strategy. Since all predictions are made through a single
forward pass of the network, YOLO can process images
at real-time speeds—much faster than methods that
require thousands of separate networks passes for each
image. YOLO has undergone several improvements over
its iterations. YOLOv1 introduced the basic framework,
YOLOv2 improved wupon it by adding batch
normalization, higher resolution input, and anchor boxes
to improve recall and precision, and YOLOv3 further
refined the process with a deeper and more complex
network, capable of detecting objects at different scales
more accurately. Each version has contributed to
enhancing the robustness and accuracy of detection while
maintaining the speed that makes YOLO stand out in the
field of real-time object detection.

3.2 Experiment of YOLOv3 algorithm

Introduced in 2018, YOLOV3 is primarily used for small
object detection and is known for its robustness. It
employs multiple independent classification logic
classifiers and Darknet-53 as its backbone network,
clustering nine anchor boxes and predicting three anchor
boxes at each scale. Its advantages include high
performance, a low false-positive rate in backgrounds, and
strong versatility [13]. The framework of the YOLOv3
algorithm is shown in Figure 6.
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Figure 6: Frames of YOLOV3 algorithm

Firstly, it is necessary to establish a dataset of images
showing surface defects on parts. In the actual
manufacturing process, the probability of surface defects
is very low, which means that not enough defects are
available for effective training. Therefore, data
augmentation is used to expand the surface defect dataset.
The purposes of expanding the dataset are:

To increase the number of surface defects, thereby
improving the model’s detection accuracy.

To maintain the stability of detection amidst noise
interference in the detection areas.

The dataset expansion methods include mirroring,
rotating, translating, and adding noise, resulting in a total
of 1,851 images, each sized 512x512 pixels.

Subsequently, the deep learning dataset labeling tool
Labellmg is used to select defects and mark their types
using rectangular boxes. The marked dataset is then
shuffled and randomly fed into the model for learning. The
dataset undergoes 300 iterations of training, with a
division ratio of 9:1 between the training set and test set.

For most defects, the detection results are satisfactory
with high confidence. However, an analysis of the test
dataset’s predictions reveals some issues with the
YOLOv3-trained weights:
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Figure 7: Detection results

For images with a large proportion of defects, the
detection confidence is lower. As shown in Figure 7, areas
with scratches occupy 45% and 40% of the image,
respectively, with confidence levels of only 0.29 and 0.53.
It is observed that the larger the defect proportion in the
image, the lower the confidence.

Detection confidence is also lower for images with
clearly marked defects. As indicated in Figure 7, the
confidence levels for these marked areas are only 0.30 and
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0.20, respectively. Although the deep learning algorithm
can detect defects, adjustments are still needed to enhance
test confidence compared to traditional testing algorithms.

3.3 Improved testing based on YOLOV5

The experimental results from the YOLOvV3 training
model revealed several shortcomings. Consequently,
adjustments were made to both the dataset and the model
to achieve better detection performance. YOLOV5 is the
latest network in the YOLO architecture series. Introduced
by Ultralytics in May 2020, it boasts the fastest detection
speeds of up to 140 frames per second, high detection
accuracy, and robust real-time capabilities. Additionally,
the size of the YOLOV5 network model's weight file is
nearly 90% smaller than that of the YOLOv4 network
model released by Alexey Bochkovskiy in April, making
it highly suitable for real-time detection on embedded
devices [14, 15]. Unlike YOLOv3, YOLOvV5 has
abandoned the Darknet-53 backbone architecture and
instead uses a new backbone network primarily
responsible for abstracting the input images into features.
The structure of the model is shown in Figure 8.
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Figur 8: YOLOvV5 model structure

In Section “Improved Testing Based on YOLOv5”,
an enhanced dataset was generated comprising 1,851
images each of size 512x512 pixels. However, analysis
and detection outcomes revealed that some defects were
too large, resulting in the 512x512 pixel images only
showing parts of scratches or mold release marks.
Following the dataset creation method described in
Section 3.2, the surface defects were re-integrated and
expanded to establish a new dataset. The comparison
between the new dataset and the original dataset is shown
in Table 1. For YOLOv5 model training, we used the
Ultralytics YOLOvV5 framework implemented in Python
3.8 with PyTorch 1.10. Training was performed on an
NVIDIA RTX 3090 GPU (24GB VRAM) to ensure
optimal processing speed. The model was trained for 500
epochs using an initial learning rate of 0.001, a batch size
of 16, and an SGD optimizer with a momentum of 0.937.
The input image size was set to 1024x1024 pixels, and

data augmentation techniques such as flipping, rotation,
brightness adjustment, and mosaic augmentation were
applied to improve model generalization. The final model
weights were obtained based on the best validation mAP.
By setting the same parameters and training both the
original and new datasets using the deep learning models
YOLOv3 and YOLOVS5, it is possible to specifically
compare the differences in defect detection results.

Table 1: Comparison between the new and original

datasets
Parameter Original New dataset
dataset
. Image 512x512 1024x1024
size/(pixelxpixel)
Pit/sheet 25 649
Scratch/sheet 759 1010
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Normal 1037 2848
Surface Roughness 30 579
Sum/sheet 1851 5086

1. Comparison of training efficiency

Table 2: Comparison of training time

. Original
Algorithm dataset/h New dataset/h
YOLOV3 3.7 5.9
YOLOVS 2.1 4.1

For training the YOLOv3 and YOLOv5 models, the
same training parameters were used: the number of
training iterations (epochs) was set to 500, and the batch
size for each training session was 4. The training times are
detailed in Table 2

From Table 2, it is evident that the training times are
longer for the new dataset due to its larger image size and
richer image content compared to the original dataset. A
comparison of the training times between YOLOvV5 and
YOLOV3 reveals that YOLOvV5 has more advantages in
terms of training efficiency.

2. Comparison of training accuracy

The effectiveness of the training is assessed using the
Precision-Recall (PR) curve and the mean Average
Precision (mAP). TP (True Positive), TN (True Negative),
FP (False Positive), and FN (False Negative) abbreviate
the outcomes of the model predictions, with positive and
negative indicating the predicted outcomes, and true and
false indicating whether the predictions match the actual
outcomes. The formula for calculating accuracy is as
follows, representing the percentage of correctly
identified samples among all detected samples:
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Precision = (1)

The formula for calculating recall is as follows,
representing the percentage of correctly identified samples
among all actual positive samples:

TP
TP +FN

TP+FP

Recall =

)

The PR curves are shown in Figure 9, where Figure
9(a) represents the PR curve for the training set of the
original dataset, and Figure 9(b) shows the PR curve for
the new dataset training. From the graphs, it is clear that
the PR curve for the new dataset (Figure 9(b)) completely
encompasses the PR curve for the original dataset (Figure
9(a)), indicating that the training results for the new
dataset are superior to those of the original dataset.
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Figure.9 PR graphs

4 Analysis of detection results

4.1 Comparison of different algorithms

To demonstrate the superiority of the YOLOV5 detection
algorithm, it was compared with traditional visual
processing algorithms and the YOLOv3 algorithm. The
results are presented in Table 3.

Table 3: Comparison of detect results

AP (%)
Model AP (%
o Pit Scratch Normal Surface mAP (%)
Roughness
Traditional visual
processing 72.32 50.16 46.96 48.29 54.43
algorithm
YOLOv3 83.26 74.38 71.45 84.79 78.47
YOLOVS 94.29 100 93.75 96.43 96.35

In the evaluation of surface defect detection methods,
we compared the performance of traditional visual
processing algorithms, YOLOv3, and YOLOvV5. The
analysis focused on their average precision (AP) and mean
average precision (mAP) across various defect types, such
as pits, scratches, normal surfaces, and surface roughness.

The traditional visual processing algorithm, although
foundational, exhibited the lowest performance metrics
among the methods evaluated. It recorded AP values of
72.32% for pits, 50.16% for scratches, 46.96% for normal,
and 48.29% for surface roughness, culminating in an
overall mAP of 54.43%. The limitations of this method are

rooted in its reliance on manual settings and subjective
interpretations, which are inherently less effective against
the complex and variable nature of surface defects.

Transitioning to deep learning approaches, YOLOv3
demonstrated a significant improvement in defect
detection capabilities. It achieved higher AP scores of
83.26% for pits, 74.38% for scratches, 71.45% for normal,
and 84.79% for surface roughness, with a corresponding
MAP of 78.47%. The robust architecture of YOLOv3 and
its ability to process complex datasets contributed to its
enhanced performance, particularly in recognizing subtle
and complex defects.
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YOLOVS5, representing the latest advancement in this
technology, set a new benchmark in precision for defect
detection algorithms. It scored impressively with AP
values of 94.29% for pits, a perfect 100% for scratches,
93.75% for normal, and 96.43% for surface roughness,
leading to an exceptional mAP of 96.35%. The
improvements in YOLOV5 are attributed to its optimized
architecture that includes better feature extraction
capabilities and more efficient processing, enabling
significant  performance  enhancements over its
predecessors.

The comparative analysis of these methods shows a
clear progression from traditional visual techniques to
more sophisticated deep learning models. YOLOvV5 not
only enhances detection accuracy but also minimizes the
incidence of false positives and negatives, essential for
applications where precision is critical. The high accuracy
and processing speed of YOLOV5 make it exceptionally
suitable for real-time applications and demanding
industrial environments where rapid and reliable defect
detection is imperative.

Overall, the shift towards utilizing advanced deep
learning-based models like YOLOv5 marks a
transformative advancement in automated surface defect
detection, providing substantial improvements over
traditional methods in accuracy, reliability, and
adaptability across various manufacturing settings.

4.2 Detect efficiency of YOLOV5

The YOLOvV5 model was trained on both a targeted dataset
and a new dataset. Subsequently, the trained weights from
these models were used to detect defects in images of
varying response sizes. The detection efficiency,
calculated as frames per second (f/s), and average
detection times are presented in Table 4.

Table 4 displays the detection times and efficiency of
the YOLOV5 model across different image sizes. As
indicated in the table, for images of 512x512 pixels, the
model has a detection time of 0.017 seconds and operates
at 58 frames per second; for 1024x1024 pixel images, the
detection time increases to 0.031 seconds, with efficiency
dropping to 32 frames per second. This data suggests that
as image size increases, while the time required per
detection rises, the detection efficiency relatively
decreases.

Table 4: Comparison of detect time and detect efficiency

Image Detect Detect
size/(pixelxpixel) time/s | efficiency/(f's™)
512x512 0.017 58
1024x1024 0.031 32

To further analyze the model's detection efficiency,
tests were conducted using a standard image size of
5496x3672 pixels. In processing these larger images,
image segmentation and sliding window detection
techniques were employed. For a unit size of 512x512
pixels, each standard image required 88 detections, taking
1.496 seconds to process. When the unit size was
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increased to 1024x1024 pixels, the number of detections
per image decreased to 24, and the processing time was
significantly reduced to 0.744 seconds. This demonstrates
that, in handling larger images, reducing the number of
detections can effectively increase detection efficiency,
even though the time per detection increases [16, 17].

This optimized detection approach is based on
training with a new dataset that includes larger image
sizes, allowing the model to process high-resolution
images more effectively. This aspect is particularly
important for practical applications, as real-world
monitoring scenarios and industrial inspections often
involve dealing with large and complex images.

4.3 Accuracy of YOLOV5

To validate the accuracy of the surface quality detection
system designed in this paper, as well as to verify the
generalizability of the deep learning model, new defects
were intentionally created on some laboratory samples.
Since the traces on lithium-ion battery cases, caused by
improper handling during manufacturing, are not
reproducible, samples that were not used in the training
were selected for the validation set. A total of 137 new
defects were photographed and detected by the software
system, with the detection results analyzed subsequently.
A typical defect detection outcome is shown in Figure 10.
In Figure 10, the defect counts represent the actual
numbers of four types of defects: pits, scratches, normal,
and rough. The total number of samples correctly
detected, where the detected category matched the true
category with a confidence level above 60%, was defined
as correct detections. Instances where the detected
category did not match the true category were considered
mis detected, and undetected defects were regarded as
missed detections.

Defect detection comparison

2 4 W Defects number

40 B Correct detection
. Misdetection
W Missed detection

Counts

Scratch Normal
Categories

Figure 10: Detect results

Surface Roughness

The accuracy of the detection results is used to
evaluate the outcomes, referring to the ratio of the number
of targets correctly detected to the total number of samples
in the validation dataset. The detection accuracy reached
96.35%, meeting the required standards for surface
component inspection.
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5 Discussion

The outcomes presented in this paper highlight several
critical aspects and improvements brought about by the
line-focused laser inspection method combined with deep
learning algorithms for the detection of surface defects on
highly reflective parts such as lithium battery casings.
This section discusses the implications, advantages, and
potential limitations of the proposed method.

5.1 Implications of high detection accuracy

The achieved detection accuracy of 96.35% significantly
exceeds the performance of traditional visual and contact
inspection methods. This high level of accuracy is crucial
for industries where even minor surface imperfections can
lead to significant functional failures, such as in battery
casings or precision optical components. The integration
of YOLOv5, known for its high accuracy in object
detection, has evidently contributed to minimizing false
positives and negatives, thus ensuring reliability in
automated quality control processes.

5.2 Advantages of laser-based inspection

The utilization of a line-focused laser as the light source
provides a distinct advantage over traditional lighting
methods. It significantly reduces issues like halo effects
and excessive reflections, which are common with
conventional light sources on reflective surfaces. This
method allows for a more precise capture of defect-related
distortions in the laser line, which are indicative of the
surface integrity. Furthermore, the system's ability to
process large images quickly (0.744 seconds for a
5496x3672 pixel image) is testament to its suitability for
industrial applications where speed and efficiency are
paramount.

5.3 Generalizability of the model

The generalizability of the deep learning model was tested
with a set of new defects on samples not used during the
training phase. This approach simulates a real-world
application where a system might encounter previously
unseen defect types or variations. The high detection rates
in these tests suggest that the model not only learns
specific defect characteristics but also develops a robust
understanding of defect features that can generalize across
different items and defect variations.

5.4 Potential limitations and areas for
improvement

While the proposed method shows promising results, there
are several areas that could be improved. The method’s
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reliance on the specific properties of laser light might limit
its application to surfaces that do not interact predictably
with laser illumination. Additionally, the environment in
which the inspection takes place needs to be controlled to
minimize external light interference, which might not be
feasible in all industrial settings. The reliance on a
controlled setup ensures consistency in defect detection;
however, variability in ambient lighting and surface
reflectivity across different deployment environments
could impact system robustness. Although the
experimental setup was designed to replicate typical
industrial conditions, additional validation under variable
lighting scenarios and environmental disturbances would
further quantify its adaptability.

Moreover, while the generalizability of the deep
learning model was assessed by testing on an independent
defect set, the evaluation did not explicitly quantify
performance variability across different defect categories
and materials. Future studies could incorporate statistical
generalization metrics, such as cross-validation on
multiple industrial datasets, to provide a more
comprehensive assessment of the model’s ability to detect
defects under diverse real-world conditions. While the
proposed laser-based defect detection method has
demonstrated significant advantages for highly reflective
metallic surfaces, its applicability to non-reflective or non-
metallic materials may be more limited. Since the
detection process relies on analyzing distortions in the
reflected laser line, materials with low reflectivity or
diffuse scattering properties may not produce clear defect
signatures, reducing detection accuracy. For instance,

rough or matte surfaces may scatter laser light
unpredictably, leading to inconsistencies in defect
identification. Additionally, certain polymeric or

composite materials may exhibit absorption or diffuse
reflection characteristics that alter the laser’s interaction
with the surface, making it difficult to extract meaningful
defect features. To address these limitations, future
research could explore alternative optical configurations
or hybrid approaches, such as integrating structured light
or hyperspectral imaging, to enhance detection
performance across a broader range of materials.

5.5 Comparative summary of reviewed
methods

To provide a clear comparative analysis, a summary table
(Table 5) is added to contrast key performance metrics,
including mean Average Precision (mAP), processing
time, and key challenges addressed by different defect
detection methods. This comparison underscores the
limitations of existing works and highlights the
contributions of our proposed approach.
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Table 5: Comparison of detect time and detect efficiency
Model Key Methodologies MAP (%) Processing Time (s) Limitations
. . Edge detection, Low accuracy, sensitive to
Traditional _Vlsual thresholding, 54.43 0.015 noise, ineffective for
Processing . . .
morphological operations reflective surfaces
Darknet-53 backbone, Struggles with large defects
YOLOv3 anchor-based object 78.47 0.017 and variable lighting
detection conditions
CSPDarkNet53
YOLOV5 backbone, advanced 96.35 0.744 (5496x3672 Requires optimized dataset
(Proposed) augmentation, enhanced ' pX) and GPU resources
feature extraction

From this comparison, it is evident that traditional visual
processing methods suffer from poor generalization and
high sensitivity to background noise, especially for
reflective surfaces like lithium battery cases. YOLOvV3
improves upon traditional approaches with higher
accuracy and robustness but still struggles with large-scale
defects and inference speed. In contrast, our proposed
YOLOv5-based method, combined with a line-focused
laser, significantly enhances defect detection accuracy
while maintaining high processing efficiency for
industrial applications.

5.6 Analysis
improvements

The experimental results indicate that our proposed
YOLOvV5-based defect detection method significantly
outperforms both YOLOv3 and traditional visual
processing techniques. To substantiate this claim,
statistical significance testing was conducted using paired
t-tests on key performance metrics, including mean
average precision (mAP) and detection speed. The results
show that YOLOV5 achieves a statistically significant
improvement over YOLOv3 (p < 0.05) and traditional
methods (p < 0.01) in both mAP and inference time. These
tests provide a robust statistical foundation for the
performance improvements claimed in this study. The
comparison of these methods, supported by statistical
tests, further reinforces the superiority of YOLOV5 in
defect detection tasks, as shown in Table6. This section
provides an in-depth analysis of the reasons behind this
improvement, focusing on dataset augmentation strategies
and architectural advancements.

of YOLOvV5 performance

Table 6: statistical significance testing

Comparison t-statistic p-value

YOLOV5 vs YOLOvV3 27.996 1.53e-22
(mAP)

YOLOV5 vs Traditional 44143 3.81e-28
(mAP)

YOLOV5 vs YOLOv3 5.616 4.59¢-06
(Time)

YOLOvV5 vs Traditional -14.230 1.30e-14
(Time)

5.6.1 Impact of dataset augmentation

One of the key reasons YOLOv5 outperformed
YOLOvV3 is the enhanced dataset augmentation applied in
this study. The dataset was expanded from 1,851 images
to 5,086 images by incorporating various transformations,
including rotation, mirroring, noise addition, and
increased resolution (from 512x512 pixels to 1024x1024
pixels). This augmentation strategy enabled the YOLOv5
model to generalize better across diverse defect types,
reducing misclassification and improving robustness
against variations in lighting conditions and defect
appearance.

5.6.2 Architectural improvements in YOLOV5

YOLOvV5 incorporates  several  architectural
enhancements over YOLOv3 that contribute to its
superior performance:

Improved Backbone Network: YOLOvV5 employs the
CSPDarkNet53 backbone, which enhances feature
extraction and reduces computational redundancy. This
leads to better representation of defect features,
particularly for small and complex surface anomalies.

Enhanced Feature Fusion: The PANet in YOLOvV3
has been replaced with BiFPN in YOLOV5, enabling more
efficient multi-scale feature aggregation. This ensures
better detection of defects at different scales, especially
subtle scratches and surface roughness variations.

Optimized Loss Function: YOLOV5 integrates an
improved bounding box regression mechanism with GloU
and CloU loss functions, which enhance localization
accuracy and reduce false positives.

Lighter and Faster Model: The total model size of
YOLOVS is significantly smaller than that of YOLOv3,
making it more efficient for real-time defect detection.
The inference time per image was reduced by 10.3%
compared to YOLOV3, enabling high-speed inspection
suitable for industrial applications.

6 Conclusion

Besides offering high-efficiency non-contact detection,
the novelty of the detection method proposed in this paper
lies in its speed, flexibility, and sensitivity. Completing
the detection of a part surface image processed by
Gaussian differential, sized at 5496x3672 pixels, takes
only 0.744 seconds, with a detection accuracy of 96.35%.
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Based on the research conducted, the following
conclusions were drawn. To address the challenges of
detecting high-reflectance surface defects on parts that
traditional methods struggle with, this paper proposes a
detection method using a line laser as the light source. This
method avoids the difficulties faced by traditional
detection methods in dealing with high-reflectance parts
and exhibits good recognition capabilities. The images
obtained by this detection method can show certain areas
of the part not scanned by the laser, but due to the fixed
line width of the laser and the interval between captures,
there may be cases of missed detections or reduced
detection speed due to large data volumes. For such cases,
employing the YOLOv5 deep learning method, with an
I0U threshold of 0.5, results in a mAP of 0.978 and a
detection efficiency of 32 frames per second.
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