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In response to the special geographical environment and traffic conditions of mountainous highways, 

reasonable highway structure design can significantly improve traffic safety and reduce traffic 

accidents. Therefore, a grading model and traffic incident detection method for mountainous highway 

curve line indicators are developed. By analyzing the traffic conditions and highway structure of 

mountainous highways, a classification algorithm based on highway curve structure indicators is 

proposed, and a mountainous highway curve structure grading model is constructed. Then, a long 

short-term memory network is introduced to design a highway traffic incident detection algorithm on 

the basis of Bayesian optimization. The results showed that the correlation fitting degree of curve index 

classification based on the classification model was 87.3%. With the increase of feature variables in the 

data set, the classification accuracy of the traffic incident detection method for different events showed 

a steady increase and reached a stable state of 92.8%. The accuracy of the most advanced method was 

only 90%, and the accuracy of the research method was higher than that of the most advanced method. 

The comprehensive performance showed that the area under the curve value of the proposed method 

was as high as 0.982, which was larger than other comparison algorithms. In addition, the area under 

the curve value of the most advanced method was 0.962. The above results demonstrate that the 

designed algorithm has good performance, which can effectively segment the curve shape indicators of 

highway structures, and accurately detect traffic incidents. 

Povzetek: Opisan je model za klasifikacijo oblike krivulje gorskih avtocest in inteligentna metoda za 

zaznavanje prometnih nesreč (IRF-HTID-BO-LSTM).  Pristop izboljšuje zaznavanje prometnih nesreč 

na gorskih cestah. 

 

1 Introduction 
The modernization of transportation is an important 

symbol of national modernization. For a long time, under 

the leadership of the Party, China's transportation has 

achieved remarkable achievements around the center and 

serving the overall situation [1]. China is accelerating the 

construction of transportation infrastructure. Focusing on 

the central task of the Party, China is striving to promote 

the high-quality development of transportation and 

construct the transportation power, guaranteeing Chinese 

path to modernization with modern transportation 

services with more Chinese characteristics, Chinese style, 

and Chinese style [2-4]. However, the traffic conditions 

of mountainous highways are constrained by the complex 

structure of mountainous highways. The highway 

structure of mountainous highways is closely related to 

traffic conditions, which poses challenges to highway 

design and precise management of traffic safety. A 

scientifically reasonable index structure of highway  

 

structure not only affects the safety, but also directly 

affects traffic smoothness and service efficiency [5-6]. 

Moreover, in the management of mountainous highways, 

the highways’ structure is characterized by complex 

curved lines, frequent sharp turns, and continuous curved 

structures, which leads to more complex traffic 

conditions and traffic management work. In addition, 

according to statistics, there were 256,409 incident 

accidents in China in 2022, with an average of over 700 

incidents per day and an average of 166 deaths per day. 

This has caused huge losses to people's property and life 

safety [7]. In addition, current traffic detection methods 

mainly focus on highways, rural highways, etc. 

Mountainous highways are difficult to achieve efficient 

and accurate detection and feedback due to complex 

highways conditions and poor signals. Therefore, the 

main research question is how to introduce intelligent 

traffic incident detection technology, which plays an 

important role in promoting intelligent management of 

transportation and ensuring the safety and stability of the 



190 Informatica 49 (2025) 189–206 X. Gu et al. 

transportation system. Meanwhile, how feature selection 

and Bayesian optimization LSTM can improve the 

accuracy of mountainous highways traffic incident 

detection. In response to the above issues, the study first 

designs a classification model for the curve shape 

indicators of mountainous highways, and then uses the 

Improved Random Forest Algorithm (IRF) for feature 

variable selection. An improved Long Short-Term 

Memory (LSTM) based on Bayesian Optimization (BO) 

algorithm is proposed. Based on the above content, the 

Intelligent Highway Traffic Incident Detection Algorithm 

(IRF-HTID-BO-LSTM) is designed. The research 

objective is to design a classification model for 

mountainous highway curve indicators and an intelligent 

traffic incident detection method. By exploring the 

structural constraints of mountainous highways, it is 

expected to improve real-time traffic incident detection 

capabilities, avoid secondary traffic incidents, ensure 

smooth and safe operation of highways, and enhance the 

intelligent management level of mountainous highways. 

The innovation of research mainly includes the following 

two aspects. Firstly, the model structure optimization 

method and highway curve level grading method for the 

design of flat curve length grading for mountainous 

highways are used to provide stronger support for traffic 

management decisions. In addition, the BO is introduced 

to optimize the hyper-parameters of the LSTM model, 

and the mixed sampling technology is used to reconstruct 

the imbalanced traffic data set. By constructing an initial 

variable set, more sensitive features to traffic incidents 

are determined to ensure the safety and stability of 

mountain highways, promoting the intelligence of traffic 

management. 

2 Related works 
With the development goal of building a comprehensive 

transportation power proposed, mountainous highway 

transportation has experienced rapid development. 

However, the complex driving environment of 

mountainous highways places higher demands on vehicle 

performance, driving skills, and attention than non 

mountainous highways, resulting in a high incidence of 

traffic accidents on mountainous highways and 

particularly prominent traffic safety accidents. Numerous 

scholars have conducted in-depth analysis and 

exploration on this matter. S. Cafiso et al. used warning 

signs to alert drivers to external changes in flat direction 

and speed to improve cornering safety. A unified curve 

standard on a two-lane road was built, allowing drivers to 

adjust their speed based on actual wind speed. The 

relative changes in collision rates of various risk 

categories were analyzed, and the factors affecting 

collisions were estimated [8]. G. Ashley et al. found that 

traffic incidents cause billions of dollars in losses to the 

United States every year. Therefore, the study utilized 

machine learning for collision analysis to identify driver, 

vehicle, and road related factors that affect driving risks 

in various location types. The research results showed 

that drivers who performed visual tasks at uncontrolled 

intersections were 2.7 times more likely to have a 

collision than drivers who did not perform the 

aforementioned tasks. The above findings further proved 

that establishing a safety awareness project for 

intersection safety was imperative [9]. M. R. Fatmi et al. 

developed a Logit model based on latent segmentation to 

analyze the severity of traffic collision injuries using 

collision data reported in Nova Scotia, Canada from 2007 

to 2011. There was a segmentation of high-risk and low-

risk damage severity. Moreover, high-risk road sections 

generated higher levels of injury severity, while low-risk 

road sections generated lower levels of injury severity 

[10]. D. E. Monyo et al. found that in areas with complex 

road features and frequent traffic conflicts, older drivers 

had an increased risk of making mistakes. Overpass is a 

highway location that presents more driving challenges 

than other basic road sections. Therefore, based on the 

traffic accident data from Florida from 2016 to 2018, this 

study used latent category clustering analysis and penalty 

logistic regression to explore the factors that affect older 

drivers' driving errors on interchanges. The results 

revealed that factors such as distracted driving, area type, 

and speed limit were all important in specific clusters 

[11]. 

To ensure the efficient and safe operation of 

mountainous highways, intelligent traffic incident 

detection methods are gradually being applied in the 

transportation field. However, current detection methods 

have shortcomings such as low efficiency, untimely 

feedback, and work intensity, which cannot adapt to 

complex mountainous highways. S. B. Li et al. developed 

an incident detection method on the basis of toll station 

data to ensure the smooth operation of highways, reduce 

traffic congestion, and avoid secondary accidents. A case 

study experiment was conducted on the highway network 

in Shandong Province. The method effectively detected 

highway incidents, dynamically evaluated the status of 

the transportation network, and provided suggestions for 

highway management departments [12]. X. Zhang et al. 

designed five methods for establishing and calculating 

traffic accident management measurements to manage 

highway accidents and reduce their impact. The research 

method could identify the advantages and disadvantages 

of accident management strategies and modify practices 

accordingly [13]. P. H. L. Rettore et al. designed a 

method for enriching highway data. Data from 

heterogeneous data sources was fused to enhance the 

service framework of intelligent transportation systems 

and improve the description of traffic conditions through 

location-based social media data. The traffic incident 

detection model achieved a score of over 90% [14]. M. 

Won et al. proposed an outlier analysis process to 

alleviate traffic congestion caused by traffic incidents and 

restore traffic system performance as safely and quickly 

as possible. This process was used to estimate the outliers 

of each detected event and utilized such outlier 

information to improve the prediction accuracy of 

incident duration. Through application examples, the 

research method improved the accuracy of estimating the 

duration of traffic incidents and detected potential system 

defects related to incident response, data recording, 
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resource management, etc [15]. Following the above literature summary, Table 1 is compiled. 

 

 

 

Table 1: Summary of literature results. 

Author Research method Research results 

S. Cafiso et 

al. 

Constructing uniform curve standards on two-

lane roads allows drivers to adjust their speeds 

to actual wind speeds 

The system needs to be revised, both on actual risk 

classification and how it is managed 

G. Ashley 

et al. 

Using machine learning for crash analysis to 

identify driver, vehicle, and road-related 

factors that affect the risk of driving in 

different locations and then analyzing the most 

important factors derived from the machine 

learning analysis 

Drivers who perform visual manual tasks at 

uncontrolled intersections were 2.7 times more likely 

to be involved in a crash than drivers who do not 

perform the above tasks 

M. R. 

Fatmi et al. 

A Logit model based on potential segmentation 

was developed to analyze the severity of traffic 

collision injuries 

There are segments of high risk and low risk injury 

severity, and the linear road alignment produces 

higher injury severity at high risk sections and lower 

injury severity at low risk sections 

D. E. 

Monyo et 

al. 

The factors influencing the driving error of 

elderly drivers on the interchange were 

investigated by potential category cluster 

analysis and penalty logistic regression 

Variables that are significant in a particular cluster, 

and in factors such as distracted driving, area type, 

speed limit, etc. are important in all collisions versus 

a few specific clusters 

S. B. Li et 

al. 

An event detection method based on toll 

station data is proposed 

Taking the expressway network of Shandong 

Province as an example, a numerical example test is 

carried out. This method can effectively detect 

highway accidents, dynamically estimate traffic 

network status, and provide suggestions for highway 

management departments 

X. Zhang et 

al. 

Establishment and calculation method of five 

traffic accident management measures 

corresponding to the establishment and 

improvement of traffic incidents by Kentucky 

Transportation Cabinet 

The method can identify the strengths and 

weaknesses of accident management strategies and 

modify practices accordingly 

P. H. L. 

Rettore et 

al. 

A road data enrichment approach is proposed 

to enhance the framework of intelligent 

transportation system services by fusing data 

from heterogeneous data sources, and to 

improve the description of traffic conditions 

through location-based social media data 

The traffic incident detection model of the study 

method obtained a score of more than 90% 

M. Won et 

al. 

An outlier analysis procedure is proposed to 

estimate the outlier for each detected event and 

use such outlier information to improve the 

predictive accuracy of event duration estimates 

The research method can improve the accuracy of 

traffic incident duration estimation and detect 

potential system deficiencies related to incident 

response, data recording, and resource management 

 

 

Based on the above content, the current research 

results mainly focus on the correlation between road 

traffic conditions and structure conditions and intelligent 

traffic incident detection methods. The SOTA method 

with the best performance is the intelligent traffic service 

framework integrating heterogeneous data sources, but it 

still has certain limitations, that is, it is difficult to 

accurately analyze the road structure and traffic safety 

conditions of mountain highways. Its subsequent 

management cannot get timely feedback, usually in 

traffic accidents, and it takes more time to deal with. 

Therefore, an index optimization method and a highway 

curve grading method for the flat curve structure grading 

of mountainous highways are developed, and an IRF-

HTID-BO-LSTM method is designed to detect traffic 

incidents. 

3 Construction of a grading model 

for curve shape index of 

mountainous highways and a 

traffic incident detection method 
The study first proposes an index optimization method 

for grading the structure of highway flat curves and a 

method for grading highway curve levels. Then, a feature 

variable selection method based on IRF is designed, and 

an LSTM model based on BO is constructed. Finally, a 
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mixed sampling method is combined with the above 

content to obtain the final IRF-HTID-BO-LSTM method. 

 

 

 

3.1 Optimization method for index grading 

of highway flat curve structure and 

grading method for highway curve 

levels 

The complex geometric conditions of highways often 

become one of the important factors that induce traffic 

incidents. Identifying geographical features and 

establishing practical connections between traffic 
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Figure 1: The correlation between traffic conditions and other factors. 

 

conditions can help optimize highway safety risk 

assessment, and improve the accuracy and practicality of 

traffic management work [16-17]. The research first 

collects related highway alignment data, including G109, 

Beijing-Lhasa Highway (Ningxia Section), G110, 

Beijing-Qingtongxia Highway (Ningxia Section), G211, 

Yinchuan-Rongjiang Highway (Ningxia Section), G244, 

Wuhai-Jiangjin Highway (Ningxia Section), G307, 

Huanghua-Shandan Highway (Ningxia Section), G309, 

Qingdao-Lanzhou Highway (Ningxia Section), G312, 

Shanghai-Khorgos Highway (Ningxia Section), G327, 

Lianyungang-Guyuan Highway (Ningxia Section), G338, 

Haixing-Tianjun Highway (Ningxia Section), G341, 

Jiaonan-Haiyan Highway (Ningxia section), G344, 

Dongtai-Lingwu highway (Ningxia section), G566, Xiji-

Tianshui Highway (Ningxia section). Furthermore, 

survey data on highway traffic conditions from 2022 to 

2023 are collected from the aforementioned highways. 

Based on this, a geographic information system-based 

database for highway alignment and traffic condition 

management is constructed. Firstly, the correlation 

between traffic conditions and other factors is analyzed, 

as shown in Figure 1. 

Figures 1 (a) and 1 (b) respectively show the 

correlation between different curve lengths and saturation 

rates, and both exhibit consistent distribution trends. The 

relationship between the curve shape and traffic 

conditions, as well as other factors, is shown in Figure 2. 

In Figure 2, highway sections with longer flat curve 

lengths often exhibit higher saturation rates and larger 

average daily traffic volumes. Within a certain length 

range of a flat curve, the saturation rate and average daily 

traffic volume of the highway section fluctuate within a 

certain range. A longer flat curve allows vehicles to pass 

at higher and more stable speeds, exhibiting a higher 

saturation rate of traffic flow on the highway section. 

After introducing the average highway speed factor, the 

correlation between its distribution is less obvious. Based 

on the above analysis, combined with the modeling 

concept of highway traffic safety analysis in the 

interactive highway safety design model and the actual 

situation of traffic conditions on mountainous highways 

in China, as well as the correction coefficient of flat curve 

indicators, a suitable structural analysis model for flat 

curve indicators on mountainous highways is constructed. 

In addition, based on the specific situation of 
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(a) The relationship between the length 

of the flat curve and traffic conditions

(b) The relationship between curves 

and other factors

 

 

Figure 2: The relationship between curves and traffic conditions and other factors. 

 

Table 2: Highway curve grading method. 

Model level reference Design speed (km/h) Minimum length of flat curve (m) 
0_C L  40 ≤200 

1_C L  60 (200, 300] 

2_C L  80 (300, 400] 

3_C L  100 (400, 500] 

4_C L  120 (500, 600] 

 
mountainous highways, and the collected incident and 

geometric data of mountainous highways, an accident 

prediction and correlation model suitable for 

mountainous highways is established, as shown in 

equation (1). 
1 2 3_ ... nQuality AADT v C L V C Var    = = + + + + + (1) 

In equation (1), Quality  and AADT  represent the 

robustness of the road network and the average daily 

traffic volume, respectively. v ,  , _C L , V C , Var  

and   correspond to the average vehicle speed, 

regression coefficient, flat curve length, road saturation 

rate, other reference factors, and errors of the road 

section, respectively. The regression method is applied to 

consider the relationship between geographical features 

and traffic flow under road network indicators, which can 

evaluate the applicability of indicators in traffic flow 

research. Deepening the grading optimization of the flat 

curve structure and indicators has a promoting effect on 

further improving its application value in practical 

decision-making. Therefore, the study summarizes curve 

type data as the classification basis, and further 

supplements and expands the interpretable flat curve 

length by introducing a grading expansion model for 

optimization, as expressed in equation (2). 
0 0 1 1_ _ ... _ ...n nQuality AADT C L C L C L   = = + + + + +  (2) 

From this, grading processing can be carried out. 

The specific content of the highway curve classification 

method is shown in Table 2. 

3.2 Feature variable selection for traffic 

incidents detection based on improved 

random forest 

There is a close relationship between highway structure 

and traffic safety. To further achieve intelligent detection 

of traffic incidents on mountainous highways, it is 

necessary to first determine the effective feature variables 

for the HTID algorithm. Secondly, based on the Traffic 

Flow Fluctuation (TFF) theory, the traffic flow change 

characteristics under the highway traffic incidents should 

be analyzed to establish a comprehensive initial variable 

set for the HTID algorithm. Then, the key variables 

sensitive to traffic incident detection are screened. 

Finally, the feature variable set of the HTID algorithm is 

obtained. 
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Figure 3: Flow chart of RF algorithm. 

 

The TFF theory simulates the continuity equation of 

fluids through the basic principles of fluid mechanics, 

constructs the continuity equation of traffic flow, and 

seeks the theoretical relationship between traffic flow, 

density, and speed [18-19]. The specific application 

process of TFF theory is as follows. Firstly, the speed, 

traffic flow, and density of section A are 
Av , 

Af , and 
A

. Then, based on the principles of TFF theory, the impact 

of traffic flow parameters on mountainous highways is 

analyzed in the event of a traffic accident [20-22]. When 

an accident occurs, the traffic capacity of section A will 

decrease to less than Af , and the Af  reaching the 

downstream section will also decrease until it becomes 

the traffic capacity for a highway traffic incident. The 

sudden change in traffic status downstream of the road 

section can be marked as D for the traffic flow state here. 

Because the speed change corresponding to the transition 

state from A to D is relatively small, a forward wave will 

be generated. The waveform can be abbreviated as ADv , 

as calculated in equation (3). 

 
A D

AD

A D

f f
v

 

−
=

−
 (3) 

In equation (3), Df  and D  correspond to the traffic 

flow and density at state D, respectively. At upstream of 

the traffic incident point, the speed and flow will decrease 

accordingly, creating a high-density range represented by 

points A to E. At this time, the traffic flow status of the 

road section is denoted as E. A backward wave will be 

generated at point E, and the corresponding wave is 

abbreviated as AEv , as shown in equation (4). 

 
A E

AE

A E

f f
v

 

−
=

−
 (4) 

In equation (4), Ef  and E  correspond to the traffic 

flow and density at state E, respectively. As time 

progresses, the area around the traffic incident will be 

divided into four sections. The traffic flow in the 

upstream and downstream parts of the entire section will 

still maintain its original turning direction. The upstream 

direction at point A will be greatly affected, while Df  

and D  at point D will decrease, resulting in congestion. 

At E, Ef  will decrease, but E  will maintain a high 

value, which constrains the traffic capacity. If A is not 

promptly handled, the impact of highway traffic time on 

traffic volume will continue to expand over time, 

ultimately leading to the shock waves and diffusion 

waves upstream and downstream, respectively. Through 

the analysis of TFF on the above-mentioned highway 

traffic incidents, it can be concluded that there are certain 

patterns in the changes that occur. Therefore, the basic 

parameters of traffic flow can be used as input parameters 

for subsequent intelligent detection algorithms. To more 

significantly represent changes in traffic flow, various 

relevant parameters can be combined, or different 

parameters of upper and lower detectors can be 

combined. 

In addition, the study constructs an initial variable 

set, which includes the actual traffic flow parameter 

values obtained by detector detection, the product of the 

differences between different traffic flow parameters of 

upstream and downstream detectors, the ratio of 

measured traffic flow parameter values, and the 

difference and ratio between the measured traffic flow 

parameters of the same detector and the predicted values. 

The predicted values are obtained through the moving 

average method. To better select the feature variables of 
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HTID algorithm, the IRF is proposed for feature variable 

selection. The IRF algorithm mainly consists of two 

parts, the RF part and recursive feature elimination. The 

specific process is as follows. Firstly, in the RF section, 

M  samples are randomly and selectively selected from 

K  original samples using Bootstrap. The selected and 

unselected samples form the decision tree 

( )1,2,...,mg m q=  and Out of Bag (OOB) 
OOB

mM , 

respectively. Secondly, tyk  initial variables are randomly 
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Figure 4: IRF process diagram. 

 

selected from the initial variables, and the optimal node is 

selected from tyk  for each split of the tree [23-25]. In the 

growth process of the forest, each tree does not need 

pruning and will continue to split. By repeating the above 

operation q  times, RF ( )1 2, ,..., qf a a a=  can be 

obtained. For each decision tree, the classification 

accuracy mP  is calculated using OOB data 
OOB

mG . In the 

training set, each initial variable is denoted as b , and 

random noise is introduced into the b  of 
OOB

mG  to obtain 

new data ˆ OOB

mG . The ˆ
b  of each ma  for the hidden ˆ OOB

mG  

is calculated. Finally, the importance ID  of b  is 

calculated, as shown in equation (5). 

 ( )
1

1
ˆ

q

b b

j

ID
q

 
=

= −  (5) 

On the basis of the above content, the RF algorithm 

is displayed in Figure 3. 

After the RF part is completed, ID  can be used as a 

basis to select each number of features one by one, and 

then cross validate the selected feature set. Finally, the 

number of features with the highest average score is 

obtained and determined [26-27]. Combining the RF part 

and recursive feature elimination, a complete schematic 

diagram of the IRF process can be obtained, as shown in 

Figure 4. 

In Figure 4, the ID  of b  is first calculated and 

sorted, and then the recursive feature elimination method 

is used to extract features while updating the feature set. 

The above steps are repeated until all features are 

traversed and the feature set with the best accuracy is 

selected. Then, the cross-validation method is used to 

select the highest feature score set. Finally, the feature 

variable set and sorting are obtained. 

3.3 Highway traffic incident detection 

algorithm based on LSTM optimized 

by bayesian optimization 

After the feature variable selection is completed, the 

HDIT algorithm can be constructed based on the grading 

model. Usually, recurrent neural networks are applied in 

short-term information prediction, but they cannot meet 

the requirements of higher accuracy prediction. However, 

LSTM can solve the gradient vanishing in the above 

neural networks and perform long-term learning of 

relevant information tasks. The structure of LSTM only 

adds cell states on the basis of recurrent neural networks, 

which are used to store previously learned information 

and sequences, and achieve information exchange 

through special forms. This structure can increase 

memory implementation, so it can present good results in 

many problems [28-30]. The core part of LSTM is the 

neuron state. The information in the neuron state is 

controlled through a gating mechanism, which mainly 

includes four parts: forget gate, input gate, update gate, 

and output gate. In the forget gate, it is implemented 

through the Sigmoid layer, as expressed in equation (6). 

 ( )1,t F t t FF W h x p −= +    (6) 

In equation (6), tF  is the output value of the forget 

gate.  , FW , 1th − , and Fp  correspond to the activation 

function, weight value, output of the previous neuron, and 

bias value, respectively. In the input gate, candidate 

vectors are generated through the tanh layer. The required 

finer values are determined by the sigmoid function. The 
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output tI  and update content 
tC  of the input gate are 

calculated using equation (7).  
( )

( )

1

1

,

tanh ,

t I t t I

t C t t C

I W h x p

C W h x p

 −

−

 = +   


= +   

 (7) 
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Figure 5: The process of optimizing LSTM hyper-parameters based on BO. 

 

In equation (7), tanh  is the tanh function. IW  and 

CW  correspond to the weights of input gates and cell 

states, respectively. Ip  and Cp  are the bias values of the 

input gate and cell state. In the update gate, it is necessary 

to update the cell state, as calculated in equation (8). 

 
1t t t t tC F C I C−= +  (8) 

In the output gate, the expression for the output 

result tO  is shown in equation (9). 

 ( )1,t O t t OO W h x p −= +    (9) 

In equation (9), OW  and Op  are the weight and bias 

values of the output gate, respectively. The final output 

result th  is calculated using equation (10). 

 ( )tanht t th O C=  (10) 

LSTM has significant advantages in processing long 

time series tasks. It is more in line with actual situations, 

which facilitates subsequent classification tasks. All 

hidden units in the last layer are output, and then linked 

to the fully connected layer to complete binary 

classification. Due to the influence of hyper-parameters 

on the model performance, it is crucial to determine the 

appropriate combination of hyper-parameters. The BO 

algorithm is a hyper-parameter optimization method that 

can intelligently select the next evaluation point based on 

historical observation results, achieving parameter 

configuration close to the optimal solution in fewer 

iterations, and overcoming the time-consuming and 

unstable random results of other hyper-parameter setting 

methods. Therefore, it is used to optimize LSTM to 

achieve better performance in highway traffic incident 

detection. The specific process of optimizing LSTM 

model with BO algorithm is as follows. Firstly, the range 

of hyper-parameters is set and initialized to obtain the 

corresponding hyper-parameter data set. A set of data is 

randomly selected for Gaussian process regression to 

establish a probability distribution function and fit the 

objective function. The prior distribution of the Gaussian 

process is updated by the loss value, and the surrogate 

model is modified. Then, the sampling function is applied 

to select the next optimal sample point, which is the point 

ix  to be evaluated. The above points are input into 

LSTM for training, which can obtain the new output 

value iy  of the objective function, update it to the sample 

set ( ) ( ) ( ) 1 1 2 2, , , ,..., ,n nQ x y x y x y= , and update the 

lining model. Finally, the condition judgment is 

completed through the loss value. If the value satisfies the 

requirements, the loss value and the current optimal 

hyper-parameter combination can be output. Otherwise, 
Q  is updated, and the iterative correction process can be 

continued until it meets the requirements. From this, the 

process of optimizing LSTM hyper-parameters based on 

BO can be obtained, as shown in Figure 5. 

In Figure 5, the first step is to determine whether the 

model has completed initialization. If it has, the sampling 

function selection step can be entered. Otherwise, the 

initialization step can be entered. Next, the initial sample 

points are randomly selected and used to initialize the 

LSTM model. Then, a Gaussian process is applied to 
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Figure 6: Schematic diagram of IRF-HTID-BO-LSTM method flow. 
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Figure 7: The convergence performance of different methods and the results of initial characteristic variable selection. 

 

establish a surrogate model for predicting LSTM hyper-

parameters. Finally, a new combination of hyper-

parameters is selected through the sampling function and 

used to train the LSTM model. Finally, the performance 

is checked to check whether it meets the requirements. If 

it does not meet the requirements, the Gaussian process is 

returned. If it meets the requirements, the process can be 

ended. During the optimization process, the designed 

hyper-parameters include learning rate, batch size, 

iteration count, number of hidden layer nodes, and time 

step size. The values of learning rate are [0.01, 0.001, and 

0.0001], the range of batch size values is [32, 64, 128, 

256, 512], and the settings of other hyper-parameters are 

based on past experience. During training, to balance the 

samples, a mixed sampling processing method is 

combined with IRF-based feature variable selection and 

BO-optimized LSTM to obtain the final IRF-HTID-BO-

LSTM algorithm. The specific implementation process is 
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as follows. Firstly, the determined feature variables are 

applied to construct the training set and obtain the output 

matrix, as shown in equation (11). 

  

1

2

5400

i

y

y
OP y

y

 
 
 = =
 
 
 

 (11) 

In equation (11),  0,1iy   represents the label of 

the i -th input sample. 1 and 0 correspond to the event 

label and non-incident label, respectively. Based on the 

partitioning of the training set, the output corresponding 

to the first 2700 input samples is 1, and the remaining 

samples are 0. In the training and optimization part of 

LSTM, the input data set  _ _, ,s s t set s t setx x X y Y   is 

first determined. Then, the forget gate, input gate, update 

gate, and output gate are sequentially passed. After 

training each segment sx  through the highway traffic 

incident detection method, the final feature vector 
LSTM

sY  

output by LSTM can be obtained, as shown in equation 

(12). 

 ( ); , , ,LSTM

s LSTM s F C I OY L x W W W W=  (12) 

In equation (12), ( )L  represents the mapping 

function of LSTM. Because highway traffic incident 

detection belongs to binary classification, the general loss 

function uses cross entropy, while the output category 

probability uses softmax function. The obtained 

probability ( )mc sP x  and cross entropy expression are 

shown in equation (13). 

( ) ( )

( ) ( ) ( ) ( )  
1

max

, log 1 log 1

LSTM

mc s s

n

m mc s m mc s

m

P x soft Y

W p y P x y P x
=

 =

  

= − + − −    
 


(13) 

In equation (13), mc  represents the classification 

label. ( ),W p  and my  are the objective function and the 

true label, respectively. The dataset is divided into 

training and testing sets at a ratio of 5:5. The LSTM 

model is set as ( ); ,sZ x W p . The input dataset is 

s testx X . It is compared with the obtained classification 

prediction probability values to complete the 

classification based on the predicted label results. The 

flowchart of the IRF-HTID-BO-LSTM method can be 

obtained, as shown in Figure 6. 

In Figure 6, the original traffic flow data set is 

normalized and partitioned. Then, the training set is 

balanced using a mixed sampling algorithm of Borderline 

SMOTE over-sampling and Tomek Links under-

sampling. The IRF algorithm is used for feature selection 

to obtain  

 

83

84

85

86

87

88

89

90

91

92

93

0 100 200 300 400 500 600

A
c
cu

ra
c
y

 r
a
te

 /
%

Batch size

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140

Number of hidden layer nodes

A
c
cu

ra
c
y

 r
a
te

 /
%

(a) Classification accuracy results for batch sizes (b) Classification accuracy results of the number of nodes in the hidden layer

0 50 100 150 200 250 300

Number of iterations

0.03

0.05

0.07

0.09

0.00 0.05 0.10 0.15 0.20
Learning rate

0

5

10

15

20

25

30

35

D
e
n

si
ty

O
b
je

c
ti

v
e
 

fu
n

c
ti

o
n

(d) Minimum observation and estimation of the 

results corresponding to the target value
(c) Distribution of learning rates

Minimum observation

Minimum estimation

 

Figure 8: Training results of different hyper-parameters. 

 

 

feature variables that are more sensitive to the HTID 

algorithm. The training set is reconstructed and input into 

the LSTM model for training. The BO algorithm 

optimizes the hyper-parameters of the LSTM, and the  

 

 

output results can be determined by the classification 

probability. 
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4 Results 
To test the performance and application effectiveness of 

the proposed IRF-HTID-BO-LSTM method, the study 

first examines the effectiveness of the method, and 

explores the correlation fit of the grading model index 

optimization. Then, the comparative experiments are 

conducted to scientifically analyze the performance. 

Finally, its effectiveness in practical applications is 

evaluated. 

4.1 Performance analysis of grading model 

construction and traffic incident 

detection methods 

To evaluate the performance of the research method, 

experiments are conducted using software Matlab. The 

data set used for processing is as follows. Firstly, a total 

of 100 sets of mountain road traffic incidents were 

obtained, with a total of 10000 data points. Among them, 

the traffic incident data set contains 2224 data points, 

while the rest are non traffic incident data points. Then, 

the traffic incident data set is divided into training and 

testing sets in a 1:1 ratio. Then, a mixed sampling 

algorithm of Borderline SMOTE oversampling and 

Tomek Links under-sampling is used to balance the two 

types of samples in the training set, resulting in 5600 

samples. Finally, the samples are divided into training 

and testing sets in a 1:1 ratio. Afterwards, the IRF is used 

to screen the initial variable set constructed, obtain 

feature variables that are more sensitive to the HTID 

algorithm, reconstruct the training set, and use it to train 

the LSTM network. The BO algorithm optimizer hyper-

parameters are used. Finally, the output results can be 

used to determine whether a traffic incident has occurred 

on mountainous highways. In addition, the performance 

evaluation of the grading model is based on data collected 

from 487 curvature profiles of national highways, which 

are used for correlation degree calculation. To verify the 

performance of research methods more scientifically, the 

current mainstream methods are introduced for 

comparison, namely the standard LSTM method, the 

traffic incident detection method based on Video 

Recognition Technology (VRT), the detection method 

based on Three-Dimensional Convolutional Neural 

Networks (3D-CNN), and the detection method based on 

Wavelet Analysis (WA). In addition, commonly used 

indicators are used for evaluation, namely Detection Rate 

(DR), Mean Detection Time (MDT), False Alarm Rate 

(FAR), Comprehensive Performance Index (CPI), 

Receiver Operating Characteristic (ROC), and Area 

Under the Curve (AUC). MDT is the average time 

required to obtain test results, which is calculated by the 

average time required for all test times. FAR refers to the 

proportion of normal cases incorrectly reported as 

abnormal cases within a certain period of time. The lower 

the value, the better the specificity of the method. It is 

usually calculated by actually calculating the proportion 

of samples that are misclassified as positive. CPI is an 

indicator that comprehensively reflects the performance  

 
Table 3: Statistical results of grading model structure optimization. 

Model Regression statistics / 

After improvement 

Multiple R 0.873491573 

R Square 0.623749182 

Adjusted R Square 0.471134821 

Standard error 62.12849208 

Observed value 487 

Before improvement 

Multiple R 0.821998 

R Square 0.675681 

Adjusted R Square 0.554061 

Standard error 2526.453 

Observed value 487 

 

of the detection method. It takes into account DR, MDT 

and FAR three indicators, and is calculated by the 

product of MDT, FAR/100 and (1-DR/100). The study 

first tests the convergence performance of different 

methods and analyzes the results of the initial feature 

variables. The random feature variables and decision tree 

are set to 4 and 1000, respectively, and the results are 

shown in Figure 7. 

Figures 7 (a) -7 (c) respectively correspond to the 

convergence results of different methods, the importance 

ranking of the initial variable set, and their selection 

results. From Figure 7, the proposed grading model and 

traffic incident detection method did not exceed 150 

iterations on the training dataset to achieve a stable 

convergence state. However, the VRT method, 3D-CNN 

method, and WA method required 265, 273, and 284 

iterations, respectively, to achieve a stable convergence 

state and corresponding higher loss values. In addition, 

the standard LSTM model requires 280 iterations to reach 

a stable state, because the baseline model has not been 

specifically optimized for traffic incident detection tasks 

in complex mountainous highway environments, and the 

input features contain a large amount of redundant or 

irrelevant information. LSTM requires more iterations to 

identify and utilize effective information. After running 

recursive feature elimination through cross validation, the 

number of features with better classification accuracy can 

be obtained. Then, feature variables with lower rankings 

can be deleted, and finally the set with the highest feature 

score can be selected. Similarly, the detector corresponds 

to the difference between the measured and predicted 

occupancy values, the ratio of the predicted and measured 
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speed values, and the difference between the measured 

and predicted speed values. Figure 7 (b) showed that 

when the number of features was 5, the corresponding 

classification accuracy was the highest at 98.7%. Based 

on the importance ranking of the feature variables, the 

final set of feature variables can be determined as the 

ratio of the measured occupancy values corresponding to 

the upstream and downstream detectors, the product of 

the difference in occupancy values and the speed 

difference. Similarly, the difference between the 

measured occupancy values and the predicted values 

corresponding to the detectors, the ratio of the predicted 

speed values and the measured speed values, and the 

difference between the measured speed values and the 

predicted values can also be determined. This showed the 

above features contain more information about changes in 

traffic flow status, and can help the model better 

distinguish traffic incidents and run more stably. In 

addition, the higher importance is due to its stronger 

interaction with other features. When the ratio of the 

measured occupancy values corresponding to the 

upstream and downstream detectors is the highest, it can 

reflect the changes in traffic flow between different 

detectors and is a sensitive indicator of changes in traffic 

flow status. The product of occupancy rate difference and 

speed difference contains information from both 

dimensions of speed and occupancy rate, which can more 

comprehensively describe the dynamic changes of traffic 

flow. To assess the effectiveness of the grading model 

structure optimization, the regression statistical method is 

used for evaluation, as displayed in Table 3. 

According to Table 3, the fitting degree of the 

grading model before optimization was only 82.2%, 

indicating a strong positive correlation. The R-Square 

 

Table 4: The statistical results of the correlation degree of the optimized grading indicator of mountainous highway 

flat curve. 

/ / Coefficients 
Standard 

error 
t Stat P Lower 95% Upper 95% 

/ Intercept 0.055430518 0.098029 0.565449 0.585587 -0.16633 0.277188 

Flat curve 

index 

grading 

4_C L  0.001274648 0.001808 0.705061 0.038612 -0.00282 0.005364 
3_C L  3.873047452 1.19E-05 3.264968 0.009761 1.19E-05 6.56E-05 
2_C L  15.04555171 2273.262 6.618486 0.000166 9803.4 20287.7 
1_C L  27.10997887 80.05872 0.338626 0.043608 -157.506 211.7257 
0_C L  11.06338754 18.46679 0.599097 0.025683 -31.5211 53.64787 
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Figure 9: Comparison of detection performance and comprehensive performance of different methods. 
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value showed that the model explained 67.6% of the 

variability of the dependent variable, indicating that the 

model has good explanatory power for the data. The 

adjusted R-Square value was 47.1%, indicating that the 

model has a reasonable explanatory power. The fitting 

degree of the optimized grading model has been 

significantly improved, and the fitting effect of the 

highway traffic condition correlation model for flat curve 

structure grading was improved to 87.3%, indicating a 

strong linear relationship between the independent and 

dependent variables. To further evaluate the correlation 

between the optimized grading indicators for 

mountainous highway flat curves, the specific results are 

displayed in Table 4. 

From Table 4, 
2_C L  and 

3_C L  had a significant 

impact on traffic conditions when the length of the flat 

curve was between 300m-500m. When the length of the 

flat curve exceeded 500m or was less than 200m, the 

remaining grades exhibited marginal significance, and the 

intercept term was not significant, making a small 

contribution to the model. The above results verify that 

different classifications have a significant impact on the 

routes and traffic conditions in mountainous areas, 

indicating that the grading model has a good application 

effect on indicator grading. The indicator grading of the 

flat curve length of mountainous highways is reasonable. 

To obtain the optimal hyper-parameters for the IRF-

HTID-BO-LSTM method, the study focuses on 

optimizing the time step and the number of hidden layer 

nodes using the BO algorithm, and updates the training 

parameters using the adaptive moment estimation 

algorithm (Adam). Due to the large data set size, the 

fixed learning rate is 0.001, the maximum number of 

iterations is 300, the batch sizes are 32, 64, 128, 256, and 

512, the time step range is 1-30, and the hidden layer 

node range is 8, 16, 32, 64, and 128. In addition, the 

study uses 5 cross validations for training. The obtained 

training results for different hyper-parameters are shown 

in Figure 8. 

Figures 8 (a) and 8 (b) show the classification 

accuracy results corresponding to batch size and the 

number of hidden layer nodes, respectively. Figure 8 (c) 

and 8 (d) correspond to the distribution of learning rates 

and the comparison of the minimum observation and 

estimation corresponding to target values. Figures 8 (a) 

and 8 (b) showed that the accuracy results exhibited a 

bell-shaped curve with the change of hyper-parameters. 

As the number of hidden layer nodes and batch size 

continue to increase, the classification accuracy shows a 

trend of first increasing and then decreasing. Moreover, 

the number of hidden layer nodes has a relatively large 

impact on the classification accuracy. When the number 

of hidden layer nodes and batch size were 64 and 256, 

respectively, the performance of the research method was 

optimal, indicating that the research method has stability 

and robustness. Figure 8 (c) shows the distribution of 

learning  
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Figure 10: Comparison of classification performance results of different methods. 

 

rates. The corresponding density reached its highest when 

the learning rate was 0.001. In Figure 8 (d), with the 

gradual increase of iterations, the BO algorithm 

converged when the search reached 18 times, indicating 
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that the global optimal solution could be obtained. To 

further analyze the performance of the IRF-HTID-BO-

LSTM method, experiments are conducted on different 

methods using DR, MDT, FAR, CPI, accuracy, F1 value, 

and AUC. The results are shown in Figure 9. 

Figure 9 (a) and Figure 9 (b) respectively compare 

the detection performance and comprehensive 

performance results of different methods. From Figure 9, 

in the comparison results of detection performance, the 

research method had the best performance in all detection 

indicators except for FAR, which was 1.82%. DR, MDT, 

CPI, accuracy, and F1 value were 98.45%, 2.21%, 

0.00159, 97.74%, and 93.52%, respectively. Compared 

with VRT, 3D-CNN, and WA, the detection performance 

of the research method has been significantly improved. 

Although mainstream methods sacrifice DR values to 

obtain smaller FAR values, there are still many traffic 

incidents that have not been detected. The research 

method can improve other detection performance while 

ensuring a lower MDT. Among them, when processing 

data of the same scale, the WA method had the highest 

computational efficiency, corresponding to an MDT 

value of 2.6 seconds, while the research method had 

relatively high computational efficiency. This means that 

the research method can significantly improve the 

response capability to emergencies, thereby improving 

road safety and traffic flow efficiency. In the 

comprehensive performance results, the AUC of the 

 

Table 5: Comparison of classification performance of different methods based on paired t-test. 

Evaluating 

indicator  
Method df T-score Sig 

Susceptibility 

IRF-HTID-BO-LSTM 40 4.08 ** 

VRT 40 5.38 ** 

3D-CNN 40 7.46 ** 

WA 40 8.18 ** 

Standard LSTM 40 10.08 ** 

Specificity 

IRF-HTID-BO-LSTM 40 16.30 ** 

VRT 40 24.95 ** 

3D-CNN 40 28.58 ** 

WA 40 24.00 ** 

Standard LSTM 40 28.02 ** 

Note: "* *" indicates P<0.01. 

 

Table 6: Comparison of model accuracy results based on K-fold cross validation. 

Method Sample size 
Correlation 

coefficient 

Root mean 

square error 

Coefficient of 

variation 

IRF-HTID-BO-LSTM 2000 0.65 268 0.38 

VRT 2000 0.30 375 0.51 

3D-CNN 2000 0.29 305 0.49 

WA 2000 0.31 229 0.27 

Standard LSTM 2000 0.34 243 0.32 

 

research method was the highest, at 0.982, while the 

AUC values of the VRT method, 3D-CNN method, and 

WA method corresponded to 0.962, 0.954, and 0.908, 

respectively. The proposed feature variable selection 

method can effectively improve the performance of the 

final detection method, and the overall performance of 

the research method is also the best. The comparison of 

classification performance results of different methods is 

shown in Figure 10. 

Figures 10 (a) -10 (d) show the confusion matrix 

results of the IRF-HTID-BO-LSTM method, VRT 

method, 3D-CNN method, and WA method, respectively. 

In Figure 10, the research method had the largest number 

of positive samples, which meant that the method 

identified the largest number of traffic incident samples. 

The WA method had the smallest positive class positive 

samples, indicating that its classification performance 

was the worst among mainstream methods. In summary, 

many indicators of the research method are superior to 

other mainstream algorithms, and the comprehensive 

performance and classification performance are the best, 

indicating that the feature selection and grading model 

can effectively improve the performance of the method. 

To more accurately quantify the performance effects of 

different methods, statistical tests are introduced to 

explore the differences between each method. Paired t-

tests are used to analyze the classification effects of 

different methods, and the results are shown in Table 5. 

From Table 5, the research method had extremely 

significant statistical significance compared to other 

benchmark models on sensitivity and specificity. The 

research method has a certain degree of reliability and 

lays a good foundation for subsequent practical 

applications. To test the robustness of the data set used in 

the study, k-fold cross validation is used to analyze 

different methods. The specific process is as follows. The 

data set is randomly divided into K equally sized subsets 

to ensure that each subset is as similar as possible in data 

distribution. Then, one subset is selected as the test set, 

and the remaining subsets are merged as the training set. 

Finally, the model is trained on the training set, and its 

performance is evaluated on the test set. The accuracy of 
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the study is analyzed, and the results are shown in Table 

6. 

Table 6 shows that the accuracy performance from 

high to low is IRF-HTID-BO-LSTM, Standard LSTM, 

WA, VRT, and 3D-CNN. The accuracy of the research 

method is higher than other methods, which also indicates 

that the data set used in the study has stability and 

reliability. 

4.2 Application effect analysis 

To explore the effectiveness of the research method in 

practical applications, this study takes the traffic 

conditions of ordinary provincial highways as an 

example. The annual report data provided by Ningxia 

Highway Management Center in 2022 is imported into 

the research method. The graph analysis function in 

geographic information system is used to identify and 

mark key or abnormal road sections that exceed the 

indicator grading and cause abnormal traffic volume. 

Taking the Haitian Highway (western section of Ningxia) 

as an example, the key or abnormal point road section 

annotations obtained are shown in Figure 11. 

From Figure 11, in the practical application of the 

research method, there were nine abnormal points 

detected in the Haitian line section, and the affected range 

of the abnormal point road section was relatively long. In 

addition, when the flat curve was too short, traffic 

conditions were more affected by the structure of the flat 

curve. In practical applications, the research method can 

be combined with the relevant functions of geographic 

information systems to visually display and label 

abnormal sections of mountainous highways, and timely 

feedback to relevant departments for management. The 

specific data results of the abnormal points in the Haitian 

section are displayed in Table 7. 

 

 

Figure 11: Mark and display map of key or abnormal points of Haitian highway (West Ningxia Section). 

 

Table 7: The specific data results of the anomaly section of the Haitian section. 

Road section name Section number Section length of flat curve /m Standardized_residuals 

Shapotou Unity Bridge G338640521 10.59538775 2.952860532 

Gutang village, Zhongning G338640521 76.06553674 -2.620215777 

Zhongning East Hedong G338640521 31.59364867 -2.554101242 

Shapotou tourism new 

town 
G338640502 6.762924746 -2.488856025 

Shapotou tourist area G338640502 79.81748426 2.441351606 

Shapotou Yangtan east G338640502 81.97640697 2.340711859 

Kantang G338640502 283.6514657 2.306630542 

Shapo head meets the 

water 
G338640502 173.6766195 2.305995462 

Intersection of Yingshui 

Railway Station 
G338640502 9.164988211 -2.245316332 

Mengjia Bay East G338640502 90.77954661 2.234417005 

 

According to Table 7, in practical applications, 

specific road segment numbers and length information of 

flat curved road segments where traffic incidents occur 

can be obtained through the research method. The 

standard error range was within ±3. The above results 

suggest due to the fact that the VRT method and 3D-

CNN method may miss the traffic incident in some cases, 

while the WA method has significant problems in feature 

extraction or classification decision-making, resulting in 

the worst performance in traffic incident recognition. In 

summary, the research method still demonstrates good 

performance in practical applications, providing 

intelligent detection ideas for traffic incidents on 

mountainous highways and ensuring accurate detection of 

abnormal road sections even under complex road 

conditions. 

5 Discussion 
Mountainous highway terrain is complex, climate change, 

easy to appear traffic accidents. Intelligent traffic 

detection method can be based on real-time road 
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conditions, and timely detection and early warning of 

potential safety hazards, improving driving safety. 

Therefore, an index optimization method and a highway 

curve classification method for mountainous highway flat 

curve structure are proposed in this paper. The IRF 

algorithm is used to select characteristic variables. BO 

algorithm and LSTM are combined to obtain IRF-

HHTID-BO-LSTM algorithm. 
The research results show that when the number of 

features is 5, the classification accuracy of the research 

method is the highest 98.7%. According to the 

importance ranking of the feature variables, the final 

feature variable set can be determined as the product of 

the ratio of the measured value of the share corresponding 

to the upstream and downstream detectors, the difference 

of the share and the velocity difference. The same 

detector corresponds to the difference between the 

measured value of occupancy and the predicted value, the 

ratio of the predicted speed and the measured speed and 

the difference between the measured speed and the 

predicted value. Among them, the ratio of the measured 

occupancy corresponding to the upstream and 

downstream detectors is the highest because it can reflect 

the change of traffic flow between different detectors. It 

is a sensitive indicator of the change of traffic flow state. 

The product of occupancy rate difference and speed 

difference contains information from both dimensions of 

speed and occupancy rate, which can more 

comprehensively describe the dynamic changes of traffic 

flow. The above results are generated because the 

research method combines BO algorithm and LSTM 

algorithm to adjust hyper-parameters and process time 

series data. Therefore, the research method can learn the 

patterns in the data more effectively, while other 

mainstream algorithms lack the corresponding 

complexity when processing complex mountainous 

highway traffic incident data. 

The hyper-parameter sensitivity analysis results 

show that the accuracy results present a bell curve with 

the change of hyper-parameters. With the continuous 

increase of the node in the hidden layer and the batch 

size, the classification accuracy shows an initial increase 

followed by a decrease. Moreover, the number of nodes 

in the hidden layer has a relatively large impact on the 

classification accuracy. The performance of the research 

method is the best, which indicates that the research 

method has stability and robustness. The optimal hyper-

parameter combination is obtained as follows. The time 

step, batch size and number of hidden layer nodes are 5, 

64 and 256, respectively. The comparison of the detection 

performance and comprehensive performance results of 

different methods shows that the performance of other 

detection indicators is the best except for the FAR index 

of 1.82%. and the DR, MDT, CPI, accuracy and F1 are 

98.45%, 2.21%, 0.00159, 97.74% and 93.52%, 

respectively. In addition, its detection performance is 

obviously better than other benchmark models, but the 

computational efficiency of the research method is 

relatively high, and the corresponding MDT value is 3.1s. 

The research can obtain a smaller FAR by sacrificing 

certain DR and computational efficiency. In addition, the 

best performing method in related work is the intelligent 

transportation service framework integrating 

heterogeneous data sources, whose accuracy rate is only 

90%, because it is difficult to accurately analyze the road 

structure and traffic safety status of mountainous 

highways. Its subsequent management cannot get timely 

feedback. The comprehensive performance results show 

that the AUC values of the research method, VRT 

method, 3D-CNN method and WA method correspond to 

0.982, 0.962, 0.954 and 0.908, respectively. The higher 

AUC value of the research method indicates because it 

can effectively remove redundant information through the 

improved feature variable selection method, improving 

the overall effect of the detection method. 

In summary, the research method can still maintain a 

high comprehensive performance when facing complex 

mountainous highways. The effect is also excellent in 

practical application, but it sacrifices a certain degree of 

computational efficiency and has wrong classification. 

This may be due to the complexity and variability of 

mountain road traffic data. Therefore, in future, a more 

suitable model architecture for mountain road design can 

be selected according to the task characteristics, and the 

generalization ability of the model can be improved 

through data enhancement technology. 

6 Conclusion 
To reduce traffic accidents on mountainous highways and 

further enhance the ability of highways to maintain 

smooth traffic, an index optimization method for grading 

the structure of highway flat curves and a grading method 

for highway curve levels were designed. The IRF-HTID-

BO-LSTM method was proposed. The proposed grading 

model and traffic incident detection method achieved 

stable convergence with lower loss values on the training 

data set without exceeding 150 iterations. The optimal 

hyper-parameter combination optimized by the BO 

algorithm was as follows. The time step, batch size, and 

number of hidden layer nodes were 5, 64, and 256, 

respectively. The research method only had a high FAR 

value of 1.82%, while the performance of other detection 

indicators was the best. DR, MDT, CPI, accuracy, and F1 

value were 98.45%, 2.21%, 0.00159, 97.74%, and 

93.52%, respectively. The highest AUC value was 0.982. 

In practical applications, the research method accurately 

obtained the specific section numbers and length 

information of flat curved road segments where traffic 

incidents occurred, and the standard error range was 

within ±3. In summary, the research method can 

effectively classify and segment the curve line indicators 

of highway structures, establish the curve line grading 

indicator of mountainous highway structures, and ensure 

the rapid and accurate detection of traffic incidents on 

mountainous highways, providing a certain reference for 

the detection of other traffic incidents. However, there are 

still shortcomings in the research. For the analysis of 

highway structure, certain parameters may not be suitable 

for this study. For example, the results indicate that the 

speed variable has not reached the level of statistical 

significance. Therefore, in future research, the model can 
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be improved by introducing additional variables such as 

traffic intensity and lane occupancy rate. 

7 Funding statement 
This project was funded by National Key Research and 

Development Program of China (2023YFB4302701). 

References 
[1] A. Haydari, and Y. Yılmaz. “Deep reinforcement 

learning for intelligent transportation systems: A 

survey,” IEEE Transactions on Intelligent 

Transportation Systems, vol. 23, no. 1, pp. 11-32, 

2022, https://doi.org/10.1109/TITS.2020.3008612. 

[2] H. Zhao and A. Sharma. “Logistics distribution route 

optimization based on improved particle swarm 

optimization,” Informatica, vol. 47, no. 2, pp. 243-

251, 2023, https://doi.org/10.31449/inf.v47i2.4011. 

[3] S. Murrar, F. M. Alhaj, and M. Qutqut. “Machine 

learning algorithms for transportation mode 

prediction: A comparative analysis,” Informatica, 

vol. 48, no. 6, pp. 117-130, 2024, 

https://doi.org/10.31449/inf.v48i6.5234. 

[4] C. Li and Z. Mu. “Analysis platform of rail transit 

vehicle signal system based on data mining,” 

Informatica, vol. 47, no. 3, pp. 441-450, 2023, 

https://doi.org/10.31449/inf.v47i3.3942. 

[5] J. Hawkins, and K. N. Habib. “A multi-source data 

fusion framework for joint population, expenditure, 

and time use synthesis,” Transportation, vol. 50, no. 

4, pp. 1323-1346, 2023, 

https://doi.org/10.1007/s11116-022-10279-8. 

[6] H. Wang, L. Liao, W. Yi, and L. Zhen. 

“Transportation scheduling for modules used in 

modular integrated construction,” International 

Journal of Production Research, vol. 62, no. 11, pp. 

3918-3931, 2024, 

https://doi.org/10.1080/00207543.2023.2251602. 

[7] C. Zhao, X. Chang, T. Xie, H. Fujita, and J. Wu. 

“Unsupervised anomaly detection-based method of 

risk evaluation for road traffic accident,” Applied 

Intelligence, vol. 53, no. 1, pp. 369-384, 2023, 

https://doi.org/10.1007/s10489-022-03501-8. 

[8] S. Cafiso, C. D'Agostino, and M. Kiec. “Investigating 

safety performance of the SAFESTAR system for 

route-based curve treatment,” Reliability 

Engineering and System Safety, vol. 188, pp. 125-

132, 2019, 

https://doi.org/10.1016/j.ress.2019.03.028. 

[9] G. Ashley, O. A. Osman, S. Ishak, and J. Codjoe. 

“Investigating effect of driver-, vehicle-, and road-

related factors on location-specific crashes with 

naturalistic driving data,” Transportation Research 

Record, vol. 2673, no. 6, pp. 46-56, 2019, 

https://doi.org/10.1177/0361198119844461. 

[10] M. R. Fatmi, and M. A. Habib. “Modeling vehicle 

collision injury severity involving distracted driving: 

Assessing the effects of land use and built 

environment,” Transportation Research Record, vol. 

2673, no. 7, pp. 181-191, 2019, 

https://doi.org/10.1177/0361198119849060. 

[11] D. E. Monyo, H. J. Haule, A. E. Kitali, and T. 

Sando. “Are older drivers safe on interchanges? 

Analyzing driving errors causing crashes,” 

Transportation Research Record, vol. 2675, no. 12, 

pp. 635-649, 2021, 

https://doi.org/10.1177/03611981211031232. 

[12] S. B. Li, T. Sun, D. N. Cao, and. L. Zhang. “Incident 

detection method of expressway based on traffic 

flow simulation model,” Communications in 

Theoretical Physics, vol. 71, no. 4, pp. 468-474, 

2019, https://doi.org/10.1088/0253-6102/71/4/468. 

[13] X. Zhang, R. R. Souleyrette, E. Green, T. Wang, M. 

Chen, and P. Ross. “Collection, analysis, and 

reporting of kentucky traffic incident management 

performance,” Transportation Research Record, vol. 

2675, no. 9, pp. 167-181, 2021, 

https://doi.org/10.1177/03611981211001077. 

[14] P. H. L. Rettore, B. P. Santos, R. R. F. Lopes, G. 

Maia, L. A. Villas, and A. A. F. Loureiro. “Road 

data enrichment framework based on heterogeneous 

data fusion for ITS,” IEEE Transactions on 

Intelligent Transportation Systems, vol. 21, no. 4, 

pp. 1751-1766, 2020, 

https://doi.org/10.1109/TITS.2020.2971111. 

[15] M. Won. “Outlier analysis to improve the 

performance of an incident duration estimation and 

incident management system,” Transportation 

Research Record, vol. 2674, no. 5, pp. 486-497, 

2020, https://doi.org/10.1177/0361198120916472. 

[16] M. Azari, A. Paydar, FB. Eizizadeh, and V. G. 

Hasanlou. “A GIS-based approach for accident 

hotspots mapping in mountain roads using seasonal 

and geometric indicators,” Applied Geomatics, vol. 

15, no. 1, pp. 127-139, 2023, 

https://doi.org/10.1007/s12518-023-00490-2. 

[17] C. Y. Lin, Y. C. Lai, S. W. Wu, F. C. Mo, and C. Y. 

Lin. “Assessment of potential sediment disasters and 

resilience management of mountain roads using 

environmental indicators,” Natural Hazards, vol. 

111, no. 2, pp. 1951-1975, 2022, 

https://doi.org/0.1007/s11069-021-05126-5. 

[18] H. Duan, and Y. Song. “Grey prediction model 

based on Euler equations and its application in 

highway short-term traffic flow,” Nonlinear 

Dynamics, vol. 112, no. 12, pp. 10191-10214, 2024, 

https://doi.org/10.1007/s11071-024-09611-x. 

[19] S. T. Zheng, R. Jiang, B. Jia, J. Tian, and Z. Gao. 

“Impact of stochasticity on traffic flow dynamics in 

macroscopic continuum models,” Transportation 

Research Record, vol. 2674, no. 10, pp. 690-704, 

2020, https://doi.org/10.1177/0361198120937704. 

[20] Y. Liu, C. Lyu, X. Liu, and Z. Liu, “Automatic 

feature engineering for bus passenger flow 

prediction based on modular convolutional neural 

network,” IEEE Transactions on Intelligent 

Transportation Systems, vol. 22, no. 4, pp. 2349-

2358, 2021, 

https://doi.org/10.1109/TITS.2020.3004254. 



206 Informatica 49 (2025) 189–206 X. Gu et al. 

[21] A. A. Chaudhari, K. K. Srinivasan, B. R. Chilukuri, 

M. Treiber, and O. Okhrin. “Calibrating 

Wiedemann-99 model parameters to trajectory data 

of mixed vehicular traffic,” Transportation Research 

Record, vol. 2676, no. 1, pp. 718-735, 2022, 

https://doi.org/10.1177/03611981211037543. 

[22] T. V. Geetha, A. J. Deepa, and M. M. Linda. “Deep 

learning method for efficient cloud IDS utilizing 

combined behavior and flow-based features,” 

Applied Intelligence, vol. 54, no. 8, pp. 6738-6759, 

2024, https://doi.org/10.1007/s10489-024-05505-y. 

[23] M. Hasanvand, M. Nooshyar, E. Moharamkhani, and 

A. Selyari. “Machine learning methodology for 

identifying vehicles using image processing,” 

Artificial Intelligence and Applications, vol. 1, no. 

3, pp. 170-178, 2023, 

https://doi.org/10.47852/bonviewAIA3202833. 

[24] H. Mokayed, T. Z. Quan, L. Alkhaled, and V. 

Sivakumar “Real-time human detection and 

counting system using deep learning computer 

vision techniques,” Artificial Intelligence and 

Applications, vol. 1, no. 4, pp. 221-229, 2023, 

https://doi.org/10.47852/bonviewAIA2202391. 

[25] J. Purohit, and R. Dave. “Leveraging deep learning 

techniques to obtain efficacious segmentation 

results,” Archives of Advanced Engineering 

Science, vol. 1, no. 1, pp. 11-26, 2023, 

https://doi.org/10.47852/bonviewAAES32021220. 

[26] I. Salman and J. Vomlel. “Learning the structure of 

bayesian networks from incomplete data using a 

mixture model,” Informatica, vol. 47, no. 1, pp. 81-

94, 2023, https://doi.org/10.31449/inf.v47i1.4497. 

[27] G. S. Ohannesian and E. J. Harfash. “Epileptic 

seizures detection from EEG recordings based on a 

hybrid system of gaussian mixture model and 

random forest classifier,” Informatica, vol. 46, no. 6, 

pp. 105-116, 2022, 

https://doi.org/10.31449/inf.v46i6.4203. 

[28] C. Sivanandam, V. M. Perumal, and J. Mohan. “A 

novel light GBM-optimized long short-term 

memory for enhancing quality and security in web 

service recommendation system,” Journal of 

Supercomputing, vol. 80, no. 2, pp. 2428-2460, 

2024, https://doi.org/10.1007/s11227-023-05552-1. 

[29] J. Wu, J. Tang, M. Zhang, J. Di, L. Hu, X. Wu, G. 

Liu, and J. Zhao. “PredictionNet: A long short-term 

memory-based attention network for atmospheric 

turbulence prediction in adaptive optics,” Applied 

Optics, vol. 61, no. 13, pp. 3687-3694, 2022, 

https://doi.org/10.1364/AO.453929. 

[30] W. Yang, W. Chang, Z. Song, F. Niu, X. Wang, and 

Y. Zhang. “Denoising odontocete echolocation 

clicks using a hybrid model with convolutional 

neural network and long short-term memory 

network,” Journal of the Acoustical Society of 

America, vol. 154, no. 2, pp. 938-947, 2023, 

https://doi.org/10.1121/10.0020560. 

 

 

https://doi.org/10.1121/10.0020560.

