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The rise of software-defined networking (SDN) has introduced new security challenges, particularly in detecting
and mitigating malware threats within network infrastructures. Traditional malware detection techniques often
struggle with the dynamic nature of modern cyber threats. This paper presents a hybrid deep learning-based
approach for malware detection in SDN environments, leveraging Convolutional Neural Networks (CNN), Long
Short-Term Memory (LSTM), and Multi-Layer Perceptron (MLP). The proposed CNN-LSTM-MLP model
integrates spatial, temporal, and fully connected feature extraction techniques to enhance classification accuracy.
The study evaluates multiple LSTM architectures, including Bi-Directional-LSTM, Stacked-LSTM, and LSTM-
MLP, demonstrating that the CNN-LSTM-MLP model achieves superior performance. The experimental results,
conducted using datasets from the Canadian Institute for Cybersecurity, indicate that our model attains an
accuracy of 98%, outperforming existing deep learning-based approaches. Additionally, the study integrates RYU
and POX SDN controllers to simulate real-world network environments, ensuring practical applicability. The
findings highlight the efficacy of hybrid deep learning models in securing SDN architectures against evolving
malware threats.

Povzetek: Za bojso varnost v programsko definiranih omreZjih in za zaznavanje zlonamerne programske opreme
avtorja predlagata hibridni model, ki zdruzuje konvolucijske mreze, dolgi kratkorocni spomin in vecéslojni
perceptron ter ga vgradita v krmilni sloj z RYU in POX, s premisljenim predprocesiranjem, uravnotezenjem

razredov in nadzorom prileganja za robustnejse odkrivanje napadov.

1 Introduction

The prevalence of Internet-connected gadgets has led to
an increased risk of infection by harmful programs. Once
attacked, attackers utilize persistence measures to ensure
that affected systems remain compromised for long
periods of time. Consequently, the presence of persistence
in harmful algorithms poses a challenge for static analysis
conducted by simple code inspection [1]. To identify
harmful activities in a system, it is necessary to conduct
dynamic analyses, execute code, and provide reports on
system changes. There is a constant discovery of new
harmful programs, and their quantity is growing
fast. Therefore, it is challenging to examine and categorise
all current harmful scripts utilising debugging and
signatures. Developing defensive strategies in response to
newly found harmful code is insufficiently rapid to keep
pace with the frequency at which dangerous programs
arise. To address a novel harmful code, it is imperative to
promptly conduct analysis and categorisation of the code.
Malicious programs of the same category exhibit
resemblances in their utilisation of comparable libraries
and APIS, resulting in parallels in program behaviour.
Hence, by identifying and categorising novel dangerous

codes into pre-existing families of harmful codes, we may
ascertain the specific nature of the new malicious code and
offer suitable protective strategies.

Software-defined networking (SDN)[2,3] is a new
concept in networking that offers hope for overcoming the
shortcomings of existing network infrastructures. To
begin with, it dissociates the network's logic for
controlling the network (the control plane) from the
physical hardware responsible for forwarding traffic (the
data plane), thereby breaking vertical integration.

The second benefit is that policy enforcement, network
(re)configuration, and evolution are made easier with the
control logic implemented in a logically centralized
controller (or operating system for networks) and the data
plane is separated from the network, reducing network
switches to simple forwarding devices [4].

With a fine, distinct programming interface between
the switches and the SDN controller, the data plane and
the control plane may be separated. One or more flow
tables contain the rules for packet processing in an
OpenFlow switch. Each rule does a certain action
(dropping, forwarding, altering, etc.) on a subset of the
traffic based on the matching subset. A controller
application [5] can configure an OpenFlow switch to act
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as a firewall, load balancer, traffic shaper, router, or any
number of other functions (think middlebox), depending
on the rules imposed by the application.

Disentangling the responsibilities of those involved in
defining network policies, implementing those policies in
switching hardware, and forwarding traffic is a significant
outcome of the SDN principles. By decomposing the
network control issue into smaller, more manageable
portions [6], this separation allows for the needed
flexibility, simplifies network administration, and
facilitates network evolution and innovation by making it
easier to build and introduce new networking abstractions.

For the SDN-Controller to learn about the connections
between the infrastructure layer's forwarding devices, it
employs link discovery. So, to find these connections, the
OFDP will act as a go-between for the SDN-Controller
and the infrastructure-layer network devices. This is
accomplished by OFDP using the Link Layer Discovery
Protocol (LLDP) message format, and for each active
SDN-Switch port in the network, the SDN-Controller
sends out a huge number of LLDP advertising at relatively
large, set intervals. To advertise LLDP, the SDN-
Controller sends out Packet_Out OpenFlow messages to
all of the active SDN-Switch ports. The data layer SDN-
Switch, on the other hand, encapsulates the LLDP packet
in a Packet_In OpenFlow message and sends the link
information [7].

By combining spatial, temporal, and fully linked
feature extraction techniques, the ultimate objective is to
create a hybrid deep learning model (CNN-LSTM-MLP)
that improves malware detection accuracy in the SDN
Environment.

Here is the structure of the article: In Section 2,
provides the literature review. Section 3 details the
research methods used, while 4 provides context for the
study. The experimental setup and findings are presented
in Section 5, while the discussion follows in Section 6.
Section 7 concludes the article.

2 Related work

Network virtualisation in the SDN architecture separates
the forwarding and controlling activities of the network.
This document explains how to set up and configure a
control plane to function as an SDN controller. [8]
provided a quick overview of the many OpenFlow-
enabled controllers built on SDN and available in different
programmable languages. The two Open Flow-enabled
controllers, POX, a Python-based controller, and
Floodlight, a Java-based controller, are the main subjects
of this study. Using the effective network simulator
Mininet, a performance comparison of both controllers is
performed across various network topologies by
examining network throughput and round-trip delay.
Either a single controller or several controllers can be
used to deploy the SDN architecture. The latter faces a
controller placement problem (CPP) in a large-scale
network setting, whereas the first is not appropriate for
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large-scale networks. In order to achieve specific
performance objectives, such as dependability, load
balancing, latency, energy efficiency, and computation
time, CPP entails the issue of installing the ideal amount
of controllers inside a network. Over the years, a number
of CPP approaches have been put forth, in which each has
its own specific goals, advantages, and disadvantages. The
results of [9] showed a number of current approaches and
algorithms as well as a number of difficulties, including
the requirement for an effective algorithm and for attack-
aware, cost-aware, and energy-aware CPP schemes while
ensuring a high Quality of Service.

The control and data planes are divided by SDN, and
they are later synchronized using a control protocol like
OpenFlow. The control and data planes of an SDN
deployment called in-band control use the same physical
network. It presents a number of difficulties, including
data loss, network congestion, and security flaws. Despite
these difficulties, in-band control offers a number of
advantages, such as increased network flexibility and
programmability, lower costs, and more dependability.
The proposed methods that have been put forth by [10]
thus far to improve in-band SDN control, which are
divided into four primary groupings: quick failure
recovery, automatic routing, distributed control network
and bootstrapping. Apart from the above, the authors also
provided elaborated analysis of Control plane summary
tables and poses challenges in the field.

Over the past few decades, numerous network
techniques have been suggested to enhance user
performance. Software-defined networks (SDN) play a
vital role in different network topologies and their efficient
management. SDNs are categorized into commercial and
open-source controllers since they are widely utilized in
the present networking landscape. Many companies utilize
both proprietary and open-source controllers. There exists
a substantial amount of literature on these controllers;
however, it does not provide an analysis or evaluation of
the controllers' performance in different network
configurations. [11] conducted a comparative analysis on
the efficiency of two Python based open-source
controllers, The initial evaluation involves applying
Shortest Path algorithm to determine the most efficient
route from the starting point to the destination. The second
evaluation involves designing a customized network
configuration using the Mininet simulator. Subsequently,
the two end hosts in each network calculate the quality of
service (QoS) measurements, including Jitter, throughput,
packet loss, and packet delivery ratio. According to the
examination results, it has been determined that POX
surpasses RYU and is highly suitable for deployment in
any scenario.

A unique method for detecting malware by combining
Convolutional Neural Networks (CNN) with Long Short-
Term Memory (LSTM) networks have been illustrated by
[12] and the study highlights the constraints of
conventional signature-based detection techniques when
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dealing with advancing and intricate malware, especially
zero-day threats. The proposed hybrid model efficiently
detects fraudulent activity in API call sequences by using
the spatial feature extraction power of CNNs and the
temporal dependency capturing ability of LSTMs. The
research exhibits a validation accuracy of 96%,
highlighting the model's capacity to enhance cybersecurity
measures by identifying and categorizing malware, even
in situations when traditional approaches are inadequate.

A new method that combines Long Short-Term
Memory (LSTM) and Convolutional Neural Networks
(CNN) to improve the accuracy of malware detection
presented by [13]. This approach employs both static and
dynamic characteristics of malware by transforming
malware binaries into grayscale pictures for analysis, and
by collecting temporal relationships using LSTM and
parallel feature extraction using CNN. The model also
utilizes Principal Component Analysis (PCA) to identify
features, hence enhancing efficiency. When tested on a
publicly available dataset of malicious software, this
method shows superior precision, accuracy, and F1 scores
compared to previous approaches. It has the potential to
greatly improve system security.

A malware classification technique that employs the
VGG16 model was optimized by [14] using picture-
related datasets and the VGG19, ResNet-50, and
InceptionVV3 models were pre-trained to extract features
from  malware  pictures.  Subsequently, these
characteristics were employed to categorize malware
lineages utilizing six machine learning classifiers.

A technique to identify and categorize photos of
malware was designed by [15]. This method employs
image-based stacking ensemble techniques and extracts
vital information from the images using local binary
pattern (LBP) and grey-level spatial dependence matrices
(GLCM). Subsequently, the system utilizes a CNN
ensemble model to convert the high-dimensional
characteristics into low-dimensional ones. Ultimately, a
total of six machine learning classifiers are employed to
identify and categorize the malicious software.

The author [16] illustrated a machine learning
technique for detecting and classifying Android malware
using a stacking ensemble-based convolutional neural
network (CNN). The method entails training a pre-trained
model known as EfficientNetBO by fine-tuning it with
virus pictures. The generated model is subsequently fed
into a logistic lapse model that incorporates Machine
Learning algorithms.

The author [17] has performed a comparative study on
machine learning methods for identifying malware in
Android apps, emphasising the importance of accurate and
efficient detection. Models such as Random Forest, Extra
Trees, and Logistic Regression were assessed, with
Logistic Regression emerging as the top performer with a
97.31% accuracy rate. This research underscores the
potential of machine learning in bolstering Android
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security and provides a foundation for future
improvements in mobile malware detection.

Malware analysis is also promoted by Windows.
Malware, a dangerous online threat, is currently the main
focus of the research community due to the rapid
emergence of new types of malware. Unfortunately, no
matter how many approaches have been taken, no
malware has yet been detected. The suggested approach
accomplishes this goal by integrating machine learning
with dynamic malware analysis techniques to detect and
categorize Windows malware. To execute the executable
in a restricted environment with few exposed resources,
you may use the Cuckoo Sandbox Tool. After the
execution is complete, you can analyze the behaviour
patterns and statistics. The JSON report provided by [18]
was used to choose the characteristics and their count
frequencies.

Deep Learning techniques are employed to safeguard
the controller by implementing robust security measures,
which are crucial for ensuring uninterrupted availability
and connection within the network. Recurrent Neural
Networks (RNN), Long Short-Term Memory (LSTM) ,
and Gated Recurrent Units (GRU) are suggested by [19]
to identify and thwart intrusion threats. [20] assessed the
aforementioned models using a recently published dataset
(InSDN dataset). Ultimately, all the models demonstrate
exceptional precision in identifying and detecting
malware. Therefore, there is a notable enhancement in the
detection of attacks when compared to one of the leading
state-of-the-art methodologies. Malicious software poses
a hazard to several software-intensive systems, leading to
the development of various malware detection methods,
frequently relying on sequential data processing. Long
short-term memory (LSTM) is a type of artificial recurrent
neural network (RNN) structure that is particularly useful
for analyzing sequential data. However, there has been no
research conducted to examine the effectiveness of
various LSTM designs specifically for the purpose of
detecting malware.

A Distributed Denial of Service (DDoS) attack,
sometimes referred to as an internet services attack,
assesses the impact of both traffic flow and throughput
reductions to identify anomalies. This type of assault has
a substantial influence on the entire Software-Defined
Networking (SDN) system. A Deep Learning technique
projected by [21] to enhance the efficiency of the
Software-Defined Networking (SDN) by categorizing
network switches as either trusted or malicious devices.
This study presents a way for detecting attacks on Internet
services using Software Defined Networking (SDN). The
SDN controller has the capability to assess the movement
of data, identify irregularities, and limit the flow of both
incoming and outgoing data, as well as the origin of the
data. The SDN recommends the utilization of a
Convolutional Neural Network (CNN) for the purpose of
detecting attacks, specifically targeting the identification
of nodes that exhibit hostile behaviour.
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3 Background

The purpose of malicious software, or malware, is to
organizations and systems. Because malware can
jeopardise operating systems, infrastructure, and sensitive
user data, its detection and analysis are essential to
cybersecurity. Deep learning algorithms have been used
more and more in malware analysis to increase
classification accuracy. However, feature selection and
high-quality data preparation are essential for successful
virus[22] detection.

Dataset Pre-processing Steps: The Canadian Institute
for Cybersecurity provided the dataset used in this
investigation, which includes over 17,341 malware
samples divided into five categories: banking malware,
SMS malware, adware, riskware, and benign samples.
Both static and dynamic features that were taken from
system logs, network activity, and API calls are included
in the collection.

Data cleaning

Corrupted and duplicate entries were eliminated.
Removed columns that werent needed (such as
timestamps and hash values, which aren't informative).

Feature extraction

e Selected essential characteristics, like memory use,
system behaviour, and API call patterns, that are
crucial to malware categorization.

e Reduced dimensionality while maintaining crucial
information by using feature selection methods such
as Principal Component Analysis (PCA) and Mutual
Information.

e To provide consistent scaling, StandardScaler (zero
mean, unit variance) was used to standardize
numerical features.

e Label encoding was used to encode categorical
features for model compatibility.

Data augmentation & splitting

Arrange the dataset into three sets: test (10%), validation
(10%), and training (80%).

Oversampling techniques (SMOTE) were used for
underrepresented malware classes in order to equalize the
distribution of classes.

Reason for feature selection

Empirical analysis and domain expertise served as the
main sources of feature selection. System logs and API
calls are crucial components because they offer important
insights into malware activities. By removing
superfluous features, PCA increased computing
effectiveness and improved model performance by
lowering the possibility of overfitting.
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Optimization of Hyperparameters

Bayesian Optimization was utilized to refine
hyperparameters for the proposed CNN-LSTM-MLP
model to enhance its performance,including:

Parameters of CNN

Kernel dimensions: (3x3, 5x5, 7x7)
Quantity of filters: 32, 64, 128

Activation functions: ReLU, Leaky ReL.U

Parameters of LSTM

Quantity of concealed units: (32, 64, 128)
Quantity of superimposed layers: (1, 2, 3)
Dropout rate: (20%, 30%, 40%)

Parameters of the MLP

Quantity of dense layers: (2, 3, 4)

Number of neurons per layer: (64, 128, 256)
Activation functions: ReLU, Sigmoid

Parameters for training

Learning rates: (0.001, 0.0005, 0.0001)
Batch sizes: 32, 64, 128

Optimization Algorithms: Adam, RMSprop

Strategies for preventing overfitting
A number of regularization strategies were used to
reduce overfitting:

Layers of dropout

0.5 dropouts are incorporated in fully connected layers
and 0.3 dropouts in LSTM layers to randomly deactivate
neurons in order to avoid becoming overly dependent on
particular patterns.

L2 Weight Decay regularization

To penalize big weights, reduce model complexity, and
improve generalization, L2 weight regularization (A =
0.001) was added to the thick layers.

Early termination

To avoid needless overfitting, validation loss was tracked
using an early stopping patience of 10 epochs, and
training was stopped if no improvement was seen.

3.1 RYU and POX controller

In an SDN context, combining RYU and POX [23]
controllers can help make the most of each controller's
specific capabilities.

RYU

1. A software-defined networking framework based on
components. Programmed using the Python language.

2. Offers software components with clear APIs to assist
developers in building new apps for network control and
administration.
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POX:

1. A second-generation Python SDN controller.

2. Perfect for educational and prototyping applications
due to its simplicity and ease of understanding.

3.2 LSTM

The well-known deep learning frameworks Keras and
TensorFlow are compatible with the implementation and
training of the model. For the purpose of feedback
learning, the LSTM stores the kernel function and the
scores of the neurons that make up the neural network in
a memory unit[24]. An LSTM's ability to process all data
points, rather than just one, is its main benefit over more
conventional fully connected layers. This gives it more
strength. We utilized a Long Short-Term Memory
(LSTM) model developed using the Keras package and
Tensorflow in our experiment. Dimensions of our hidden
state neurons layer are [(64,32), (32,16), (64,32,32),
(64,32, 32),] respectively.

3.3 Multi-Layer perceptron

An artificial neural network (ANN) with several layers of
interconnected neurons is called a Multi-Layer Perceptron
(MLP). By adding hidden layers between the input and
output layers, an MLP can simulate intricate, non-linear
interactions, in contrast to a standard perceptron, which is
only capable of handling linearly separable problems.

MLP structure:

The feature vectors from the preprocessed dataset are
received by the input layer.

Multiple fully linked neurons make up hidden layers,
which use activation functions (like ReLU) to identify
non-linear patterns.

Using a softmax activation function for multi-class
classification, the output layer generates classification
probabilities.

4 Proposed methodology

The objective of this study is to provide a sophisticated
deep learning-based approach for identifying and
preventing threats in software-defined networking (SDN)
settings. This section focuses on the technique employed
in our work, namely the hybrid threat-detection
framework, dataset preparation, suggested network
model, and dataset description.
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Figure 2: SDN-DMAD architecture

Fig 2 depicts the structure of a Software-Defined
Networking (SDN) system that has been augmented with
a framework for detecting malware known as Software
Defined Networking-Dynamic Malware Analysis and
Detection(SDN-DMAD) Architecture that has been
inspired from[24]. The architecture is segmented into
three main planes: the Application Plane, Control Plane
and Data Plane.

The application plane is the uppermost layer that
comprises several applications, including email, cloud
services, and communication tools like Skype and
LinkedIn. These apps communicate with the underlying
network infrastructure via the Northbound API. These
apps provide the transmission and reception of data, which
is efficiently controlled and directed through the SDN
infrastructure.

The Control Plane, located centrally, contains the
Malware Detection System that is incorporated into the

SDN Controllers. The malware detection system
integrates a Proposed model
(CNN+LSTM+MLP) [29,30,31] that is specifically

intended to categorize dataset as either Benign or Attack.
The model examines data flows and interacts with the
Application Plane to adapt network policies and
counteract risks.
Data Plane: The primary layer comprises of SDN switches
[32] that oversee and guide the tangible data flow inside
the network. These switches regulate the transmission of
data to a wide range of 10T devices, industrial systems,
smart homes, cars, and other similar entities. Real-time
modifications are performed depending on judgments
made by the malware system.
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This design demonstrates the incorporation of
sophisticated malware detection into SDN settings,
allowing enhanced and intelligent control of network
traffic across a wide range of applications and devices,
resulting in increased security.

4.2 CNN-LSTM-MLP model
The deep learning model for attack detection starts by
importing and preparing datasets that contain
characteristics and labels associated with Trojan and
ransomware assaults. Upon eliminating superfluous
columns, the datasets are arranged in a coordinated
manner, and supplementary characteristics are created to
capture intricate connections. Next, the features are
standardized using StandardScaler, which guarantees that
each feature has a mean of null and a standard deviation
of one. This step is essential for optimizing the
performance of various Supervised Learning algorithms.
The category labels are transformed into a numerical
representation appropriate for model training using the
Label Encoder. The dataset is subsequently merged and
divided into separate training and testing sets using the
parameters.

The Proposed Architecture has three branches: as
shown in Fig 3. A CNN branch for capturing local
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patterns, an LSTM branch for capturing temporal
dependencies, and an MLP branch for capturing
relationships in the flattened feature space. The results of
these branches are combined and then sent through other
layers. The softmax function converts the output into a
probability distribution across all classes, ensuring that the
sum of probabilities equals one. This enables the model to
make a classification decision by assigning the input to the
class with the highest probability. The model is created via
the Adam optimizer, and trained using Cross-Entropy
(CE), which is suitable for classification tasks by
penalizing incorrect predictions based on probability
outputs.

The training process consists of 30 epochs, during
which performance is monitored using a validation split.
Following the training process, the model's accuracy and
loss are assessed on the test set. Additionally, predictions
are examined using classification reports, confusion
matrices, ROC curves, and precision-recall curves.
Ultimately, the model that has been trained is stored for
future utilization, enabling its application to novel data for
the purpose of detecting attacks.

SDN

|

Concatenate the
Convolution Max Dense layers
CI\—Nj—' layer Pooling layer ]
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Output layver
Final Dense Layer
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Figure 3: Proposed malware analysis and detection

The pseudocode of the projected model is also proposed as
algorithm — 1

Input:

e dataset: Trojan_Banker_before_reboot_Cat.csv,
Riskware_before_reboot_Cat.csv

e learning_rate(p): learning rate

e optimizer: adam

e training rounds: epochs (30 in this case)
Output:

Step - 1 Load and Clean Data: Load
Trojan_Banker_before_reboot_Cat.csv and
Riskware_before_reboot_Cat.csv, dropping unnecessary

columns (Hash, Category, Family).
Step - 2: Align and Transform Features:

e Align columns of Riskware data to match Trojan
data.

e Create additional features and standardize with
StandardScaler.

Step - 3: Prepare Labels and Combine Data:
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e Encode labels using LabelEncoder.

e Concatenate scaled features and encoded labels.
Step - 4: Reshape and Split Data:

e Reshape features for LSTM input.

e Convert labels to categorical and split data for
training/testing.

Step - 5: Define Model Architecture:

e CNN Branch: Input, convolutional layers,
pooling, flattening, and dropout layers.
e LSTM Branch: Input, bidirectional LSTM

layers, and dropout layers.

e MLP Branch: Input, dense layers, and dropout
layers.

Step - 6: Combine and Compile:

e Concatenate CNN, LSTM, and MLP outputs, add
final dense layers, and compile the model.

The deep learning model may be represented by a set of
fundamental equations that correspond to the CNN,
LSTM, MLP branches, and the final output layer. The deep
learning model mentioned may be represented by various
fundamental equations corresponding to the CNN, LSTM,
MLP branches, and the final output layer. The following
equations are pertinent: The pertinent equations:

4.2.1 Convolution operation

K
ConvlD(z) = o (Z Wi~ Teop-1+ b)
k=1

Where:

e X isthe input to the convolutional layer.

M

e Wy represents the convolutional filter weights.
e bis the bias term.

e ¢ isthe activation function (ReLU in this case).

Max pooling operation

MaxPooling(z) = max z;

1cwindow
2

Where x; are the elements within the Pooling Window

Flattening

Flatten(z) = reshape(z, [-1])
A3)
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Where x is the output from the final MaxPooling layer

The convolution process in Convolutional Neural
Networks (CNNs) involves the application of filters to
input data in order to extract important features. This is
done by mixing the input with filter weights and a bias
term, and then applying an activation function such as
ReLU, as seen in equation 1. Next, a max pooling
operation is performed to decrease the spatial dimensions
of the data. This operation selects the largest value inside
a pooling window, thus preserving the most important
information as outlined in equation 2. Equation 3 involves
taking the output from the max pooling layers and
converting it into a one-dimensional vector. This allows
the data to be easily processed by fully connected layers,
enabling additional analysis and decision-making within
the network.

4.2.2 LSTM branch equations
LSTM Cell Computation:

fi = a(Wy - [hyy, 24| + by)

4)
ir = (Wi - [he 1, 2] + b;) Q)
C, = tanh(We - [he_y, ) + be) (©)
Ci=fi-Coy+is- G ()
o = a(W, - [hy 1,24 +b,) (8)
hi = ot - tanh(C}) ©)

where
f,, i, o, are the forget, input and output gates respectively
C. is the Cell state and H; is the hidden state

We, Wi, We and Wy are the weight matrices and by, b;, b,
b, are the bias Vectors

X is the input at the time step t

Several important gates that control the input flow
organise calculations in an LSTM cell. First, the input gate
regulates the amount of new data that is added to the cell
state from the prior hidden state h.1 and the current input
xt. Which portion of the prior cell state Ci-1 to be kept is
decided by the forget gate ft . Using a tanh activation, the
cell state update C: creates a candidate for the current cell
state. Ultimately, the new cell state C; balances memory
retention and new information incorporation by combining
retained information from Ci1 with the candidate cell state.
The LSTM is very efficient for sequential data processing
because of these calculations, which enable it to retain
pertinent data over time in a selected manner. The forget
gate filters out outdated or irrelevant network behaviours
while retaining critical attack patterns, ensuring the model
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focuses on persistent threats. The input gate updates the
cell state by incorporating new suspicious activity, such as
sudden spikes in network traffic, to enhance malware
detection. The output gate determines how much of the
learned attack pattern influences the final decision,
ensuring accurate classification of malicious behaviour.

4.2.3 MLP branch equations

Dense Layer:

. %

Dense(z) — o(W -z + b)

(10)

The output in the dense layer is calculated by multiplying
the input x with a weight matrix W and adding a bias
vector b. This is then sent through an activation function
o, which is usually the rectified linear unit (ReLU). This
technique enables the model to acquire intricate
connections within the data by converting the input into a
representation at a higher level.

5 Experimental setup and results

We do our experiment in the following manner to
undertake malware analysis and detection:

1. Setting up the environment for SDN development
2. Results.

5.1 Setting up the environment for SDN

development

The setup specified in Table 1 is used for these
investigations. Each virtual computer in the emulated
network runs its own Linux kernel, allowing for the
configuration of connection characteristics like bandwidth.
Mininet [18] was used to run this network. The SDN
controllers utilized were RYU and POX.

Table 1: Specification

System Specification

CPU Intel Core i3-15, CPU 2.7 GHz
RAM 8GB — DDR4

GPU 2GB

0s Ubuntu —20.0

Simulator Mininet 3.0

Controller RYU and POX

Software Tool | Jupyter

5.1.1 RYU and POX controller
Process: In order to administer the network, switches talk
to both the RYU and POX controllers. RYU Controller
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may detect topologies and then either publish messages to
a broker or disclose pertinent data using a REST API, at
the same time, the POX Controller uses REST API calls or
message broker subscriptions to get data from the RYU
controller. The SDN environment is managed by both
controllers, who complement each other by playing to their
strengths. The response time with respect to the packet
count when the Controllers are getting executed [33].

5.2 Results

The files “Trojan_Banker_before Cat.csv and
"Riskware_before_reboot_Cat.csv" are likely to include
data that is associated with the categories of Trojan Banker
and Riskware malware, respectively. The datasets would
consist of characteristics and classifications that are
utilized to build a machine learning model for the
identification of malicious software. The files include
extracted characteristics that represent different parts of
the malware's activity. The labels show if the virus belongs
to the Trojan Banker or Riskware category.

Regarding the confusion matrix mentioned before,
these datasets would have undergone preprocessing and
then been used to train the model. The confusion matrix is
a useful tool for assessing the model's ability to
differentiate between instances of Trojan_Banker and
Riskware, based on the datasets it was trained on.

The below Fig-4 represents the Confusion Matrix

Confusion Matrix

Riskware

True Label

Trojan_Banker
-]
-

' '
Riskware Trojan_Banker

Predicted Label

Figure 4 : Confusion matrix

True Positive Rate (TPR) and False Positive Rate
(FPR) are crucial measures for assessing the effectiveness
of a classification model, especially in binary classification
applications like malware detection. From the Confusion
matrix we took True Positive Rate (TPR) and False
Positive Rate (FPR) for computation of the result and the
comparison of Precision vs Recall is shown in Fig 5 and
Fig 6 respectively. The provided Receiver-operating
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characteristic curve (ROC curve) demonstrates the

effectiveness of a binary classification

|
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Figure 5: ROC Curve between TPR and FPR
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Figure 6: Precision Vs Recall

The above Precision-Recall (PR) curve depicts the
effectiveness of a binary classification model in
distinguishing between Class 0 and Class 1. It plots
precision versus recall. Our dataset initially suffered from
a significant class imbalance, where Class 0 had a much
larger representation compared to Class 1. This imbalance
led the model to favour Class 0, resulting in high precision
and recall for it, while Class 1 exhibited fluctuating
precision-recall values due to insufficient training
examples. To address this issue, we applied Synthetic
Minority Over-sampling Technique (SMOTE) to generate
synthetic samples for Class 1, thereby balancing the
dataset. As a result, the model's performance on Class 1
improved, leading to a more stable precision-recall curve,
as observed in the updated PR graph. Receiver Operating
Characteristic (ROC) curve illustrates the relationship
between the True Positive Rate (TPR) and the False
Positive Rate (FPR) at various threshold values [34]. The
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curve's position near the top-left corner indicates a model
with a high TPR and a low FPR, indicating its ability to
maximize accurate positive predictions while minimizing
incorrect positive classifications.

The performance of the work can be predicted by
Accuracy gain and Model Loss as depicted in the Fig 7 and
Fig 8 respectively.

Model Accuracy

Training Accuracy
Validation Accuracy

0 5 10 15 20 25 30
Epoch

Figure 7: Training and validation accuracy

The above Fig 7 displays the accuracy of both the training
and validation processes across a fixed number of epochs.
The training accuracy (in blue) and validation accuracy (in
orange) both see fast increases over the initial epochs, with
the training accuracy finally approaching 100%. The
validation accuracy likewise reaches a steady state at a
high value, closely tracking the training accuracy. The
model demonstrates a good level of accuracy on both the
training and validation datasets.

Model Loss

—— Training Loss
walidation Loss

0.8

0.6

Loss
Accuracy

0.4 1

0.2 4

———

0.0

10 15 20 25 30
Epoch

o
w

Figure 8: Model loss

The Fig 8 illustrates the training and validation loss as they
vary with the number of

epochs. The training loss, represented by the blue line,
consistently reduces as the model learns, eventually
achieving a minimal value as the training continues. The
validation loss (in orange) initially exhibits a similar
decreasing trend, suggesting that the model is making
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progress in terms of its performance on unknown data.
Nevertheless, after around 10-15 epochs, the validation
loss begins to rise while the training loss continues to
decline, indicating that the model is starting to exhibit
overfitting to the training data. We have executed the

V. Karunakaran et al.

Malware Analysis and Detection using various methods of
LSTM, CNN and MLP. This is shown in below Table — 2.
Some of the methods are compared with the existing works
as shown below in Table — 3.

Table 2: Comparison of our works

S. No Method Accuracy Precision Recall F-Score
1 Bidirectional-LSTM 0.96 0.95 0.98 0.96
2 Stacked-LSTM 0.97 0.98 0.99 0.97
3 Multi-Layer Perceptron 0.97 0.99 0.99 0.99
4 LSTM-MLP 0.975 0.98 1.0 0.97
5 CNN-LSTM-MLP 0.98 0.98 1.0 0.98

(Proposed)
Table 3: Comparison with existing works
Reference Method Dataset used Detection Accuracy
Avci et al.[34] Vanilla LSTM, Malware Dataset (Canadian 0.88
Bi-Directional Institute of Cybersecurity)
LSTM,
Stacked-LSTM and
CNN-LSTM
Mustafa, O., Ali, K., LSTM & Self- CSE-CIC-IDS2018 0.97
& Nagqash, T. [27] Attention
Architectures
Akhtar MS, Feng T CNN-LSTM Malware Dataset from 0.97
[29] Kaggle
Marek Amanowicz | MADMAS (SVM, KDD Cup 1999 0.97
and and Damian KNN)
Jankowski [24]
Proposed work CNN-LSTM-MLP | Trojan Bank and Riskware 0.98
(Canadian Institute of
Cybersecurity)

6 Conclusion

The  proposed technique efficiently  combines
Convolutional Neural Networks (CNNS), Long Short-
Term Memory networks (LSTMS), and Multilayer
Perceptrons (MLPS) to enhance malware detection in

SDN environments. CNNS are employed to extract spatial
features such as patterns in API usage, LSTMS capture
sequential and temporal dependencies in malware
behaviour over time, and MLPS integrate these features to
perform accurate classification. This architectural synergy
enables the model to detect complex and subtle malware
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patterns more effectively than single-model approaches.
However, the model's performance depends on the quality
and diversity of the training dataset, and synthetic
oversampling (SMOTE) may not fully reflect real-world
complexity.  Additionally, the hybrid model's
computational intensity may limit deployment in resource-
constrained or real-time settings. Future work will aim to
improve generalizability across diverse malware families,
reduce computational overhead, and further enhance
adaptability for a dynamic SDN environment
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