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Text classification has become crucial for mechanically sorting documents into specific categories. The
goal of classification is to assign a predefined group or class to an instance based on its characteristics.
To attain precise text categorization, a feature selection scheme is employed to categorize significant fea-
tures and eliminate irrelevant, undesirable, and noisy ones, thereby reducing the dimensionality of the
feature space. Many advanced deep learning algorithms have been developed to handle text classification
drawbacks. Recurrent neural networks (RNNs) are broadly employed in text classification tasks. In this
paper, we referred to a novel Two-state GRU based on a Feature Attention strategy, known as Two-State
Feature Attention GRU (TS-FA-GRU). The proposed framework identifies and categorizes word polarity
through consecutive mechanisms and word-feature capture. Furthermore, the developed study incorpo-
rates a pre-feature attention TS-FA-GRU to capture essential features at an early stage, followed by a
post-feature attention GRU that mimics the decoder s function to refine the extracted features. To enhance
computational performance, the reset gate in the ordinary GRU is replaced with an update gate, which
helps to reduce redundancy and complexity. The effectiveness of the developed model was tested on five
benchmark text datasets and compared with five well-established traditional text classification methods.
The proposed TS-FA-GRU model demonstrated superior performance over several traditional approaches
regarding convergence rate and accuracy. Experimental outcomes revealed that the TS-FA-GRU model
achieved excellent text classification accuracies of 93.86%, 92.69%, 94.73%, 92.46%, and 88.23 on the
20NG, R21578, AG News, IMDB, and Amazon review dataset respectively. Moreover, the results indicated
that the proposed model effectively minimized the loss function and captured long-term dependencies, lead-
ing to exceptional outcomes when compared to the traditional approaches

Povzetek: Predstavijen je nov model za klasifikacijo besedil, imenovan Two-State Feature Attention GRU
(TS-FA-GRU), ki temelji na strategiji pozornosti na znacilke. Model izboljsuje standardni GRU z zamen-
Jjavo reset vrat z posodobitvenimi vrati in uporabo pred- in po-pozornosti za izboljSanje ekstrakcije znacilk.

1 Introduction

With the rapid advancements in computer technology and
the internet, a tremendous amount of digital textual data is
generated daily. Efficiently and precisely retrieving spe-
cific content from this vast information pool has become a
common challenge [1]. Textual data is highly dimensional,
often containing irrelevant and redundant features that are
problematic to manage. The issue of data overload was first
identified in the early 1960s. Today, a substantial portion
of online information exists as structured and unstructured
text, with managing the latter posing an essential issue for
large organizations [2]. Machine learning delivers a solu-
tion by automatically analyzing data, identifying patterns,
and making classifications with minimal human interven-
tion. Extracting valuable information relevant to specific
interests from a continuously growing pool of documents
has become a critical task in machine learning [3]. This ne-

cessitates the use of well-organized classification methods
capable of assigning texts to one or more classes (labels).
These methods have been effectively utilized in many Natu-
ral Language Processing (NLP) applications, including sen-
tence classification [4], topic modeling and text clustering
[5], spam detection [6], website categorization [7], disease
report identification [8], and document summarization [9].
Text classification using RNNs influences the network’s ca-
pability to process sequences data, making it particularly
effective for tasks connecting textual information. RNNs,
and their more progressive variants like Long Short-Term
Memory (LSTM) and Gated Recurrent Units (GRU), are
designed to hold information from previous steps in the se-
quence, allowing them to understand context and depen-
dencies in text [10, 11]. This capability is crucial for tasks
such as sentence analysis, language translation, and spam
detection, where the meaning of a word often depends on
its context within a sentence or document. In recent years,
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the rapid increase in text data has made NLP a fascinat-
ing area for deep learning tasks. Figure 1 outlines the key
steps of NLP, which are utilized across numerous NLP ap-
plications. The use of RNNs in text categorization has led
to important developments in NLP, making it possible to
develop more sophisticated and precise models for under-
standing and organizing textual data [12].
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Figure 1: Text classification steps

In recent years, RNNs have been extensively applied in
several data mining applications, demonstrating superior
performance in classification tasks [13]. RNNs provide ex-
cellent semantic composition procedures for text catego-
rization and can capture sequential dependencies in pro-
gressive data. There are two main types of RNNs: LSTM
networks and GRUs. Text data is high-dimensional with
numerous features, making extracting informative features
from raw data with a single layer challenging. Therefore,
recent deep learning research has focused on utilizing mul-
tiple layers to extract highly informative features. Among
RNNs, GRUs have shown particular promise in address-
ing various text classification problems. While previous re-
search has explored the accuracy and performance of GRUs
for text classification, certain drawbacks remain in the stan-
dard GRU model that require further improvement. Lee et
al. [14] established the Word2Vec word embedding tech-
nique, which converts each word into a sparse vector cor-
responding to specific terms, distributing various seman-
tic and syntactic features across each dimension in vector
space. Zulqgarnain et al. [15] introduced an effective GRU
network-based word embedding strategy for sentence clas-
sification, which utilized the word2vec technique. Soni et
al. [16] utilized Convolutional Neural Networks (CNNs)
for sentence modeling, achieving superior text classifica-
tion results by using ConvoNet methodology to compe-
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tently categorize sentiment polarity based on the skip-gram
method from different positions in a sentence. However,
CNN s focus on local features and exclude sequence infor-
mation, which excels in progressive correlations amongst
context and sentiment words through a useful gating mech-
anism [17]. Despite this, RNNs are still subject to the van-
ishing gradient and exploding gradient deficiencies [18].
Several deep learning methodologies have been introduced
to address these drawbacks, including LSTM [19] and GRU
[20]. GRU, an advanced version of LSTM, has been widely
employed in numerous NLP applications due to its more
effective computational process while retaining the bene-
fits of LSTM. In this study, we examine the effectiveness
of the conventional GRU for text classification employing
distributed representation on a social platform. The GRU
network’s capability to tackle the vanishing gradient and
exploding gradient issues in typical RNNs is one of its key
strengths. We conducted experiments on five benchmark
datasets: 20newsgroup (20NG), Reuters21578 (R21578),
AG’s News, IMDB, and Amazon reviews. Our research
aims to improve the typical GRU structure by integrating
a Two-State Feature Attention GRU (TS-FA-GRU) model.
This model employs an attention mechanism to identify and
utilize the most informative features for text classification.
The key goal of our study is to boost text classification ac-
curacy while minimizing information loss within the GRU
framework. The key contributions of this research are in-
cluded as follows:

— Introduced a novel the Two-State Feature Attention
GRU (TS-FA-GRU) architecture to tackle text classi-
fication challenges. This architecture utilizes a feature
attention strategy to extract informative features.

— Employed the extensively used unsupervised word
embedding technique, GloVe, for vector initialization.

— This study evaluates the impact of replacing the reset
gate with an update gate in the candidate state of the
traditional GRU network, similar to the approach by
Zhou (2016), which finds the absence of the reset gate
does not substantially impact on model performance.

— Our contribution focused on developing a mechanism
that provides efficient computation and robust perfor-
mance with fewer parameters.

— This study demonstrates through experimental results
that the developed TS-FA-GRU framework performs
effectively across benchmark datasets such as 20NG,
R21578, AG’s News, IMDB, and Amazon review,
highlighting its ability to capture long-term depen-
dencies and achieve superior results with significantly
lower computational costs compared to traditional ap-
proaches.
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2 Recent review of text classification

Text classification, an essential task in NLP, has seen sub-
stantial developments with the advent of deep learning ap-
proaches. This review explores recent developments and
innovations in text categorization employing deep learn-
ing models [21]. RNNs and their variants, mainly LSTM
networks, have been extensively utilized for text classifi-
cation due to their capability to extract sequential depen-
dencies [22][22]. Singh et al. [23] introduced the Hierar-
chical Attention Network (HAN) for document categoriza-
tion, which exploits a hierarchical structure and attention
mechanism to emphasis on important words and sentences,
achieving state-of-the-art results on numerous benchmarks.
Cunha et al. [24] referred to the Transformer language
model, which depends completely on self-attention mecha-
nisms to capture long-range dependencies, overcoming the
deficiencies of RNNs. BERT (Bidirectional Encoder Rep-
resentations from Transformers), introduced by Nissa et
al. [25], further progressive the arena by utilizing a pre-
training method on large corpora and fine-tuning the exact
tasks, attaining superior performance across various bench-
marks. Gu et al. [26] introduced TextGCN, which con-
structs a document-word graph and influences GNNs to
learn embeddings for text classification, representing sub-
stantial enhancements over traditional methods. Recent
research has also examined hybrid approaches that com-
bine the strengths of various architectures. For example,
Ashraf et al. [27] presented a hybrid approach integrat-
ing CNNs and RNNSs, leveraging CNNs for capturing local
patterns and RNNs for sequential dependencies, achieving
notable improvements in classification accuracy. Another
hybrid model by Wang et al. [28] combined BERT with
Graph Neural Networks to utilize both contextual and rela-
tional information, resulting in state-of-the-art performance
on different datasets. Conventional RNNs are comprised
of fully connected layers that process transitions from the
input layer to the hidden layer, and from the hidden layer
to the output layer through recurrent connections, as illus-
trated in Figure 2. Pandian et al. [29] described a three-
layer structure enhanced with a ”context unit” set, where the
connections among hidden layer nodes and context layer
nodes have fixed weights. RNNs, being a form of deep neu-
ral network tailored for sequential data, are known for their
high expressiveness [30].

Figure 2: Traditional RNN [31]

RNNs maintain a vector of initiations for each time step,
classifying them as a type of DNN. The decision made by
an RNN at time step ¢ — 1 influences the decision at time
step t. Therefore, an RNN has two sources of input: the cur-
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rent time step and the preceding one, which determines its
response to new data. While standard RNNs can learn pat-
terns in sequential time series data, they are susceptible to
the vanishing gradient problem, which affects performance
[32]. Despite being powerful for handling sequential data,
RNNs are challenging to learn with gradient descent due
to the vanishing and exploding gradient issues [33]. These
problems are mitigated by advanced variants of standard
RNNS, such as LSTM and GRU. GRUs, in particular, have
fewer parameters than LSTMs, reducing the risk of overfit-
ting and saving training time. Assumed consecutive input
of word vectors (X1, X2, X3...XT), produces a correspond-
ing sequence of hidden states (hl, h2, h3...hT), which is
computed at time step t. The output at each step can then
be determined using the following RNN calculation:

O = p(Wyae + Uphy—1) Q)

H} = o(Wyhi_y +Unhi_y) (2)

where is the recurrent weights matrix, is the input to-
hidden weights matrix, and ¢ represents an arbitrary acti-
vation function. Equations 1 and 2 depict the activity of the
hidden layer as influenced by its prior state. In contrast, the
GRU, a more efficient and improved version of the LSTM,
was initially introduced by Chung et al. [17] for arithmeti-
cal machine learning. The GRU, inspired by the LSTM, fa-
cilitates information flow within the unit via an update gate
z¢ and a reset gate 7, without requiring a distinct memory
component [34].

Consequently, the GRU excels in capturing the mapping
relationships in time series information whereas giving as-
sistance including minimize complexity and more efficient
computation. Figure 3 depicts the structure of the GRU,
highlighting the interactions between the update and reset
gates.
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Figure 3: Traditional GRU structure [35]

Like the LSTM, the GRU uses the gating mechanism to
regulate the flow of information within the unit, eliminating
the need for separate memory cells. The GRU manages and
filters information using its internal memory by combining
the input and forget gates into a single update gate, which
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integrates the previous activation ht — 1) and the candi-
date’s state hy. The GRU’s three primary components are
the update gate, reset gate, and candidate state. The equa-
tions governing these mechanisms are presented in equa-
tions (3 to 6):

2t = @(Vepzwy + Upzh(t — 1) + B.) 3)

re = p(Verzy + Uprht — 1) + B;) @)

h; = tanh(V, piZt + Uppi(re - heo1) + By) - (5)

T

he = (1 — 2¢) % hy—1 + 2 * Iy (6)

The weight matrices between the input layer and the up-
date gate, the reset gate and the candidate state are indi-
cated as V. z,V,r and V@:ﬁ), respectively, while the recur-
rent connection weight matrices are indicated by Uy, 2, Upr
and U hh) respectively. The input sample at time t is rep-
resented by x;, and the hidden state output is denoted as
h. The sigmoid activation function for the update and reset
gates is symbolized by ¢, with element-wise multiplication
executed by *. The biases corresponding to the update gate,
reset gate, and candidate state are illustrated by B,, B,. and
Bh).

Table 1 illustrates the comparison review of various deep
learning approaches integrating attention mechanisms for
text classification, each model evaluated on datasets such
as 20 Newsgroups, Reuters-21578, AG’s News, IMDB,
and Amazon Reviews, and highlights the model’s findings,
strengths, and limitations.

3 The proposed framework

In this study, we detail the specific components of the de-
veloped architecture, which comprises a two-state GRU
based on feature attention strategy GRU, a newly devel-
oped model namely, Two-State Feature Attention (TS-FA-
GRU). Furthermore, this research investigates the effects of
substituting the reset gate r; with an update gate z; in the
candidate state i, of traditional GRU design. Consistent
with the findings of Zhou et al., [41], our results indicate
that the absence of the reset gate does not substantially im-
pact model performance. The established framework uti-
lizes word embeddings as inputs, which are used to extract
high-level contextual word features over time steps. The
embedding layer predicts these features, then passes them
to the two state GRU language mechanism, and ultimately
classifies them using a softmax classifier. The primary con-
tribution of the proposed mechanism is its ability to extract
crucial features through two main phases: Pre-Feature At-
tention TS-GRU and Post-Feature Attention TS-GRU.
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3.1 Embedding layer

The embedding layer plays a crucial role in developing net-
works for text classification. The initial step in this process
is pre-processing, which entails cleaning the text data. To
convert each word in the sentences into a real-valued vec-
tor, we employed the pre-trained 300-dimensional GloVe
method. These pre-trained vectors adeptly extract both se-
mantic and syntactic information, making them essential
for text categorization by transforming word contexts into
real-valued feature vectors. Let L € RY*¢ determine the
embedding inquiry table generated by GloVe, where d is
the dimensionality of the words and the vocabulary size de-
noted by V. Consider a serial of input containing n words
and the sentiment resource containing m words. The se-
quential inputs of the text contexts extract word vectors
from L, producing a list of vectors [W1, Wa..., W,,] where
each W; € R? is the word vector for the corresponding
word. Likewise, the sentiment resource sequence extracts
word vectors, producing a list [W, Wey, ... , W5,,] .
This process enables the creation of a matrix for context
words and a matrix W¢ = [Wy, W...,W,] € R™ for
text classification resource words. This approach allows for
the establishment of word-level connections between sen-
timent words and context words, formatted as a correlation
matrix, as illustrated in. Essentially, this process combines
all word embeddings within V.

Context

Words
w,
we / 1

Correlation
Matrix

w

Senfiment
Words

Figure 4: Sentiment-context word correlation

Build _vocab : This function takes the Harvard IV-4 dic-
tionary and text data as input. It outputs a word _frequency
array, which includes each word’s unique identifier and its
frequency in the dataset. Text categorization values range
from 0 to 1, where 0 refers to negative analysis, while 1
refers to positive analysis. Words with higher sentiment
values have higher word frequency values.
Build_co-occur: This  function accepts the
word_frequency array and selected text data as in-
puts, along with parameters for the context window size
and minimum count, which are set to 10. The context
window size determines how many words are considered
to represent the context of each word, and the least count
is used to filter out infrequent word cooccurrence pairs.
The function determines the range from context word_id
to m_word by counting the words in between. It then
generates a sparse matrix containing co-occurrence tuples
in the format (word id, context word id, xij), where
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Table 1: Comparison summary of various deep learning approaches

Previous | Approaches Findings Strengths Limitations
Studies
Singh et | HAN+Attention Outperformed SOTA ap- | Methods documents hierar- | Complex architecture; re-
al. [23] Mechanism proaches in  document | chically, capturing word and | quires large datasets for op-
classification tasks. sentence importance. timal performance.
Ashraf et | CNN+RNN Achieved strong perfor- | Captures both local and se- | Increased computational
al. [27] mance by combining CNN | quential dependencies effec- | cost and potential over
for local feature extraction | tively. fitting with small datasets.
and RNN for capturing
sequential patterns.
Nissaetal. | CNN- Obtained SOTA results in | Handles long-range depen- | Requires extensive com-
[25] XGBoost different text classification | dencies and allows for effec- | putational power and large
benchmarks. tive parallelization. datasets; may over fit on
small datasets.
Wang et | BERT + Text | Fine-tuned BERT with Fea- | Provides rich contextual em- | Requires large compu-
al. [28] FGC ture Guided Context (FGC) | beddings; achieves state-of- | tational = resources and
showed significant improve- | the-art performance on di- | extensive training data.
ment in text classification | verse datasets.
tasks, leveraging contextual
embeddings.
Yao, [36] | Attention- Reported significant en- | Captures long-term depen- | Computationally intensive;
Based BiL- | hancement in sentiment | dencies and focuses on im- | over fit with limited data.
STM analysis tasks. portant words in the text.
Liu et al. | CNN with At- | Improved performance in | Excels at capturing local fea- | They may struggle with cap-
[37] tention Mech- | capturing local features for | tures and focuses onrelevant | turing long-term dependen-
anism text classification tasks. parts of the text. cies and are sensitive to hy-
per parameter settings.
Ma et al. | CNN+  Bi- | Combined CNN with Bi- | Balances local and bidirec- | Higher complexity individ-
[38] GRU GRU for sequential patterns, | tional sequential feature ex- | ual CNN or RNN mod-
improving accuracy and | traction. els;require careful hyper pa-
robustness on  multiple rameter tuning.
datasets.
Salini et | CNN+  Bi- | Enhanced classification | Integrates  multi-attention | Increased model complexity
al. [39] GRU + Multi | accuracy by incorporating | to prioritize significant fea- | and computational demand;
Attention multi-attention mechanisms, | tures, improving interpret | risk of over fitting with small
Mechanism allowing the model to dy- | ability and performance. datasets.
namically focus on crucial
parts of the text.
Guo et al. | Hybrid Achieved improved accu- | Combines strengths of | Increased model complex-
[40] Models racy by combining multi- | CNNs and RNNs with | ity; higher computational
(CNN-RNN- | ple neural network architec- | attention to captured both | cost; and potential over fit-
Attention) tures. local and global features. ting with small datasets.

xij represents the co-occurrence value. Figures 5 and 6
demonstrate the flow diagrams for the Build vocab and
Build_cooccur functions, respectively.

Train_GloVe: This function initializes the network pa-
rameters and accomplishes the training process. Its usages
the co-occurrence data to update the biases and weight
vectors during each iteration.

3.2 Removing the reset gate

In the computational framework, the reset and update gates
utilize parallel parameters, differing only slightly in their
values. The reset gate refers to some complexity and redun-
dancy when interacting with the update gate and candidate
state in the GRU model. To address this issue, the proposed
approach removes the reset gate r; from the standard GRU
architecture and replaces it with the update gate z; in the
candidate state Bt . This modification reduces model exe-
cution time without significantly affecting accuracy. Con-
sequently, the equations governing the GRU are adjusted as
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follows in place of Equations (7) and (8):
Update gate

2t = @(Wtzxt) + th(ht—l) + b, (7)
Candidate state
hy = tanh(W_; x;) + Uy j, (1 - he—1) + bj, ®)

In this context, the candidate state is denoted by i‘Lt, with
W and b representing the weight and bias respectively.
Here, x; signifies the input, and h(t — 1) indicates the pre-
vious time step. By substituting the update gate z; for the
reset gate 7, in the candidate state hy, Equation (8) is trans-
formed into Equation (9):

hy = tanh(W.

x

ibl’t) + Uhﬁ(zt . ht—l) + bil (9)

where z; is the update gate that replaces the reset gate
r¢, and the standard equation for z; is provided in Equation
(23). Additionally, this research substitutes the hyperbolic
tangent activation function (tanh) with the Rectified Linear
Unit (ReLU) activation function in the candidate state, re-
sulting in the modification of Equation (9) to Equation (10).
The contributions are highlighted in red. ”In this modifica-
tion, z¢, the update gate, takes the place of the reset gate 7,
as referred by the ordinary equation in Equation (7). More-
over, this study replaces the tanh with the ReLU in the can-
didate stateh,, thereby altering Equation (9) into Equation
(10). The specific contributions are emphasized in red.”

he = ReLU(W,;2¢) + Upj (2 - heor) + b, (10)
Final output
ht:(l—Zt)*ht_1+Zt*iLt (11)

ReLU units have been shown to outperform sigmoid non-
linearities in deep learning algorithms. The final revised
architecture of the GRU model is illustrated in Figure 7.

3.3 Two-state GRU strategy

A gated recurrent unit is an advanced type of conventional
RNN specifically designed for consecutive modeling. A
recurrent layer requires the input value h; € R™ at each
time step t, as well as the hidden state h;, by following the
recurrent method illustrated in equation (12):

he = f(Way + Uhy_y +b) (12)

Where W € R™*", b € R™™, b € R™, are
the weights matrix and bias vector, respectively, and f rep-
resents the element-wise nonlinearity. Training RNNs to
capture long-term dependencies is challenging due to issues
like vanishing and exploding gradients [25]. However, by
incorporating gating mechanisms, GRUs can retain mem-
ory significantly longer than conventional RNNs. Recent
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studies have revealed that GRUs analyze words employ-
ing only the forward language context, making it incredi-
ble for them to acquire backward contexts. Consequently,
we explored that linguistic processing relies on both for-
ward and backward contexts for accurate sentence interpre-
tation. To address the aforementioned issue, we introduce
the Two-State Feature Attention GRU (TS-FA-GRU). The
proposed framework employs a two-stage attention strategy
to enhance the extraction and utilization of textual features.
This framework involves two distinct processes: the “’for-
ward pass” for a positive pass and the “backward pass” for
a negative pass, as illustrated in Figure 10 . The TS-GRU
effectively learns the context of words in both directions.
Drawing inspiration from bidirectional recurrent neural net-
works (BRNNs) described in [42], TS-GRU employs two
separate recurrent networks for the forward (left to right)
and backward (right to left) passes during training, which
are subsequently merged into the output layer. Equations
(13 to 16) describe the forward direction of the TS-FA-GRU
network, whereas equations (17 to 20) outline the backward
direction. These all gates and states such as z;, ¢, fzt, and
h; for both the forward and backward GRU are defined as
follows:
Forward Pass:

e

— — =
% = 0(Wegae) + Usp(he—1) + b2 (13)

— — — =
= oc(Wrzxe) + Upn(hi—1) + by (14)
= — = =
hy = tanh(Wj zy) + 77 - U; (he—1) + b5, (15)
— — =
he =(1—2) 1+ 7 - hy (16)

Moreover, we incorporated a backward pass into the de-
veloped model to examine further valuable information.
Backward Pass:

5 = o(Woae) + Un(her) + 0. (17)

§7 = o(Wrawe) + Un(heor) + b, (18)
o= tanh(T 20 + 50 Ty + 5 (19)
E:(1—<zt_)-§ﬂ+2~<ﬁ_t (20)

_}The activation of a word at time t: donated as h; =
[ht, hy] = shows a random sequence (z1,Z2,...,25) con-
sisting n words, where each word at time t is depicted as a
spatial vector.

The forward GRU executes ( h;), capturing the left-to-
right contexts of the sentence, whereas the backward GRU

captures the right-to-left contexts m These forward and

I



An Efficient Two-State Feature Attention-Based...

Construct
Frequency Matrix

Weord_frequeancy-[]

Read filesfrom the

Informatica 49 (2025) 95-112 101

.

True

~—

False Word not in

word_frequency

Word_frequency [word_ID] =
word_frequency [word_I0j+ 1 T

I

True

v

= End of filz -
- -

—

Initialize word_id

| add word_id to

word_frequency |

—
datasst
True Read Word appearsin
Nofileleft ~ —=—» word frequ sentiment
—Trequency dictionary
Faks
¥ |
= True
o Read ea:.h word in *
file
‘Word_frequency [word_ID{- word_frequency

[word_ID] sentiment_value

End of
word_frequency

Return
word_frequency
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backward context representations are then joined into a sin-
gle context. Our proposed mechanism effectively extracts
valuable information, which expressively enhances the ac-
curacy of text classification.

3.4 Pre-feature attention TS-GRU

The Pre-feature attention TS-GRU framework is designed
to integrate both words and their context to form an initial
understanding for sentiment recognition. GRU and LSTM
models often struggle to extract essential information for
effective text classification, particularly with longer input
sequences [43]. However, specific words play a crucial role
in enhancing classification accuracy. Within the two-state
feature-attention GRU architecture, the attention mecha-
nism is vital for extracting useful information from lengthy
reviews [44], aiding in the classification of emotions at
the word level. Furthermore, the GRU’s gating mecha-
nism regulates the flow of information, and the two-state
GRU strategy effectively integrates data from both preced-
ing and succeeding connections [45]. The pre-feature strat-
egy involves both forward and backward sub-states. The
forward sub-state processes sequential words from the em-
bedding layer from start to finish, whereas the backward
sub-state processes them in reverse order. At any given

time step t, for an input word embedding 2*, the forward
candidate states h;_1 and h;, along with the backward can-

didate states %_t and Zt_ , are initialized in the TS-GRU as
demonstrated in equations (21, 22, 23):

- T T =

h = tanh(W Mz, + 77 - UM h, ) + b;,) 21

B — AT

h = tanh(W Mz, + ¥ - UM h, ) + %) (22)
_ -

3.5 Attention strategy for word-feature
seizing

In the feature-attention process, after obtaining the final
output from the first layer’s hidden state, we employed an
attention strategy that help to identify word polarity by fo-
cusing on valuable information in the contextual sentence.
The detailed design of the feature attention strategy ex-
ploited in our developed approach is shown in Figure 9.
Furthermore, Figure 9 demonstrates the dispersal of of and
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kt" time step, generated by the attention strategy, as fol-
lows:

of = _Sxpled)
> i1 exp(e;)

The numerical notation for the memory cell at the ef time
step is denoted as k*", and is illustrated in equation 25:

24

e¥ = [l hy,cl hg, ... ¢l by (25)
Where hj, represents the hidden state of the pre-feature
attention TS-GRU, and the memory function at the ¢;_; at

k" time step in the post-feature attention GRU is denoted

as c;—1. The target output is then achieved via equation (26)
as follows:

0 = Z ofhk (26)
k=1

3.6 Post-feature attention TS-GRU

Utilizing the feature attention strategy, the post-feature at-
tention mechanism is applied, which further improves these
features to gather comprehensive sentence-level informa-
tion over iterative learning. This stage mimics the human
decoding process, where context and relevance are con-
tinuously evaluated to improve understanding. The post-
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feature attention TS-GRU integrates the outputs from the
initial stage and the attention strategy, ensuring that the de-
veloped approach can emphasize vital predictive features.
This dual attention strategy allows for Post-Feature Atten-
tion TS-GRU which efficiently accomplishes long-term de-
pendencies and intricate patterns in the text, leading to en-
hanced accuracy in classification tasks. The main equation
of the post-feature attention TS-GRU aligns with the typical
Bi-GRU, except for the candidate cell, as shown in equation
27):
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hy = tanh(W "z, + 7 - UMby g + b)) (27)

Thus, the output feature vector from the post-feature at-
tention TS-GRU is passed through a dense layer to serve
as the word representation. Finally, a softmax classifier
is utilized to predict the class label (’positive” or nega-
tive”) for the text classification datasets. It has been noted
that extracting and selecting features play a crucial role
in enhancing the model’s accuracy, as they directly influ-
ence its overall performance. Consequently, we introduced
the Two-State Feature Attention Two-State GRU (TS-FA-
GRU) mechanism specifically for text classification. The
comprehensive architecture of the TS-FA-GRU model is
demonstrated in Figure 10.

3.7 Developed flowchart

This study presents a systematic approach to text classi-
fication, illustrated in the flowchart depicted in Fig. 11.
The four-stage process commences with data preprocess-
ing, tailored to text classification objectives. The second
stage involves initializing parameters for the developed TS-
FA-GRU approach, where an embedding layer transforms
words into real-valued vectors, capturing semantic, and
syntactic details. Specifically, pre-trained GloVe embed-
dings are utilized to convert words into vectors, followed
by the implementation of two-state GRU integrated with
feature attention strategy for extracting more useful fea-
tures. The third stage monitors training error comparative
to a predetermined threshold. Finally, the fourth stage en-
compasses testing and verification. To assess performance,
accuracy, execution time, and error rate are employed as
evaluation metrics for text classification tasks. The find-
ings underscore the importance of feature extraction and
selection in enhancing model accuracy, as these processes
directly impact the model’s ultimate performance. To ad-
dress this, the proposed Feature Attention Two-State GRU
mechanism offers an effective solution for sentiment anal-
ysis. The findings indicate that effective feature extraction
and selection are crucial for enhancing the model’s accu-
racy, as they directly impact its overall performance. To
address this, the developed TS-FA-GRU approach has been
developed specifically for text classification.

4 Experimental setup

All simulations in this study were conducted on a system
with an Intel Core i7-3770 CPU @ 3.40 GHz, equipped
with 16 GB of RAM, and operating on Windows 10.
Data pre processing and examination were performed using
Python 3.9 within the Anaconda development environment,
leveraging TensorFlow 1.14 and Keras 2.4 libraries. More-
over, we present a brief overview of our chosen datasets
and the hyper parameter configurations used to optimize
our proposed model in the following subsection
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4.1 Datasets description

In this study, we used five publicly available text classifi-
cation datasets to evaluate the performance of our proposed
model. These text classification datasets included: 20NG,
R21578, AG’s News, IMDB, and Amazon reviews, and
publicly available on https://www.kaggle.com/. To main-
tain consistency, these datasets were employed for both
training and testing in our experiments. This study provides
a detailed description of each benchmark dataset used to as-
sess the proposed and traditional approaches. Each dataset
represents unique properties and challenges, contributing to
a complete evaluation of the model’s capabilities. Table 2
refers to a summary of the descriptive statistics for these
datasets.

4.2 Data preprocessing steps

Text preprocessing is essential for preparing raw text data
for analysis, and plays an important role in the model’s per-
formance. The first step in text mining and its applications
involves converting unstructured text into a structured for-
mat to enhance the quality of the text dataset through pre-
processing techniques. These steps are as follows:

Text Cleaning: In this step, we remove unwanted elements
from raw text, such as numbers, extra space, and special
characters, to make the data more structured. For instance,
punctuation and emojis are often removed to emphasize the
textual content.

Tokenization: Tokenization splits a text stream into
smaller units, such as words, phrases, or other meaningful
tokens for easier analysis. The primary goal of tokeniza-
tion is to analyze and identify the individual words within
a sentence.

Stop Word Removal: This stage involves eliminating fre-
quently occurring words that carry little to no meaningful
information, filtered out before or after processing natural
language data. These common words such as the,” an,”
”is,” ”and,” ”of,” ”but,” and similar terms. Removing stop
words helps emphasize the more meaningful words in the
dataset.

Lemmatization: Lemmatization reduces words to their
base or root form, considering their grammatical context.
For example, "working”, “worked”, and “works” are con-
verted to “work,” preserving the original meaning. Han-
dling Missing Data: Missing text entries are removed or
replaced with placeholder values like ”Unknown.” This en-
sures the dataset is complete for modeling without introduc-
ing biases.

Dimension Reduction: In a text corpus comprising hun-
dreds of thousands of words, it becomes impractical to clas-
sify them as features, as it may lead to computational chal-
lenges. Therefore, selecting the most representative fea-
tures is vital to optimize the input for the classification pro-
cess.
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Table 2: Descriptive statistics of datasets
Datasets Train Test Average Classes Tasks
Samples Samples lengths
AG’s News 150,000 80,000 42 4 News categorization
R21578 14,600 6400 74 12 Text classification
20NG 10,500 4500 86 15 News classification
IMDB 34,500 15,500 55 2 Sentiment analysis
Amazon Reviews 172,000 77,000 54 2 Sentence classification

4.3 Implementation detail

To optimize the effectiveness of the developed model, we
start by improving the quality of the dataset. This study
enhances the text dataset by applying pre processing meth-
ods, including the removal of stop words (e.g., ”and,” ”our,”
”of,” ”the,” ’to”) and punctuation. We refrain from us-
ing stemming during sentence embedding training to pre-
serve all original information. The word embeddings are
initialized using 300-dimensional pre-trained GloVe vec-

tors by Pennington et al. [46]. To boost text classifica-
tion effectiveness, well-ordered training policies for word
vectors were employed, as discussed in previous research
[47]. A consistent set of embeddings was used to achieve
better generalization across datasets based on 30 iterations.
During training, the Adam optimizer [48] was utilized with
a learning rate of 0.001, and based on available mem-
ory we set a mini-batch size of 64. To combat over fit-
ting, a dropout strategy [49] was implemented, including a
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dropout rate of 0.5 applied to the output of the TS-GRU lay-
ers and a Ar coefficient of 10-5 for L2 regularization. Fig-
ure 12 provides a configuration summary of each layer in
the developed TS-FA-GRU model. The input layer is con-
figured to handle sequences up to 300 words, with longer
sentences truncated and shorter ones padded with zeros.
The TS-FA-GRU layer comprises 128 memory nodes for
both forward and backward passes. To mitigate over fitting,
dropout is applied to the GRU layer with a 28% dropout
rate for both the input (Dropout-W) and the hidden state
(Dropout-U). An additional dropout layer is incorporated
after merging the forward and backward GRU layers, with
46% of the input dropped to further reduce over fitting. Fi-
nally, a Dense layer was used for sentence illustration, out-
putting positive or negative predictions. A sigmoid activa-
tion function was employed to classify the sentences into
two classes, resulting in either a 0 or 1.

4.4 Evaluation matrices

Various evaluation metrics have been used to assess the ef-
fectiveness of both the developed approach and conven-
tional approaches in addressing text classification chal-
lenges. These metrics include accuracy, precision, recall,
F-measure, and error rate/convergence. Precision and recall
are among the most frequently utilized assessment metrics,
alongside accuracy, for assessing the performance of an ap-
proach. Precision measures the accuracy by demonstrat-
ing the proportion of correctly classified positive instances
among all instances predicted as positive. A higher preci-
sion value signifies that the network efficiently classifies
true positive cases. Recall, also referred to as sensitivity,
signifies the ratio of true positive instances (TP) to the to-
tal actual positive cases (TP + FN). The F1 score provides a
weighted average of precision and recall, making it a widely
used metric for balancing and optimizing a model’s perfor-
mance toward either precision or recall.

TP(") + TN(")

Accuracy = o) ) ((:1)) m) (28)
TP, Vv +FP, V +FN, V +TN
(n) (n) (n) (n)
TP(™)
Precision = ——" (29)
TP\") + FP(")
(n) (n)
Recall = % (30)
TP, + FN;™
(n) (n)
2 X PrecisionE:)) X Recallgg)
F1 score = ) ) (31
Precision(nj + Recall(n)
FP{) + FN(Y
Errorrate = (32)

(m) (m) ) )
TP + TN + FP() + FN(
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5 Results and discussion

In our experimental findings, we present a brief overview of
the simulation results for the proposed TS-FA-GRU model,
comparing its performance with traditional deep learning
models across five different text classification datasets. The
evaluation, based on several performance metrics, high-
lights the significant accuracy achieved by our model for
each benchmark dataset.

5.1 Convergence rate

This section describes an experimental evaluation of the de-
veloped model with the selected datasets. Figure 17 , 13,
14, 15 and 16 illustrate the learning convergence of the de-
veloped and the traditional approaches in text classification
tasks. The convergence rate of the proposed TS-FA-GRU
model was employed using five benchmark text categoriza-
tion datasets. We evaluated the convergence rates through-
out 30 epochs. It was observed that the error rates for the
proposed and comparative algorithms stabilized after 28
epochs. Experimentally, the proposed and comparative ap-
proaches demonstrated relatively better convergence on the
20NG, R21578, and IMDB datasets. The AG News and
Amazon review datasets are more complex than the 20NG,
R21578, and IMDB datasets, causing some interruptions in
the convergence rate for all approaches. However, the pro-
posed TS-FA-GRU approach maintained its convergence
throughout the 30 epochs, AG News, and Amazon review.
It showed slow convergence for all comparative approaches
except for the TS-FA-GRU. Moreover, the recurrent ap-
proaches, like TS-FA-GRU, Bi-GRU, and Bi-LSTM, per-
formed better on all text classification dataset compared to
other traditional approaches including LSTM, GRU, and
CNN. The convergence results indicate that the proposed
model, incorporating two-state and feature attention mech-
anism, exhibits excellent performance with faster conver-
gence than the other comparative approaches.

5.2 Accuracy-based analysis

The accuracy-based analysis of the proposed TS-FA-GRU
model was also carried out using five benchmark text
datasets such as 20NG, R21578, AG News, IMDB, and
Amazon review. The evaluation highlighted the model’s
superior performance, illustrating consistently better accu-
racy rates across all datasets when compared to traditional
deep learning approaches. We evaluated the performance
ofthe developed approach against other methods, including
LSTM, GRU, CNN, Bi-LSTM, and Bi-GRU models. Our
empirical outcomes showed that the developed approach
achieved excellent accuracy across all five datasets com-
pared to these alternative models. These results underscore
the effectiveness of the TS-FA-GRU approach in accurately
classifying text, indicating its robustness and reliability in
various NLP tasks. Table 3 demonstrates the performance
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comparison between our developed approaches and tradi-
tional approaches across diverse datasets.

5.3 Precision, recall, and F1-score
evaluation

The proposed TS-FA-GRU approach was rigorously as-
sessed employing precision, recall, and F1-score metrics
across five benchmark text datasets. Precision, which mea-
sures the accuracy of positive predictions, showed notable
developments with the TS-FA-GRU model compared to
conventional approaches. The recall, which evaluates the
model’s capability to accurately identify all relevant oc-
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Table 3: Classification accuracy of pro
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Models 20NG | R21578 | AG’s news | IMDB | Amazon
LSTM 89.49 88.41 89.75 86.81 84.27
GRU 90.18 89.01 88.42 86.28 84.92
CNN 88.13 86.36 89.52 85.42 83.97
Bi-LSTM 91.29 90.52 91.45 89.98 85.14
Bi-GRU 90.83 90.18 90.71 89.59 85.79
TS-FA-GRU | 93.86 92.69 94.73 92.46 88.23

posed and comparative approaches across all distinct datasets

currences, was also significantly higher in the developed
model. This demonstrates its strong capability in captur-
ing the true positives, ensuring that relevant data is not
overlooked. Subsequently, the Fl-score, which delivers
a harmonic mean of precision and recall, further empha-
sizes the superiority of the TS-FA-GRU model. The higher
F1-scores across all datasets highlight the balanced perfor-
mance of the model. These metrics jointly determine that
the proposed approach not only excels in making accurate
predictions but also in identifying all relevant instances,
offering a comprehensive improvement over conventional
deep learning models in text classification tasks. Tables
4,5,6, 7, and 8 display the comparison performance of the
developed approach and conventional models. Moreover,
as the complexity of the datasets increases, the TS-FA-GRU
model demonstrates superior performance than the LSTM,
GRU, CNN, Bi-LSTM, and Bi-GRU approaches. In con-
cluded, the proposed model delivered outstanding results,
outperforming several conventional approaches in terms of
accuracy, particularly on all benchmark datasets.

Table 4: Performance analysis of developed and standard
approaches using 20NG dataset

Models Precision | Recall | Fl-score
LSTM 88.92 86.12 87.49
GRU 87.42 88.22 87.94
CNN 85.41 83.65 84.53
Bi-LSTM 91.04 90.16 90.60
Bi-GRU 88.48 90.92 89.64
TS-FA-GRU 92.02 93.18 92.60

Table 5: Performance analysis of developed and traditional
models using the R21578 dataset

Models Precision | Recall | Fl-score
LSTM 87.08 88.45 87.74
GRU 86.65 87.68 86.98
CNN 84.60 85.58 84.96
Bi-LSTM 86.54 87.24 86.88
Bi-GRU 88.32 86.56 87.42
TS-FA-GRU 91.72 90.17 90.93

Table 6: Performance analysis of developed and traditional
models using AG New’s dataset

Models Precision | Recall | Fl-score
LSTM 87.68 85.92 86.56
GRU 89.62 85.84 87.32
CNN 86.31 89.16 87.72
Bi-LSTM 91.35 89.29 90.28
Bi-GRU 90.76 87.82 89.27
TS-FA-GRU 94.04 92.28 93.16

Table 7: Performance analysis of developed and traditional
models using IMDB dataset

Models Precision | Recall | Fl-score
LSTM 87.22 86.65 86.93
GRU 88.16 86.42 87.15
CNN 87.74 85.24 86.58
Bi-LSTM 89.52 87.66 88.48
Bi-GRU 90.89 90.42 90.65
TS-FA-GRU 93.24 91.16 92.19

Table 8: Performance analysis of developed and traditional
models using Amazon review dataset

Models Precision | Recall | Fl-score
LSTM 79.52 77.28 78.12
GRU 80.77 79.45 79.86
CNN 82.93 81.63 82.27
Bi-LSTM 81.86 84.29 83.05
Bi-GRU 83.19 82.38 82.79
TS-FA-GRU 86.32 84.48 85.40

5.4 Execution time comparison

This study evaluated the execution time performance of the
developed model and compared it with standard approaches
utilized in all datasets. The computational efficiency of all
models depends on the hardware, software, and compiler
configurations. To ensure a fair comparison, this research
employed the same software setup and hardware combi-
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nation for the developed and comparative models. Table
9 illustrates a comparative analysis of the execution times
for the developed TS-FA-GRU approach and other tradi-
tional approaches, including standard LSTM, GRU, CNN,
Bi-LSTM, and Bi-GRU. On the first two datasets, 20NG
and R21578, the traditional GRU approach exhibited com-
paratively better execution times than the developed TS-
FA-GRU model due to the simplicity of the data. However,
as the complexity and noise levels increase in datasets such
as IMDB, AG news, and Amazon review, the developed ap-
proach demonstrates superior execution time performance
compared to standard LSTM, GRU, CNN, B-LSTM, and
Bi-GRU. The best results from the experiments are high-
lighted in bold.

5.5 Comparison analysis with traditional
studies

This study assesses the efficacy of the developed approach
by contrasting it with traditional studies, such as cited stud-
ies in [50], [S1]. The comparison emphasizes on perfor-
mance in terms of accuracy of the proposed approach using
four different datasets: 20NG, AG News, Amazon review,
and IMDB. Table 10 shown that our proposed approach
consistently outperformed than traditional approaches in
terms of accuracy, particularly as the dataset size increases.
This enhancement is due to the better generation of tex-
tual features, which effectively expands the dataset and di-
minishes the significance of the initial dataset size. More-
over, our develop approach builds upon the strengths of ear-
lier character-level methods, simplifying the implementa-
tion of various languages by openly updating the alphabet.
All the experimental evaluations demonstrated that the TS-
FA-GRU model consistently converged faster than existing
deep learning models, showcasing its competence and ef-
fectiveness in attaining optimal performance across diverse
datasets.

6 Conclusion and future direction

Text classification is a significant and broadly studied area
in NLP. Among the different deep learning models used in
NLP, the GRU is notably effective for sequential learning
tasks. In this research, we proposed the Two-State Fea-
ture Attention GRU (TS-FA-GRU) model to demonstrate
a significant improvement in text classification tasks. Our
proposed approach leverages the word embedding layer’s
abilities to examine word polarity through sentential pat-
terns and predict the sentiment in reviews. This research
makes three key contributions: Firstly, we introduce the
Two-State GRU (TS-GRU) structure to tackle text classi-
fication challenges. Secondly, we develop a novel sophis-
ticated feature-attention mechanism that allows the model
to dynamically focus on essential features, enhancing its
ability to capture intricate dependencies and contextual in-
formation within the text through pre- and post-feature at-
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tention layers. Moreover, a post-feature attention GRU is
employed to mimic the decoder’s function, extracting tar-
geted features acquired from the pre-feature attention TS-
GRU and the attention layer. Thirdly, this research modi-
fies the standard GRU by removing the reset gate and re-
placing it with an update gate in the candidate state. Fur-
thermore, we utilized the ReLU activation function in the
candidate state of the GRU network instead of the tanh
activation function, while softmax is employed as the fi-
nal output layer for text classification. Through com-
prehensive evaluations, we conducted experiments using
five benchmark datasets such as 20NG, R21578, IMDB,
AG News, and Amazon review, the proposed TS-FA-GRU
model consistently demonstrated superior accuracy, preci-
sion, recall, and F1-score compared to traditional models
such as LSTM, GRU, CNN, Bi-LSTM, and Bi-GRU. For
future direction, we identified the computational complex-
ity of the proposed model, and attributed the two-state strat-
egy, as an area for improvement. Reducing this complex-
ity throughout the model’s processes is a key direction for
future research to enhance the model’s efficiency. Addi-
tionally, we aim to design a more efficient and versatile
attention architecture at the word-feature level while also
minimizing the overall execution time and computational
cost of the developed framework. Additionally, our goal
is to create a more efficient and flexible attention structure
at the word-feature level, while also minimizing the overall
computational cost of the framework we’ve developed.
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