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The rise of software-defined networking (SDN) has introduced new security challenges, particularly in detecting 

and mitigating malware threats within network infrastructures. Traditional malware detection techniques often 

struggle with the dynamic nature of modern cyber threats. This paper presents a hybrid deep learning-based 

approach for malware detection in SDN environments, leveraging Convolutional Neural Networks (CNN), Long 

Short-Term Memory (LSTM), and Multi-Layer Perceptron (MLP). The proposed CNN-LSTM-MLP model 

integrates spatial, temporal, and fully connected feature extraction techniques to enhance classification accuracy. 

The study evaluates multiple LSTM architectures, including Bi-Directional-LSTM, Stacked-LSTM, and LSTM-

MLP, demonstrating that the CNN-LSTM-MLP model achieves superior performance. The experimental results, 

conducted using datasets from the Canadian Institute for Cybersecurity, indicate that our model attains an 

accuracy of 98%, outperforming existing deep learning-based approaches. Additionally, the study integrates RYU 

and POX SDN controllers to simulate real-world network environments, ensuring practical applicability. The 

findings highlight the efficacy of hybrid deep learning models in securing SDN architectures against evolving 

malware threats. 

Povzetek: Za bojšo varnost v programsko definiranih omrežjih in za zaznavanje zlonamerne programske opreme 

avtorja predlagata hibridni model, ki združuje konvolucijske mreže, dolgi kratkoročni spomin in večslojni 

perceptron ter ga vgradita v krmilni sloj z RYU in POX, s premišljenim predprocesiranjem, uravnoteženjem 

razredov in nadzorom prileganja za robustnejše odkrivanje napadov. 

 

1 Introduction 

The prevalence of Internet-connected gadgets has led to 

an increased risk of infection by harmful programs. Once 

attacked, attackers utilize persistence measures to ensure 

that affected systems remain compromised for long 

periods of time. Consequently, the presence of persistence 

in harmful algorithms poses a challenge for static analysis 

conducted by simple code inspection [1]. To identify 

harmful activities in a system, it is necessary to conduct 

dynamic analyses, execute code, and provide reports on 

system changes. There is a constant discovery of new 

harmful programs, and their quantity is growing 

fast. Therefore, it is challenging to examine and categorise 

all current harmful scripts utilising debugging and 

signatures. Developing defensive strategies in response to 

newly found harmful code is insufficiently rapid to keep 

pace with the frequency at which dangerous programs 

arise. To address a novel harmful code, it is imperative to 

promptly conduct analysis and categorisation of the code. 

Malicious programs of the same category exhibit 

resemblances in their utilisation of comparable libraries 

and APIS, resulting in parallels in program behaviour. 

Hence, by identifying and categorising novel dangerous 

codes into pre-existing families of harmful codes, we may 

ascertain the specific nature of the new malicious code and 

offer suitable protective strategies. 

Software-defined networking (SDN)[2,3] is a new 

concept in networking that offers hope for overcoming the 

shortcomings of existing network infrastructures. To 

begin with, it dissociates the network's logic for 

controlling the network (the control plane) from the 

physical hardware responsible for forwarding traffic (the 

data plane), thereby breaking vertical integration.  

The second benefit is that policy enforcement, network 

(re)configuration, and evolution are made easier with the 

control logic implemented in a logically centralized 

controller (or operating system for networks) and the data 

plane is separated from the network, reducing network 

switches to simple forwarding devices [4].  

With a fine, distinct programming interface between 

the switches and the SDN controller, the data plane and 

the control plane may be separated. One or more flow 

tables contain the rules for packet processing in an 

OpenFlow switch. Each rule does a certain action 

(dropping, forwarding, altering, etc.) on a subset of the 

traffic based on the matching subset. A controller 

application [5] can configure an OpenFlow switch to act 
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as a firewall, load balancer, traffic shaper, router, or any 

number of other functions (think middlebox), depending 

on the rules imposed by the application.  

Disentangling the responsibilities of those involved in 

defining network policies, implementing those policies in 

switching hardware, and forwarding traffic is a significant 

outcome of the SDN principles. By decomposing the 

network control issue into smaller, more manageable 

portions [6], this separation allows for the needed 

flexibility, simplifies network administration, and 

facilitates network evolution and innovation by making it 

easier to build and introduce new networking abstractions.  

For the SDN-Controller to learn about the connections 

between the infrastructure layer's forwarding devices, it 

employs link discovery. So, to find these connections, the 

OFDP will act as a go-between for the SDN-Controller 

and the infrastructure-layer network devices. This is 

accomplished by OFDP using the Link Layer Discovery 

Protocol (LLDP) message format, and for each active 

SDN-Switch port in the network, the SDN-Controller 

sends out a huge number of LLDP advertising at relatively 

large, set intervals. To advertise LLDP, the SDN-

Controller sends out Packet_Out OpenFlow messages to 

all of the active SDN-Switch ports. The data layer SDN-

Switch, on the other hand, encapsulates the LLDP packet 

in a Packet_In OpenFlow message and sends the link 

information [7]. 

By combining spatial, temporal, and fully linked 

feature extraction techniques, the ultimate objective is to 

create a hybrid deep learning model (CNN-LSTM-MLP) 

that improves malware detection accuracy in the SDN 

Environment.  

 

Here is the structure of the article: In Section 2, 

provides the literature review. Section 3 details the 

research methods used, while 4 provides context for the 

study. The experimental setup and findings are presented 

in Section 5, while the discussion follows in Section 6. 

Section 7 concludes the article.  

 

2 Related work 

Network virtualisation in the SDN architecture separates 

the forwarding and controlling activities of the network. 

This document explains how to set up and configure a 

control plane to function as an SDN controller.  [8] 

provided a quick overview of the many OpenFlow-

enabled controllers built on SDN and available in different 

programmable languages. The two Open Flow-enabled 

controllers, POX, a Python-based controller, and 

Floodlight, a Java-based controller, are the main subjects 

of this study. Using the effective network simulator 

Mininet, a performance comparison of both controllers is 

performed across various network topologies by 

examining network throughput and round-trip delay.  

Either a single controller or several controllers can be 

used to deploy the SDN architecture. The latter faces a 

controller placement problem (CPP) in a large-scale 

network setting, whereas the first is not appropriate for 

large-scale networks. In order to achieve specific 

performance objectives, such as dependability, load 

balancing, latency, energy efficiency, and computation 

time, CPP entails the issue of installing the ideal amount 

of controllers inside a network. Over the years, a number 

of CPP approaches have been put forth, in which each has 

its own specific goals, advantages, and disadvantages. The 

results of [9] showed a number of current approaches and 

algorithms as well as a number of difficulties, including 

the requirement for an effective algorithm and for attack-

aware, cost-aware, and energy-aware CPP schemes while 

ensuring a high Quality of Service. 

The control and data planes are divided by SDN, and 

they are later synchronized using a control protocol like 

OpenFlow. The control and data planes of an SDN 

deployment called in-band control use the same physical 

network. It presents a number of difficulties, including 

data loss, network congestion, and security flaws. Despite 

these difficulties, in-band control offers a number of 

advantages, such as increased network flexibility and 

programmability, lower costs, and more dependability.  

The proposed methods that have been put forth by [10] 

thus far to improve in-band SDN control, which are 

divided into four primary groupings: quick failure 

recovery, automatic routing, distributed control network 

and bootstrapping. Apart from the above, the authors also 

provided elaborated analysis of Control plane summary 

tables and poses challenges in the field.  

Over the past few decades, numerous network 

techniques have been suggested to enhance user 

performance. Software-defined networks (SDN) play a 

vital role in different network topologies and their efficient 

management. SDNs are categorized into commercial and 

open-source controllers since they are widely utilized in 

the present networking landscape. Many companies utilize 

both proprietary and open-source controllers. There exists 

a substantial amount of literature on these controllers; 

however, it does not provide an analysis or evaluation of 

the controllers' performance in different network 

configurations. [11] conducted a comparative analysis on 

the efficiency of two Python based open-source 

controllers, The initial evaluation involves applying 

Shortest Path algorithm to determine the most efficient 

route from the starting point to the destination. The second 

evaluation involves designing a customized network 

configuration using the Mininet simulator. Subsequently, 

the two end hosts in each network calculate the quality of 

service (QoS) measurements, including Jitter, throughput, 

packet loss, and packet delivery ratio. According to the 

examination results, it has been determined that POX 

surpasses RYU and is highly suitable for deployment in 

any scenario. 

A unique method for detecting malware by combining 

Convolutional Neural Networks (CNN) with Long Short-

Term Memory (LSTM) networks have been illustrated by 

[12] and the study highlights the constraints of 

conventional signature-based detection techniques when 
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dealing with advancing and intricate malware, especially 

zero-day threats. The proposed hybrid model efficiently 

detects fraudulent activity in API call sequences by using 

the spatial feature extraction power of CNNs and the 

temporal dependency capturing ability of LSTMs. The 

research exhibits a validation accuracy of 96%, 

highlighting the model's capacity to enhance cybersecurity 

measures by identifying and categorizing malware, even 

in situations when traditional approaches are inadequate. 

A new method that combines Long Short-Term 

Memory (LSTM) and Convolutional Neural Networks 

(CNN) to improve the accuracy of malware detection 

presented by [13]. This approach employs both static and 

dynamic characteristics of malware by transforming 

malware binaries into grayscale pictures for analysis, and 

by collecting temporal relationships using LSTM and 

parallel feature extraction using CNN. The model also 

utilizes Principal Component Analysis (PCA) to identify 

features, hence enhancing efficiency. When tested on a 

publicly available dataset of malicious software, this 

method shows superior precision, accuracy, and F1 scores 

compared to previous approaches. It has the potential to 

greatly improve system security. 

A malware classification technique that employs the 

VGG16 model was optimized by [14] using picture-

related datasets and the VGG19, ResNet-50, and 

InceptionV3 models were pre-trained to extract features 

from malware pictures. Subsequently, these 

characteristics were employed to categorize malware 

lineages utilizing six machine learning classifiers.  

A technique to identify and categorize photos of 

malware was designed by [15]. This method employs 

image-based stacking ensemble techniques and extracts 

vital information from the images using local binary 

pattern (LBP) and grey-level spatial dependence matrices 

(GLCM). Subsequently, the system utilizes a CNN 

ensemble model to convert the high-dimensional 

characteristics into low-dimensional ones. Ultimately, a 

total of six machine learning classifiers are employed to 

identify and categorize the malicious software.  

The author [16] illustrated a machine learning 

technique for detecting and classifying Android malware 

using a stacking ensemble-based convolutional neural 

network (CNN). The method entails training a pre-trained 

model known as EfficientNetB0 by fine-tuning it with 

virus pictures. The generated model is subsequently fed 

into a logistic lapse model that incorporates Machine 

Learning algorithms. 

The author [17] has performed a comparative study on 

machine learning methods for identifying malware in 

Android apps, emphasising the importance of accurate and 

efficient detection. Models such as Random Forest, Extra 

Trees, and Logistic Regression were assessed, with 

Logistic Regression emerging as the top performer with a 

97.31% accuracy rate. This research underscores the 

potential of machine learning in bolstering Android 

security and provides a foundation for future 

improvements in mobile malware detection. 

Malware analysis is also promoted by Windows. 

Malware, a dangerous online threat, is currently the main 

focus of the research community due to the rapid 

emergence of new types of malware. Unfortunately, no 

matter how many approaches have been taken, no 

malware has yet been detected. The suggested approach 

accomplishes this goal by integrating machine learning 

with dynamic malware analysis techniques to detect and 

categorize Windows malware. To execute the executable 

in a restricted environment with few exposed resources, 

you may use the Cuckoo Sandbox Tool. After the 

execution is complete, you can analyze the behaviour 

patterns and statistics. The JSON report provided by [18] 

was used to choose the characteristics and their count 

frequencies. 

Deep Learning techniques are employed to safeguard 

the controller by implementing robust security measures, 

which are crucial for ensuring uninterrupted availability 

and connection within the network. Recurrent Neural 

Networks (RNN), Long Short-Term Memory (LSTM) , 

and Gated Recurrent Units (GRU) are suggested by [19] 

to identify and thwart intrusion threats. [20] assessed the 

aforementioned models using a recently published dataset 

(InSDN dataset). Ultimately, all the models demonstrate 

exceptional precision in identifying and detecting 

malware. Therefore, there is a notable enhancement in the 

detection of attacks when compared to one of the leading 

state-of-the-art methodologies. Malicious software poses 

a hazard to several software-intensive systems, leading to 

the development of various malware detection methods, 

frequently relying on sequential data processing. Long 

short-term memory (LSTM) is a type of artificial recurrent 

neural network (RNN) structure that is particularly useful 

for analyzing sequential data. However, there has been no 

research conducted to examine the effectiveness of 

various LSTM designs specifically for the purpose of 

detecting malware. 

A Distributed Denial of Service (DDoS) attack, 

sometimes referred to as an internet services attack, 

assesses the impact of both traffic flow and throughput 

reductions to identify anomalies. This type of assault has 

a substantial influence on the entire Software-Defined 

Networking (SDN) system. A Deep Learning technique 

projected by [21] to enhance the efficiency of the 

Software-Defined Networking (SDN) by categorizing 

network switches as either trusted or malicious devices. 

This study presents a way for detecting attacks on Internet 

services using Software Defined Networking (SDN). The 

SDN controller has the capability to assess the movement 

of data, identify irregularities, and limit the flow of both 

incoming and outgoing data, as well as the origin of the 

data. The SDN recommends the utilization of a 

Convolutional Neural Network (CNN) for the purpose of 

detecting attacks, specifically targeting the identification 

of nodes that exhibit hostile behaviour. 
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3   Background 

The purpose of malicious software, or malware, is to 

organizations and systems. Because malware can 

jeopardise operating systems, infrastructure, and sensitive 

user data, its detection and analysis are essential to 

cybersecurity. Deep learning algorithms have been used 

more and more in malware analysis to increase 

classification accuracy. However, feature selection and 

high-quality data preparation are essential for successful 

virus[22]  detection. 

Dataset Pre-processing Steps: The Canadian Institute 

for Cybersecurity provided the dataset used in this 

investigation, which includes over 17,341 malware 

samples divided into five categories: banking malware, 

SMS malware, adware, riskware, and benign samples. 

Both static and dynamic features that were taken from 

system logs, network activity, and API calls are included 

in the collection. 

 
Data cleaning 

Corrupted and duplicate entries were eliminated. 

Removed columns that weren't needed (such as 

timestamps and hash values, which aren't informative). 

 
Feature extraction 
• Selected essential characteristics, like memory use, 

system behaviour, and API call patterns, that are 

crucial to malware categorization. 

• Reduced dimensionality while maintaining crucial 

information by using feature selection methods such 

as Principal Component Analysis (PCA) and Mutual 

Information. 

• To provide consistent scaling, StandardScaler (zero 

mean, unit variance) was used to standardize 

numerical features. 

• Label encoding was used to encode categorical 

features for model compatibility. 

         
Data augmentation & splitting 

Arrange the dataset into three sets: test (10%), validation 

(10%), and training (80%). 

Oversampling techniques (SMOTE) were used for 

underrepresented malware classes in order to equalize the 

distribution of classes. 

 

Reason for feature selection 

Empirical analysis and domain expertise served as the 

main sources of feature selection. System logs and API 

calls are crucial components because they offer important 

insights into malware activities. By removing 

superfluous features, PCA increased computing 

effectiveness and improved model performance by 

lowering the possibility of overfitting. 

 

 

 

Optimization of Hyperparameters 

Bayesian Optimization was utilized to refine 

hyperparameters for the proposed CNN-LSTM-MLP 

model to enhance its performance,including: 
 
Parameters of CNN 

Kernel dimensions: (3x3, 5x5, 7x7) 

Quantity of filters: 32, 64, 128 

Activation functions: ReLU, Leaky ReLU 

 

Parameters of LSTM 

Quantity of concealed units: (32, 64, 128) 

Quantity of superimposed layers: (1, 2, 3) 

Dropout rate: (20%, 30%, 40%) 

 

Parameters of the MLP 

Quantity of dense layers: (2, 3, 4) 

Number of neurons per layer: (64, 128, 256) 

Activation functions: ReLU, Sigmoid 

 

Parameters for training 

Learning rates: (0.001, 0.0005, 0.0001) 

Batch sizes: 32, 64, 128 

Optimization Algorithms: Adam, RMSprop 
 

Strategies for preventing overfitting 

A number of regularization strategies were used to 

reduce overfitting: 

 

Layers of dropout 

0.5 dropouts are incorporated in fully connected layers 

and 0.3 dropouts in LSTM layers to randomly deactivate 

neurons in order to avoid becoming overly dependent on 

particular patterns.  

 

L2 Weight Decay regularization 

To penalize big weights, reduce model complexity, and 

improve generalization, L2 weight regularization (λ = 

0.001) was added to the thick layers.  

 

Early termination  

To avoid needless overfitting, validation loss was tracked 

using an early stopping patience of 10 epochs, and 

training was stopped if no improvement was seen. 

 

3.1 RYU and POX controller 
In an SDN context, combining RYU and POX [23] 

controllers can help make the most of each controller's 

specific capabilities.  

 
RYU 

1. A software-defined networking framework based on 

components. Programmed using the Python language. 

2. Offers software components with clear APIs to assist 

developers in building new apps for network control and 

administration. 
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POX: 

1. A second-generation Python SDN controller. 

2. Perfect for educational and prototyping applications 

due to its simplicity and ease of understanding. 

 

3.2  LSTM  
The well-known deep learning frameworks Keras and 

TensorFlow are compatible with the implementation and 

training of the model. For the purpose of feedback 

learning, the LSTM stores the kernel function and the 

scores of the neurons that make up the neural network in 

a memory unit[24]. An LSTM's ability to process all data 

points, rather than just one, is its main benefit over more 

conventional fully connected layers. This gives it more 

strength. We utilized a Long Short-Term Memory 

(LSTM) model developed using the Keras package and 

Tensorflow in our experiment. Dimensions of our hidden 

state neurons layer are [(64,32), (32,16), (64,32,32), 

(64,32, 32),] respectively.  

 

3.3 Multi-Layer perceptron 
An artificial neural network (ANN) with several layers of 

interconnected neurons is called a Multi-Layer Perceptron 

(MLP). By adding hidden layers between the input and 

output layers, an MLP can simulate intricate, non-linear 

interactions, in contrast to a standard perceptron, which is 

only capable of handling linearly separable problems. 

 

MLP structure: 

The feature vectors from the preprocessed dataset are 

received by the input layer. 

Multiple fully linked neurons make up hidden layers, 

which use activation functions (like ReLU) to identify 

non-linear patterns. 

Using a softmax activation function for multi-class 

classification, the output layer generates classification 

probabilities. 

 

4  Proposed methodology 
The objective of this study is to provide a sophisticated 

deep learning-based approach for identifying and 

preventing threats in software-defined networking (SDN) 

settings. This section focuses on the technique employed 

in our work, namely the hybrid threat-detection 

framework, dataset preparation, suggested network 

model, and dataset description. 

 

Figure 2: SDN-DMAD architecture 

Fig 2 depicts the structure of a Software-Defined 

Networking (SDN) system that has been augmented with 

a framework for detecting malware known as Software 

Defined Networking-Dynamic Malware Analysis and 

Detection(SDN-DMAD) Architecture that has been 

inspired from[24]. The architecture is segmented into 

three main planes: the Application Plane, Control Plane 

and Data Plane. 

     The application plane is the uppermost layer that 

comprises several applications, including email, cloud 

services, and communication tools like Skype and 

LinkedIn. These apps communicate with the underlying 

network infrastructure via the Northbound API. These 

apps provide the transmission and reception of data, which 

is efficiently controlled and directed through the SDN 

infrastructure. 

     The Control Plane, located centrally, contains the 

Malware Detection System that is incorporated into the 

SDN Controllers. The malware detection system 

integrates a Proposed model 

(CNN+LSTM+MLP) [29,30,31] that is specifically 

intended to categorize dataset as either Benign or Attack. 

The model examines data flows and interacts with the 

Application Plane to adapt network policies and 

counteract risks. 

Data Plane: The primary layer comprises of SDN switches 

[32] that oversee and guide the tangible data flow inside 

the network. These switches regulate the transmission of 

data to a wide range of IoT devices, industrial systems, 

smart homes, cars, and other similar entities. Real-time 

modifications are performed depending on judgments 

made by the malware system. 
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This design demonstrates the incorporation of 

sophisticated malware detection into SDN settings, 

allowing enhanced and intelligent control of network 

traffic across a wide range of applications and devices, 

resulting in increased security. 

 

4.2 CNN-LSTM-MLP model 
The deep learning model for attack detection starts by 

importing and preparing datasets that contain 

characteristics and labels associated with Trojan and 

ransomware assaults. Upon eliminating superfluous 

columns, the datasets are arranged in a coordinated 

manner, and supplementary characteristics are created to 

capture intricate connections. Next, the features are 

standardized using StandardScaler, which guarantees that 

each feature has a mean of null and a standard deviation 

of one. This step is essential for optimizing the 

performance of various Supervised Learning algorithms. 

The category labels are transformed into a numerical 

representation appropriate for model training using the 

Label Encoder. The dataset is subsequently merged and 

divided into separate training and testing sets using the 

parameters. 

       The Proposed Architecture has three branches:  as 

shown in Fig 3. A CNN branch for capturing local 

patterns, an LSTM branch for capturing temporal 

dependencies, and an MLP branch for capturing 

relationships in the flattened feature space. The results of 

these branches are combined and then sent through other 

layers. The softmax function converts the output into a 

probability distribution across all classes, ensuring that the 

sum of probabilities equals one. This enables the model to 

make a classification decision by assigning the input to the 

class with the highest probability. The model is created via 

the Adam optimizer, and trained using Cross-Entropy 

(CE), which is suitable for classification tasks by 

penalizing incorrect predictions based on probability 

outputs. 

       The training process consists of 30 epochs, during 

which performance is monitored using a validation split. 

Following the training process, the model's accuracy and 

loss are assessed on the test set. Additionally, predictions 

are examined using classification reports, confusion 

matrices, ROC curves, and precision-recall curves. 

Ultimately, the model that has been trained is stored for 

future utilization, enabling its application to novel data for 

the purpose of detecting attacks. 

 

 

 
Figure 3: Proposed malware analysis and detection 

 

The pseudocode of the projected model is also proposed as 

algorithm – 1 

Input: 

• dataset: Trojan_Banker_before_reboot_Cat.csv, 

Riskware_before_reboot_Cat.csv 

• learning_rate(p): learning rate 

• optimizer: adam 

• training rounds: epochs (30 in this case) 

Output: 

Step - 1: Load and Clean Data: Load 

Trojan_Banker_before_reboot_Cat.csv and 

Riskware_before_reboot_Cat.csv, dropping unnecessary 

columns (Hash, Category, Family). 

Step - 2: Align and Transform Features: 

• Align columns of Riskware data to match Trojan 

data. 

• Create additional features and standardize with 

StandardScaler. 

Step - 3: Prepare Labels and Combine Data: 
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• Encode labels using LabelEncoder. 

• Concatenate scaled features and encoded labels. 

Step - 4: Reshape and Split Data: 

• Reshape features for LSTM input. 

• Convert labels to categorical and split data for 

training/testing. 

Step - 5: Define Model Architecture: 

• CNN Branch: Input, convolutional layers, 

pooling, flattening, and dropout layers. 

• LSTM Branch: Input, bidirectional LSTM 

layers, and dropout layers. 

• MLP Branch: Input, dense layers, and dropout 

layers. 

Step - 6: Combine and Compile:  

• Concatenate CNN, LSTM, and MLP outputs, add 

final dense layers, and compile the model. 

The deep learning model may be represented by a set of 

fundamental equations that correspond to the CNN, 

LSTM, MLP branches, and the final output layer. The deep 

learning model mentioned may be represented by various 

fundamental equations corresponding to the CNN, LSTM, 

MLP branches, and the final output layer. The following 

equations are pertinent: The pertinent equations: 

 

4.2.1 Convolution operation 

 

 

        (1) 

Where: 

• x is the input to the convolutional layer. 

• wk represents the convolutional filter weights. 

• b is the bias term. 

• σ is the activation function (ReLU in this case). 

 

Max pooling operation  

                    (2) 

Where xi are the elements within the Pooling Window 

Flattening 

                 (3)    

Where x is the output from the final MaxPooling layer 

The convolution process in Convolutional Neural 

Networks (CNNs) involves the application of filters to 

input data in order to extract important features. This is 

done by mixing the input with filter weights and a bias 

term, and then applying an activation function such as 

ReLU, as seen in equation 1. Next, a max pooling 

operation is performed to decrease the spatial dimensions 

of the data. This operation selects the largest value inside 

a pooling window, thus preserving the most important 

information as outlined in equation 2. Equation 3 involves 

taking the output from the max pooling layers and 

converting it into a one-dimensional vector. This allows 

the data to be easily processed by fully connected layers, 

enabling additional analysis and decision-making within 

the network. 

 

4.2.2 LSTM branch equations 

 LSTM Cell Computation: 

                             (4) 

                 (5) 

                     (6) 

                       (7) 

                        (8) 

                                     (9) 

where 

ft, it, ot are the forget, input and output gates respectively 

Ct is the Cell state and Ht is the hidden state 

Wf, Wi, Wc and W0 are the weight matrices and bf, bi, bc, 

bo are the bias Vectors 

Xt is the input at the time step t 

Several important gates that control the input flow 

organise calculations in an LSTM cell. First, the input gate 

regulates the amount of new data that is added to the cell 

state from the prior hidden state ht−1 and the current input 

xt. Which portion of the prior cell state Ct−1 to be kept is 

decided by the forget gate ft . Using a tanh activation, the 

cell state update Ct creates a candidate for the current cell 

state. Ultimately, the new cell state Ct balances memory 

retention and new information incorporation by combining 

retained information from Ct−1 with the candidate cell state. 

The LSTM is very efficient for sequential data processing 

because of these calculations, which enable it to retain 

pertinent data over time in a selected manner. The forget 

gate filters out outdated or irrelevant network behaviours 

while retaining critical attack patterns, ensuring the model 



 

386 Informatica 49 (2025) 379–390 V. Karunakaran et al. 

 

 

 
focuses on persistent threats. The input gate updates the 

cell state by incorporating new suspicious activity, such as 

sudden spikes in network traffic, to enhance malware 

detection. The output gate determines how much of the 

learned attack pattern influences the final decision, 

ensuring accurate classification of malicious behaviour. 

 

4.2.3 MLP branch equations 

 Dense Layer: 

            (10) 

The output in the dense layer is calculated by multiplying 

the input 𝑥 with a weight matrix 𝑊 and adding a bias 

vector 𝑏. This is then sent through an activation function 

𝜎, which is usually the rectified linear unit (ReLU). This 

technique enables the model to acquire intricate 

connections within the data by converting the input into a 

representation at a higher level. 

 

5 Experimental setup and results 
We do our experiment in the following manner to 

undertake malware analysis and detection: 

 

1. Setting up the environment for SDN development 

2. Results. 

 

5.1 Setting up the environment for SDN 

development 
The setup specified in Table 1 is used for these 

investigations. Each virtual computer in the emulated 

network runs its own Linux kernel, allowing for the 

configuration of connection characteristics like bandwidth. 

Mininet [18] was used to run this network. The SDN 

controllers utilized were RYU and POX. 

 
Table 1: Specification 

System Specification 

CPU Intel Core i3-15, CPU 2.7 GHz 

RAM 8GB – DDR4 

GPU 2GB 

OS Ubuntu – 20.0 

Simulator Mininet 3.0 

Controller RYU and POX 

Software Tool Jupyter 

 

5.1.1 RYU and POX controller 
Process: In order to administer the network, switches talk 

to both the RYU and POX controllers. RYU Controller 

may detect topologies and then either publish messages to 

a broker or disclose pertinent data using a REST API, at 

the same time, the POX Controller uses REST API calls or 

message broker subscriptions to get data from the RYU 

controller. The SDN environment is managed by both 

controllers, who complement each other by playing to their 

strengths. The response time with respect to the packet 

count when the Controllers are getting executed [33]. 

 

5.2 Results 

The files “Trojan_Banker_before_Cat.csv and 

"Riskware_before_reboot_Cat.csv" are likely to include 

data that is associated with the categories of Trojan Banker 

and Riskware malware, respectively. The datasets would 

consist of characteristics and classifications that are 

utilized to build a machine learning model for the 

identification of malicious software. The files include 

extracted characteristics that represent different parts of 

the malware's activity. The labels show if the virus belongs 

to the Trojan Banker or Riskware category. 

     Regarding the confusion matrix mentioned before, 

these datasets would have undergone preprocessing and 

then been used to train the model. The confusion matrix is 

a useful tool for assessing the model's ability to 

differentiate between instances of Trojan_Banker and 

Riskware, based on the datasets it was trained on.  

The below Fig-4 represents the Confusion Matrix  

 

 
Figure 4 : Confusion matrix 

        True Positive Rate (TPR) and False Positive Rate 

(FPR) are crucial measures for assessing the effectiveness 

of a classification model, especially in binary classification 

applications like malware detection. From the Confusion 

matrix we took True Positive Rate (TPR) and False 

Positive Rate (FPR) for computation of the result and the 

comparison of Precision vs Recall is shown in Fig 5 and 

Fig 6 respectively. The provided Receiver-operating 
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characteristic curve (ROC curve) demonstrates the 

effectiveness of a binary classification   

 

 
 

Figure 5: ROC Curve between TPR and FPR 

 

 

 

Figure 6: Precision Vs Recall 

The above Precision-Recall (PR) curve depicts the 

effectiveness of a binary classification model in 

distinguishing between Class 0 and Class 1. It plots 

precision versus recall. Our dataset initially suffered from 

a significant class imbalance, where Class 0 had a much 

larger representation compared to Class 1. This imbalance 

led the model to favour Class 0, resulting in high precision 

and recall for it, while Class 1 exhibited fluctuating 

precision-recall values due to insufficient training 

examples. To address this issue, we applied Synthetic 

Minority Over-sampling Technique (SMOTE) to generate 

synthetic samples for Class 1, thereby balancing the 

dataset. As a result, the model's performance on Class 1 

improved, leading to a more stable precision-recall curve, 

as observed in the updated PR graph. Receiver Operating 

Characteristic (ROC) curve illustrates the relationship 

between the True Positive Rate (TPR) and the False 

Positive Rate (FPR) at various threshold values [34]. The 

curve's position near the top-left corner indicates a model 

with a high TPR and a low FPR, indicating its ability to 

maximize accurate positive predictions while minimizing 

incorrect positive classifications. 

The performance of the work can be predicted by 

Accuracy gain and Model Loss as depicted in the Fig 7 and 

Fig 8 respectively. 

 

 
 

Figure 7: Training and validation accuracy 

 
The above Fig 7 displays the accuracy of both the training 

and validation processes across a fixed number of epochs. 

The training accuracy (in blue) and validation accuracy (in 

orange) both see fast increases over the initial epochs, with 

the training accuracy finally approaching 100%. The 

validation accuracy likewise reaches a steady state at a 

high value, closely tracking the training accuracy. The 

model demonstrates a good level of accuracy on both the 

training and validation datasets. 

 
Figure 8: Model loss 

The Fig 8 illustrates the training and validation loss as they 

vary with the number of  

epochs. The training loss, represented by the blue line, 

consistently reduces as the model learns, eventually 

achieving a minimal value as the training continues. The 

validation loss (in orange) initially exhibits a similar 

decreasing trend, suggesting that the model is making 
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progress in terms of its performance on unknown data. 

Nevertheless, after around 10-15 epochs, the validation 

loss begins to rise while the training loss continues to 

decline, indicating that the model is starting to exhibit 

overfitting to the training data. We have executed the 

Malware Analysis and Detection using various methods of 

LSTM, CNN and MLP. This is shown in below Table – 2. 

Some of the methods are compared with the existing works 

as shown below in Table – 3.

 

Table 2: Comparison of our works 

S. No Method Accuracy Precision Recall F-Score 

1 Bidirectional-LSTM 0.96 0.95 0.98 0.96 

2 Stacked-LSTM 0.97 0.98 0.99 0.97 

3 Multi-Layer Perceptron 0.97 0.99 0.99 0.99 

4 LSTM-MLP 0.975 0.98 1.0 0.97 

5 CNN-LSTM-MLP 

(Proposed) 

0.98 0.98 1.0 0.98 

 

Table 3: Comparison with existing works 

Reference Method Dataset used Detection Accuracy 

Avci et al.[34] Vanilla LSTM, 

Bi-Directional 

LSTM, 

Stacked-LSTM and 

CNN-LSTM 

Malware Dataset (Canadian 

Institute of Cybersecurity) 

0.88 

Mustafa, O., Ali, K., 

& Naqash, T. [27] 

LSTM & Self-

Attention 

Architectures 

CSE-CIC-IDS2018 0.97 

Akhtar MS, Feng T 

[29] 

CNN-LSTM Malware Dataset from 

Kaggle 

0.97 

Marek Amanowicz 

and and Damian 

Jankowski [24] 

MADMAS (SVM, 

KNN) 

KDD Cup 1999 0.97 

Proposed work CNN-LSTM-MLP Trojan Bank and Riskware 

(Canadian Institute of 

Cybersecurity) 

0.98 

6   Conclusion 

The proposed technique efficiently combines 

Convolutional Neural Networks (CNNS), Long Short-

Term Memory networks (LSTMS), and Multilayer 

Perceptrons (MLPS) to enhance malware detection in 

SDN environments. CNNS are employed to extract spatial 

features such as patterns in API usage, LSTMS capture 

sequential and temporal dependencies in malware 

behaviour over time, and MLPS integrate these features to 

perform accurate classification. This architectural synergy 

enables the model to detect complex and subtle malware 
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patterns more effectively than single-model approaches. 

However, the model's performance depends on the quality 

and diversity of the training dataset, and synthetic 

oversampling (SMOTE) may not fully reflect real-world 

complexity. Additionally, the hybrid model's 

computational intensity may limit deployment in resource-

constrained or real-time settings. Future work will aim to 

improve generalizability across diverse malware families, 

reduce computational overhead, and further enhance 

adaptability for a dynamic SDN environment 
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