Informatica 39 (2015) 53-61 53

Probabilistic 2D Point I nterpolation and Extrapolation via Data

M odeling

Dariusz Jacek Jakébczak

Department of Electronics and Computer Science, Technical University of Koszalin,

Sniadeckich 2, 75-453 Koszalin, Poland
E-mail: dariusz.jakobczak @tu.koszalin.pl

Keywords: 2D data interpolation, Hurwitz-Radon matrices, MHR method, probabilistic modeling, curve extrapolation

Received: June 25, 2014

Mathematics and computer science are interested in methods of 2D curve interpolation and
extrapolation using the set of key points (knots). A proposed method of Hurwitz- Radon Matrices (MHR)
is such a method. This novel method is based on the family of Hurwitz-Radon (HR) matrices which
possess columns composed of orthogonal vectors. Two-dimensional curve is interpolated via different
functions as probability distribution functions: polynomial, sinus, cosine, tangent, cotangent, logarithm,
exponent, arcsin, arccos, arctan, arcctg or power function, also inverse functions. It is shown how to
build the orthogonal matrix operator and how to use it in a process of curve reconstruction.

Povzetek: Opisana je nova metoda 2D interpolacije in ekstrapolacije krivulj.

1 Introduction

Curve interpolation and extrapolation [1] represents one
of the most important problems in mathematics: how to
model the curve [2] via discrete set of two-dimensional
points [3]? Also the matter of curve representation and
parameterization is still opened in mathematics and
computer sciences [4]. The author wants to approach a
problem of curve modeling by characteristic points.
Proposed method relies on functional modeling of curve
points situated between the basic set of the nodes or
outside the nodes. The functions that are used in
calculations represent whole family of elementary
functions with inverse functions. polynomials,
trigonometric, cyclometric, logarithmic, exponential and
power function. These functions are treated as
probability distribution functions in the range [0,1].
Nowadays methods apply mainly polynomial functions,
for example Bernstein polynomials in Bezier curves,
splines and NURBS [5]. Numerical methods for data
interpolation or extrapolation are based on polynomial or
trigonometric functions, for example Lagrange, Newton,
Aitken and Hermite methods. These methods have some
weak sides [6] and are not sufficient for curve
interpolation and extrapolation in the situations when the
curve cannot be build by polynomials or trigonometric
functions. Proposed 2D curve interpolation and
extrapolation is the functiona modeling via any
elementary functions and it helps us to fit the curve
during the computations.

The main contributions of the paper are dealing with
presentation the method that connects such problems as:
interpolation,  extrapolation, modeling, numerical
methods and probabilistic methods. Thisis new approach
to these problems. Differences from the previous papers
of the author are connected with calculations without

matrices (N = 1), new probabilistic distribution functions

and novel look on shape modeling and curve

reconstruction.

The method of Hurwitz-Radon Matrices (MHR)
requires minima assumptions. the only information
about a curve is the set of at least two nodes. Proposed
method of Hurwitz-Radon Matrices (MHR) is applied in
curve modeling via different coefficients: polynomial,
sinusoidal, cosinusoidal, tangent, cotangent, logarithmic,
exponential, arcsin, arccos, arctan, arcctg or power.
Function for MHR calculations is chosen individually at
each interpolation and it represents probability
distribution function of parameter a e [0,1] for every
point situated between two interpolation knots. MHR
method uses two-dimensional vectors (xy) for curve
modeling - knots (x,y;) € R?in MHR method:

1. MHR version with no matrices (N = 1) needs 2 knots
or more;

2. At least five knots (X,y1), (X2Y2), (X3.Ya), (Xa,ys) and
(Xs,ys) if MHR method is implemented with matrices
of dimension N = 2;

3. For more precise modeling knots ought to be settled
a key points of the curve, for example local
minimum or maximum and a least one node
between two successive local extrema.

Condition 2 is connected with important features of
MHR method: MHR version with matrices of dimension
N = 2 (MHR-2) requires at least five nodes, MHR
version with matrices of dimension N = 4 (MHR-4)
needs at least nine nodes and MHR version with matrices
of dimension N= 8 (MHR-8) requires at least 17 nodes.
Condition 3 means for example the highest point of the
curve in a particular orientation, convexity changing or
curvature extrema. So this paper wants to answer the
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question: how to interpolate end extrapolate the curve by
aset of knots?
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Figure 1: Knots of the curve before modelling.

Coefficients for curve modeling are computed using
probability distribution functions: polynomials, power
functions, sinus, cosine, tangent, cotangent, logarithm,
exponent or arcsin, arccos, arctan, arcctg.

2 Probabilistic 2D interpolation and
extrapolation

The method of Hurwitz — Radon Matrices (MHR) is
computing points between two successive nodes of the
curve. caculated points are interpolated and
parameterized for real number a € [0,1] in the range of
two successive nodes. Data extrapolation is possible for
a<0ora>1 MHR caculations are dealing with square
matrices of dimension N = 1, 2, 4 or 8. Matrices A,
i=1,2...msatisfying
AA+AA =0, A’=-l for j#k j,k=12..m

are caled a family of Hurwitz - Radon matrices. They
were discussed by Adolf Hurwitz and Johann Radon
separately in 1923. A family of Hurwitz-Radon (HR)
matrices [7] are skew-symmetric: A'= -A and A= - A.
Only for dimensions N = 1, 2, 4 or 8 the family of HR
matrices consists of N - 1 matrices. For N = 1 there is no
matrices but only calculations with real numbers. For

N=2:
[o 1
a5 of

For N = 4 there are three HR matrices with integer
entries:

0100 0 0 10 000 1
100 0 0 0 01 0 0-10
A=lo 00 -1 ® |1 000 ®o 1 o0
0010 0 -1 00 10 0

For N = 8 we have seven HR matrices with elements O,
+1. So far HR matrices have found applications in Space-
Time Block Coding (STBC) [8] and orthogonal design
[9], in signal processing [10] and Hamiltonian Neura
Nets[11].

How coordinates of knots are applied for
interpolation and extrapolation? If knots are represented
by the following points { (x,y)), i =1, 2, ..., n} then HR
matrices combined with the identity matrix |y are used to
build the orthogonal Hurwitz - Radon Operator (OHR).
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For point p;=(x;,y1) and x;#20 OHR of dimension N = 1is
the matrix (real number) M;:

Ml(pl):iz[xl'yl]:h' (O)
X %

For paints p;=(x3,y1) and p,=(X»,y>) OHR of dimension
N=2 isbuild via matrix My:
1 {xlyﬁxzyz
2

Mz(pppz): 2 XY, — X,
2 TN

XY= XY, . (1)
X +X%

XY+ XY,

For points p1=(X1,Y1), P2=(X2,¥2), Ps=(Xa,y3) and ps=(Xa,Ys)

OHR M, of dimenson N = 4 is introduced:
UO ul uZ u3
1 —u u —u u
M, (PP P3P =——5 55 ! ° ¢ z
X1 +X2 +X3 +X4 —U2 U3 UO —u1
—U; —-U U, Uy
2

where
Up = X Ya + X Yo + X553+ X, Yy 0
Uy ==X Y, + XV + XY, — X, Va0
Uy ==X Y3 = X Yo + XY + X, Y0
Us ==X Y, XY = X3Y, £ XYy

For knots p1=(X1,Y1), P2=(%2,Y2),--- and pg=(Xg,ys) OHR Mg
of dimension N = 8 is constructed [12] similarly as (1)
and (2):

-u U U, -u, Uy -uU, —-U; Ug
-u, —-U; U, U Uy U, -u, —U
1 —U; U, —U Uy u; —Us U -y,

Mg(Py, PorPg) =

i1 -u; u, -u, Ug -U U, -—U; U,
-Ug U, u, -—-U; —-UuU, U U —U
|-U; -Ug U U, =—Uy -U, U U |
©)
where
(Y Y2 Vs Ve Ys  Ys Yo Ve |[X]
=Y Y1 =Y, Y3 —Ys Ys Ys -y X, (4)

“Ys Va Yo Y2 Y7 —Ys ¥ 4 X3
|~ Yo Y3 Y2 Y1 —Ys V4 —Ys Ys 3 Xy
—Ys Y6 4 Ys Y1 Yo Yz Vs X5
“Ys —Ys Ys —Y2 Y2 Y1 Yo —Y3||%
Y7 —Ys =Y Ys Y3 —Ya Y1 Y2 Xz
L™ Ye Yz ~Ys —Ys Ya Y3 -Y2 Y1 i Xg

and u = (Ug, Uy,..., Uy)" (4). OHR operators My (0)-(3)
satisfy the condition of interpolation
MN'X =y (5)

for X = (X3, %e...%)" € RY, x =0,y = (YoYo...0)" € RY
andN=1,2, 4o0r8.

2.1 Distribution functionsin MHR
inter polation and extrapolation

Points settled between the nodes are computed [13] using
MHR method [14]. Each real number ¢ e [ab] is
calculated by a convex combination
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c=oa-a++(1-a)-b for
b-¢ c[01]. 6)

The weighted average OHR operator M of dimension N =
1,2, 4or 8isbuild:

M =g-A+(1-g)-B. (7)
The OHR matrix A is constructed (1)-(3) by every second
knot p1=(X1=a,y1), Ps=(X3,¥3), -..and Pon.1=(Xon-1,Yon-1):

A = Mn(p1, Ps.... Pan1)-
The OHR matrix B is computed (1)-(3) by knots
P2=(%=b,Y2), P4=(X4,Ya), . and pan=(Xan,Yan):

B = M\(P2, Pa...., Pan)-
Vector of first coordinates C is defined for
G=oXy1t (L-a)%y , i=1,2,...,N (8
and C =[cy, Cy,..., CN]T. The formula to calculate second
coordinates y(c;) is similar to the interpolation formula

(5):

a =

Y(C)=M-C C)
where Y(C) = [y(c), Y(Cy)...., y(cn)]". So interpolated
value y(c) from (9) depends on two, four, eight or
sixteen (2N) successive nodes. For example N=1 results
in computations without matrices:

A= M1(p1) :%’ B= M1(p2): zz !

2

C=ci=axg+ (1-0)'X2 ,
Y(C) = y(c) = (g%+ (1—g>§—§)-c1'

y(c)=a g- y1+(1—a)<1—g)y2+g(1—a)%x2 +a(l-g
(10)

Formula (10) shows a clear calculation for interpolation
of any point between two successive nodes (x3,y;) and
(%2,y2). Key question is dealing with coefficient y in (7).
Basic MHR version means y= a and then (10):

y@)=a’-y,+(1-a)’y,+a (l—a)(%x2 +%X1).
(11)

Formula (11) represents the smplest way of MHR
calculations (N = 1, y = a) and it differs from linear
interpolation y(c)=a -y, +(-a)y,. MHR is not a
linear interpolation.

Each interpolation requires specific distribution of
parameter a (7) and y depends on parameter o € [0,1]:

y = F(a), F:[0,1] -[0,1], F(0)=0, F(1)=1

and F is strictly monotonic.
Coefficient y is calculated using different functions
(polynomials, power functions, sinus, cosine, tangent,
cotangent, logarithm, exponent, arcsin, arccos, arctan or
arcctg, also inverse functions) and choice of function is
connected with initial requirements and curve
specifications. Different values of coefficient y are

Y
)R
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connected with applied functions F(a). These functions
(12)-(41) represent the probability distribution functions
for random variable a € [0,1] and real number s> O:

1. power function

y=a® with s>0. (12)
For s=1: basic version of MHR method when y = a.
2. sinus
y=sn(®-n/2), s>0 (13)
or
y=sin%(a-n/2), s>0. (14)
Fors=1: y=sin(a- n/2). (15)
3. cosine
y=1-cos(o®- m/2), s>0 (16)
or
y = 1-cos¥(a - n/2), s> 0. (17)
Fors=1. y=1-cos(a - m/2). (18)
4. tangent
y =tan(a®- m/4), s>0 (19)
or
y =tan*(a - m/4), s>0. (20)
Fors=1: y = tan(a - 1/4). (21
5. logarithm
y=logy(a®+ 1), s>0 (22
or
y=log, (a+ 1), s>0. (23)
Fors=1: y = logy(a + 1). (24)
6. exponent
g:(aé1 _1)5 ,s>0anda>0andaz1. (25
a-1
Fors=landa=2: y=2"-1. (26)
7. arcsne
y =2/m arcsin(o® , s>0 27
or
y=(2/m arcsina)®, s>0. (28)
Fors=1: y = 2/t arcsin(a). (29)
8. arccosine
y=1-2/m arccos(a®), s>0  (30)
or
y = 1-(2/m- arccos a)®, s> 0. (31)
Fors=1: y = 1-2/m- arccos(a). (32
9. arctangent
y = 4/m- arctan(a®) , s>0 (33)
or
y = (4/m arctan a)®, s> 0. (34)
Fors=1: y = 4/n- arctan(a). (35
10. cotangent
y=ctg(m/2 -0 -n/4), s>0 (36)
or
y=ctg® (/2 - a - n/4), s>0. (37)
Fors=1: y = ctg(n/2 - o - m/4). (38)
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11. arc cotangent

y=2-4/marcctg(a®, s>0  (39)
or
y=(2-4/n arcctga)®, s>0. (40)
Fors=1: y = 2 - 4/mt- arcctg(a). (41)

Functions used in y calculations (12)-(41) are strictly
monotonic for random variable a € [0,1] as y = F(q) is
probability distribution function. Also inverse function
F'(a) is appropriate for y calculations. Choice of
function and value s depends on curve specifications and
individual requirements. Interpolating of coordinates for
curve points using (6)-(9) is called by author the method
of Hurwitz - Radon Matrices (MHR) [15]. So here are
five steps of MHR interpolation:

Step 1: Choice of knots at key points.

Step 2: Fixing the dimension of matricesN =1, 2, 4 or 8:
N = 1 isthe most universal for calculations (it needs only
two nodes to compute unknown points between them)
and it has the lowest computational costs (10); MHR
with N = 2 uses four successive nodes to compute
unknown coordinate; MHR version for N = 4 applies
eight successive nodes to get unknown point and MHR
with N = 8 needs sixteen successive nodes to calculate
unknown coordinate (it has the biggest computational
costs).

Step 3: Choice of distribution y = F(a): basic distribution
fory=a.

Step 4: Determining values of a: a = 0.1, 0.2...0.9 (nine
points) or 0.01, 0.02...0.99 (99 points) or others.

Step 5: The computations (9).
These five steps can be treated as the algorithm of MHR
method of curve modeling and interpolation (6)-(9).

Considering nowadays used probability distribution
functions for random variable a<[0,1] - one distribution
is dealing with the range [0,1]: beta distribution.
Probability density function f for random variable a e
[01] is:

f@)=c-a®-(1-a) ,s20,r=20 (42)

When r = 0 probability density function (42) represents
f(a) =c-a® and then probability distribution function F
islike (12), for example f(a)=3a? and y=c®. If sand r
are positive integer numbers then y is the polynomial, for
example f(a)=6a(l-a) and y = 30%20°. So beta
distribution gives us coefficient y in (7) as polynomial
because of interdependence between probability density f
and distribution F functions:

f@)=F'@) . F(a):]'f(t)dt- (43)

For example (43): and

g=F@)=(@ -)e +1.
What is very important: two curves may have the
same set of nodes but different N or y results in different

interpolations (Fig.6-13). Here are some applications of
MHR method with basic version (y = a): MHR-2 is

f@)=a- &
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MHR version with matrices of dimenson N = 2 and
MHR-4 means MHR version with matrices of dimension
N=4.

Wirkran il b cpwsi MR 3

Figure 2: Function f(x) = x*+x°-x+1 with 396 interpolated
points using basic MHR-2 with 5 nodes.

Wyhrua inlurprali hieymuj MHR:2
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Figure 3: Function f(x) = x*+In(7-x) with 396 interpolated
points using basic MHR-2 with 5 nodes.
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Figure 4: Function f(x) = x*+2x-1 with 792 interpol ated
points using basic MHR-4 with 9 nodes.
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Figure 5: Function f(x) = 3-2" with 396 interpolated
points using basic MHR-2 with 5 nodes.

Teao1r o1 12

Figures 2-5 show interpolation of continues
functions connected with determined formula. So these
functions are interpolated and modeled. Without
knowledge about the formula, curve interpolation has to
implement the coefficients y (12)-(43), but MHR is not
limited only to these coefficients. Each strictly
monotonic function F between points (0;0) and (1;1) can
be used in MHR interpolation. MHR 2D data
extrapolation is possible for o < 0 or a>1.

3 Implementationsof 2D
probabilistic inter polation

Curve knots (0.1;10), (0.2;5), (0.4;2.5), (3;1) and (2;5)
from Fig.l are used in some examples of MHR
interpolation with different y. Points of the curve are
calculated for N= 1 and y = a (11) in example 1 and with
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matrices of dimension N = 2 in examples 2 - 8 for a =

0.1,0.2,...,0.9.

Example 1
Curveinterpolation for N=1and y = a.

13
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Figure 6: Modeling without matrices (N = 1) for nine
reconstructed points between nodes.

Example 2
Sinusoidal interpolation with y = sin(a - 11/2).
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Figure 7: Sinusoidal modeling with nine reconstructed
curve points between nodes.

Example 3
Tangent interpolation for y = tan(a - n/4).
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Figure 8: Tangent curve modeling with nine interpolated
points between nodes.

Example 4
Tangent interpolation with y = tan(o® - n/4) and s= 1.5.
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Figure 9: Tangent modeling with nine recovered points
between nodes.

Example 5

Tangent curve interpolation for y = tan(o® - /4) and s =
1.797.
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Figure 10: Tangent modeling with nine reconstructed
points between nodes.

Example 6
Sinusoidal interpolation with y = sin(o® - n/2) and s =
2.759.
1z
10 ;
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Figure 11: Sinusoidal modeling with nine interpolated
curve points between nodes.

Example 7
Power function modeling for y = o® and s = 2.1205.

Figure 12: Power function curve modeling with nine
recovered points between nodes.

Example 8

Logarithmic curve modeling with y = log,(o® + 1) and s
=2.533.

12

10
8

6

Figure 13: Logarithmic modeling with nine reconstructed
points between nodes.

These eight examples demonstrate possibilities of
curve interpolation for key nodes. Reconstructed values
and interpolated points, calculated by MHR method, are
applied in the process of curve modeling. Every curve
can be interpolated by some distribution function as
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parameter y. This parameter is treated as probability
distribution function for each curve.

4 MHR 2D modeling versus
polynomial inter polation

4.1 Example4.l

Let us consider a graph of function f(x) = 2/x in range
[0.4,1.6]. There are given five interpolation nodes for x =
0.4, 0.7, 1.0, 1.3, 1.6. The curve y = 2/x reconstructed by
basic MHR method (12) with N = 2 for s = 1 looks not
precisaly:

a 0.5 iE 15

Figure 14: The curvey = 2/x reconstructed by MHR
method for y = a (7) and five nodes together with 36
computed points.

Lagrange interpolation polynomial is not to be accepted:
2T ¥

’ \
t 4 X

-5 -

Figure 15: Polynomial interpolation of functiony = 1/xis
out of acceptation.

For better reconstruction of the curve, appropriate
parameter sin MHR method (12) is calculated. Choice of
parameter s is connected with comparison of accurate
values w; for function f(x) = 2/x in control points p;,
situated in the middle between interpolation nodes
(«=0.5), and values in control points p; computed by
MHR method. Control points are settled in the middle
between interpolation nodes, because interpolation error
of MHR method is the biggest. Choice of coefficient sis
done by criterion: difference between precise values w;
and values reconstructed by MHR method is the smallest.
Control points p; in this example are established for x; =
0.55, 0.85, 1.15, 1.45. Four values of the curve are
compared for parameter s = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
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0.7,08,09,10,11,12,13,14,15,16,1.7, 18, 19,
2.0. The smallest differenceis calculated for s= 1.5:
| wi— 3604 |+ w3 - 1632 |+ | w2 — 2302 |+ | wd - 1329 | =0.266

(44)
Calculations for average OHR operator M (7) are done:
o o] 2405 2062 M_pl]z 3604
|-2.062 2405 | p3 1632 |
(1375 0782 ] [pi]_ 2.302]
I = M- =
|"0.782 1375 | pd 1.329
Computed values appear in (44). Other results:
a s=0.1
| wl— 5215 |+ w3— 1939 |+| w2 - 3200 |+ | wd- 1601 | = 3.456
b) s=0.2:
| wl - 5587 |+ | w3— 1906 |+ w2 - 3.111 |+ | wd - 1.572 | = 3068
¢ s=0.3
| w1 - 3373 [+| w3 - 1875 |+| w2— 302 |+ | wd- 1544 | = 2704
d s=04:
| wl— 5174 |+ | w3— 1846 |+ | w2 - 2935 |+ | wd- 1519 | = 2366
e) s=0.5:
| wl— 4988 [+ w3 - 1819 |+| w2 - 2856 [+ | wd- 1.495] =205
f) s=0.6:
[ wl - 4215 || w3 - 1794 |+ | w2 - 2782 |+ | wd - 1473 | = 1756
g s0.7
| wl— 4653 |+ w3 - 1771 |+ | w2 - 2712 |+ | wd— 1452 | = 1.42
h) s=0.8:
| wl = 43503 |+ | w3 - 1740 |+ | w2 - 2648 |+ | wd- 1433 | = 1.225
i) s=0.9:
| wl— 4362 |+ | w3 1728 |+| w2 - 2588 |+ | wd- 1.415 | = 1008
) s1
[wl- 423 |+ | w3- 1700 |+ | w2 - 2532 |+ | wd - 1.308 | = 0822
k) s=1.1:
|l - 4108 |+ | w3 - 1692 |+ | w2 - 2479 |+ | wd - 1382 | =0.648
) s=1.2:
| wi— 3994 |+ | w3 1675 |+|w2-243 |+|wa- 1268 |=051
m) s=1.3:
| wl- 3887 |+| w3 - 166 |+ | w2- 2385 |+ | wd- 1354 | =037
n s=1.4:
| wl— 3787 [+ w3 1645 |+ | w2 2342 |+ | wd - 1341 |=0204
0) s=1.6:
| wl- 2608 |+| wi— 1619 |+| w2 - 2265 |+| wd- 1318 | =0202
p) s=1.7:
| wl - 3.527 |+ | w3 - 1602 |+ | w2 — 2231 |+| wa— 1308 | = 0.434
q s18:
[ wi— 3451 |+| w3 - 1597 |+| w2 - 2199 |+ | wd - 1208 | =0.563
N s=1.9:
| wl = 3381 |+ wi - 1.587 |+ | w2 - 2160 |+ | wd— 1280 | =0.682
s) s=2.0:

| wl - 3315 |+ w3- 1577 |+| w2 - 214 |+ | wd- 1281 | =0793

One can see the changes of interpolation error.
Reconstruction of the curve y=2/x by MHR method for N
=2and y = a**looks as follows:
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m

a 0,5 1 1.5

Figure 16: The curve y = 2/x modeled via MHR method
(12) for s = 1.5 and five nodes together with 36
reconstructed points.

Figure 16 represents the curve y = 2/x more precisely
then classical interpolation and Figure 14. If we would
like to have better parameter s (with two digits after
coma), calculations are done:

a) s=1.49:

| wl - 3703 |+ | w3— 1633 |+| w2 - 2306 |+]| wd- 133 | =0.260
b) s=1.51:

| wl— 3685 |+ | w3 1631 |+ | w2 - 2299 |+ | wd - 1328 | =0262
¢ s1.52

| wl— 3677 |+| w3 - 1.629 |+ | w2 - 2295 |+| wd- 1327 | = 0.261
d s1.53:

[ wl— 3668 |+ | w3 - 1628 [+ w2 - 2291 |+ | wd— 1326 | =0252
e s=1.54

| wl - 3659 |4+ | w3 - 1627 |+| w2 - 2287 |+ | wd- 1325 | = 0255
f) s=1.55:

| wl- 265 |+ w3— 1626 |+ | w2- 2284 |+ | wd- 1324 | =0251
0) s=1.56:

| wl— 3642 |+ | w3— 1624 |+ | w2 - 228 |+ | wd— 1323 | =025
h) s=1.57:

[wl 3633 |+ | w3— 1623 |+ | w2 2276 |+ | wd— 1321 [= 0255

i) s=1.58:
| wl- 3625 |+| wi- 1622 |+ | w2 - 2273 |+ | wd- 132 | = 0262
) s=1.59:

| wl- 2616 |+ | w3- 1621 |+ | w2- 2260 |+ | wd— 1310 | = 0233

Model of the curve for s = 1.56 in (12) is more accurate
then with s=1.5.

Convexity of reconstructed curve is very important
factor in MHR method with parameter s. Appropriate
choice of parameter s is connected with regulation and
controlling of convexity: model of the curve (Fig. 16)
preserves monotonicity and convexity.

4.2 Example4.2

This example considers a graph of
f (X) =1/(1+5x%) intherange [-1,1]:

function
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'Il -UI.S o UI.S I1
Figure 17: A graph of function f (x) =1/(1+5x?) in range
[-1.1].

There are given five interpolation nodes for x = -1.0,
-0.5, 0, 0.5, 1.0. It is an example of function with useless
Lagrange interpolation polynomial: Runge phenomenon
and unpleasant two minima.

! !
-1 -0.5 a 0.5 1

Figure 18: Lagrange interpolation polynomial differs
extremely from agraph of function f(x) = 1/(1+ 5x%).

Model of the curve y =1/(1+5x?) in basic MHR
method (12) for N=2and s=1:
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Figure 19: The curve y = 1/(1+5x*) modeled viaMHR

method for y = a (7) and five nodes together with 36
reconstructed points.

Reconstructed  curve  (Fig. 19)  preserves
monotonicity and symmetry for s = 1. Comparing precise
values w; with values computed by MHR method in
control points p;, fixed for x; = -0.75, -0.25, 0.25, 0.75,
identical the best results appear for s = 1 (12):
[wl- 0209 |+|w3- 0688 |+|w2- 0688 [+]|wd- 0209 |=0221

(45)

and for s= 0.5, 0.6, 0.7, 0.8, 0.9, 1.1, 1.2, 1.3, 1.4, 1.5,
1.7, 1.8, 1.9. But only for s = 1 reconstructed curve is
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symmetric- look at values in (45). So if acases=1
appears among the best results, then model ought to be
built for s=1. And if acase s = 1 does not appear among
the best results, then model ought to be built for s near by
1. Hereis an example of reconstructed curve for s=1.5
(without feature of symmetry):

2 A
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-w’ 2 —| “'.—
1 0.5 a 05 1

Figure 20: The curve y = 1/(1+5x*) modeled viaMHR

method for s = 1.5 (12) and five nodes together with 36
reconstructed points.

The best model of the curve y=1/(1+5x?), built by

MHR method for s = 1 (Fig. 19), preserves monotonicity
and symmetry. Convexity of the function (Fig. 17) can
make some troubles.

5 Futureresearch directions

Future works with MHR method are connected with
object recognition after geometrical transformations of
curve (trandations, rotations, scaling)- only nodes are
transformed and new curve (for example contour of the
object) for new nodes is reconstructed. Also estimation
of object areain the plane, using nodes of object contour,
will be possible by MHR interpolation. Object area is
significant feature for object recognition. Future works
are dealing with smoothing the curve, parameterization
of whole curve and possibility to apply MHR method to
three-dimensional curves. Also case of equidistance
nodes must be studied with al details. Another future
research direction is to apply MHR method in artificial
intelligence and computer vision, for example
identification of a specific person’s face or fingerprint,
optical character recognition (OCR), image restoration,
content-based image retrieval and pose estimation.
Future works are connected with object recognition for
any set of contour points. There are severa specialized
tasks based on recognition to consider and it is important
to use the shape of whole contour for identification and
detection of persons, vehicles or other objects. Other
applications of MHR method will be directed to
computer graphics, modeling and image processing.

6 Conclusion

The method of Hurwitz-Radon Matrices (MHR) enables
interpolation of two-dimensional curves using different
coefficients y: polynomial, sinusoidal, cosinusoidal,
tangent, cotangent, logarithmic, exponential, arcsin,

D.J. Jakébcezak

arccos, arctan, arcctg or power function [16], also inverse
functions. Function for y calculations is chosen
individually at each curve modeling and it is treated as
probability distribution function: y depends on initial
requirements and curve specifications. MHR method
leads to curve interpolation via discrete set of fixed
knots. So MHR makes possible the combination of two
important problems: interpolation and modeling. Main
features of MHR method are:

a) thesmaller distance between knots the better;

b) calculations for coordinate x close to zero and
near by extremum require more attention;

¢) MHR interpolation of the function is more
precise then linear interpolation;

d) minimum two interpolation knots for
calculations without matrices when N=1, but
MHR is not alinear interpolation;

€) interpolation of L points is connected with the
computational cost of rank O(L);

f)  MHR is well-conditioned method (orthogonal
matrices)[17];

g) coefficient y is crucial in the process of curve
probabilistic interpolation and it is computed
individually for asingle curve;

h) MHR 2D data extrapolation is possible for . < 0
oro>1

Future works are going to: choice and features of
coefficient y, implementation of MHR in object
recognition [18], shape geometry, contour modeling and
parameterization [19].
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