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It is to this effect that this paper proposes a Greylag Goose Optimization-based algorithm for the 

improvement of accuracy in case classification for lung cancer. The input data used for this study is 

prepared by scaling, normalization, and removal of null values. To get an optimal subset of features to 

improve the classification accuracy, the binary version of the GGO algorithm is compared with six other 

optimization algorithms: bSC, bMVO, bPSO, bWOA, bGWO, and bFOA, proving the efficacy of bGGO 

in feature selection. Multi-classification using many classifiers predicts MLP as the superior one with an 

accuracy of 91.8%. Hyperparameter tuning using GGO enhances the accuracy of MLP to 98.4%. 

Statistical evaluation with ANOVA and Wilcoxon's signed-rank test establishes the outcome to be highly 

significant (p < 0.005). The hybrid method of GGO + MLP reveals better robustness and efficien. 

Povzetek: Hibridna metoda GGO+MLP je razvita za klasifikacijo pljučnega raka, ki z optimizacijo izbire 

značilk in hiperparametrov doseže kvalitetno klasifikacijo.

1 Introduction 
Lung cancer is a very critical and life-taking disease 

globally. According to the most recent estimates by the 

World Health Organization, more than 7.6 million deaths 

annually occur worldwide because of lung cancer. 

Moreover, the total incidence cases of cancer are projected 

to increase to nearly 17 million cases in 2030[1]. 

Screening of cancer at an initial stage is very crucial 

because it normally metastasizes and becomes incurable 

once it has significantly spread. Diagnosis of lung cancer 

is challenging because the symptoms only appear at an 

advanced stage where successful treatment outcomes 

become very hard to achieve. Imaging techniques used in 

taking images of the lungs for assessment include 

magnetic resonance imaging, Positron Emission 

Tomography, Computed Tomography, and X-ray. Lung 

cancer detection makes use of image processing and deep 

learning techniques where precision can be enhanced by 

implementing these methodologies. Detection and 

identification of the shape, dimension, and position of a 

tumor is a difficult task. The timing of its detection is very 

important so that medical interventions can be done on 

time. However, radiologists still face difficulty in  

 

distinguishing between malignant and benign nodules.  

Identifying malignant nodules from benign ones through 

naked-eye appearance is subjective and the results differ 

among multiple observers and cases. Overall, the accuracy 

of classification for nodules among expert radiologists 

was more significant compared to that by non-expert 

radiologists. The idea of getting accurate, reliable, and 

unbiased analysis motivated the development of 

computer-aided diagnosis systems [3]. 

Successful application of ML techniques and neural 

networks in lung cancer classification was performed as in 

[4,5]. Very promising models could be obtained in 

applying machine learning to both classification and 

regression by using optimizers and ensemble regression 

models. Techniques developed for biomedical image 

recognition can become the very first diagnostic tools that 

show diseases as in [6]. However, constructing very 

efficient classifiers with appropriate features for 

pulmonary nodules is of essence in the construction of 

dependable CBIR and CAD systems. Conventionally, a 

CAD system embodies two phases: feature extraction and 

categorization. CBIR normally makes use of a host of 

visual elements such as texture, shape, and granulometry 

to create the search index as reported in. To build effective 
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machine learning architecture, there is a need for skillful 

combinations of hyper-parameters that can improve 

accuracy and performance in classification. The manual 

techniques for solving combinatorial problems are time-

consuming, inefficient, and at times overwhelming. 

Proposals have been made to use metaheuristic algorithms 

in optimizing the process of determining which 

hyperparameter combination will result in the highest 

performance. 

These optimization techniques generally get inspiration 

from some natural phenomenon for global, local, and 

sometimes random searches for the best solution. 

Metaheuristic algorithms are recognized to be those 

techniques that find viable solutions of optimization with 

very minimal processing power. Swarm intelligence 

algorithms, which form a subset of Metaheuristics, have 

already been applied successfully to several complex real-

world problems in scientific, engineering, and medical 

domains especially for lung cancer diagnosis as in [7]. 

Metaheuristic algorithms are iterative methods that tend to 

evaluate many possibilities in the quest for the optimal 

solution. They are applied in the identification of the ideal 

combination of weights for use in addressing the problems 

of feature extraction and classification. Greylag Goose 

Optimization has already been applied to different 

optimization problems, returning very promising results 

for health applications like lung cancer diagnosis [8]. In 

this work, it uses GGO as the metaheuristic optimization 

strategy. The reason for this choice is that, overall, it 

provides a good record across similar optimization 

scenarios. Besides, it includes some features that might 

benefit it over others in certain aspects. A mix of ML 

methods with a metaheuristic algorithm seeks high 

accuracy and performance. 

Obviously, performance tuning in disease detection, like 

lung cancer, may provide benefits by giving better 

diagnostic accuracy and early initiation of treatment. In 

this paper, it is proposed to combine MLP with GGO 

metaheuristic algorithm for better optimization of 

parameters to enhance its learning and classification 

capability of complex patterns in the data. This paper is 

therefore aimed at integrating some preprocessing 

strategies with the GGO-MLP algorithm to improve the 

classification accuracy of lung cancer textual data. First, 

pre-processing of the input data is done in which data gets 

scaled, normalized, and NULL values get removed. After 

pre-processing, the next task to be done is to extract the 

optimum set of features that might enhance the accuracy 

of lung cancer classification. In GGO method, extraction 

is made in binary format in search of cancerous lung 

states. The next process is the classification of lung disease 

based on extraction of unique features. The classification 

step involves many classifiers, such as SVC, DTC, RFC, 

KNC, and MLP. The results proved that MLP is the best 

classifier. The hyperparameter of the MLP model is tuned 

by GGO, where its performance was evaluated against six 

other optimizers: SC, MVO, PSO, WOA, GWO, and 

FOA. GGO with the MLP model gives the best results for 

lung cancer classification. 

The following important research questions are intended 

to be addressed by this study: 

Does bGGO perform better than current optimization 

methods when it comes to feature selection for the 

classification of lung cancer? 

In comparison to alternative feature selection techniques, 

how does bGGO increase classification accuracy? 

How does the performance of MLP change when 

hyperparameter tweaking is done via GGO? 

These inquiries direct our examination of the suggested 

method's efficacy. 

This paper is organized as follows: An overview of the 

state-of-the-art literature is given in Section 2. Section 3 

presents a detailed explanation of the suggested 

methodology.  

The discussion of the experimental results is presented in 

Section 4. The findings and suggestions for the future are 

presented in Section 8. 

 

2  Related work 
Machine learning (ML) and deep learning (DL) have been 

widely researched for lung cancer classification. Early 

detection is critical as it can affect the survival rate of the 

patient. It offers a balanced review of the domain, 

covering baseline as well as state-of-the-art techniques for 

lung cancer classification, ranging from image-based 

models to tabular data driven approaches. 

For lung cancer classification, machine learning 

approaches such as Support Vector Machines (SVM), 

Neural Networks, and Decision Trees have been in 

practice for a long time. The latest studies proposed deep 

learning methods with their variants, especially 

Convolutional Neural Networks (CNNs), because of their 

proficiency in extracting spatial features from imaging 

data. However, CNNs are often redundant with the basis 

of features and require the generation of a large, labelled 

dataset. 

There is a solution proposed by Tehnan IA Mohamed et 

al. [9] to this problem. The proposed hybrid CNN and 

metaheuristic approach using EOSA to find the best 

weights and biases for the CNN model. Despite 

successfully enhancing the classification accuracy, the 

limitations of computationally excessive training on the 

vast datasets remain. 

Zeyu Ren et al. [10] have brought forward the idea of 

LCGANT being a deep convolutional Generative 

Adversarial Network (GAN) architecture. It is notable that 

LCGANT can produce artificial images of lung cancer and 

the network VGG-DF with transfer learning can classify 

these images with 98.5% accuracy. Nonetheless, 

LCGANT is heavily dependent on synthetic data, which is 

its drawback in terms of generalization to the real world. 

For lung cancer classification by using features selection 

and models optimization, metaheuristic optimization 

techniques have been used. An optimized Random forest 

classifier full-back aided by a K-means visualization 

method to improve the feature selection was proposed 

[11]. P. Mohamed Shakeel et al. [12] assessed biochemical 

lung malignancy attributes with an ensemble learning 

technique guided by a wolf prey algorithm, obtaining a 

favourable figure of prediction (99.48 percent). 
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Researchers have conducted several studies on hybrid 

optimization techniques, like the combination of Whale 

Optimization Algorithm (WOA) with Support Vector 

Machines (SVMs). Surbhi Vijh et al. [13], introduced an 

improved method using WOA and SVM techniques for 

feature selection to achieve accurate findings for lung 

cancer detection. WOA-SVM showed outstanding 

performance in CT scan classification with an accuracy of 

95% and sensitivity of 100%. Despite being fast, the 

algorithms driven by WOA experience issues such as 

premature convergence. 

The proposed Greylag Goose Optimization (GGO) 

approach outperforms the limitations of existing 

metaheuristic algorithms by adjusting exploration and 

exploitation phases dynamically to avoid local optima. 

Compared to CNN-based approaches relying on spatial 

feature extraction, GGO-MLP is designed for structured 

tabular data, reducing computational complexity and 

improving interpretability. By jointly optimizing feature 

selection and hyperparameters, GGO-MLP achieves a 

good balance between accuracy and computational 

overhead. However, our findings indicate that CNN-based 

methods are generally plagued by feature redundancy, 

while traditional metaheuristics are incapable of adapting 

to dynamic feature spaces. Our strategy optimally 

balances feature selection and classification performance 

through GGO-guided hyperparameter tuning. The 

comparison in Table 1 can demonstrate that PSO-SVM 

achieves especially superior performance among all these 

techniques to accurately identify the instances of lung 

cancer with a 99% specificity and 97.6% accuracy. CNN-

based approaches lag with tabular data due to their focus 

on spatial features. In contrast, metaheuristic algorithms 

tend to find a solution too rapidly and get stuck, since they 

fail to change their group dynamics as Group Gradient 

Optimization (GGO) is able to. This can make them less 

effective at discovering optimal solutions. 

 

3 Material and methods 
 

3.1 Greylag goose algorithm for optimization 

(GGO) 
 

Table 1: Comparison summary between EOSA-CNN, 

WOA_SVM, and PSO-SVM algorithms 

 

The GGO technique generates a set of individuals at 

random to begin the process, each of which will stand as a  

 

possible solution for the problem. These are defined as 

individuals Yp (p = 1, 2, …, n), where n is the number of  

 

the total population of individuals, which forms the GGO 

population. An objective function, represented by Fn, is 

chosen for the evaluation of the members of the group. 

The best solution, represented by Z, is attained from the 

analysis of an objective function for every individual or 

agent represented by Yp. 

The algorithm, GGO, exhibits dynamic group behavior by 

splitting the population into two groups—an exploration 

group of size n1 and an exploitation group of size n2. 

Automatically, the number of solutions in each group is 

updated with respect to the optimal solution in every 

iteration. The exploitation group comprises of n2 agents, 

while the exploration group includes the remaining n1 

agents, as shown in Figure 3. At the start, GGO assigns 

50% of its population for exploration and 50% for 

exploitation. In this scenario, the number of agents in the 

exploration group will decrease by n1 and increase by n2 

in the case of the exploitation group. If there is no change 

in the objective function value of the best solution for three 

continuous iterations, then the algorithm will increase the 

number of agents in the exploration group, n1, to find a 

different best solution and probably avoid local optima 

[15]. 

• Explore Operation: The two important tasks of 

exploration are locating the more interesting regions in the 

search space and avoiding falling prematurely onto a local 

optimum, especially when an optimal solution is being 

progressed toward. 

–Best solution: In this strategy, the geese explorer will 

seek good new areas to explore around its current position. 

It does this by iteratively assessing a lot of possible 

neighbors and then chooses the best solution on how fit 

that solution is. The following equations are used by the 

GGO method to do this, modifying the B and D vectors: 

B = 2b.m1 −b and D = 2, throughout iterations while using 

a parameter that is progressively adjusted from 2 to 0: 

 

Y (k + 1) = Y∗(k) −B.|D.Y∗(k) −Y(k)|                                                 

      (1) 

 

where Y(k) presents an individual at iteration k. The Y∗(k) 

denotes the optimal location of the leader (best solution). 

The Y (k + 1) represents the adjusted location of the 

individual. The values of m1 and m2 values are randomly 

changing within the range of 0 to 1. 

The equation below will be employed by selecting three 

random search individuals (paddlings), referred to as 

YPaddle1, YPaddle2, and YPaddle3, to ensure that the 

individuals are not influenced by a single leader position, 

hence promoting greater exploration. If |B| is higher than 

or equal to 1, the current search agent's position will alter 

as follows. 

 

Y (k + 1) =w1∗YPaddle1 + p∗ w2∗ (YPaddle2−YPaddle3) 

+(1 − p) ∗ w3 ∗ (Y−YPaddle1)              (2) 

 

where (w1, w2, and w3) values are adjusted and updated 

within the range of 0 to 2. The parameter p exhibits an 

Method Accuracy Sensitivity Dataset 

(Size) 

Year 

EOSA-CNN 

[9] 

95.2% 93.8% IQ-

OTH/NCCD 

(500) 

2023 

WOA_SVM 

[12] 

95.0% 100% Private 
(220) 

2020 

PSO-SVM 

[14] 

97.6% 99.0% Kaggle 

(500) 

2022 

Proposed 98.4% 97.7% Kaggle 

(284) 

2024 
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exponential decrease and is determined by the equation 

shown below. 

 

𝑝 = 1 − (
𝑘

𝑘𝑚𝑎𝑥
)2                                                                                  

      (3) 

 

where the iteration number is denoted as “k” and “kmax” 

specifies the most possible iterations. 

The second procedure of updating is as follows for m3 

values greater than or equal to 0.5, where the values of b 

and B vector values are reduced. 

 

Y (k + 1) = w4∗ |Y∗(k) −Y(k)|. eal.cos (2πl) + [2w1(m4 + 

m5)] ∗Y∗(k)                                          (4) 

 

where a is a fixed value, l is a randomly selected value 

from a range of −1 to 1. The w4 parameter is adjusted 

within the range of 0 to 2, whereas m4 and m5 parameters 

are modified within the range of 0 to 1. 

Operation of Exploitation: The task of the exploitation 

group is to improve existing solutions. At the end of each 

round, the GGO selects the best fitness individual and 

gives him due recognition. In achieving its exploitation 

objective, GGO applies two different strategies, which are 

described as follows. 

 – Going concerning the best explanation: The following 

formula is used to step forward toward the best solution. 

Three sentries, YS entry1, YS entry2, and YS entry3, 

instruct other agents YNonS entry to update the locations 

toward the predicted location of the prey. The following 

formula shows the process of updating locations. 

 

Y1 = YS entry1−B1. |D1.YS entry1−Y|, 

Y2 = YS entry2−B2. |D1.YS entry2−Y|,                                                                                                      

      (5) 

 

Y3 = YS entry3−B3. |D1.YS entry3−Y| 

where the (B1, B2, B3) values are determined by the 

equation B = 2b.m1–b, where b is a constant. Similarly, 

the values of D1, D2, and D3 are determined by the 

equation D = 2m2. The modified population locations, Y 

(k + 1), can be determined by averaging the three 

solutions: Y1, Y2, and Y3 as follows. 

 

Y (k + 1) = 𝑌𝑖|̅̅ ̅̅
0
3                                                                                   

      (6) 

 

The second mathematical lemma that can be utilized in the 

study of the GGO algorithm during the exploitation 

process is the Triangle Inequality. Essentially, one of the 

basic definitions for metric spaces is the Triangle 

Inequality: for any triangle, the length of one side is less 

than or equal to the sum of the other two sides. For GGO, 

it means that any two agents are closer than or equal to the 

sum of distances of these two agents from the third in the 

search space. So, a fine solution lies around the optimum 

response-leader-in flight. Consequently, some agents are 

incentivized to improve the solution by searching the 

space around the optimum solution, which is called 

YFlock1. To overcome the limitation of local optima, 

GGO makes use of the process affecting local and global 

optima based on the following equation. 

 

Y (k + 1) = Y(k) + C (1 + p) ∗ w ∗ (Y−YFlock1) 

                                                                      (7) 

 

The third mathematical construct that can be utilized in the 

investigation of the GGO algorithm in its effectiveness at 

removing the issue of local optima is the Law of Large 

Numbers. It states that the sample average will approach 

the population average as the sample size becomes large, 

and therefore is an elementary concept in probability 

theory. In the context of GGO, what this means is that, 

eventually, as the size of the swarm goes to infinity, the 

swarm will converge towards the global optimum. 

GGO's one key benefit is that it can tradeoff exploring and 

exploiting dynamically. It is actually accomplished 

through an adaptive weight mechanism that gets set at a 

number of iterations. It is a validated balance among 

iterations using statistical monitoring of performance 

improvement rates. Figure 1, which shows the agent 

reclassification process between exploration and 

exploitation groups, illustrates the GGO decision-making 

criteria. 

 
Figure 1: The GGO exploration and exploitation. 

 

The Greylag Goose Optimization algorithm has 

outstanding exploration capabilities with the introduction 

of a mutation approach and scanning participants of the 

group in performing exploration. With such a strong 

explore ability, GGO will suffer from delays in 

convergence. Algorithm one is the pseudo-code of GGO. 

In algorithm one, the GGO is provided with certain basic 

parameters, such as population size, mutation rate, and 

number of iterations. It therefore divides the participants 

into two based on GGO: one group carrying out 

exploratory labor and another group doing the exploitative 

labor. In its iterative search for the optimal solution, it will 

dynamically change the size of each group. To introducing 

diversity and to ensure that the space has been fully 

explored, GGO applies a random reordering of the 

responses at each iteration. 

The algorithm randomly selects initializations from a 

population and assesses the performance with placeholder 

functions. It walks through random mutations and uses 

crossover with the best agent. Exploration probability of 

Dynamic Balancing decreases over time, which will foster 

exploitation in later phases. GGO dynamically adjusts 

agent roles to avoid premature convergence and enhance 

search effectiveness. 
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A solution parameter from the exploration group can be 

shifted into the exploitation group in a single iteration. The 

GGO's self-designed mechanism guarantees the position 

of the leader during the entire process. The GGO 

algorithm works toward the procedure for upgrading the 

roles in the exploitation group (n2) and the exploration 

group (n1). The parameter m1 is modified iteratively 

according to the equation m1 = 𝑑(1 − 
𝑘

𝑘𝑚𝑎𝑥
), where k 

depicts the current iteration, d denotes a constant, and 

𝑘𝑚𝑎𝑥 shows how many iterations there are. GGO, after 

every iteration, modifies the individuals in the search 

space and randomizes their order to shift the roles between 

the groups: exploration versus exploitation. It finally 

retrieves the optimal solution for a solution space. 

 

Algorithm 1: Proposed GGO algorithm. 

1: Initializing GGO population Yj (j = 1, 2, ..., n), 

population size is n, the total iterations number is kmax, 

and an objective function Fn. 

2: Initializing all GGO parameters b, B, D, a, l, d, w, m1 - 

m5, w1- w4, B1-B3, D1, - D3 

3: Set k = 1 

4: Determine each agent's objective function (Fn) Yj. 

5: Set Z = greatest agent position 

6: Revise the solutions in the groups for exploration (n1) 

and exploitation (n2). 

7: while k ≤ kmax do 

8: for (j = 1: j < n1 + 1)  

9:   if (k%2 == 0) then 

10: if (m3< 0.5) then 

11: if (|B| < 1) then 

12: Update the current search agent position as in Equ (1). 

13: else 

14: Select three random search agents YPaddle1, 

YPaddle2, and YPaddle3 

15: Update (p) by the exponential form as in Equ (3). 

16: Update the current search agent position as in Equ (2). 

17: end if (Line11) 

18: else 

19: Update the current search agent position as in Equ (4). 

20: end if (Line10) 

21: else 

22: Update individual positions as in Equ (7). 

23: end if (Line 9) 

24: end for (Line 8) 

25: for (j = 1: j < n2 + 1)  

26: if (k%2 == 0) then 

27: compute Y1, Y2, Y3as in Equ (5). 

28: Update individual positions as in Equ (6). 

29: else 

30: Update the current search agent position as in Equ (7). 

31: end if (Line 26) 

32: end for (Line 24) 

33: Calculate Fn for each Yp 

34: Update parameters 

35: Set k =k + 1 

36: Adjust beyond the search space solutions 

37: if (Best Fn is the same as the previous two iterations) 

then 

38: Increase the solutions of group (n1) 

39: Decrease the solutions of group (n2) 

40: end if (Line 37) 

41: end while (Line 7) 

42: Return best agent Z 

 

Efficiency and convergence speed are balanced by the 

GGO stopping criterion.  There are three circumstances 

that cause the algorithm to stop. The first is the maximum 

Iterations that permit exploration and exploitation, it 

operates for a predetermined number of iterations. The 

second is the fitness improvement threshold that saves 

resources, it stops if the optimal fitness does not increase 

by a certain amount. The diversity-based stagnation 

detection is deemed stagnant and halts if all agents have 

comparable feature subsets. By eliminating pointless 

computations and early convergence, these criteria assist 

GGO in maintaining a balance between computational 

efficiency and solution quality. 

 

3.2 The proposed binary GGO optimization 

algorithm 
GGO Optimization Algorithm: This is a better 

approach to the optimization of the feature selection of 

MLP parameters. This technique uses a binary format in 

the selection of features and optimizes the set of used 

features to improve MLP's performance. 

Feature selection problems are limited to binary 0, 1 

constituents of a search space, indicating how relevant a 

certain feature is. Thus, in the binary GGO method, the 

continuous GGO values that will be proposed in this 

section are transformed into a binary format, [0, 1], 

directly relating to the feature selection process. The basic 

objective of the procedure, as formulated in equations 11 

and 12, is to convert the continuous data into binary data 

using the following Sigmoid function.  

 

𝐵𝑖𝑡
∗ =  {

1         𝑖𝑓 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝐵𝑖𝑡
∗) ≥ 0.5

0                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        
                                                                                                    

(8) 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐵𝑖𝑡
∗) =

1

1+𝑒−10(𝐵𝑖∗
𝑖 −0.5)

                                                                                                                 

(9) 

where 𝐵𝑖𝑡
∗ reflects the best solution at a given iteration 

(t). Algorithm 2 presents the proposed bGGO stages used 

for selecting the optimum feature set, enhancing the 

Caries' case classification accuracy. 

Algorithm 2: bGGO algorithm. 

1: Initialize population of GGO, objective function, 

and GGO parameters 

2: Convert the solution to binary [0 or 1] 

3: Calculate the objective function for each agent and 

get the best agent position 

4: Update Solutions in the exploration group  

5: Update Solutions in the exploitation group 

6: while k ≤ kmax do 

7: for (j = 1: j < n1 + 1)  

8: if (k%2 == 0) then 

9: if (m3< 0.5) then 

10: if (|B| < 1) then 
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11: Update the current search agent position in the 

exploration group 

12: else 

13: Update the current search agent position based on 

the three random search agents 

14: end if (line 10) 

15: else 

16: Update the current search agent position 

17: end if (line 9) 

18: else 

19: Update individual positions 

20: end if (line 8) 

21: end for (line 7) 

22: for (j = 1: j < n2 + 1)  

23: if (k%2 == 0) then 

24: Update the current search agent position in the 

exploitation group 

25: else 

26: Update of the current search agent position 

27: end if (line 23) 

28: end for (line 22) 

29: Convert to binary the updated solution  

30: Calculate the objective function 

31: Update parameters 

32: Adjust beyond the search space solutions 

33: Update the exploration group Solutions 

34: Update the exploitation group Solutions 

35: end while (line 6) 

36: Return best agent 

 

3.2 Multilayer Perceptron (MLP) Model 

Application of the multilayer perceptron model, 

inspired by the neural architecture of the human brain, has 

particularly superior performance in nonlinear simulations 

of complex systems. They can resolve nonlinear structure 

prediction problems [17]. They learn how to solve a 

problem and discover relationships that underlie the data. 

For this purpose, a large amount of data is fed during the 

training process which is based on the learned 

relationships to calculate the desired output. The most 

frequently applied neural network model is the back-

propagation network. The neural network has neurons that 

act in parallel for each layer. Every layer is fully connected 

with the previous and next layers. 

Algorithm 3: Pseudo code of MLP Model. 

1-Initialize Multilayer Perceptron MLP with input 

and output dimensions (number of features), number of 

hidden layers, dimension of hidden layers, activation 

function, batch size, Num epochs, and learning rate. 

2- Set MX the input matrix, every row in MX is an 

input vector. 

3- Set The output matrix MY, every row in MY is the 

corresponding output vector. 

4- Initialize weights matrices W[l] for l = 1 to L, 

where each weight W[l][j][k] is a connection between 

layer l's neuron j and layer l+1's neuron k.  

5- Initialize Biases B[l] for l = 1 to L-1, where each 

bias B[l][j] is the bias for layer l+1's neuron j. 

6- Repeat until the error is within the acceptable range 

or maximum iterations are reached: 

7- Forward pass: 

8-For l = 1 to L: 

9- Calculate the weighted sum for every neuron layer 

l+1 neurons. 

10-Apply activation function A[l] to every layer l+1 

neurons: 

11-For each sample in the batch: 

12-Compute the loss between predicted output and 

actual label (cancerous or non-cancerous). 

13 - Backward pass: 

14- For l = L to 1: 

15-Compute the gradient of loss concerning the weight 

matrix Wi and the bias vector bi.16-Update the weights and 

biases by subtracting the product of the learning rate and the  

corresponding gradients from the current values for 

output and hidden layers. 

17- End of the training process. 

4 The proposed framework 

This phase of data processing involves primarily 

removing null values and normalizing and scaling data. 

The serious part of the phase is preparation and expansion 

of the data. This study used feature selection methods to 

perform 7 optimization methods in binary form which are-

GGO [15], Sine Cosine Algorithm (SC) [17], Mean-

variance optimization (MVO) [18], Particle Swarm 

Optimizer (PSO) [19], Whale Optimization Algorithm 

(WOA) [20], Gray Wolf Optimizer (GWO) [21], Falcon 

Optimization Algorithm (FOA) [22]. In the second step, 

the feature selection process is applied, with the proposed 

feature selection method. Using bGGO, the found features 

are extracted. The aim of this step is to get the best features 

that will make the input data be classified with greater 

accuracy. This step has the benefit of reducing the total 

number of features by removing irrelevant features. The 

input data has been classified using ML classifiers and 

features selected have been chosen based on bGGO. The 

list of the suggested ML models used in this research 

includes the SVC, DT, RFC, 1 KNN, and MLP models. 

The MLP model used must have its parameters optimized 

to best exploit the proposed optimization technique. 

Therefore, the selection of the most optimal set of 

classification parameters is the object in view at this stage 

of preprocessing. 

It generates the first population of solutions for all 

possible configurations of the parameters. A value of 

associated fitness is assigned to each Greylag Goose, with 

respect to the quality of its key regarding the validation 

set. Individuals search the solution in a systematic way in 

the population to discover the best solutions of the search 

space. The GGO optimizes in the same way an iterative 

action performed by it which refines the decisions step by 

step towards Pareto dominance to get the optimal 

configuration of the parameters in MLP. The weighted 

vectors are used by GGO to drive the people to the correct 

position, which is calculated by the population's fitness 

score after every generation. These algorithms keep on 

changing the positions of individuals in the way of coming 

very near the optimal action because of the iterative work 

of GGO. The GGO performs an iterative action that 
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refines the solutions step by step towards the Pareto front 

to obtain the optimal configuration of MLP parameters. 

This algorithm stops when either a convergence threshold 

has been met or after many iterations. Thereafter, the 

configuration for which the value of fitness is maximum 

is considered as the best, optimal solution. 

This study has developed a model for how GGO can 

help in enhancing the tuning parameters of MLP. The 

optimization of the parameters of MLP is associated with 

achieving the highest level of classification accuracy and 

performance. The parameters that require optimization 

should be identified prior to using the GGO to alter the 

values in MLP. Figure 1 declares a sequential process of 

the proposed framework. 

For GGO and MLP, choosing the right 

hyperparameters is essential to performance optimization.  

For GGO population size, it maintains computational 

efficiency and guarantees exploratory variety, a balanced 

size was chosen. The exploration and exploitation of these 

parameters avoids early convergence and increases search 

efficiency, GGO constantly modifies agent 

responsibilities. The MLP Structure tests for appropriate 

feature representation without overfitting were used to 

identify hidden layers. The ReLU activation function was 

selected due to its ability to handle non-linearity well. The 

learning rate is optimized by GGO for faster, oscillation-

free convergence. Adam was chosen due to its 

adaptability, and the batch size was modified to account 

for generalization and training speed. Multiple hidden 

layers with optimal hyperparameters and tweaking via 

GGO are features of the MLP architecture, which 

increases classification accuracy. 

 

 

Figure 2: The proposed lung cancer classification framework 

 

 

5  Experimental results 

5.1 Experimental setting 

The tests carried out tests assessed the proposed 

algorithm for various experimental conditions. In these 

tests, some traditional mathematical functions were used 

as benchmarks to determine the minimum values for a 

given range of variables. Such mathematical functions are 

usually used in literature to compare the performance 

between an optimization technique against others, and 

there are many variations of these optimization 

techniques. The suggested Greylag Goose Optimization 

algorithm has been compared with six famous  

 

optimization techniques to show better performance and 

efficiency. In the present study, comparisons are drawn 

among GGO, SC, MVO, PSO, WAO, GWO, and FA. All 

these algorithms have been chosen due to their popularity 

and their practical importance, which has made them quite 

well-known. 

Technical specifications of the study platform 

included: primary memory of 16 GB, Intel Core i7 CPU, 

and GeForce RTX2070 Super 8 GB RAM GPU. The 

details of the specification of the software included: 

Ubuntu 20.04 as the operating system, with TensorFlow 

1.15, CUDA9.0, and Cudnn7.1, and Python 3.7 for Spider 

IDE. 
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5.2 Dataset description 
Machine learning and data science experts can utilize 

this dataset to make prediction models of the diagnosis of 

lung cancer, to study the effect of different characteristics 

related to cancer, and to make algorithms for the treatment 

and prevention of cancer. This project works with a data 

set named "Lung Cancer Dataset," collected and uploaded 

to Kaggle. The pre-enabling classification of cancer and 

the pre-enabling systems have facilitated various sites 

through which individuals can check whether they have 

cancer problems at a throwaway price. 

It also aids specialists in making decisions based on 

the risk profile for cancer. This information is scooped 

from the website, which is owned by the online lung 

cancer prediction system, located at: 

https://www.kaggle.com/datasets/mysarahmadbhat/lung-

cancer.  

The dataset consists of 284 samples and 15 

characteristics.  The characteristics contain categorical 

and numerical features, which were preprocessed with 

one-hot encoding and normalization as needed.  The 

dataset was divided between training and testing sets using 

an 80-20% segmented split to ensure class distribution 

balance.  A cross-validation procedure with k folds (k=5) 

was used to assure the model's resilience, preventing 

overfitting and allowing a more generic assessment of 

performance. The one-hot encoding is used for categorical 

features to transform non-numerical input for model 

training.  To address class imbalance, we used stratified 

sampling in the training/testing split to ensure proportional 

class representation. 

 

Figure 3: Scatter plot for each feature in the dataset. 
 

 

Figure 4: A correlation matrix between features in the dataset. 

https://www.kaggle.com/datasets/mysarahmadbhat/lung-cancer
https://www.kaggle.com/datasets/mysarahmadbhat/lung-cancer
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Figure 5: Results obtained with bGGO are of the lowest 

average error, underpinning the effectiveness and robustness of 

this feature selection technique. 

The input features include attributes of the dataset 

such as Gender, Smoking, Age, Yellow fingers, pressure, 

Anxiety, Chronic Disease, Swallowing Difficulty, 

Allergy, Fatigue, Wheezing, Shortness of Breath, 

Coughing, Alcohol, and Chest pain. The attributes count 

for sixteen, and the occurrences are 284. The above 

variables classify the output variable being Lung Cancer. 

Figure 3 shows the scatter plot below; it demonstrates the 

relation between the variables of the Lung Cancer input 

and output datasets. Figure 3 presents a correlation matrix 

heatmap for the characteristics of the dataset at hand. 

Correlation Matrix is another important statistical tool 

applied in ascertaining the interrelationship between 

variables in a data set is the correlation matrix. The 

correlation matrix normally contains the pairwise 

correlation coefficients for each pair of variables moving 

from -1 to +1 and states the direction and strength of each 

interaction. From the correlation matrix, the picking of 

variables that are positively or negatively correlated will  

be based on which ones are best to investigate 

relationships, patterns, and potential predictors in the data.  

This information becomes especially important to 

predictive modeling for handling multicollinearity issues, 

detecting dimensionality reduction, and selecting relevant 

characteristics. The correlation matrix of the used dataset 

is shown in Figure 4.  

This study focuses on tabular data for lung cancer 

detection rather than imaging because deep learning for 

pictures requires significant resources, but machine 

learning techniques such as MLP effectively handle 

tabular data. Tabular data displays patient features and 

clinical history in structural manner, which improves 

decision-making clarity. Many tabular datasets are 

available and easily useable rather than imaging datasets 

that require extensive preparation to be usable.  

Seven optimization algorithms, mentioned below, 

have applied the feature selection in binary form: Greylag 

Goose Optimization Gray Wolf Optimizer Mean-variance 

Optimization Whale Optimization Algorithm Sine Cosine 

Algorithm Particle Swarm Optimizer Falcon Optimization 

Algorithm the Below Table 2 represents the performance 

evaluation based on all these techniques of feature 

selection. From the table, it can be concluded that the 

results obtained in the proposed bGGO approach are better 

than those in other binary methods of feature selection. 

 

 

Table 2: Evaluation of the suggested (bGGO)feature selection technique in comparison to other competitive 

techniques. 
  bGGO bSC bMVO bPSO bWAO bGWO bFA 

The Average error  0.774303
1 

0.79150
3 

0.80510
3 

0.82530
3 

0.82510
3 

0.81160
3 

0.8237
03 

The Average Selected size  0.727103

1 

0.92710

3 

0.86950

3 

0.92710

3 

1.09050

3 

0.84990

3 

0.9616

03 

The Average Fitness  0.837503

1 

0.85370

3 

0.86510

3 

0.85210

3 

0.85990

3 

0.85980

3 

0.9040

03 

greatest Fitness  0.739303
1 

0.77400
3 

0.76840
3 

0.83240
3 

0.82400
3 

0.83760
3 

0.8227
03 

lowest Fitness  0.837803

1 

0.84090

3 

0.88350

3 

0.90010

3 

0.90010

3 

0.91380

3 

0.9203

03 
Standard deviation (SD)Fitness  0.659803

1 

0.66450

3 

0.66610

3 

0.66390

3 

0.66610

3 

0.66510

3 

0.7007

03 

Figure 5 is showing the average error of the proposed 

technique against nine more of the feature selection 

strategies. From the figure, what can be seen is that the 

bGGO technique shows the lowest average error in graph 

form, underpinning its robustness. 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

 

To validate performance gains, we employed 

ANOVA and Wilcoxon signed-rank tests. For 

Hypothesis(H1) The ANOVA test yielded a p-value < 

0.005, showing that GGO-MLP is statistically different 

from others. Wilcoxon Results compared GGO-MLP to 

baseline models. GGO-MLP demonstrated higher 

classification performance and structural improvements 

throughout numerous iterations, as validated by a p-value 

< 0.005.  

Table 3 presents the performance of bGGO in 

combination with the existing feature selection strategies 

for different measures. It must be noticed that p-values 

were obtained using a comparison of results from each 

pair of algorithms, but the proposed feature selection 

technique shows statistically significant superiority. 

It assumes that the mean values m of bGGO under H0 

are equal to the mean values of bGWO, bPSO, bWAO, 

bSC, bMVO, and bFA. The alternative hypothesis, H1 

considers the mean values of bGGO to be different from 

the rest of these hypotheses, a Wilcoxon rank-sum test was 

performed. The results of the Wilcoxon rank-sum test 

shown in Table 3 which indicates that the method 

proposed is statistically superior to techniques used 

previously and therefore is of less significance p < 0.005. 

One-way ANOVA is conducted to test the hypothesis 

that there are statistically significant differences between 
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the proposed bGGO technique and all other binary 

optimization techniques in use. The results obtained from 

the ANOVA test are presented in Table 4. These results 

ensure that the proposed feature selection technique is 

better, significant, and effective. 

The study found a significant difference in accuracy 

between GGO-MLP and other models (p-value < 0.005).  

The Wilcoxon Signed-Rank Test indicated that GGO-

MLP had much improved classification performance, with 

sustained benefits over numerous iterations.  These studies 

quantitatively demonstrate the efficiency of GGO-MLP, 

proving that its optimizations outperform prior 

approaches. 

 

 

 

Table 3: The proposed feature selection technique (bGGO) was evaluated using the Wilcoxon signed-rank test 

to compare it to other binary optimization techniques.  
bGGO bSC bMVO bPSO bWAO bGWO bFA 

Actual median 0.7743 0.7915 0.8051 0.8253 0.8251 0.8116 0.8237 

Number of values 10 10 10 10 10 10 10 

Wilcoxon Signed Rank Test 
     

Signed ranks (W) summation 55 55 55 55 55 55 55 

Positive ranks summation 55 55 55 55 55 55 55 

Negative ranks summation 0 0 0 0 0 0 0 

P (two-tailed) value 0.002 0.002 0.002 0.002 0.002 0.002 0.002 

Exact or estimate Exact Exact Exact Exact Exact Exact Exact 

Significant with (alpha=0.05)? Yes Yes Yes Yes Yes Yes Yes 

How big is the Difference? 

 

       

Difference 

 

0.7743 0.7915 0.8051 0.8253 0.8251 

 

 
Table 4: The ANOVA test to evaluate the bGGO technique that has been suggested. 

ANOVA table SS DF MS F (DFn, DFd) P value 

Treatment (between columns) 0.02274 6 0.00379 F (6, 63) = 135.3 P<0.0001 

Residual (within columns) 0.001764 63 2.8E-05 
  

Total 0.02451 69 
   

 

 

Figure 6: Analysis plots show the results derived from the suggested feature selection technique, bGGO 
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Figure 6 shows different plots of the results obtained 

using the proposed feature selection technique, including 

residual plots, quartile–quartile plots, homoscedasticity 

plots, and the heatmap. 

1. Residual Plots: Residual plots of the distribution of 

residuals clearly describe how far observed values deviate 

from the predicted ones. These residual plots indicate that 

the proposed technique bGGO resulted in very close-to-

zero residuals, hence highly predictable. 

2. QQ Plots: The QQ plot generally depicts good 

linearity. This proves that the selected features are likely 

to be effective in the right classification of the presence of 

lung cancer. The linearity of plots on this QQ plot proves 

that residuals maintain a normal distribution and hence an 

indication of good feature effectiveness. 

3. Homoscedasticity Plots: These plots consider the 

variability of the error terms concerning their constancy. 

In residual plots for the proposed bGGO method, there are 

quite random scatters of the residuals, directly showing 

that the variability is constant over other levels of the 

independent variable. 

4. Heatmap: Colorfully explained, the approach 

proposed in bGGO is far more excellent than the other six 

strategies used in binary selection. It describes how the 

bGGO approach overpowers the previous ones by opting 

for relevant low-level features with the help of high-

performance metrics. 

The cumulative results from these plots ensure the 

effectiveness of the bGGO procedure coherently. The 

linearity of the QQ plot and the constant variance in the 

homoscedasticity plots reveal no or minimal residuals, 

thus proving the reliability and sufficiency of the bGGO 

procedure to describe lung cancer. Furthermore, it was 

quite clear from the heatmap that the bGGO method was 

outperforming the rest of the methods applied to feature 

selection, hence strengthening the area of its supremacy. 

 

5.4 Classification results 
Another experiment shows the sensitivity of the 

classification results concerning the applied feature 

selection technique. In the current research, machine 

learning classifiers were used for the classification of 

input data by characteristics chosen according to the 

bGGO technique for improving the characteristics of the 

network for further optimization in its performance. 

Table 5 presents some of the results of classification 

with a machine-learning model after feature selection. 

These machine learning models include: 

They are DTC, SVC, RFC, KNC, and MLP. Out of 

them, MLP has obtained the maximum value for accuracy, 

sensitivity, specificity, p-value, n-value, and F-score with 

0.9180327, 0.92668, 0.9091, 0.9133, 0.9231, and 0.9199 

respectively. This MLP model works as a fitness function, 

and it is optimized by the GGO algorithm and with six 

other optimization techniques. 

The results for performance in classification while 

using an MLP model as the fitness function for various 

optimization algorithms are shown in Table 6. What is 

presented in the table is how GGO combined with MLP 

stands against combinations like SC, GWO, PSO, WAO, 

FA, and MVO with MLP to prove the supremacy of the 

proposed GGO+MLP approach. Offending was topped by 

the GGO plus MLP approach with an accuracy of 

0.983837, sensitivity of 0.977337, specificity of 0.990237, 

p-value of 0.989957, n-value of 0.977961, and F-score of 

0.983607. 

In this attempt, various optimizers were used for 

tuning of parameters of MLP, and the results were studied 

and evaluated. Results proved that the efficiency and 

supremacy of GGO+MLP over other optimization 

techniques is unabated in all the metrics of evaluation, thus 

proving its robustness. 

 

Table 5: Various classifiers for the categorization of lung cancer. 

Models 
Accuracy Sensitivity 

(TRP) 

Specificity 

(TNP) 

P-value 

(PPV) 

N-value 

(NPV) 

F-Score 

SVC 0.833895447 0.837171 0.83045 0.83855 0.829016 0.83786 

Decision Tree 0.838087248 0.842715 0.833333 0.83855 0.837607 0.840628 

Random Forest 0.863439931 0.877586 0.84922 0.854027 0.87344 0.865646 

K Neighbors 0.8872 0.877586 0.895522 0.879102 0.894188 0.878343 

MLP 0.918032787 0.926686 0.909091 0.913295 0.923077 0.919942 

The Table only confirms the fact that the suggested 

strategy operates better than the current methods of 

optimization. It is for this reason that these results confirm 

the chief importance of the chosen technique of feature 

selection that significantly enhances the quality of the 

results. Furthermore, the proposed bGGO-based feature 

selection approach selects a small number of significant 

features yielding enhanced performance in comparison to 

other optimization algorithms-owned superiority taken by 

the results, thereby pointing to the robustness of the 

approach and efficient improvement on the accuracy, 

sensitivity, n-value, p-value, specificity, and F-score of the 

classifier; in other words, for the MLP model. It justifies 

the need and role of using feature selection techniques 

optimized to be able to achieve improved classification 

results over very complex datasets. 
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Figure 8.The accuracy results are achieved by the GGO+MLP approach as well as alternative combinations of 

optimization techniques with MLP models. 

Table 6: Findings of optimization methods MLP model for the classifying lung cancer. 

Models 
Accur

acy 

Sensitivity 

(TRP) 

Specificity 

(TNP) 

P-value 

(PPV) 

Nvalue 

(NPV) 

F-

Score 

GGO+

MLP 

0.983

837 

0.977337 0.990237 0.989957 0.977961 0.983

607 

SC+ML

P 

0.966

184 

0.966387 0.965986 0.965035 0.967302 0.965

71 

GWO+

MLP 

0.960

879 

0.961003 0.960758 0.959666 0.96206 0.960

334 

PSO+M

LP 

0.951

087 

0.949106 0.95302 0.951724 0.950469 0.950

413 

WAO+

MLP 

0.940

86 

0.949106 0.932983 0.931174 0.950469 0.940

054 

FA+ML

P 

0.937

287 

0.943912 0.930707 0.931174 0.943526 0.937

5 

MVO+

MLP 

0.927

978 

0.933694 0.921986 0.926174 0.9299 0.929

919 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Assessing the accuracy of the GGO+MLP approach and optimization algorithms using the MLP 

model, considering the objective function. 
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One can also show the effectiveness of this strategy 

for optimizing the objective function by comparing the 

suggested GGO+MLP method with other optimization 

algorithms in connection with the MLP model. Accuracy 

plots of the results obtained with the GGO+MLP approach 

are shown in Figures 6 and 7. Figure 7 shows the accuracy 

plot resulting from the MLP model, where the proposed 

method is outperforming other optimization algorithms. 

Another result, as shown in histogram form in Figure 8, 

has the same finding: better performance of the 

GGO+MLP approach. These plots have been used to show 

that the efficacy of the suggested feature selection 

technique, compared with other optimization techniques, 

is impressive in terms of achieving higher accuracy. The 

accuracy histogram plot further shows how well the 

suggested GGO+MLP method did in classifying the lung 

cancer cases from the input dataset. 

Experiments applied ANOVA and Wilcoxon's rank-

sum tests to determine how much the proposed algorithm 

differs statistically from the other competing algorithms.  

Table 7 shows the results of ANOVA for the proposed 

GGO + MLP. Table 8 shows Wilcoxon's rank-sum test 

results to ascertain whether the algorithms' output differs 

in a statistically significant way. A p-value is less than 

0.05 postulates that the performance difference is 

statistically significant. Results indicate that the GGO + 

MLP approach outperforms and demonstrates the 

statistical significance of the approach. 

 

 

 

 

 

Table 7: The outcomes of the ANOVA of the proposed GGO algorithm with MLP model for lung cancer 

classification. 

 

ANOVA table SS D

F 

MS F (DFn, DFd) P value 

Treatment (between columns) 0.0219

1 

6 0.00365

2 

F (6, 63) = 184.1 P<0.000

1 

Residual (within columns) 0.0012

5 

63 1.98E-05 
  

Total 0.0231

6 

69 
   

 

Table 8: Results of the Wilcoxon signed-rank test using the suggested method, (GGO+MLP), with various 

configurations of other optimization algorithms with the MLP model for lung cancer classification.  
GGO

+ 

MLP 

SC+ 

MLP 

GWO

+ 

MLP 

PSO

+ 

MLP 

WAO

+ 

MLP 

FA+ 

MLP 

MVO

+ 

MLP 

Theoretical median 0 0 0 0 0 0 0 

Actual median 0.983

8 

0.966

2 

0.960

9 

0.951

1 

0.940

9 

0.937

3 

0.928 

Number of values 10 10 10 10 10 10 10 

Wilcoxon Signed Rank Test 
     

Signed ranks (W) 

summation 

55 55 55 55 55 55 55 

Positive ranks summation 55 55 55 55 55 55 55 

Negative ranks summation 0 0 0 0 0 0 0 

P (two-tailed) value 0.002 0.002 0.002 0.002 0.002 0.002 0.002 

Exact or estimate Exact Exact Exact Exact Exact Exact Exact 

 
P value summary ** ** ** ** ** ** ** 

Significant (alpha=0.05)? Yes Yes Yes Yes Yes Yes Yes 

How big is the Difference? 
     

Difference  0.9838 0.9662 0.9609 0.9511 0.9409 0.9373 0.928 

 

Table 7 presents the statistical results regarding the 

The Calibration Curve compares expected probability to 

actual positive outcomes, suggesting model dependability. 

A curve in Figure 10 is near to the diagonal indicates 

improved calibration, implying that GGO-MLP delivers 

reliable classification probabilities, which improves 

decision-making and generalization. The Partial 

Dependence Plot shows how factors influence predictions, 

specifically lung cancer likelihood, which helps model 
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comprehension. Figure 10 illustrates GGO-MLP's 

capacity to identify critical features while avoiding 

overfitting, validating good feature selection and 

improving model clarity for more dependable predictions. 

More confirmation of these results comes from 

residual plots and homoscedasticity plots of data. These 

are graphed in data as a heatmap in Figure 8, which shows 

the proposed approach to be far and far better than the 

other six binary feature selection methods. 

Relative performance of the GGO+MLP method 

compared to the other five optimizers, SC, GWO, PSO, 

WAO, FA, and MVO, with the MLP model for all 

benchmark functions. According to Table 7, the 

GGO+MLP method was the best among the seven 

optimizers with the MLP model because it employed two 

different exploitation processes in each cycle. 

The first converges very slowly toward the best 

solution found so far at any given time, while the second 

is more aggressive in searching for better solutions within 

the local neighborhood. These processes, when they tap 

into the power of the search space through the GGO+ MLP 

method, give excellent performance. A delicate 

An optimum performance should, always, sustain a 

balance between exploration and exploitation of the 

domain of search. Moreover, it is important to start 

exploiting early in each iteration and smoothly increase 

the sum of the whole participant population within the 

exploitation group. 

Overall, GGO was a better optimizer than all the other 

optimizers on most of the unimodal benchmark functions. 

Figure 9 shows the residual plot, QQ plot, hetero-

scedasticity plot, and heat map of this case. These plots 

show how efficient and strong the proposed GGO + MLP 

approach will be. The QQ plot has values following a 

linear trend, thus showing how efficient the features 

selected were in categorizing the cases. 

 

 
Figure 9: Analysis plots of the obtained results using the proposed GGO+MLP approach 

 

 

 
Figure 10: Analysis of GGO-MLP performance using partial dependence plot and calibration curve. 
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The Calibration Curve compares expected probability 

to actual positive outcomes, suggesting model 

dependability. A curve in Figure 10 is near to the diagonal 

indicates improved calibration, implying that GGO-MLP 

delivers reliable classification probabilities, which 

improves decision-making and generalization. The Partial 

Dependence Plot shows how factors influence predictions, 

specifically lung cancer likelihood, which helps model 

comprehension. Figure 10 illustrates GGO-MLP's 

capacity to identify critical features while avoiding 

overfitting, validating good feature selection and 

improving model clarity for more dependable predictions. 

More confirmation of these results comes from 

residual plots and homoscedasticity plots of data. These 

are graphed in data as a heatmap in Figure 8, which shows 

the proposed approach to be far and far better than the 

other six binary feature selection methods. 

6  Discussion  
The bar graph easily indicates that the GGO+MLP 

method works, giving the highest outcome among other 

methods. Figure 8 shows that this hybrid method for lung 

cancer patient classification has been highly useful in 

solving the optimization problems discussed. 

The suggested GGO-MLP strategy was tested against 

cutting-edge (SOTA) approaches such as CNN-based 

classifiers and other metaheuristic techniques. The results  

show that GGO-MLP regularly outperforms other 

methods in terms of accuracy, sensitivity, and specificity. 

The primary causes for this improvement are: 

Feature Dimensionality Reduction with bGGO: 

Unlike CNN models, which use complicated feature 

representations, bGGO picks the most relevant features, 

lowering computational cost while preserving 

classification performance. 

Efficiency of Hyperparameter Tuning: Local optima 

and inefficient hyperparameter settings provide challenges 

for traditional optimization strategies. GGO's adaptive 

exploration-exploitation balance improves parameter 

selection, resulting in higher classification outcomes. 

The combination of GGO (Group-based Genetic 

Optimization) and MLP (Multi-Layer Perceptron) 

performs better than the state-of-the-art (SOTA) methods 

because bGGO (a specific version of GGO) identifies the 

best set of features, which helps avoid overfitting. In this 

case, bGGO selected 12 out of 16 available features, while 

bPSO (a Particle Swarm Optimization algorithm) kept 15 

features, which can add unnecessary noise to the model. 

This selective feature reduction leads to better 

performance. GGO-MLP outperforms other approaches (p 

< 0.005), indicating dependability and efficacy. 

7  Limitations 

GGO algorithm study in improving lung cancer 

classification shows good results, especially in improving 

feature selection and classification accuracy. However, 

there are several limitations and directions for future work 

that can be addressed to further improve the effectiveness 

of GGO in this field: 

• The performance of the GGO algorithm was tested 

on one dataset only that may not represent the variety of 

real-world scenarios. Results may vary across different 

datasets, which may affect the generalizability of the 

results. 

• Classification accuracy depends largely on the 

quality and completeness of the input data. Any 

inconsistencies or missing values in the data can affect the 

results. 

8 Conclusion and future works 
The paper endeavors to improve the accuracy in the 

classification of cases for the diagnosis of lung cancer. 

Three techniques for the initial data preparation are 

applied: scaling, normalization, and cessations of nulls. 

The binary variant of GGO is used to perform feature 

selection in this category of techniques, and it is centrally 

referred to as bGGO. This binary format is developed for 

GGO to optimize the best combination of features that 

enhances the classification accuracy with seven other 

binary optimization algorithms, including SC, MOO, 

PSO, WOA, GWO, and FOA. 

In the classification phase, numerous classifiers are 

applied, namely SVC, DTC, RFC, KNC, and MLP. 

Among these multiple classifiers, the MLP classifier gives 

the best result with an accuracy rate of 91.8%. The 

hyperparameters of the MLP model have been optimized 

using the GGO, and the result is compared with those of 

six other optimizers. The MLP model along with the GGO 

has given the best result with an accuracy rate of 98.4%. 

The results of feature selection followed by 

classification were statistically evaluated using 

Wilcoxon's signed-rank test as well as ANOVA, whereas 

result visualization plots were also done to ascertain the 

strength and efficiency of the proposed scheme. The 

results of the experiments and the statistical analysis prove 

that the proposed approach outperformed other methods 

compared to the classification of lung cancer. This 

improved the overall accuracy of prediction with cancer 

feature selection and reduced dimensionality. The 

problem of overfitting in the analysis of cancer features 

was overcome. A pathway toward enhanced early 

prediction rates for lung cancer is through sensor data 

acquisition, analysis, and finding the best approach in the 

future. 

The performance of the GGO algorithm was tested on 

specific dataset for lung cancer classification, so in the 

future, several large datasets can be used for generalizing 

the results. Also, in the future several optimization models 

and deep learning models 32–34 can be used for lung 

cancer classification. Also, future study may combine 

tabular and imaging data to enhance diagnosis. 
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