

https://doi.org/10.31449/inf.v49i6.7534 Informatica 49 (2025) 379–390 379

A Hybrid Deep Learning Approach for Analyzing and Detecting the

Malware in Software Defined Networks

Vasantharaj Karunakaran*, Angelina Geetha

Department of Computer Science and Engineering, Hindustan Institute of Technology and Science, Padur, Chennai,

India

E-mail: vasantharajk35@gmail.com, angelinag@hindustanuniv.ac.in

*Corresponding author

Keywords: convolutional neural networks, long short-term memory, multi-layer perceptron, POX, RYU, relu

Recieved: November 7, 2024

The rise of software-defined networking (SDN) has introduced new security challenges, particularly in detecting

and mitigating malware threats within network infrastructures. Traditional malware detection techniques often

struggle with the dynamic nature of modern cyber threats. This paper presents a hybrid deep learning-based

approach for malware detection in SDN environments, leveraging Convolutional Neural Networks (CNN), Long

Short-Term Memory (LSTM), and Multi-Layer Perceptron (MLP). The proposed CNN-LSTM-MLP model

integrates spatial, temporal, and fully connected feature extraction techniques to enhance classification accuracy.

The study evaluates multiple LSTM architectures, including Bi-Directional-LSTM, Stacked-LSTM, and LSTM-

MLP, demonstrating that the CNN-LSTM-MLP model achieves superior performance. The experimental results,

conducted using datasets from the Canadian Institute for Cybersecurity, indicate that our model attains an

accuracy of 98%, outperforming existing deep learning-based approaches. Additionally, the study integrates RYU

and POX SDN controllers to simulate real-world network environments, ensuring practical applicability. The

findings highlight the efficacy of hybrid deep learning models in securing SDN architectures against evolving

malware threats.

Povzetek: Za bojšo varnost v programsko definiranih omrežjih in za zaznavanje zlonamerne programske opreme

avtorja predlagata hibridni model, ki združuje konvolucijske mreže, dolgi kratkoročni spomin in večslojni

perceptron ter ga vgradita v krmilni sloj z RYU in POX, s premišljenim predprocesiranjem, uravnoteženjem

razredov in nadzorom prileganja za robustnejše odkrivanje napadov.

1 Introduction

The prevalence of Internet-connected gadgets has led to

an increased risk of infection by harmful programs. Once

attacked, attackers utilize persistence measures to ensure

that affected systems remain compromised for long

periods of time. Consequently, the presence of persistence

in harmful algorithms poses a challenge for static analysis

conducted by simple code inspection [1]. To identify

harmful activities in a system, it is necessary to conduct

dynamic analyses, execute code, and provide reports on

system changes. There is a constant discovery of new

harmful programs, and their quantity is growing

fast. Therefore, it is challenging to examine and categorise

all current harmful scripts utilising debugging and

signatures. Developing defensive strategies in response to

newly found harmful code is insufficiently rapid to keep

pace with the frequency at which dangerous programs

arise. To address a novel harmful code, it is imperative to

promptly conduct analysis and categorisation of the code.

Malicious programs of the same category exhibit

resemblances in their utilisation of comparable libraries

and APIS, resulting in parallels in program behaviour.

Hence, by identifying and categorising novel dangerous

codes into pre-existing families of harmful codes, we may

ascertain the specific nature of the new malicious code and

offer suitable protective strategies.

Software-defined networking (SDN)[2,3] is a new

concept in networking that offers hope for overcoming the

shortcomings of existing network infrastructures. To

begin with, it dissociates the network's logic for

controlling the network (the control plane) from the

physical hardware responsible for forwarding traffic (the

data plane), thereby breaking vertical integration.

The second benefit is that policy enforcement, network

(re)configuration, and evolution are made easier with the

control logic implemented in a logically centralized

controller (or operating system for networks) and the data

plane is separated from the network, reducing network

switches to simple forwarding devices [4].

With a fine, distinct programming interface between

the switches and the SDN controller, the data plane and

the control plane may be separated. One or more flow

tables contain the rules for packet processing in an

OpenFlow switch. Each rule does a certain action

(dropping, forwarding, altering, etc.) on a subset of the

traffic based on the matching subset. A controller

application [5] can configure an OpenFlow switch to act

https://doi.org/10.31449/inf.v49i6.
mailto:vasantharajk35@gmail.com
mailto:angelinag@hindustanuniv.ac.in

380 Informatica 49 (2025) 379–390 V. Karunakaran et al.

as a firewall, load balancer, traffic shaper, router, or any

number of other functions (think middlebox), depending

on the rules imposed by the application.

Disentangling the responsibilities of those involved in

defining network policies, implementing those policies in

switching hardware, and forwarding traffic is a significant

outcome of the SDN principles. By decomposing the

network control issue into smaller, more manageable

portions [6], this separation allows for the needed

flexibility, simplifies network administration, and

facilitates network evolution and innovation by making it

easier to build and introduce new networking abstractions.

For the SDN-Controller to learn about the connections

between the infrastructure layer's forwarding devices, it

employs link discovery. So, to find these connections, the

OFDP will act as a go-between for the SDN-Controller

and the infrastructure-layer network devices. This is

accomplished by OFDP using the Link Layer Discovery

Protocol (LLDP) message format, and for each active

SDN-Switch port in the network, the SDN-Controller

sends out a huge number of LLDP advertising at relatively

large, set intervals. To advertise LLDP, the SDN-

Controller sends out Packet_Out OpenFlow messages to

all of the active SDN-Switch ports. The data layer SDN-

Switch, on the other hand, encapsulates the LLDP packet

in a Packet_In OpenFlow message and sends the link

information [7].

By combining spatial, temporal, and fully linked

feature extraction techniques, the ultimate objective is to

create a hybrid deep learning model (CNN-LSTM-MLP)

that improves malware detection accuracy in the SDN

Environment.

Here is the structure of the article: In Section 2,

provides the literature review. Section 3 details the

research methods used, while 4 provides context for the

study. The experimental setup and findings are presented

in Section 5, while the discussion follows in Section 6.

Section 7 concludes the article.

2 Related work

Network virtualisation in the SDN architecture separates

the forwarding and controlling activities of the network.

This document explains how to set up and configure a

control plane to function as an SDN controller. [8]

provided a quick overview of the many OpenFlow-

enabled controllers built on SDN and available in different

programmable languages. The two Open Flow-enabled

controllers, POX, a Python-based controller, and

Floodlight, a Java-based controller, are the main subjects

of this study. Using the effective network simulator

Mininet, a performance comparison of both controllers is

performed across various network topologies by

examining network throughput and round-trip delay.

Either a single controller or several controllers can be

used to deploy the SDN architecture. The latter faces a

controller placement problem (CPP) in a large-scale

network setting, whereas the first is not appropriate for

large-scale networks. In order to achieve specific

performance objectives, such as dependability, load

balancing, latency, energy efficiency, and computation

time, CPP entails the issue of installing the ideal amount

of controllers inside a network. Over the years, a number

of CPP approaches have been put forth, in which each has

its own specific goals, advantages, and disadvantages. The

results of [9] showed a number of current approaches and

algorithms as well as a number of difficulties, including

the requirement for an effective algorithm and for attack-

aware, cost-aware, and energy-aware CPP schemes while

ensuring a high Quality of Service.

The control and data planes are divided by SDN, and

they are later synchronized using a control protocol like

OpenFlow. The control and data planes of an SDN

deployment called in-band control use the same physical

network. It presents a number of difficulties, including

data loss, network congestion, and security flaws. Despite

these difficulties, in-band control offers a number of

advantages, such as increased network flexibility and

programmability, lower costs, and more dependability.

The proposed methods that have been put forth by [10]

thus far to improve in-band SDN control, which are

divided into four primary groupings: quick failure

recovery, automatic routing, distributed control network

and bootstrapping. Apart from the above, the authors also

provided elaborated analysis of Control plane summary

tables and poses challenges in the field.

Over the past few decades, numerous network

techniques have been suggested to enhance user

performance. Software-defined networks (SDN) play a

vital role in different network topologies and their efficient

management. SDNs are categorized into commercial and

open-source controllers since they are widely utilized in

the present networking landscape. Many companies utilize

both proprietary and open-source controllers. There exists

a substantial amount of literature on these controllers;

however, it does not provide an analysis or evaluation of

the controllers' performance in different network

configurations. [11] conducted a comparative analysis on

the efficiency of two Python based open-source

controllers, The initial evaluation involves applying

Shortest Path algorithm to determine the most efficient

route from the starting point to the destination. The second

evaluation involves designing a customized network

configuration using the Mininet simulator. Subsequently,

the two end hosts in each network calculate the quality of

service (QoS) measurements, including Jitter, throughput,

packet loss, and packet delivery ratio. According to the

examination results, it has been determined that POX

surpasses RYU and is highly suitable for deployment in

any scenario.

A unique method for detecting malware by combining

Convolutional Neural Networks (CNN) with Long Short-

Term Memory (LSTM) networks have been illustrated by

[12] and the study highlights the constraints of

conventional signature-based detection techniques when

A Hybrid Deep Learning Approach for Analyzing and Detecting… Informatica 49 (2025) 379–390 381

dealing with advancing and intricate malware, especially

zero-day threats. The proposed hybrid model efficiently

detects fraudulent activity in API call sequences by using

the spatial feature extraction power of CNNs and the

temporal dependency capturing ability of LSTMs. The

research exhibits a validation accuracy of 96%,

highlighting the model's capacity to enhance cybersecurity

measures by identifying and categorizing malware, even

in situations when traditional approaches are inadequate.

A new method that combines Long Short-Term

Memory (LSTM) and Convolutional Neural Networks

(CNN) to improve the accuracy of malware detection

presented by [13]. This approach employs both static and

dynamic characteristics of malware by transforming

malware binaries into grayscale pictures for analysis, and

by collecting temporal relationships using LSTM and

parallel feature extraction using CNN. The model also

utilizes Principal Component Analysis (PCA) to identify

features, hence enhancing efficiency. When tested on a

publicly available dataset of malicious software, this

method shows superior precision, accuracy, and F1 scores

compared to previous approaches. It has the potential to

greatly improve system security.

A malware classification technique that employs the

VGG16 model was optimized by [14] using picture-

related datasets and the VGG19, ResNet-50, and

InceptionV3 models were pre-trained to extract features

from malware pictures. Subsequently, these

characteristics were employed to categorize malware

lineages utilizing six machine learning classifiers.

A technique to identify and categorize photos of

malware was designed by [15]. This method employs

image-based stacking ensemble techniques and extracts

vital information from the images using local binary

pattern (LBP) and grey-level spatial dependence matrices

(GLCM). Subsequently, the system utilizes a CNN

ensemble model to convert the high-dimensional

characteristics into low-dimensional ones. Ultimately, a

total of six machine learning classifiers are employed to

identify and categorize the malicious software.

The author [16] illustrated a machine learning

technique for detecting and classifying Android malware

using a stacking ensemble-based convolutional neural

network (CNN). The method entails training a pre-trained

model known as EfficientNetB0 by fine-tuning it with

virus pictures. The generated model is subsequently fed

into a logistic lapse model that incorporates Machine

Learning algorithms.

The author [17] has performed a comparative study on

machine learning methods for identifying malware in

Android apps, emphasising the importance of accurate and

efficient detection. Models such as Random Forest, Extra

Trees, and Logistic Regression were assessed, with

Logistic Regression emerging as the top performer with a

97.31% accuracy rate. This research underscores the

potential of machine learning in bolstering Android

security and provides a foundation for future

improvements in mobile malware detection.

Malware analysis is also promoted by Windows.

Malware, a dangerous online threat, is currently the main

focus of the research community due to the rapid

emergence of new types of malware. Unfortunately, no

matter how many approaches have been taken, no

malware has yet been detected. The suggested approach

accomplishes this goal by integrating machine learning

with dynamic malware analysis techniques to detect and

categorize Windows malware. To execute the executable

in a restricted environment with few exposed resources,

you may use the Cuckoo Sandbox Tool. After the

execution is complete, you can analyze the behaviour

patterns and statistics. The JSON report provided by [18]

was used to choose the characteristics and their count

frequencies.

Deep Learning techniques are employed to safeguard

the controller by implementing robust security measures,

which are crucial for ensuring uninterrupted availability

and connection within the network. Recurrent Neural

Networks (RNN), Long Short-Term Memory (LSTM) ,

and Gated Recurrent Units (GRU) are suggested by [19]

to identify and thwart intrusion threats. [20] assessed the

aforementioned models using a recently published dataset

(InSDN dataset). Ultimately, all the models demonstrate

exceptional precision in identifying and detecting

malware. Therefore, there is a notable enhancement in the

detection of attacks when compared to one of the leading

state-of-the-art methodologies. Malicious software poses

a hazard to several software-intensive systems, leading to

the development of various malware detection methods,

frequently relying on sequential data processing. Long

short-term memory (LSTM) is a type of artificial recurrent

neural network (RNN) structure that is particularly useful

for analyzing sequential data. However, there has been no

research conducted to examine the effectiveness of

various LSTM designs specifically for the purpose of

detecting malware.

A Distributed Denial of Service (DDoS) attack,

sometimes referred to as an internet services attack,

assesses the impact of both traffic flow and throughput

reductions to identify anomalies. This type of assault has

a substantial influence on the entire Software-Defined

Networking (SDN) system. A Deep Learning technique

projected by [21] to enhance the efficiency of the

Software-Defined Networking (SDN) by categorizing

network switches as either trusted or malicious devices.

This study presents a way for detecting attacks on Internet

services using Software Defined Networking (SDN). The

SDN controller has the capability to assess the movement

of data, identify irregularities, and limit the flow of both

incoming and outgoing data, as well as the origin of the

data. The SDN recommends the utilization of a

Convolutional Neural Network (CNN) for the purpose of

detecting attacks, specifically targeting the identification

of nodes that exhibit hostile behaviour.

382 Informatica 49 (2025) 379–390 V. Karunakaran et al.

3 Background

The purpose of malicious software, or malware, is to

organizations and systems. Because malware can

jeopardise operating systems, infrastructure, and sensitive

user data, its detection and analysis are essential to

cybersecurity. Deep learning algorithms have been used

more and more in malware analysis to increase

classification accuracy. However, feature selection and

high-quality data preparation are essential for successful

virus[22] detection.

Dataset Pre-processing Steps: The Canadian Institute

for Cybersecurity provided the dataset used in this

investigation, which includes over 17,341 malware

samples divided into five categories: banking malware,

SMS malware, adware, riskware, and benign samples.

Both static and dynamic features that were taken from

system logs, network activity, and API calls are included

in the collection.

Data cleaning

Corrupted and duplicate entries were eliminated.

Removed columns that weren't needed (such as

timestamps and hash values, which aren't informative).

Feature extraction
• Selected essential characteristics, like memory use,

system behaviour, and API call patterns, that are

crucial to malware categorization.

• Reduced dimensionality while maintaining crucial

information by using feature selection methods such

as Principal Component Analysis (PCA) and Mutual

Information.

• To provide consistent scaling, StandardScaler (zero

mean, unit variance) was used to standardize

numerical features.

• Label encoding was used to encode categorical

features for model compatibility.

Data augmentation & splitting

Arrange the dataset into three sets: test (10%), validation

(10%), and training (80%).

Oversampling techniques (SMOTE) were used for

underrepresented malware classes in order to equalize the

distribution of classes.

Reason for feature selection

Empirical analysis and domain expertise served as the

main sources of feature selection. System logs and API

calls are crucial components because they offer important

insights into malware activities. By removing

superfluous features, PCA increased computing

effectiveness and improved model performance by

lowering the possibility of overfitting.

Optimization of Hyperparameters

Bayesian Optimization was utilized to refine

hyperparameters for the proposed CNN-LSTM-MLP

model to enhance its performance,including:

Parameters of CNN

Kernel dimensions: (3x3, 5x5, 7x7)

Quantity of filters: 32, 64, 128

Activation functions: ReLU, Leaky ReLU

Parameters of LSTM

Quantity of concealed units: (32, 64, 128)

Quantity of superimposed layers: (1, 2, 3)

Dropout rate: (20%, 30%, 40%)

Parameters of the MLP

Quantity of dense layers: (2, 3, 4)

Number of neurons per layer: (64, 128, 256)

Activation functions: ReLU, Sigmoid

Parameters for training

Learning rates: (0.001, 0.0005, 0.0001)

Batch sizes: 32, 64, 128

Optimization Algorithms: Adam, RMSprop

Strategies for preventing overfitting

A number of regularization strategies were used to

reduce overfitting:

Layers of dropout

0.5 dropouts are incorporated in fully connected layers

and 0.3 dropouts in LSTM layers to randomly deactivate

neurons in order to avoid becoming overly dependent on

particular patterns.

L2 Weight Decay regularization

To penalize big weights, reduce model complexity, and

improve generalization, L2 weight regularization (λ =

0.001) was added to the thick layers.

Early termination

To avoid needless overfitting, validation loss was tracked

using an early stopping patience of 10 epochs, and

training was stopped if no improvement was seen.

3.1 RYU and POX controller
In an SDN context, combining RYU and POX [23]

controllers can help make the most of each controller's

specific capabilities.

RYU

1. A software-defined networking framework based on

components. Programmed using the Python language.

2. Offers software components with clear APIs to assist

developers in building new apps for network control and

administration.

A Hybrid Deep Learning Approach for Analyzing and Detecting… Informatica 49 (2025) 379–390 383

POX:

1. A second-generation Python SDN controller.

2. Perfect for educational and prototyping applications

due to its simplicity and ease of understanding.

3.2 LSTM
The well-known deep learning frameworks Keras and

TensorFlow are compatible with the implementation and

training of the model. For the purpose of feedback

learning, the LSTM stores the kernel function and the

scores of the neurons that make up the neural network in

a memory unit[24]. An LSTM's ability to process all data

points, rather than just one, is its main benefit over more

conventional fully connected layers. This gives it more

strength. We utilized a Long Short-Term Memory

(LSTM) model developed using the Keras package and

Tensorflow in our experiment. Dimensions of our hidden

state neurons layer are [(64,32), (32,16), (64,32,32),

(64,32, 32),] respectively.

3.3 Multi-Layer perceptron
An artificial neural network (ANN) with several layers of

interconnected neurons is called a Multi-Layer Perceptron

(MLP). By adding hidden layers between the input and

output layers, an MLP can simulate intricate, non-linear

interactions, in contrast to a standard perceptron, which is

only capable of handling linearly separable problems.

MLP structure:

The feature vectors from the preprocessed dataset are

received by the input layer.

Multiple fully linked neurons make up hidden layers,

which use activation functions (like ReLU) to identify

non-linear patterns.

Using a softmax activation function for multi-class

classification, the output layer generates classification

probabilities.

4 Proposed methodology
The objective of this study is to provide a sophisticated

deep learning-based approach for identifying and

preventing threats in software-defined networking (SDN)

settings. This section focuses on the technique employed

in our work, namely the hybrid threat-detection

framework, dataset preparation, suggested network

model, and dataset description.

Figure 2: SDN-DMAD architecture

Fig 2 depicts the structure of a Software-Defined

Networking (SDN) system that has been augmented with

a framework for detecting malware known as Software

Defined Networking-Dynamic Malware Analysis and

Detection(SDN-DMAD) Architecture that has been

inspired from[24]. The architecture is segmented into

three main planes: the Application Plane, Control Plane

and Data Plane.

 The application plane is the uppermost layer that

comprises several applications, including email, cloud

services, and communication tools like Skype and

LinkedIn. These apps communicate with the underlying

network infrastructure via the Northbound API. These

apps provide the transmission and reception of data, which

is efficiently controlled and directed through the SDN

infrastructure.

 The Control Plane, located centrally, contains the

Malware Detection System that is incorporated into the

SDN Controllers. The malware detection system

integrates a Proposed model

(CNN+LSTM+MLP) [29,30,31] that is specifically

intended to categorize dataset as either Benign or Attack.

The model examines data flows and interacts with the

Application Plane to adapt network policies and

counteract risks.

Data Plane: The primary layer comprises of SDN switches

[32] that oversee and guide the tangible data flow inside

the network. These switches regulate the transmission of

data to a wide range of IoT devices, industrial systems,

smart homes, cars, and other similar entities. Real-time

modifications are performed depending on judgments

made by the malware system.

384 Informatica 49 (2025) 379–390 V. Karunakaran et al.

This design demonstrates the incorporation of

sophisticated malware detection into SDN settings,

allowing enhanced and intelligent control of network

traffic across a wide range of applications and devices,

resulting in increased security.

4.2 CNN-LSTM-MLP model
The deep learning model for attack detection starts by

importing and preparing datasets that contain

characteristics and labels associated with Trojan and

ransomware assaults. Upon eliminating superfluous

columns, the datasets are arranged in a coordinated

manner, and supplementary characteristics are created to

capture intricate connections. Next, the features are

standardized using StandardScaler, which guarantees that

each feature has a mean of null and a standard deviation

of one. This step is essential for optimizing the

performance of various Supervised Learning algorithms.

The category labels are transformed into a numerical

representation appropriate for model training using the

Label Encoder. The dataset is subsequently merged and

divided into separate training and testing sets using the

parameters.

 The Proposed Architecture has three branches: as

shown in Fig 3. A CNN branch for capturing local

patterns, an LSTM branch for capturing temporal

dependencies, and an MLP branch for capturing

relationships in the flattened feature space. The results of

these branches are combined and then sent through other

layers. The softmax function converts the output into a

probability distribution across all classes, ensuring that the

sum of probabilities equals one. This enables the model to

make a classification decision by assigning the input to the

class with the highest probability. The model is created via

the Adam optimizer, and trained using Cross-Entropy

(CE), which is suitable for classification tasks by

penalizing incorrect predictions based on probability

outputs.

 The training process consists of 30 epochs, during

which performance is monitored using a validation split.

Following the training process, the model's accuracy and

loss are assessed on the test set. Additionally, predictions

are examined using classification reports, confusion

matrices, ROC curves, and precision-recall curves.

Ultimately, the model that has been trained is stored for

future utilization, enabling its application to novel data for

the purpose of detecting attacks.

Figure 3: Proposed malware analysis and detection

The pseudocode of the projected model is also proposed as

algorithm – 1

Input:

• dataset: Trojan_Banker_before_reboot_Cat.csv,

Riskware_before_reboot_Cat.csv

• learning_rate(p): learning rate

• optimizer: adam

• training rounds: epochs (30 in this case)

Output:

Step - 1: Load and Clean Data: Load

Trojan_Banker_before_reboot_Cat.csv and

Riskware_before_reboot_Cat.csv, dropping unnecessary

columns (Hash, Category, Family).

Step - 2: Align and Transform Features:

• Align columns of Riskware data to match Trojan

data.

• Create additional features and standardize with

StandardScaler.

Step - 3: Prepare Labels and Combine Data:

A Hybrid Deep Learning Approach for Analyzing and Detecting… Informatica 49 (2025) 379–390 385

• Encode labels using LabelEncoder.

• Concatenate scaled features and encoded labels.

Step - 4: Reshape and Split Data:

• Reshape features for LSTM input.

• Convert labels to categorical and split data for

training/testing.

Step - 5: Define Model Architecture:

• CNN Branch: Input, convolutional layers,

pooling, flattening, and dropout layers.

• LSTM Branch: Input, bidirectional LSTM

layers, and dropout layers.

• MLP Branch: Input, dense layers, and dropout

layers.

Step - 6: Combine and Compile:

• Concatenate CNN, LSTM, and MLP outputs, add

final dense layers, and compile the model.

The deep learning model may be represented by a set of

fundamental equations that correspond to the CNN,

LSTM, MLP branches, and the final output layer. The deep

learning model mentioned may be represented by various

fundamental equations corresponding to the CNN, LSTM,

MLP branches, and the final output layer. The following

equations are pertinent: The pertinent equations:

4.2.1 Convolution operation

 (1)

Where:

• x is the input to the convolutional layer.

• wk represents the convolutional filter weights.

• b is the bias term.

• σ is the activation function (ReLU in this case).

Max pooling operation

 (2)

Where xi are the elements within the Pooling Window

Flattening

 (3)

Where x is the output from the final MaxPooling layer

The convolution process in Convolutional Neural

Networks (CNNs) involves the application of filters to

input data in order to extract important features. This is

done by mixing the input with filter weights and a bias

term, and then applying an activation function such as

ReLU, as seen in equation 1. Next, a max pooling

operation is performed to decrease the spatial dimensions

of the data. This operation selects the largest value inside

a pooling window, thus preserving the most important

information as outlined in equation 2. Equation 3 involves

taking the output from the max pooling layers and

converting it into a one-dimensional vector. This allows

the data to be easily processed by fully connected layers,

enabling additional analysis and decision-making within

the network.

4.2.2 LSTM branch equations

 LSTM Cell Computation:

 (4)

 (5)

 (6)

 (7)

 (8)

 (9)

where

ft, it, ot are the forget, input and output gates respectively

Ct is the Cell state and Ht is the hidden state

Wf, Wi, Wc and W0 are the weight matrices and bf, bi, bc,

bo are the bias Vectors

Xt is the input at the time step t

Several important gates that control the input flow

organise calculations in an LSTM cell. First, the input gate

regulates the amount of new data that is added to the cell

state from the prior hidden state ht−1 and the current input

xt. Which portion of the prior cell state Ct−1 to be kept is

decided by the forget gate ft . Using a tanh activation, the

cell state update Ct creates a candidate for the current cell

state. Ultimately, the new cell state Ct balances memory

retention and new information incorporation by combining

retained information from Ct−1 with the candidate cell state.

The LSTM is very efficient for sequential data processing

because of these calculations, which enable it to retain

pertinent data over time in a selected manner. The forget

gate filters out outdated or irrelevant network behaviours

while retaining critical attack patterns, ensuring the model

386 Informatica 49 (2025) 379–390 V. Karunakaran et al.

focuses on persistent threats. The input gate updates the

cell state by incorporating new suspicious activity, such as

sudden spikes in network traffic, to enhance malware

detection. The output gate determines how much of the

learned attack pattern influences the final decision,

ensuring accurate classification of malicious behaviour.

4.2.3 MLP branch equations

 Dense Layer:

 (10)

The output in the dense layer is calculated by multiplying

the input 𝑥 with a weight matrix 𝑊 and adding a bias

vector 𝑏. This is then sent through an activation function

𝜎, which is usually the rectified linear unit (ReLU). This

technique enables the model to acquire intricate

connections within the data by converting the input into a

representation at a higher level.

5 Experimental setup and results
We do our experiment in the following manner to

undertake malware analysis and detection:

1. Setting up the environment for SDN development

2. Results.

5.1 Setting up the environment for SDN

development
The setup specified in Table 1 is used for these

investigations. Each virtual computer in the emulated

network runs its own Linux kernel, allowing for the

configuration of connection characteristics like bandwidth.

Mininet [18] was used to run this network. The SDN

controllers utilized were RYU and POX.

Table 1: Specification

System Specification

CPU Intel Core i3-15, CPU 2.7 GHz

RAM 8GB – DDR4

GPU 2GB

OS Ubuntu – 20.0

Simulator Mininet 3.0

Controller RYU and POX

Software Tool Jupyter

5.1.1 RYU and POX controller
Process: In order to administer the network, switches talk

to both the RYU and POX controllers. RYU Controller

may detect topologies and then either publish messages to

a broker or disclose pertinent data using a REST API, at

the same time, the POX Controller uses REST API calls or

message broker subscriptions to get data from the RYU

controller. The SDN environment is managed by both

controllers, who complement each other by playing to their

strengths. The response time with respect to the packet

count when the Controllers are getting executed [33].

5.2 Results

The files “Trojan_Banker_before_Cat.csv and

"Riskware_before_reboot_Cat.csv" are likely to include

data that is associated with the categories of Trojan Banker

and Riskware malware, respectively. The datasets would

consist of characteristics and classifications that are

utilized to build a machine learning model for the

identification of malicious software. The files include

extracted characteristics that represent different parts of

the malware's activity. The labels show if the virus belongs

to the Trojan Banker or Riskware category.

 Regarding the confusion matrix mentioned before,

these datasets would have undergone preprocessing and

then been used to train the model. The confusion matrix is

a useful tool for assessing the model's ability to

differentiate between instances of Trojan_Banker and

Riskware, based on the datasets it was trained on.

The below Fig-4 represents the Confusion Matrix

Figure 4 : Confusion matrix

 True Positive Rate (TPR) and False Positive Rate

(FPR) are crucial measures for assessing the effectiveness

of a classification model, especially in binary classification

applications like malware detection. From the Confusion

matrix we took True Positive Rate (TPR) and False

Positive Rate (FPR) for computation of the result and the

comparison of Precision vs Recall is shown in Fig 5 and

Fig 6 respectively. The provided Receiver-operating

A Hybrid Deep Learning Approach for Analyzing and Detecting… Informatica 49 (2025) 379–390 387

characteristic curve (ROC curve) demonstrates the

effectiveness of a binary classification

Figure 5: ROC Curve between TPR and FPR

Figure 6: Precision Vs Recall

The above Precision-Recall (PR) curve depicts the

effectiveness of a binary classification model in

distinguishing between Class 0 and Class 1. It plots

precision versus recall. Our dataset initially suffered from

a significant class imbalance, where Class 0 had a much

larger representation compared to Class 1. This imbalance

led the model to favour Class 0, resulting in high precision

and recall for it, while Class 1 exhibited fluctuating

precision-recall values due to insufficient training

examples. To address this issue, we applied Synthetic

Minority Over-sampling Technique (SMOTE) to generate

synthetic samples for Class 1, thereby balancing the

dataset. As a result, the model's performance on Class 1

improved, leading to a more stable precision-recall curve,

as observed in the updated PR graph. Receiver Operating

Characteristic (ROC) curve illustrates the relationship

between the True Positive Rate (TPR) and the False

Positive Rate (FPR) at various threshold values [34]. The

curve's position near the top-left corner indicates a model

with a high TPR and a low FPR, indicating its ability to

maximize accurate positive predictions while minimizing

incorrect positive classifications.

The performance of the work can be predicted by

Accuracy gain and Model Loss as depicted in the Fig 7 and

Fig 8 respectively.

Figure 7: Training and validation accuracy

The above Fig 7 displays the accuracy of both the training

and validation processes across a fixed number of epochs.

The training accuracy (in blue) and validation accuracy (in

orange) both see fast increases over the initial epochs, with

the training accuracy finally approaching 100%. The

validation accuracy likewise reaches a steady state at a

high value, closely tracking the training accuracy. The

model demonstrates a good level of accuracy on both the

training and validation datasets.

Figure 8: Model loss

The Fig 8 illustrates the training and validation loss as they

vary with the number of

epochs. The training loss, represented by the blue line,

consistently reduces as the model learns, eventually

achieving a minimal value as the training continues. The

validation loss (in orange) initially exhibits a similar

decreasing trend, suggesting that the model is making

388 Informatica 49 (2025) 379–390 V. Karunakaran et al.

progress in terms of its performance on unknown data.

Nevertheless, after around 10-15 epochs, the validation

loss begins to rise while the training loss continues to

decline, indicating that the model is starting to exhibit

overfitting to the training data. We have executed the

Malware Analysis and Detection using various methods of

LSTM, CNN and MLP. This is shown in below Table – 2.

Some of the methods are compared with the existing works

as shown below in Table – 3.

Table 2: Comparison of our works

S. No Method Accuracy Precision Recall F-Score

1 Bidirectional-LSTM 0.96 0.95 0.98 0.96

2 Stacked-LSTM 0.97 0.98 0.99 0.97

3 Multi-Layer Perceptron 0.97 0.99 0.99 0.99

4 LSTM-MLP 0.975 0.98 1.0 0.97

5 CNN-LSTM-MLP

(Proposed)

0.98 0.98 1.0 0.98

Table 3: Comparison with existing works

Reference Method Dataset used Detection Accuracy

Avci et al.[34] Vanilla LSTM,

Bi-Directional

LSTM,

Stacked-LSTM and

CNN-LSTM

Malware Dataset (Canadian

Institute of Cybersecurity)

0.88

Mustafa, O., Ali, K.,

& Naqash, T. [27]

LSTM & Self-

Attention

Architectures

CSE-CIC-IDS2018 0.97

Akhtar MS, Feng T

[29]

CNN-LSTM Malware Dataset from

Kaggle

0.97

Marek Amanowicz

and and Damian

Jankowski [24]

MADMAS (SVM,

KNN)

KDD Cup 1999 0.97

Proposed work CNN-LSTM-MLP Trojan Bank and Riskware

(Canadian Institute of

Cybersecurity)

0.98

6 Conclusion

The proposed technique efficiently combines

Convolutional Neural Networks (CNNS), Long Short-

Term Memory networks (LSTMS), and Multilayer

Perceptrons (MLPS) to enhance malware detection in

SDN environments. CNNS are employed to extract spatial

features such as patterns in API usage, LSTMS capture

sequential and temporal dependencies in malware

behaviour over time, and MLPS integrate these features to

perform accurate classification. This architectural synergy

enables the model to detect complex and subtle malware

A Hybrid Deep Learning Approach for Analyzing and Detecting… Informatica 49 (2025) 379–390 389

patterns more effectively than single-model approaches.

However, the model's performance depends on the quality

and diversity of the training dataset, and synthetic

oversampling (SMOTE) may not fully reflect real-world

complexity. Additionally, the hybrid model's

computational intensity may limit deployment in resource-

constrained or real-time settings. Future work will aim to

improve generalizability across diverse malware families,

reduce computational overhead, and further enhance

adaptability for a dynamic SDN environment

References

[1] Hu, J. (2025). Online Criminal Behavior

Recognition Based on CNNH and MCNN-

LSTM. Informatica, 49(12).

[2] Parol, P., & Pawłowski, M. (2014). Future-proof

access networks for B2B

applications. Informatica, 38(3).

[3] Seun, E., Adebayo, A. O., & Osisanwo, F. Y. (2016).

Introduction to software-defined networks

(SDN). International Journal of Applied Information

Systems, 11(7), 10-14.

[4] Hussain, M., Shah, N., Amin, R., Alshamrani, S. S.,

Alotaibi, A., & Raza, S. M. (2022). Software-defined

networking: Categories, analysis, and future

directions. Sensors, 22(15), 5551.

[5] Masoudi, R., & Ghaffari, A. (2016). Software-

defined networks: A survey. Journal of Network and

Computer Applications, 67, 1-25.

[6] Lee, C., Yoon, C., Shin, S., & Cha, S. K. (2018).

INDAGO: A new framework for detecting malicious

SDN applications. Proceedings of the IEEE 26th

International Conference on Network Protocols

(ICNP), 220–230. IEEE.

[7] Buzura, S., Peculea, A., Iancu, B., Cebuc, E., Dadarlat,

V., & Kovacs, R. (2023). A hybrid software and

hardware SDN simulation testbed. Sensors, 23(1),

490.

[8] Bholebawa, I. Z., & Dalal, U. D. (2018). Performance

analysis of SDN/OpenFlow controllers: POX versus

floodlight. Wireless Personal Communications, 98,

1679-1699.

[9] Isong, B., Molose, R. R. S., Abu-Mahfouz, A. M., &

Dladlu, N. (2020). Comprehensive review of SDN

controller placement strategies. IEEE Access, 8,

170070-170092

[10] Carrascal, D., Rojas, E., Arco, J. M., Lopez-Pajares,

D., Alvarez-Horcajo, J., & Carral, J. A. (2023). A

Comprehensive Survey of In-Band Control in SDN:

Challenges and

Opportunities. Electronics, 12(6), 1265.

[11] Naim, N., Imad, M., Hassan, M. A., Afzal, M. B.,

Khan, S., & Khan, A. U. (2023). POX and RYU

Controller Performance Analysis on Software

Defined Network. EAI Endorsed Transactions on

Internet of Things, 9(3).

[12] Gautam Karat, Jinesh M. Kannimoola, Namrata Nair,

Anu Vazhayil, Sujadevi V G, Prabaharan

Poornachandran, CNN-LSTM Hybrid Model for

Enhanced Malware Analysis and Detection, Procedia

Computer Science, Volume 233,2024,

 https://doi.org/10.1016/j.procs.2024.03.239.

[13] Thakur, P., Kansal, V. & Rishiwal, V. Hybrid Deep

Learning Approach Based on LSTM and CNN for

Malware Detection. Wireless Pers Commun 136,

1879–1901 (2024).

 https://doi.org/10.1007/s11277-024-11366-y

[14] Kumar, S.; Panda, K. SDIF-CNN: Stacking deep

image features using fine-tuned convolution neural

network models for real-world malware detection

and classification. Appl. Soft Comput. 2023, 146,

110676.

[15] Naeem, H.; Dong, S.; Falana, O.J.; Ullah, F.

Development of a deep stacked ensemble with

process based volatile memory forensics for platform

independent malware detection and classification.

Expert Syst. Appl. 2023, 223, 119952.

[16] Yadava, P.; Menonb, N.; Ravic, V.; Vishvanathand,

S.; Phame, D.T. A two-stage deep learning

framework for image-based android malware

detection and variant classification. Comput. Intell.

2022, 38, 1748–1771.

[17] Albazar, I., & Hassan, M. (2023). A Model for

Android Platform Malware Detection Utilising

Multiple Machine Learning Algorithms. Informatica,

48(17). https://doi.org/10.31449/inf.v48i17.6543

[18] Dutta, N., Jadav, N., Tanwar, S., Sarma, H.K.D.,

Pricop, E. (2022). Introduction to Malware Analysis.

In: Cyber Security: Issues and Current Trends.

Studies in Computational Intelligence, vol 995.

Springer, Singapore. https://doi.org/10.1007/978-

981-16-6597-4_7

[19] Karunakaran, V. ., & Geetha, A. (2023). Performing

Dynamic Malware Analysis in Software-Defined

Network using LSTM Technique. International

Journal of Intelligent Systems and Applications in

Engineering, 12(2s), 411–419.

https://ijisae.org/index.php/IJISAE/article/view/364

1

https://doi.org/10.1016/j.procs.2024.03.239
https://doi.org/10.1007/s11277-024-11366-y
https://doi.org/10.31449/inf.v48i17.6543
https://doi.org/10.1007/978-981-16-6597-4_7
https://doi.org/10.1007/978-981-16-6597-4_7
https://ijisae.org/index.php/IJISAE/article/view/3641
https://ijisae.org/index.php/IJISAE/article/view/3641

390 Informatica 49 (2025) 379–390 V. Karunakaran et al.

[20] Islam, M. T., Islam, N., & Refat, M. A. (2020). Node-

to-node performance evaluation through RYU SDN

controller. Wireless Personal Communications, 112,

555-570.

[21] Ahuja, N., Mukhopadhyay, D., Singh, L., Kumar, R.,

& Gupta, C. (2022). Attack Detection in SDN Using

RNN. In International Conference on Advances in

Data-driven Computing and Intelligent Systems (pp.

585-596). Singapore: Springer Nature Singapore.

[22] Ahmed, N., Ngadi, A. B., Sharif, J. M., Hussain, S.,

Uddin, M., Rathore, M. S., ... & Zuhra, F. T. (2022).

Network threat detection using machine/deep

learning in sdn-based platforms: a comprehensive

analysis of state-of-the-art solutions, discussion,

challenges, and future research

direction. Sensors, 22(20), 7896.

[23] Cabarkapa, D., & Rancic, D. (2021). Performance

Analysis of Ryu-POX Controller in Different Tree-

Based SDN Topologies. Advances in Electrical &

Computer Engineering, 21(3).

[24] Amanowicz, M.; Jankowski, D. Detection and

Classification of Malicious Flows in Software-

Defined Networks Using Data Mining Techniques.

Sensors 2021, 21, 2972.

https://doi.org/10.3390/s21092972

[25] Urooj, U., Al-rimy, B. A. S., Zainal, A., Ghaleb, F. A.,

& Rassam, M. A. (2021). Ransomware detection

using dynamic analysis and machine learning: A

survey and research directions. Applied

Sciences, 12(1), 172.

[26] Li, C., Lv, Q., Li, N., Wang, Y., Sun, D., & Qiao, Y.

(2022). A novel deep framework for dynamic

malware detection based on API sequence intrinsic

features. Computers & Security, 116, 102686.

[27] Mustafa, O., Ali, K., & Naqash, T. (2023, May). C-

RADAR: A Centralised Deep Learning System for

Intrusion Detection in Software-Defined Networks.

In 2023 International Conference on

Communication, Computing and Digital Systems (C-

CODE) (pp. 1-6). IEEE.

[28] Alshaibi, A., Al-Ani, M., Al-Azzawi, A., Konev, A.,

& Shelupanov, A. (2022). The comparison of

cybersecurity datasets. Data, 7(2), 22.

[29] Akhtar MS, Feng T. Detection of Malware by Deep

Learning as CNN-LSTM Machine Learning

Techniques in Real Time. Symmetry. 2022;

14(11):2308. https://doi.org/10.3390/sym14112308

[30] Liu, J., Huang, X., Li, Q., Chen, Z., Liu, G., & Tai, Y.

(2023). Hourly stepwise forecasting for solar

irradiance using integrated hybrid models CNN-

LSTM-MLP combined with error correction and

VMD. Energy Conversion and Management, 280,

116804.

[31] Feng, T., Liu, Y., Yu, Y., Chen, L., & Chen, R. (2024).

CrowdLOC-S: Crowdsourced seamless localization

framework based on CNN-LSTM-MLP enhanced

quality indicator. Expert Systems with

Applications, 243, 122852.

[32] Ma, B., Lu, Q., Fang, X. et al. ARGCN: An

intelligent prediction model for SDN network

performance. Peer-to-Peer Netw. Appl. 17, 1422–

1441 (2024). https://doi.org/10.1007/s12083-024-

01656-4.

[33] Zhu, J., Karim, M. M., Sharif, K., Xu, C., Li, F., Du,

X., & Guizani, M. (2020). SDN controllers: A

comprehensive analysis and performance evaluation

study. ACM Computing Surveys (CSUR), 53(6), 1–

40. https://doi.org/10.1145/3391195

[34] Avci, C., Tekinerdogan, B., & Catal, C. (2023).

Analysing the performance of long short‐term

memory architectures for malware detection

models. Concurrency and Computation: Practice

and Experience, 35(6), 1-1.

https://doi.org/10.3390/s21092972
https://doi.org/10.1007/s12083-024-01656-4
https://doi.org/10.1007/s12083-024-01656-4
https://doi.org/10.1145/3391195

