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The multi-class classification algorithms are widely used by many areas such as machine learning and
computer vision domains. Nowadays, many literatures described multi-class algorithms, however there
are few literature that introduced them with thorough theoretical analysis and experimental
comparisons. This paper discusses the principles, important parameters, application domain, runtime
performance, accuracy, and etc. of twelve multi-class algorithms: decision tree, random forests,
extremely randomized trees, multi-class adaboost classifier, stochastic gradient boosting, linear and
nonlinear support vector machines, K nearest neighbors, multi-class logistic classifier, multi-layer
perceptron, naive Bayesian classifier and conditional random fields classifier. The experiment tested on
five data sets: SPECTF heart data set, Ionosphere radar data set, spam junk mail filter data set,
optdigits handwriting data set and scene 15 image classification data set. Our major contribution is that
we study the relationships between each classifier and impact of each parameters to classification
results. The experiment shows that gradient boosted trees, nonlinear support vector machine, K nearest
neighbor reach high performance under the circumstance of binary classification and minor data
capacity; Under the condition of high dimension, multi-class and big data, however, gradient boosted
trees, linear support vector machine, multi-class logistic classifier get good results. At last, the paper
addresses the development and future of multi-class classifier algorithms.

Povzetek: V prispevku je podan pregled klasifikatorjev z več razredi.

1 Introduction
Multi-classification problem [1] is that of supposing a set
of training data 1 1( , ),...,( , )n nx c x c , where px R are finite set of
input features, {1,2,..., }ic K are class numbers of output
variables. The purpose of multi-classification task is to
find a classifying rules based on the training sample, then
given a new features, outputting a classifying category.
Today multi-classifier algorithms are applied to a variety
of application areas such as: radar signal classification,
character recognition, remote sensing, medical
diagnostics, expert systems, voice recognition domains
and etc.

Multiple classifiers has a long history. Selfridge et al.
[2] first propose a multi-classification system based on
‘winners get all’ solution which chooses the optimal
solution as a multi-classifier output. Kanal and Minsky
[3, 4] play an important role in multi-classifiers
development. They claim that any classifying algorithm
does not solve all problems. We need to design specific
classifying algorithm for different problems. Multilayer
perceptron [5] is an artificial neural network model that
can resolve this kind of nonlinear data. Decision tree is
an ancient non-parametric classification algorithm that
classifies the samples according to the classifying rules.
Leo Breiman[6] proposes random forest as a good

solution to the scalability issues of single decision tree.
Adboost algorithm is proposed by Yoav Freund and
Robert Schapire[34] is a meta-classification algorithm
which can be combined with other classification
algorithms to enhance its performance. Multi-class
logistic classifier proposed by Jerome Friedman et al. [7]
is another important improvement of enhancing the basic
boosting algorithm. K nearest neighbor [5] classifies
samples based on the adjacent spatial relationships of
features. In 1980s with the rise of data fusion and
learning model in statistics and management science,
Bayesian expert [8-10] system is widely used. Since the
1990s, Vapnik proposes support vector machines,
transforming the feature from low dimensional space into
high dimensional space, which is a better ways to
classify the features. Nonlinear support vector machine
gets a great success, however it is not ideal in some cases
i.e. the original features are already high dimensional
space, so people propose a linear support vector
machine[11] for these cases. Because of the complexity
of the data, a single classifier is often difficult to obtain
good performance for specific applications, it is a
growing tendency to improve classifying performance by
a combination of classification methods [12].
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How to solve the multi-classification problems is
challenging. There are two ways to deal with it [13].
Nilsson et al. [14] first use combination of binary
classifiers to solve the multi-classification problems. The
other way is that directly extends binary classifier into
multiple classifier.

The main contributions of this paper are as
following:

1. We compare twelve most commonly used
algorithms for multi-classification in several aspects such
as principle, important parameters, running time
performance, and etc.

2. This paper considers the impact of differences of
type and size in data sets. We chose binary classification
and multi-classification, a small amount of data and a
large size set as the evaluation data sets.

3. This paper gives in-depth analysis of multi-
category classification for each class.

4. In this paper, we investigate the relationship
between the single classifier and a combination of single
classifier.

This paper discusses the 12 multiple classifiers:
decision trees, random forests, extremely randomized
trees, multi-class adaboost, stochastic gradient boosting,
support vector machines (including linear and nonlinear),
K nearest neighbors, multi-class logistic classifier,
multilayer perceptron, naive Bayesian classifier and
conditional random fields classifier.

The paper is organized as follows: section 1 is an
introduction of studying content. In section 2 we discuss
the related works. Overview of algorithms are discussed
in section 3. Section 4 presents an experimental setup
and parameters settings. In Section 5, we explain
experimental results. Section 6 concludes the paper.

2 Related works
There are few comprehensive comparisons of multi-
classification algorithms. King et al. [15] is the most
comprehensive and earliest study of multi-classification
algorithms including CART, the traditional algorithm
C4.5, Naïve Bayes, K nearest neighbor, neural networks,
and etc. However after that a few emerging algorithms

such as support vector machines, random forests have
been widely used. Further, data sets they used are too
small while comparing to current big data. Then again
their evaluation criteria is simple. Bauer et al. [16]
thoroughly compare voting classification algorithms
including bagging, boosting and its improved versions,
but it is only comparing these two types of voting
algorithm. LeCun et al. [17] use accuracy, rejecting rates
and running time as the evaluation criteria. They
compare algorithms: K-nearest neighbor, linear classifier,
the main ingredient and polynomial classifiers on
handwritten recognition data set. But only one data set
used, it is not sufficient to evaluate different application
scenarios. Ding et al. [18] use neural networks and
support vector machines for protein test data set. They do
detailed comparison of the accuracy of different
parameters, but this comparison is relatively simple and
data set is small. Tao et al. [19] study the decision trees,
support vector machines, K nearest neighbor
classification of gene sequences of organization
application. However, this comparison only discusses
single dataset. Foody et al [20] study multi-class image
classification by support vector machines. But they only
compare support vector machines, even linear support
vector machine is not involved. Chih-Wei Hsu et al. [21]
also study multi-class support vector machines for a
more in-depth theoretical analysis and comparison, but is
limited to multi-class support vector machine. Caruana et
al. [22] study supervised learning algorithm (support
vector machines, neural networks, decision trees, and
etc.) in 9 different criteria such as ROC area, F
evaluation and etc., but the literature is only discussed
two classification data sets. Krusienski et al. [23]
compare the Pearson correlation method, Fisher linear
discriminant, stepwise linear discriminant, linear support
vector machines, and Gaussian kernel support vector
machines on P300 Speller data set. However, the data set
is relatively simple, and small size of data is often
difficult to compare running performance of support
vector machine between linear and non-linear scenarios.

Table 1 lists the current situation of classifier
comparisons.

Reference Comparison of algorithms Data sets Evaluation criteria
Research
domains

King et
al.[15]

Symbolic learning(CART, C4.5, New ID, AC2,

Cal5, CN2)，statistic learning( Bayesian network,
K-nearest, kernel density, linear discrimination,

quadratic discrimination， logistic regression)，
neural network

Satellite image, hand written
digits, vehicle, segment, Credit
risk, Belgian data, Shuttle
control data, Diabetes data,
Heart disease and head injury,
German credit data

Accuracy
General
purpose

Bauer et
al[16

Bagging, boosting and its variants

Segment, DNA, chess,
waveform, sat-image,
mushroom, nursery, letter,
shuttle

Average error rate,
variance, bias

General
purpose

Ding et
al.[18

Support decision vector, neural network Protein test dataset
Accuracy, Q-percentage,
Accuracy

Bioinformatics

Tao et
al.[19]

Support decision vector, Bayesian network, K-
nearest, decision tree

ALL, GCM, SRBCT, MLL-
leukemia, lymphoma, NCI60,
HBC

Accuracy Bioinformatics

Foody et
al.[20]

Support decision vector, decision tree,
discriminating analysis, neural network

Airborne sensor data Accuracy,
Remote
imaging

Chih-Wei
Hsu et
al[21]

Support decision vector
Iris, wine, glass, vehicle,
segment, DNA, sat-image,
letter, shuttle

Accuracy, running-time
General
purpose
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Caruana et
al.[22]

Support decision vector, neural network, decision
tree, memory based learning, bagged tree, boosted
tree, boosted stumps

RMS, MXE, CAL, ADULT.

Accuracy, square error,
inter-class cross entropy,
ROC regions, F evaluation,
recall and precision,
average precision and
recall, lift, probability
calibration

General
purpose

Krusienski
et al.[23]

Pearson related methods, Fisher linear
discrimination, stepwise linear discrimination, linear
support decision vector, Gaussian kernel support
decision vector

P300 Speller ROC curve
Medicine
domain

Our
method

Decision tree, random forests, extremely
randomized trees, multi-class adaboost classifier,
multi-class logistic classifier, stochastic gradient
boosting, multilayer perceptron, K nearest
neighbors, naive Bayesian classifier and support
vector machines(including linear and nonlinear)

SPECTF, Ionosphere, spam,
optdigits and Scene 15

Overall accuracy, average
precision and recall,
average Jaccard, inter-class
F and Jaccard evaluation,
running performance.

General
purpose

Table 1: Comparisons of multi-class classification algorithms.

Table 1 shows that the majority of current surveys
focus on multi-class classifiers in a particular field, such
as medicine, biology, remote sensing images, and etc.
The data sets and methods used for evaluation is
relatively simple. King et al’s evaluation [15] is more
comprehensive, however the comprising algorithms are
classical. After that new algorithms emerge. Our
comparing algorithms are the newest and most
representative of the current tendency in a variety of
application domains.

3 Overview of Algorithms

3.1 Brief introduction of algorithms
In order to better understand various classifiers to
compare, we briefly introduce multiple classifier
algorithms.

3.1.1 Decision tree
In machine learning, decision trees [24] is a predictive
model. A decision tree is a flowchart-like structure in
which internal node represents test on an attribute, each
branch represents outcome of test and each leaf node
represents class label, and then decision is taken after
computing all attributes. A path from root to leaf
represents classification rules. Decision tree is actually
an adaptive basis function model [25], and can be
expressed as follows

1 1

( ) [ | ] ( ) ( ; )
M M

m m m m
m m

f x E y x w I x R w x v
 

    
(1)

Where mR is the 'm th region, mw is the mean
response in this region, and mv encodes the choice of
variable to split on, and the threshold value, on the path
from the root to the 'm th leaf.

Classification tree is an ancient method, it has
various variants, typically such as[26] ID3 (Iterative
Dichotomiser 3) proposed by Ross Quinlan, is a greedy
approach that in each iteration choose the best attribute
value to split the data, but this method has the problem of
local optimum. C4.5 also proposed by Ross Quin lan, is
an improved ID3, can be used for classification.
CART(classification and regression Trees)[27] proposed
by Breiman has same process with C4.5 algorithm,

except that the C4.5 uses an information entropy rather
than Geni coefficient used by CART.

3.1.2 Random forests
Random forests are proposed by Leo Breiman and Adele
Cutler[28]. It is an ensemble learning method for
classification (and regression) that is built by
constructing a multitude of decision trees at training time
and outputting the class by voting of individual trees.

Random forests are a method of building a forest of
uncorrelated trees using a CART like procedure,
combined with randomized node optimization and
bagging [29].

Random forests have the advantages of computing
efficiency, improving the prediction accuracy without
significantly increase of computational cost. Random
forest can be well predicted up to thousands of
explanatory variables [30], known as one of the best
current algorithms [31].

3.1.3 Extremely randomized trees
Extremely randomized trees have been introduced by
Pierre Geurts, Damien Ernst and Louis Wehenkel[32].
The algorithm of growing extremely randomized trees is
similar to random forest, but there are two differences:

1. Extremely randomized trees don’t apply the
bagging procedure to construct a set of the training
samples for each tree. The same input training set is used
to train all trees.

2. Extremely randomized trees pick a node split very
extremely (both a variable index and variable splitting
value are chosen randomly), whereas random forests find
the best split (optimal one by variable index and variable
splitting value) among random subset of variables.

3.1.4 Multi-class adaboost classifier
Boosting has been a very successful technique for
solving the two-class classification problem [33]. In
going from two class to multi-class classification, most
boosting algorithms have been restricted to reducing the
multi-class classification problem to multiple two-class
problems [34].
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3.1.5 Stochastic gradient boosting
Gradient boosting proposed by Friedman [35] is a
method to improve basic boosting algorithm. The
traditional boosting method is adjusted weights to correct
classification samples and error samples based on
gradient descend at each iteration. The major difference
of gradient boosting from the traditional boosting method
is that purpose at each iteration is not to reduce the
losses, but in order to eliminate the loss. The new model
at each iteration is based on the residuals of former
process. Inspired by Breiman[6]’s randomized bagging
idea, Friedman introduces stochastic gradient boosting by
randomized down-sampling to train basic classifier.

3.1.6 Support vector machines
Support vector machines [36, 37] is the method that
mapped feature vector into a higher dimensional vector
space, where a maximum margin hyper-plane is
established in this space. So we choose the hyper-plane
so that the distance from it to the nearest data point on
each side is maximized. The greater the distance between
the nearest data of different classes is, the smaller the
total error classification is. The multi-class support vector
machines [21] can be defined as follows

Supposing l groups sample: 1 1( , ),...,( , )l lx c x c ，
where , 1,...,n

ix R i l  , {1,..., }ic k is  the type of ix . The
i th support vector machine solve this problem.
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Where training sample ix is mapping into high
dimensional space by function  and regularization
parameters C . Minimizing (1 / 2)( )i T iw w means that we have
to minimize 2/ || ||iw , the margins between two group data.

The penalty
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C w
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 is to reduce the number of training

error.  The core concept of support vector machine is to
seek a balance between the regularization term (1 / 2)( )i T iw w

and the training errors.
We get k decision functions after solving formula
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After that, we have the largest value of decision
functions as the predictive class of x .

3.1.7 Linear support vector machines
SVM uses a nonlinear mapping that converts low-dimensional
feature space into a high-dimensional space to get better
discriminative. However, in other applications, the input feature
itself is a high-dimensional space, if more is mapped to more
high latitudes, it may not be able to get better performance.
Their own space can be directly used as identification. The
linear support vector machine SVM [38] is suitable for this
scenario. For multi-classification, Crammer et al. [39] propose

this method to solve the problem. We define the original
question as follow

Supposing the training data set 1 1 2 2{( , ),( , ),...,( , )}N NT x c x c x c ,

where, n
ix R  is feature vector, {1,2,..., }iy Y k  is the type of

instance, 1,2,...,i l . The multi-class problem can be formulated
as the following primal problem.
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where, 0C  is the regularization parameter, mw is the

weight vector associated with class m , ,1
i

m
i c me   ，and , 1

ic m 

if ic m , , 0
ic m  if ic m . Note that in (7), the constant im c

corresponds to the non-negativity constraint: 0i  . The decision
function is

arg max T
m

m

w x (7)

3.1.8 K nearest neighbors
K nearest neighbours algorithm (or k-NN for short) is a
non-parametric method used for classification and
regression. In both cases, the input consists of the k
closest training examples in the feature space.

In k-NN classification, the output is a class
membership. An object is classified by a majority vote of
its neighbours, with the object being assigned to the class
most common among its k nearest neighbours (k is a
positive integer, typically small). If k = 1, then the object
is simply assigned to the class of that single nearest
neighbour.

3.1.9 Multi-class logistic classifier (maximum
entropy classifier)

In some cases, multi-class logistic regression well fits
features. It has the formula [25]
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 (8)

Where, ( | , )p y c x W is the predictive probability. y is
the class type of totally C . cw is the weight of class c, and
approximated by maximum posterior probability. With
this, the log-likelihood has the form
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Where, ( | , )ic i ip y c x W   . This model can be
optimized by L-BFGS[41].

3.1.10 Multilayer perceptron
A multilayer perceptron (MLP) is a feed forward
artificial neural network model that maps sets of input
data onto a set of appropriate outputs. A MLP consists of
multiple layers of nodes in a directed graph, with each
layer fully connected to the next one. Except for the input
nodes, each node is a neuron (or processing element)
with a nonlinear activation function.

MLP[57] has evolved over the years as a very
powerful technique for solving a wide variety of
problems. Much progress has been made in improving



Experimental Comparisons of Multi-class Classifiers Informatica 39 (2015) 71–85 75

performance and in understanding how these neural
networks operate. However, the need for additional
improvements in training these networks still exists since
the training process is very chaotic in nature.

3.1.11 Naive Bayesian classifier
A naive Bayes classifier is a simple probabilistic
classifier based on applying Bayes' theorem with strong
(naive) independence assumptions. A more descriptive
term for the underlying probability model would be
“independent feature model”

Assuming sample X , belongs to type iC . The class-
conditional density is

1

( | ) ( ) ( | ) ( )
( | )

( )
( | ) ( )

i i i i
i n

j j
j

f X C P C f X C P C
P C X

p X
f X C P C



 


(10)

Where, (. | )jf C is the maximum likelihood. Input

features is x , c is class type.
A simpler alternative to generative and discriminative

learning is to dispense with probabilities altogether, and to learn
a function, called a discriminant function, that directly maps
inputs to outputs. The decision function of naive Bayesian
classifier is

j

1

arg max (C ) (Y y | C )
k

n

k i k
c

j

c P c P c

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3.1.12 Conditional random fields classifier
CRFs (Conditional random fields) are a class of
statistical modelling method often applied in pattern
recognition and machine learning, where they are used
for structured prediction. Whereas an ordinary classifier
predicts a label for a single sample without regard to
"neighboring" samples, a CRF can take context into
account; e.g., the linear chain CRF popular in natural
language processing predicts sequences of labels for
sequences of input samples.

We define a CRF on observations X and random
variables Y as follows:

Let     ,G V E be a graph such that v(Y )v VY  , so

that Y is indexed by the vertices of G . Then (X,Y) is a
conditional random field when the random variables Yu,
conditioned on X, obey the Markov property with respect
to the graph:

v w v w(Y | X,Y ,w v) p(Y | X,Y ,w v)p    (12)
Where w v means that w and v are neighbors in G.

What this means is that a CRF is an undirected graphical
model whose nodes can be divided into exactly two
disjoint sets X and Y , the observed and output
variables, respectively; the conditional distribution (y | x)p

is then modeled. For classification problem, we compute
the maximum conditional probabilistic distribution.

3.2 Comparison of algorithms
With reference to [45] for the multi-classification, we
made a comparison of 12 algorithms as shown in table 2.

We analyze and summarize in Table 2 as follow:
1. Algorithms type

Aside from Naive Bayes, others are discriminant
model. Bayesian algorithm by learning the joint
distribution ( , )P C X , then obtains the conditional
probability ( | )P X C . The classifying prediction is achieved
by maximizing likelihood approximation. However the
discriminant method directly makes prediction by the
discriminant function or conditional probability.
2. Algorithms trait

Decision trees, random forest, extreme random tree,
multi-class adaboost upgrade and stochastic gradient
boosting all belong to model with adaptive basis
functions that can be grouped into common additive
model[25], as shown in Equation 13.

1 1( ) ( ) ... ( )D Df x f x f x    (13)
Where if is the sub-model obtained through training

sample. ( )f x is the superposition of sub-models. Decision
tree is the basic sub-model for tree-like algorithms. Upon
whether the use of all samples for training, these kinds of
algorithms can be divided into random forests and
extremely random tree. Random forests is to build sub-
model through random bagging sampling. However,
extremely random tree obtains sub-model using all
training samples, but randomly selecting the splitting
threshold. Multi-class adaboost and stochastic gradient
boosting is a linear combination of sub-models (weak
classifiers). The difference lies in their learning
algorithms.

Multilayer Perceptron, linear and non-linear support
vector machines can be classified as kernel methods [46].
The unified formula has the form

( ) ( )f x w x b   (14)

where w is real weight， b R is bias. ( )x function is
the type of the classifiers, for MPL

 1 1(.) ( ), ( ),..., ( )N        ， the i th hidden is defined as

( ) ( )i i ix h v x d   . h is the mapping function，generally a
hyperbolic function or shape function B is chosen by
MPL. For linear support vector machine ( )x is linear
function, rather than polynomial function, Gaussian
kernel function, and etc. for non-linear support vector
machine.

K nearest neighbor model is constructed according to
the division of distance relationship of the training
feature space, being classified by a majority voting.

Multi-class logistic regression (maximum entropy) is
the probabilistic choice model with constraints that
uncertain contents are treated with equal probability of
using entropy maximization to represent.

Naive Bayes classifier is based on the conditional
independence assumption of training samples, learning
parameters with the joint probability distribution though
Bayes' theorem, then classifying a given sample, by
maximizing the posterior probability to get
corresponding class.
3. Learning policy, loss and algorithms

Decision trees, random forests, extremely
randomized trees belong to the maximum likelihood
approximation of learning strategies, with the loss of log-
likelihood function.
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The decision tree’s optimal strategy is to learn some
features through a recursive process and split the tree in
accordance with the feature of the training samples. In
order to have a better generalization ability, the decision
tree model has to be pruning for removal of over-fitting.

Random forests is based on random sampling based
on the approach (bagging) to form more stars forest trees.
Extremely randomized trees is randomly selecting the
splitting value to build decision trees forests.

Multilayer Perceptron, linear and non-linear support
vector machines are to separate hyper-plane. The
difference is that multilayer perceptron is to minimize the
error hyper-plane, however linear and non-linear support
vector machine is a minimal loss of hinge page.
Perceptron learning algorithm is stochastic gradient
descent, linear support vector machine is a sequential
dual method, and non-linear support vector machine is a
sequential minimal optimization method.

K-nearest neighbor is based on distance of feature
space.

Multi-class logistic classifier (maximum entropy)
learning strategies can be seen as either maximum
likelihood estimation, or a logical loss minimization.

Loss of function is a linear logarithmic function. The
model learning is the maximum likelihood estimation or
regularized maximum likelihood estimation under certain
training conditions. Optimization algorithm is L-BGFS.

Naive Bayesian probability is a typical generative
model. The maximum likelihood estimation and
Bayesian posterior probabilities is calculated based on
the joint probability and conditional independence
assumption.
4. Classification strategy

Decision tree uses the IF-THEN rules for
classification decisions based on the value of the model
learned. Random forests and extremely random tree is
based on the voting of every single decision tree
classification, then taking the highest vote as the final
results.

Multilayer Perceptron, multi-class logistic regression
(maximum entropy), linear and non-linear support vector
machine have the same form of classification decisions

1,...,
arg max(( ) ( ) ).i T i

i k
class of x w x b


    (15)

The difference lies in the choice of ( )x . Multilayer
perceptron machine chooses B-shaped function,
hyperbolic tangent function, and etc.; Log-linear

Algorithms
Algorithms

type
Algorithms

characteristic
Learning policy Loss of learning

Learning
algorithms

Classification
strategy

Decision tree Discriminant Classification tree
Regularized

maximum likelihood
estimation

Logarithmic
likelihood loss

Feature selection,
generation, prune

IF-THEN policy
based on tree

spitting

Random tree Discriminant
Classification

tree(based on bagging)

Regularized
maximum likelihood

estimation

Logarithmic
likelihood loss

Building multi-
decision tree based

on bagging of
subsampling

Sub-tree voting

Extremely
random tree

Discriminant Classification tree
Regularized

maximum likelihood
estimation

Logarithmic
likelihood loss

Building multi-
decision tree

Sub-tree voting

Multi-class
adaboost

Discriminant
Linear combination of
weak classifier(based

on decision tree)

Addition
minimization loss

Exponent loss
Forward additive

algorithm

Linear combination
of weighted

maximum weak
classifiers

Stochastic
gradient
boosting

Discriminant
Linear combination of
weak classifier(based

on decision tree)

Addition
minimization loss

Exponent loss
Stochastic gradient
descent algorithm

Linear combination
of weighted

maximum weak
classifiers

Non-linear
Support vector
machine (based

on libsvm)

Discriminant
Super-plane separation,

kernel trick

Minimizing the loss
of regular hinge, soft
margin maximization

Hinge loss

Sequential
minimal

optimization
algorithm (SMO)

Maximum class of
test samples

Linear SVM
(based on
liblinear)

Discriminant Super-plane separation
Minimizing the loss
of regular hinge, soft
margin maximization

Hinge loss
Sequential dual

method

Maximum
weighted test

sample

K-nearest Discriminant
Distance of feature

space

Multiple voting,
empirical loss
minimization

Multi-logistic
(Maximum

entropy)
Discriminant

Conditional
probabilistic

distribution, Log-linear
model

Regularized
maximum likelihood

estimation
Logistic loss L-BFGS

Maximum
likelihood
estimation

Multilayer
perceptron

Discriminant Super-plane separation

Minimization of error
separation distance
point to the hyper-

plane

Error separation
distance point to
the hyper-plane

Random gradient
decrease

Maximum
weighted test

sample

Naive Bayesian
classifier

Generative

Joint distribution of
feature and class,

conditional independent
assumption

Maximum likelihood
estimation, Maximum
posterior probability

Logarithmic
likelihood loss

Probabilistic
computation

Maximum
posterior

probability

Conditional
Random Fields

Discriminant

Conditional
probabilistic

distribution under
observing sequence,

Log-linear model

Maximum likelihood
estimation,
Regularized

maximum likelihood
estimation

Logarithmic
likelihood loss

Random gradient
decrease, quasi-
newton methods

Maximum
likelihood
estimation

Table 2: Summary of twelve multi-class methods.
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functions is chosen for multi-class logistic regression;
linear support vector machine choses a linear function;
nonlinear support vector machine’s choice is non-linear
kernel function.

K nearest neighbor is a majority voting that output
classification is determined by choosing K nearest voting
in light of test sample’ s distance to the learned model.

Naive Bayesian decision strategy is the rule of
maximizing the posterior probability.

4 Experimental Setup
In order to evaluate the performance of various types of
classifiers, we implemented our comparisons based on
Darwin [47], Opencv[56], Libsvm [48] and liblinear [11]
in C++. This paper compared 12 kinds of algorithms.

4.1 Performance comparisons
Confusion matrix (Confusion Matrices) [49, 50] is a
common performance evaluation method in pattern
recognition classification, which characterizes the
relationship between the type of real classes and the
recognition classes. For multi-classification problem (For
simplifying the representation, we take three categories
as example) is illustrated in Table 2.

Prediction
class

True class
A B C

A AA AB AC

B BA BB BC

C CA CB CC

Table 3: Statistics of confusion matrices for samples
classification.

Where A, B and C are three classes, AA, BB and CC
represent the correct prediction number of samples, the
remaining number of samples is representative of the
error prediction. AA represents the number of samples
correctly identified as samples A. AB is predictive
number that original Sample A which is incorrectly
predicted as Sample B. The remaining items have the
same meaning.

Total accuracy rate can be calculated based on
confusion matrix as follows.

( ) / ( ... )TA AA BB CC AA AB CC      (16)
Where ...AA AB CC   is the total number of sample.

TA is the total accuracy.
Precision and recall are quantitative evaluation

method. They are not only used to evaluate the accuracy
of each class, but also the important standard to measure
the performance of the classification system.

Precision is the fraction of retrieved instances that
are relevant. Precision reflects the classification accuracy.
In practical applications, the average precision are often
used to evaluate multi-classification (taking categories as
example), which is calculated as follows

( / ( ) / ( ) / ( ))avgprecision AA AA BA CA BB BA BB BC CC AC BC CC         (17)
Recall is the fraction of relevant instances that are

retrieved. Recall reflects the classification

comprehensiveness. In practical applications, the average
recall are often used to evaluate multi-classification
(taking categories as example), which is calculated as
follows

( / ( ) / ( ) / ( ))avgrecall AA AA AB AC BB BA BB BC CC CA CB CC        

(18)
1F Measure is an integrated measurement method of

the recall and precision. Higher values reflect the recall
and precision better integrated. 1F is defined as

1

*
2 *

avgprecision avgrecall
F

avgprecision avgrecall



(19)

Jaccard Coefficient [51] is used for comparing the
similarity and diversity of sample sets. Taking class A as
example, the formula is

A

AA
JC

AA AB AC BA CA


   
(20)

Average Jaccard coefficient reflects the average of
the various categories Jaccard coefficient, which is
calculated as

( )/3A

AA BB CC
avgJC

AA AB AC BA CA AB BB CB BA BC CA CB CC AC BC
  
           

(21)

Jaccard coefficient predicts more accurately reflects
higher. Jaccard coefficient can evaluate multi-class
classification in each class.

4.2 Data sets and data transformation
We evaluate the performance of these algorithms on five
data sets that consists of three binary classification data
sets and two multi-classification data sets.

4.2.1 SPECTE Heart data set
SPECTF[52] means single-photon emission computed
tomography cardiac data sets. SPECTF is a new data
set[53]. In cleaning process, the records with missing
information, incomplete picture records are filtered, since
the original image scale is not uniform, so the original
image is transformed into gray image (0 to 255).

After cleaning, the data set contains 44 features that
record 22 region of interest for the cardiac systolic and
expanded state. The data type is an integer type (rang
from 0 to 100). The data set has total 267 instances of
which containing 80 training samples and 187 test
samples. Each instance has two states: normal and
abnormal. In experiment, we converted class label into
class 0 (normal) and class 1 (abnormal). Histogram
distribution of training samples showed normal shape is
shown in Figure 1 (a).

4.2.2 Ionosphere data set
Ionosphere data set[52] includes is a set of radar data sets
created by a military system acquisition in Labrador
NATO airbase, Goose Bay, Canada.

The data set has total of 34 feature (integer, decimal
type) that record 17 sub-pulses labels and values. The
data set consists of 351 instances of which 100 instances
are training samples, 251 instances are test samples. Each
instance has two states: good and bad. In the experiment
we converted class label into class 0 that represents the
existence of the facts) and class 1 the non-existent facts.
Feature type of the dataset is real type, range from -1 to
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a. Histogram of the distribution of the training samples is
shown in Figure 1 (b).

4.2.3 Spam data set
Spam[52] is a spam filtering data set that has total of 57
data features. 48 consecutive real number is used to
represent the percentage of messages of 48 words (i.e.
make, address, all, conference) and 6 word occurrences
(!, (, [,, $, #) in email.

The data set has a total of 4601 instances, where the
training instances are 3065, testing instances are 1,536.
Each instance has two states: 0 for not spam and 1 for
junk mail. The data set is real type feature information,
the range is 0 to 9090. The training sample distribution
histogram is scattered, as shown in Figure 1 (c).

4.2.4 Optidigits data set
Optdigits[52] is the information collection extracted from
43 individuals (30 of them for training, 13 as a testing)
by the handwritten Optical Character Recognition bit
image Standardization American National Standards
Institute of Technology (NIST).

The data set has a total of 5620 instances, where the
training instances are 3823, test instances are 1797. The
instances have ten classes, from 0 to 9 digits. Feature
data type is a positive integer, ranging from 0 to 16.
Histogram distribution of training samples is shown in
Figure 1 (d).

4.2.5 Scene 15 data set
Scene 15[54] data set is a post-processing data set. The
original data set has total of 15 classes, 4485 images. We
randomly selected sample of 2250 as training samples,
2235 samples for testing.

We used the method of PHOW (Pyramid Histogram
Of visual Word) [54] for feature extraction. 12000
descriptors were obtained for each image. In order to
obtain a better classification within the features, we used
method proposed by vedaldi[55] for features kernel
transformation, finally we got 36,000 dimensional
feature descriptors to characterize a single image. In the
experiment we converted 15 classes into class 0 to 14,
representing the bedroom, CALsuburb, industrial,
kitchen, livingroom, MITcoast, MITforest , MIThighway,
MITinsidecity, MITmountain, MITopencountry,
MITstreet, MITtallbuilding, PARoffice and store
respectively. Feature data type is a positive real number,
the range is -0.3485 to 0.4851, further feature data is
relatively concentrated, similar to normal training.
Histogram distribution of training samples is shown in
Figure 1 (e).

This data set has large dimensions of features and a
large size of data. Selection of this data set is mainly to
test algorithms adaptability for real application scenarios.

In Figure 1, we demonstrated our diversity of data
sets. SPECIF, ionoispher and spam are small scale data
sets. They are for binary classification. Optigits and
Scene 15 are large scale data sets. They are for multiclass
classification. At the same time, the range of our feature

vector value are large.
The range of Figure 1 feature values is also huge.

The range of SPECIF is from 0 to 100, ionoispher from -
1 to 1, and spam from 0 to 1000, Optigits from 0 to 20
and Scene 15 from -0.5 to 0.5. The diversity for our
comparing experiments are necessary. This shows that
our experiments are rich and valuable.
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Figure 1: The histogram characteristics of training data
sets.

4.2.6 Dataset selection
We select the data set is based on the following
considerations.

1. Both binary classification and multi-classification
data sets were taken into account for the purpose that
some algorithm are superior to binary classification,
while others are more suitable for multi-classification
problems.

2. For better evaluation of the adaptability of the
algorithms, we chosen both low dimensional data set
with small size and high dimensional data set with large
size.

3. We also paid attention to the data type differences,
both pure integer and double data type were included.
There were also real data type features, which had either
wholly positive or negative features.

4. It can be seen in Figure 1 that the histogram of the
distribution of the data we have chosen the difference is
quite different. Some are concentrated, just like normal
distribution, while others are relatively sparse.

4.3 Parameter setting and selection

4.3.1 Decision tree
1. The maximum depth of tree: The default value was set
to 1. With the value increase, classification accuracy and
running time will increase. We set maximum depth to 2,
4, 6, 8, 10, 12, 14, 16, 18 and 20 respectively. We found
the highest accuracy rate when the maximum depth is 10.

2. Splitting Criteria Consideration: We tested the
wrong classification rule, entropy rule, and Geni
coefficient rule respectively. We found that Geni
coefficient got the best of all, and mistake classification
rule got the worst of all.

3. The first split minimum number of samples were
tested with value of 0, 2, 4, 6, 8 and 10 respectively. We
found the minimum number of samples was increased,
but performance degraded.

4. The maximum number of features of the training
sample, the default was set to 1000.
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4.3.2 Random forests
1. A maximum depth of random forests, as the same of

decision tree, the optimal value was set to 10.
2. The maximum number of training samples feature,

the default was set to 1000, the value should change
with the number of sample features change, as long as
the sample itself to adapt to the largest number of
features.

3. The number of decision trees: we tested the value of
20, 40, 60, 80, 100, 120, 140, 160, 180 and 200
respectively. We found that the number increases, the
execution time also increases, and after over the value
of 100, the improvement of the accuracy rate is not
obvious. So we set it to 100.

4. The accuracy of the random forest was used to
control the iteration. We tested the value of 0.0001,
0.001, 0.01 and 0.1 respectively. We found that the
smaller the value was, the longer the execution time
was, and after over the value of 0.001, the accuracy
had no substantially change. We set it to 0.001.

4.3.3 Extremely randomized trees
Parameters were consistent with the random forest.

4.3.4 Multi-class adaboost classifier
1. For boosting methods, we tested discrete boosting,

gentle boosting and real boosting respectively, found
that gentle boosting is the best of all.

2. Tree depth was initialized with value of 10.
3. Shrinkage factor: we set it with value of 0.1, 0.2, 0.1

and 0.4 respectively, and found that 0.1 was the best
of all.

4. Maximum boosting number: we set it to the value of
10, 50, 100, 200 and 400 respectively. We found that
after over the value of 100, the precision had no
significant increase. So we set it to value of 100.

4.3.5 Stochastic gradient boosting
1. Maximum depth of the tree, same as in decision

tree, was set it to 10.
2. Loss function type for classification problems was

generally selected for cross-entropy loss.
3. Shrinkage factor was set to 0.1.
4. Subsampling percentage was used to control the

sampling percentage for every single tree in the
training process, we set it to 0.8.

5. Maximum lift was set to100.

4.3.6 Support vector machines
1. Type: we set it to C - Support Vector Classification and
v - support vector classification, it was found that v -
support vector classification is better than C - support.

Penalty factor for C - support vector classification
was set to 1.

Penalty factor for v -support vector classification,
value range was (0,1] , we set it to 0.5, p was set to 0.1.
2, Kernel types are linear, radial basis, sigmoid-type
function, POLY.

SPECTF Ionosphere Spam optdigits

C －
SVM

POLY 0.770 0.565 0.618 0.978
RFB 0.898 0.749 0.772 0.562
Sigmoid
function

0.080 0.693 0.374 0.101

v－
SVM

POLY 0.748 0.733 0.629 0.934
RFB 0.903 0.796 0.779 0.586
Sigmoid
function

0.080 0.840 0.648 0.101

Table 4: Overall accuracy of libSVM on four data sets.

From table 4, we tested non-linear support vector
machines total accuracy on four data sets. We selected v -
Support Vector POLY for classification as a non-linear
support vector machines kernel type.

4.3.7 Linear support vector machines
From table 5, we can see that L2R_L2LOSS_SVC for
loss function got good accuracy, so we chose
L2R_L2LOSS_SVC loss function as loss type of linear
support vector machines.

Data sets SPECTF Ionosphere Spam Optdigits

L2R L2LOSS SVC 0.620 0.856 0.898 0.947
L2R L2LOSSSVC
DUAL

0.577 0.856 0.617 0.939

L2R L1LOSS SVC
DUAL

0.577 0.848 0.865 0.935

MCSVM CS 0.805 0.860 0.631 0.933

Table 5: Overall accuracy of liblinear on four data sets.

4.3.8 K nearest neighbors
Nearest neighbor K was set to the value of 1, 3, 5, 7, 9,
11, 13 and 15 respectively. The accuracy was found to
reduce with increasing K value, so we set it to 1.

4.3.9 Multi-class logistic classifier
According to our single test with variable regularization
factor values of 1.0e-12, 1.0e-11, 1.0e-10, 1.0e-9, 1.0e-8,
1.0e-7 and 1.0, we found that the best results is the
regularization factor with value of 1.0e-9. So in our
comparing experiments, the regularization factor
(REG_STRENGTH) was set to 1.0e-9.

Similarly, we did same experiment, most optimum
results were found with the iteration range from 800 to
980. So in our comparing experiments, maximum
number of iterations was set to 1000 for avoidance of
losing optimum values.

4.3.10 Multilayer perceptron
1. The propagation algorithm was backward and

forward propagation respectively. Apparently
backward propagation algorithm achieved
significantly higher accuracy.

2. Gradient weight was typically set to 0.1.
3. The momentum, front weights reflecting

differences in two iterations, was typically set to
0.1.

Total Accurac
y

Data sets

Method

Total accuracy

Cost type
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4.3.11 Naive Bayesian Classifier
No parameters needed to be set.

4.3.12 Conditional Random Field Classifier
We only need set the classification type in this
experiments.

5 Experimental results and analysis
Firstly, we need define descriptions for the symbol in
tables: DecisionTree represents decision tree classifier.
RandomForest represents the random forests. ExtraTrees
is extremely random tree. BoostedClassifier represents
the multi-class adaboost classifier. GradientBoostTree
represents stochastic gradient boosting, libSVM is
support vector machines. libLinear represents linear
support vector machine. Knearest represents K nearest
neighbor classifier, MultiClassLogistic is multi-class
logistic classifier. MultiLayerPerceptron represents
multilayer perceptron.NormalBayesianNet represents the
naive Bayesian classifier. CRF represents Conditional
Random Fields classifier

5.1 Overall accuracy on five data sets
From table 6, on SPECTF data set, stochastic gradient
boosting achieved the highest overall accuracy, average
precision, recall and Jaccard value, following by non-
linear support vector machine, random forest, adaboost
classifiers and CRF have achieved relatively good
performance.

Algorithm
Overall

accuracy
Average
precision

Average
recall

Average
jaccard

coefficient
DecisionTree 0.657 0.5421 0.631 0.381

RandomForest 0.759 0.5721 0.686 0.456
ExtraTrees 0.668 0.5537 0.667 0.394

BoostedClassifier 0.716 0.5847 0.754 0.440
GradientBoostTree 1.000 1.000 1.000 1.000

libSVM 0.770 0.5664 0.662 0.458
libLinear 0.620 0.5342 0.611 0.356
Knearest 0.604 0.5666 0.724 0.362

Multi-classLogistic 0.620 0.5342 0.611 0.356
MultiLayerPerceptron 0.679 0.5377 0.612 0.391

NaiveBayesianNet 0.588 0.510 0.532 0.327
CRF 0.683 0.543 0.652 0.439

Table 6: Overall accuracy on SPECTF data set.

Algorithm
Overall

accuracy
Average
precision

Average
recall

Average
jaccard

coefficient
DecisionTree 0.792 0.765 0.799 0.635

RandomForest 0.828 0.807 0.854 0.691
ExtraTrees 0.888 0.862 0.897 0.780

BoostedClassifier 0.900 0.876 0.899 0.798
GradientBoostTree 1.000 1.000 1.000 1.000

libSVM 0.749 0.735 0.775 0.584
libLinear 0.856 0.867 0.787 0.694
Knearest 0.844 0.822 0.804 0.691

Multi-classLogistic 0.768 0.732 0.750 0.593
MultiLayerPerceptron 0.768 0.742 0.775 0.603

NaiveBayesianNet 0.733 0.683 0.633 0.500
CRF 0.863 0.870 0.793 0.612

Table 7: Overall accuracy on Ionosphere data set.

From table 7, on Ionoshere datasets, stochastic gradient
boosting achieved the highest overall accuracy, average

precision, recall and Jaccard value, following by
adaboost classifier, extremely randomized trees, CRF and
linear support vector machines.

Algorithm
Overall

accuracy
Average
precision

Average
recall

Average
jaccard

coefficient
DecisionTree 0.905 0.905 0.896 0.819

RandomForest 0.930 0.936 0.918 0.862
ExtraTrees 0.863 0.897 0.832 0.738

BoostedClassifier 0.940 0.942 0.933 0.882
GradientBoostTree 0.981 0.981 0.980 0.962

libSVM 0.618 0.687 0.522 0.332
libLinear 0.898 0.892 0.901 0.811
Knearest 0.775 0.765 0.764 0.622

Multi-classLogistic 0.923 0.921 0.918 0.852
MultiLayerPerceptron 0.908 0.904 0.905 0.827

NaiveBayesianNet 0.602 0.801 0.500 0.301
CRF 0.784 0.778 0.790 0.653

Table 8: Overall accuracy on spam data set.

From table 8, on the spam dataset stochastic gradient
boosting accuracy achieved the highest overall average
precision, recall and Jaccard value, following by multi-
lass adaboost classifier, random forests. For binary
classification problem but, under the low-dimensional
data set, the stochastic gradient boosting and ensemble
classifiers such as multi-class adaboost showed a high
performance.

From table 9, on optdigits data set, for the multi-
classification problem, stochastic gradient boosting
achieved the highest overall accuracy, average precision,
recall and Jaccard value. K-nearest neighbor, non-linear
support vector machine, random forests, extremely
randomized trees and CRF also achieved good overall
performance. Linear support vector machines, many
types of logic, multi-layer perceptron is manifested in
ordinal performance, and decision trees and Naïve Bayes
classifier achieved the worst performance of all.

From table 10, due to the high dimensional feature data
of Scene15 data set, multi-layer perceptron, naive
Bayesian classifier and nonlinear support vector machine
were failed. This mainly caused by the intrinsic
shortcomes of nonlinear SVM, Bayesian networks and
multi-layer perceptron. They have too many inner loops
and intermediate phased which need computation and
storage. This situation is worse when feature data is high
dimensional. Another reason is that our testing
environment is limited. If we have enough memory and
strong CPU capability, I think this phenomenon will
disappear. In another view, this also reveals that they

Algorithm
Overall

accuracy
Average
precision

Average
recall

Average
jaccard

coefficient
DecisionTree 0.847 0.850 0.847 0.738

RandomForest 0.966 0.966 0.966 0.936
ExtraTrees 0.969 0.970 0.969 0.942

BoostedClassifier 0.870 0.880 0.870 0.778
GradientBoostTree 1.000 1.000 1.000 1.000

libSVM 0.978 0.979 0.978 0.959
libLinear 0.947 0.948 0.946 0.901
Knearest 0.979 0.980 0.979 0.961

Multi-classLogistic 0.943 0.944 0.943 0.893
MultiLayerPerceptron 0.946 0.947 0.946 0.897

NaiveBayesianNet 0.843 0.881 0.844 0.732
CRF 0.960 0.962 0.958 0.932

Table 9: Overall accuracy on optdigits data set.



Experimental Comparisons of Multi-class Classifiers Informatica 39 (2015) 71–85 81

have tough condition for real application.
However, stochastic gradient boosting achieved the

highest overall accuracy, average precision, recall and
Jaccard value, following by linear support vector
machines, multi-class logistic regression. Other
algorithms got poor performance.

5.2 Inter class accuracy and jaccard
coefficient evaluation on five data sets

The statistical results above reflected the overall
performance of the algorithms. However, inter classes 1F

and Jaccard could reflect more detailed information.
Accuracy of each class may vary greatly due to
differences of the data. Overall each accuracy was
determined by average of sum each class accuracy.

From table 11, on the data set SPECTF, class 0
represents normal, class 1 represents abnormal.
Stochastic gradient boosting was fully recognized, so it
had the highest 1F and Jaccard coefficients in each sub
class (both class 0 and class 1). Remains of algorithms’

1F and Jaccard coefficients were not high in class 0,
however there were high accuracy in class 1. This

Algorithm
Overall

accuracy
Average
precision

Average
recall

Average
Jaccard

coefficient
DecisionTree 0.397 0.391 0.376 0.246

RandomForest 0.531 0.548 0.493 0.339
ExtraTrees 0.655 0.639 0.637 0.479

BoostedClassifier 0.422 0.502 0.424 0.274
GradientBoostTree 0.999 0.999 0.999 0.999

libSVM Invalid Invalid Invalid Invalid
libLinear 0.815 0.813 0.8113 0.694
Knearest 0.565 0.602 0.5421 0.382

Multi-classLogistic 0.794 0.797 0.7915 0.665
MultiLayerPerceptron Invalid Invalid Invalid Invalid

NaiveBayesianNet Invalid Invalid Invalid Invalid
CRF 0.650 0.625 0.621 0.456

Table 10: Overall accuracy on Scene15 data set.

Algorithm 1F Jaccard coefficient

Class0 Class1 Class0 Class1
RandomForest 0.286 0.855 0.167 0.747

ExtraTrees 0.244 0.788 0.139 0.650
BoostedClassifier 0.312 0.822 0.185 0.697

GradientBoostTree 1.000 1.000 1.000 1.000
libSVM 0.271 0.863 0.157 0.760
libLinear 0.202 0.751 0.113 0.601
Knearest 0.260 0.730 0.149 0.575

Multi-classLogistic 0.202 0.751 0.113 0.601
MultiLayerPerceptron 0.211 0.799 0.118 0.665

NaiveBayesianNet 0.154 0.728 0.083 0.572
CRF 0.278 0.813 0.156 0.745

Table 11: Inter-class accuracy on SPECTF data set.

Algorithm 1F Jaccard coefficient

Class0 Class1 Class0 Class1
RandomForest 0.919 0.840 0.850 0.724

ExtraTrees 0.916 0.835 0.844 0.717
BoostedClassifier 0.926 0.847 0.863 0.734

GradientBoostTree 1.000 1.000 1.000 1.000
libSVM 0.796 0.674 0.661 0.508
libLinear 0.903 0.723 0.824 0.566
Knearest 0.890 0.735 0.802 0.581

Multi-classLogistic 0.827 0.651 0.706 0.482
MultiLayerPerceptron 0.820 0.678 0.695 0.513

NaiveBayesianNet 0.822 0.464 0.698 0.302
CRF 0.908 0.838 0.846 0.721

Table 12: Inter-class accuracy on Ionosphere data set.

Algorithm 1F Jaccard coefficient

Class0 Class1 Class0 Class1
RandomForest 0.944 0.908 0.894 0.831

ExtraTrees 0.897 0.798 0.814 0.664
BoostedClassifier 0.952 0.923 0.908 0.857

GradientBoostTree 0.985 0.977 0.970 0.955
libSVM 0.757 0.107 0.609 0.056
libLinear 0.914 0.878 0.841 0.783
Knearest 0.815 0.715 0.687 0.557

Multi-classLogistic 0.937 0.903 0.881 0.823
MultiLayerPerceptron 0.924 0.886 0.859 0.795

NaiveBayesianNet 0.752 0.002 0.603 0.001
CRF 0.933 0.891 0.885 0.838

Table 13: Inter-class accuracy statistics on Spam data
set.

Algorithm Class0 Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9

DecisionTree 1F 0.933 0.830 0.813 0.817 0.803 0.891 0.940 0.836 0.777 0.832

Jaccard 0.875 0.710 0.685 0.690 0.671 0.804 0.887 0.719 0.636 0.712

RandomForest 1F 0.989 0.965 0.983 0.962 0.981 0.975 0.986 0.972 0.920 0.933

Jaccard 0.978 0.933 0.966 0.926 0.962 0.952 0.973 0.945 0.851 0.875

ExtraTrees 1F 0.992 0.963 0.994 0.956 0.986 0.975 0.989 0.972 0.938 0.934

Jaccard 0.983 0.928 0.989 0.915 0.973 0.952 0.978 0.945 0.883 0.877

BoostedClassifier 1F 0.960 0.804 0.930 0.813 0.899 0.919 0.960 0.850 0.783 0.798

Jaccard 0.923 0.672 0.870 0.685 0.816 0.850 0.924 0.740 0.644 0.664

GradientBoostTree 1F 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Jaccard 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

libSVM 1F 0.997 0.978 0.994 0.972 0.994 0.986 0.997 0.977 0.948 0.943

Jaccard 0.994 0.957 0.989 0.946 0.989 0.973 0.995 0.956 0.901 0.892

libLinear 1F 0.992 0.914 0.983 0.942 0.964 0.941 0.983 0.954 0.890 0.911

Jaccard 0.983 0.842 0.966 0.889 0.930 0.889 0.967 0.912 0.801 0.837

Knearest 1F 1.000 0.965 0.994 0.978 0.981 0.986 1.000 0.989 0.956 0.949

Jaccard 1.000 0.933 0.989 0.957 0.962 0.973 1.000 0.978 0.916 0.904

Multi-classLogistic 1F 0.977 0.957 0.963 0.934 0.961 0.937 0.978 0.946 0.892 0.885

Jaccard 0.956 0.918 0.929 0.877 0.925 0.881 0.957 0.897 0.805 0.794

MultiLayerPerceptron 1F 0.986 0.948 0.938 0.925 0.951 0.957 0.962 0.949 0.913 0.930

Jaccard 0.973 0.902 0.884 0.861 0.906 0.918 0.926 0.902 0.840 0.869

NaiveBayesianNet 1F 0.942 0.914 0.940 0.891 0.011 0.967 0.949 0.762 0.793 0.883

Jaccard 0.890 0.842 0.886 0.804 0.006 0.936 0.902 0.616 0.656 0.791
CRF

Table 14: Inter-class accuracy on optdigits data set.
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indicated that the overall accuracy was boosted by the
accuracy of the class 1. Distribution trends of Jaccard
coefficient was in accordance with that of 1F . This meant
that the higher 1F was, the higher Jaccard coefficient was
in class 1. Further, support vector machines, random
forests and CRF also had high 1F and Jaccard coefficient
in class 1.

From table 12, on data set Ionosphere, class 0
represents the presence of the fact, class 1 represents no
presence of the fact. Performance was higher in class 0

than that in class 1. Stochastic gradient boosting to
achieve the highest value. Random forests, CRF and
multi-class adaboost classifier also got good
performance.

From table 14, on optdigits dataset, class 0 to class 9
represent ten digit of 0 to 9. All algorithms had relatively
equal performance in each class. Stochastic gradient
boosting, the non-linear support vector machines,
random forests, Multilayer Perceptron, linear multi-class
support vector machines and multi-class logistic
classifier had high performance in each class.

Algorithm Class0 Class1 Class2 Class3 Class4 Class5 Class6 Class7

DecisionTree 1F 0.238 0.618 0.718 0.550 0.304 0.397 0.471 0.397

Jaccard 0.135 0.447 0.561 0.380 0.179 0.247 0.308 0.248

RandomForest 1F 0.848 0.654 0.852 0.327 0.491 0.571 0.618 0.688

Jaccard 0.736 0.486 0.742 0.196 0.326 0.400 0.448 0.524

ExtraTrees 1F 0.805 0.816 0.859 0.779 0.590 0.744 0.652 0.777

Jaccard 0.673 0.689 0.752 0.638 0.419 0.593 0.483 0.635

BoostedClassifier 1F 0.606 0.126 0.290 0.415 0.531 0.399 0.447 0.608

Jaccard 0.435 0.067 0.170 0.262 0.362 0.249 0.287 0.437

GradientBoostTree 1F 1.000 1.000 1.000 1.000 0.997 1.000 1.000 1.000
Jaccard 1.000 1.000 1.000 1.000 0.994 1.000 1.000 1.000

libSVM 1F Invalid Invalid Invalid Invalid Invalid Invalid Invalid Invalid

Jaccard Invalid Invalid Invalid Invalid Invalid Invalid Invalid Invalid

libLinear 1F 0.959 0.860 0.931 0.864 0.784 0.887 0.823 0.890

Jaccard 0.921 0.754 0.871 0.761 0.645 0.797 0.699 0.803

Knearest 1F 0.606 0.126 0.290 0.415 0.531 0.399 0.447 0.608

Jaccard 0.435 0.067 0.170 0.262 0.362 0.249 0.287 0.437

Multi-classLogistic 1F 0.941 0.801 0.873 0.820 0.736 0.866 0.770 0.871

Jaccard 0.936 0.701 0.827 0.721 0.617 0.712 0.656 0.776

MultiLayerPerceptron 1F Invalid Invalid Invalid Invalid Invalid Invalid Invalid Invalid

Jaccard Invalid Invalid Invalid Invalid Invalid Invalid Invalid Invalid

NaiveBayesianNet 1F Invalid Invalid Invalid Invalid Invalid Invalid Invalid Invalid

Jaccard Invalid Invalid Invalid Invalid Invalid Invalid Invalid Invalid

CRF 1F 0.835 0.647 0.843 0.318 0.485 0.565 0.546 0.659

Jaccard 0.736 0.477 0.729 0.187 0.319 0.389 0.432 0.510

Table 15: Inter-class accuracy on Scene15 data set.

Algorithm Class8 Class9 Class10 Class11 Class12 Class12 Class14

DecisionTree 1F 0.463 0.330 0.142 0.234 0.220 0.326 0.280

Jaccard 0.301 0.198 0.076 0.133 0.123 0.195 0.162

RandomForest 1F 0.495 0.410 0.034 0.197 0.071 0.282 0.482

Jaccard 0.328 0.258 0.017 0.109 0.037 0.164 0.318

ExtraTrees 1F 0.681 0.645 0.339 0.286 0.409 0.496 0.531

Jaccard 0.517 0.477 0.204 0.167 0.257 0.330 0.362

BoostedClassifier 1F 0.611 0.447 0.342 0.320 0.325 0.356 0.485

Jaccard 0.440 0.288 0.206 0.190 0.194 0.216 0.320

GradientBoostTree 1F 0.997 1.000 1.000 1.000 1.000 1.000 1.000
Jaccard 0.994 1.000 1.000 1.000 1.000 1.000 1.000

BoostedClassifier 1F 0.623 0.459 0.309 0.288 0.324 0.415 0.528

Jaccard 0.452 0.298 0.183 0.168 0.193 0.262 0.359

libSVM 1F Invalid Invalid Invalid Invalid Invalid Invalid Invalid

Jaccard 0.000 0.000 0.000 0.000 0.000 0.000 0.000

libLinear 1F 0.862 0.898 0.633 0.645 0.701 0.663 0.685

Jaccard 0.758 0.815 0.463 0.476 0.539 0.495 0.521

Knearest 1F 0.611 0.447 0.342 0.320 0.325 0.356 0.485

Jaccard 0.440 0.288 0.206 0.190 0.194 0.216 0.320

Multi-classLogistic 1F 0.847 0.898 0.721 0.613 0.761 0.721 0.655

Jaccard 0.889 0.668 0.775 0.694 0.582 0.764 0.625

MultiLayerPerceptron
. 1F . Invalid Invalid Invalid Invalid Invalid Invalid Invalid

Jaccard Invalid Invalid Invalid Invalid Invalid Invalid Invalid

NaiveBayesianNet 1F Invalid Invalid Invalid Invalid Invalid Invalid Invalid

Jaccard Invalid Invalid Invalid Invalid Invalid Invalid Invalid

CRF 1F 0.488 0.402 0.028 0.188 0.066 0.277 0.466

Jaccard 0.313 0.248 0.016 0.100 0.036 0.155 0.309

Table 16: Inter-class accuracy on Scene15 data set (cont.)
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From table 15 and table 16, on Scene15, class 0 to
class 14 represented fifteen classes. Multilayer
perceptron and non-support vector machines were failed
because of computation cost, and naive Bayesian
classifier was failed due to the huge storage. Stochastic
gradient boosting, linear support vector machines
achieved good performance, following by multi-class
logistic classifier.

5.3 Running time performance on five
data sets

From table 17, the running time of the 11 kinds by an
algorithm on the five data sets can be seen that:

1. On a small data sets (SPECTE and Ionosphere),
running time of multilayer perceptron was significantly
slower than that of other algorithms, while other
algorithms’ running time were almost same. Linear
support vector machines’ (based on liblinear) running
time was inversely lower than that of nonlinear support
vector machines based on libsvm.

2. On the large data sets (spam, optidigits, scene15),
the differences of running time were significant. It is
clear that the linear support vector machines were
significantly faster than the non-linear support vector
machines.

3. For tree classifiers, decision tree was the fastest of
all, following by random forests. The slowest was
extremely randomized trees.

4. For boosting methods, stochastic gradient boosting
was slower than the multiclass adaboost.

5. Due to the large dimensionality of data, non-linear
support vector machines, and Bayesian multi-layer
perceptron did not succeed.

6. CRF running time is better than ExtraTrees, but
slower than RandomForest.

7. In short, for running time efficiency, naive Bayes
classifiers, K nearest neighbor and decision tree were
basically fast, following by random forests, multi-class
logic and linear support vector machines. The stochastic
gradient boosting was the slowest of all.

6 Conclusion and future work
This article compares 12 kinds of commonly used multi-
classification algorithm. In the experiments, we found
that:

1. The same algorithm on different data sets showed
different performance. It was the key to choose a
more adaptive algorithm based on the data set.

2. Stochastic gradient boosting achieved the best
classification accuracy in all test data sets, but its
running time was slower than other algorithms except
the multilayer perceptron.

3. The composite classifiers performed well than single
classifier. For example, stochastic gradient boosting,
random forest, extremely randomized trees were all
better than the basic decision tree. However at the
same time, the more complex combination model
was, the longer running time was.

4. Linear support vector machines achieved good results
of both accuracy and total execution on large data sets
while compared with the nonlinear support vector
machine.

There are still some deficiencies in our comparative
study, further research is need:
1. We compare only the basic algorithm of 12 kinds of

algorithms, every algorithm has its variants, which
are better than the original algorithms.

2. How to choose the optimal parameter settings for
algorithm is critical for its performance. There are
still more works need to be done.

3. When we deal with large data sets, how much sample
should choose for training? How to find the best
balance between training time and accuracy is worthy
of further exploration.

4. The combination of classifiers can often lead to
higher accuracy, but as mentioned above, model
training time will significantly increase. Stochastic
gradient boosting were obtained good accuracy in our
tests on five data sets, however the running time is
longer. Actually stochastic gradient boosting have
many sub routine which has sub-iteration, so this will
elapse many running time. Because the main routine
are highly correlate the sub-iteration, so it cannot
directly parallel the sub-iteration.

How to improve the running time performance with a
little bit of decrease in accuracy is a meaningful research,
in other words, we need to find a balance between
accuracy and running time performance.
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Algorithm
Binary data sets Multi-class data sets

SPECTF Ionosphere Spam optdigits Scene 15
DecisionTree 1 30.9 79.9 202.9 19.562(second)

RandomForest 93.9 326.9 2.819 8112 34(minute)
ExtraTrees 266.0 437.0 3.036 12541 1hour22 minute

BoostedClassifier 202.9 451.9 1761 2.697 477.873（second）
GradientBoostTree 437.0 656.0 6732 53807 8hour42 minute

libSVM 46.9 108.9 915184 3276 Invalid
libLinear 389.9 749.0 3.165 1006 2hour10 minute

Knearest 1 16.0 280.9 708.9 120.054（second）
Multi-classLogistic 30.9 46.9 377.9 2153 190.660（second）

MultiLayerPerceptron 857.9 4306 33727 172847 Invalid
NaiveBayesianNet 30.9 93.0 63.0 375.9 Invalid

CRF 168.9 235.2 1.522 6420 66 minute

Table 17: Running time of twelve algorithms on five data sets (unit: millisecond except scene 15 data set).
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