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To improve the control precision and stability of the drying process, this work investigates a drying 

process control model based on a Back Propagation Neural Network (BPNN). The model includes a 

generative adversarial network framework, and combines the discriminator and generator structure of 

BPNN, optimizing their respective loss functions. It aims to solve the problem of insufficient sample space 

in the process parameters of the drying machine. The discriminator receives 7 key process parameters 

and uses a three-layer fully connected network for processing. The generator generates fake samples 

based on 7 process parameters. The model's performance is validated through experiments, including fit 

analysis of the generated results and the model's reliability analysis. The results show that the composite 

R² value of the data generation model reaches 0.93915 in the fit analysis. This consistency validates the 

model's ability to accurately fit the global data distribution, reflecting its generalization ability. The mean 

square error and mean absolute error are 0.275 and 0.185 respectively, which are better than other 

models, further verifying the model's performance. Additionally, significance analysis reveals that the H 

values of the process parameters in the datasets generated by the data generation model and the original 

datasets are all 0, with p-values greater than 0.05. This indicates no significant statistical difference 

between the two, confirming the reliability of the data generation model in filling the insufficient sample 

space. It suggests that the model can effectively enhance the completeness of the dataset without affecting 

the data distribution characteristics. The findings of this work provide theoretical and practical guidance 

for optimizing control in the drying process, contributing to improved control precision and stability in 

industrial drying operations. 

Povzetek: Model za nadzor sušenja temelji na nevronski mreži s povratnim razširjanjem (BPNN) in 

vključuje generativni nasprotni okvir in združuje strukture diskriminatorja in generatorja BPNN za 

reševanje problema nezadostnega vzorčnega prostora. Rezultati kažejo, da model učinkovito povečuje 

nabor podatkov, ne da bi pri tem vplival na značilnosti porazdelitve podatkov. 

 

1 Introduction 
The drying process is one of the key steps in tobacco 

processing, and its control quality directly impacts the 

flavor and quality of the final product. Parameters such as 

temperature and humidity during the drying process must 

be precisely controlled to ensure that the tobacco leaves 

reach the desired moisture content and optimal physical 

properties [1,2]. However, due to the nonlinear and time-

varying characteristics of the drying process, coupled with 

the complex environment in industrial production, 

traditional control methods, such as Proportional-Integral-

Derivative (PID) control based on experience, often fail to 

achieve the desired results [3-5]. This makes achieving 

precise control of the drying process a pressing issue 

within the industry. 

With the development of artificial intelligence 

technology, particularly the widespread application of 

neural networks in pattern recognition and process control, 

researchers have begun to explore their use in drying 

control [6]. The Back Propagation Neural Network 

(BPNN), a classic feedforward neural network, has been 

widely used in modeling and controlling complex 

industrial processes due to its powerful nonlinear mapping 

capabilities and adaptability [7,8]. However, the 

performance of neural network models depends on a large 

amount of high-quality training data. In actual production, 

due to the high cost of data collection or frequent changes 

in production batches, it is often difficult to obtain 

sufficient sample data. This limits the further application 

of neural network models in drying control [9,10]. 

Therefore, solving the problem of insufficient data 

samples has become the key to improving the neural 

networks' application effect. 

Generative models like the Generative Adversarial 

Network (GAN) have gained widespread attention in the 

data augmentation field to overcome the issue of 

insufficient samples. Although these models have 

achieved remarkable results in areas such as image 

processing, their application in industrial process control 

is still in the exploratory stage. Specifically, in drying 
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control, generating high-quality synthetic process 

parameter data remains a challenging research topic. 

Therefore, this work constructs a BPNN-based data 

generation model to address the insufficient sample issues 

in the drying process control. This model combines the 

BPNN's generator and discriminator structures to expand 

the training sample space by generating high-quality 

synthetic data, thereby improving the drying control 

model's performance. 

The main contributions of this work are as follows: 

(1) A data generation model for insufficient sample 

space of process parameters based on BPNN is proposed. 

By generating high-quality synthetic data, the model 

expands the training sample space, effectively solving the 

problem of data scarcity in drying process control. 

(2) A generator and discriminator model based on 

BPNN is designed and optimized, significantly improving 

the accuracy and reliability of the generated data through 

detailed analysis of their network structures and 

optimization strategies. 

(3) The effectiveness of the proposed model is 

validated through experiments, demonstrating its 

remarkable advantages in handling the under-sampling 

problem in the drying process. This provides a novel 

solution for the intelligent control of industrial processes. 

2 Related work 
In the field of drying control, the stability and quality of 

the drying process directly influence the flavor and quality 

of tobacco products. In recent years, more research has 

focused on exploring the application of intelligent control 

methods in the drying process. Mu et al. proposed an 

innovative humidity prediction method. This model 

transformed raw data into image data and used a 

multilayer convolutional neural network (CNN) for real-

time prediction, successfully addressing the delay issues 

in traditional detection methods. Experimental results 

demonstrated that this method effectively predicted 

humidity and optimized the production process using real 

production data [11]. Furthermore, Odabas et al. 

introduced a correlated color temperature-based method to 

determine the optimal drying time for tobacco leaves. 

They found that the 17th day of drying yielded the best 

quality, with a correlated color temperature of 3000 K and 

a quality grade of 100% [12]. This method effectively 

guided the tobacco leaf drying process to ensure product 

quality. Similarly, Li et al. examined the relationship 

between thermal energy consumption and process 

parameters in tobacco drying using statistical analysis and 

machine learning. Their findings showed that reducing the 

main steam temperature significantly lowered energy 

consumption while optimizing other equipment 

parameters further improved energy efficiency [13]. This 

research provided valuable insights for green upgrading 

and energy conservation in tobacco manufacturing. 

As research progresses and data scarcity in process 

control persists, generating high-quality synthetic data to 

improve model performance in under-sampled 

environments has become a hot topic. Zhou and Chiam 

proposed a new synthetic data generation strategy for 

knowledge distillation in regression tasks without original 

training data. By optimizing the bounded difference 

between student and teacher models, this strategy 

significantly improved the student model's performance, 

as confirmed by experimental results [14]. Barbierato et al. 

used probabilistic networks and structural equation 

modeling to address data bias, proposing a new synthetic 

dataset generation method. Validated on simple and loan 

approval datasets, this method effectively regulated bias 

and fairness with fewer parameters [15]. This method 

provided a powerful tool for developing and validating 

fair decision algorithms. Moreover, Zhang and Mikelsons 

introduced a novel sensitivity-guided iterative parameter 

identification and data generation algorithm, replacing 

traditional manual intervention. Using BayesFlow for 

parameter identification and a spatial variational 

autoencoder for data generation, the method remarkably 

accelerated the model calibration process. Experiments on 

a vehicle cabin thermal model showed that this method 

could greatly improve calibration accuracy and reduce 

calibration time from over a week to just one day [16]. 

This method effectively improved model calibration 

accuracy. The above studies have been summarized and 

compared with the method proposed in this work, 

resulting in Table 1: 
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In Table 1, existing methods generally exhibit several 

shortcomings. First, many methods are primarily designed 

for simplified datasets and single-task scenarios, lacking 

adaptability to complex industrial processes. Second, 

current methods often fail to ensure the interpretability of 

generated data and its high consistency with actual process 

parameters, resulting in significant discrepancies between 

generated and real data. Third, most synthetic data 

generation methods do not adequately consider the 

dynamic changes and multivariate characteristics of the 

drying process, leading to poor scalability in practical 

applications. Therefore, this work proposes a data 

generation model based on BPNN to handle the 

insufficient sample space of drying machine process 

parameters. By generating high-quality synthetic data, the 

model aims to expand the training sample space and 

improve the application performance of BPNN in the 

drying process. Compared with existing methods, the 

proposed model emphasizes practical applicability while 

focusing on the interpretability of the generated data and 

its close alignment with actual process parameters. 

Furthermore, the proposed model effectively handles 

complex, multivariate drying process data, thus 

overcoming the limitations of current methods in 

multidimensional data generation and process control. 

3 The BPNN-based data generation 

model for drying machine process 

parameters with insufficient sample 

space 
Accurate process parameter data is crucial for precise 

drying process control [17]. However, in practice, 

insufficient sample data often presents challenges for 

model development. To address this issue and enhance the 

application of BPNN in drying control, this work proposes 

a BPNN-based data generation model. The model aims to 

improve control accuracy in the drying process by 

generating high-quality synthetic data to expand the 

training sample space. Unlike traditional methods, this 

work focuses on solving data scarcity issues through 

advanced data generation techniques, providing a novel 

solution for intelligent drying process control. This section 

outlines the proposed data generation model's overall 

structure and key components. 

3.1 Overall structure of the data 

generation model 

GAN is a powerful tool for data generation through 

adversarial training. Here, the GAN's basic framework is 

used to construct the data generation model, producing 

high-quality drying machine process parameter data. The 

model's overall workflow is displayed in Figure 1 [18,19]. 
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Figure 1: Workflow of the data generation model for drying machine process parameter 

 

The workflow can be broken down into the following 

key steps: 

(1) Data Initialization: In the initial phase of the model, 

a subset of samples is first extracted from the actual drying 

process dataset for subsequent training of the generator 

and discriminator. Data initialization involves randomly 

initializing the model parameters to start the training 

process. Additionally, a preprocessing step is applied to 

enhance training efficiency and data consistency, which 

often includes normalization. Normalization adjusts the 

values of each input data feature to a uniform range, 

typically [0, 1] or [-1, 1], which accelerates the 

convergence of model training and improves training 

performance. 

(2) Generating Random Variables: The primary goal 

of the generator is to learn how to map random noise 

vectors into data samples that possess the characteristics 

of real samples. During this process, the generator 

receives a random noise vector as input, typically sampled 

from a Gaussian or uniform distribution. It then processes 

these random noise inputs through a neural network to 

generate new data samples. The objective is for these 

generated samples to exhibit distributional characteristics 

similar to those of the real data. The training goal of the 

generator is to progressively optimize its parameters to 

produce samples increasingly close to real data. 

(3) Sample Mixing: To train the discriminator, the 

generated samples are mixed with real samples to form a 

training dataset. The discriminator's task is to distinguish 

which samples are fake, generated by the generator, and 

which come from real data. At this stage, the generator and 

the discriminator are adversarial. The generator aims to 

produce samples that the discriminator classifies as real, 

while the discriminator strives to identify the fake samples 

accurately. The mixed dataset includes real and generated 

fake samples for the discriminator's training. 

(4) Discriminator Output Probability: The 

discriminator processes the input samples through a neural 

network and outputs a scalar probability value, 

representing the probability that a given sample is real. 

This probability ranges from 0 to 1. Ideally, the generator 

aims for its generated samples to yield probability values 

close to 1, meaning the discriminator misclassifies them 

as real samples. Conversely, for real data, the 

discriminator strives to output probabilities close to 0. The 

generator's objective is to make the discriminator classify 

its generated samples as real, resulting in probability 

values near 1. 

(5) Training Objective Adjustment and Optimization: 

Based on the discriminator's output probabilities, the 

training objectives of both the generator and the 

discriminator are continuously adjusted. During each 

training iteration, if the discriminator's judgment on the 

generated samples approaches 50% (i.e., output 

probability near 0.5), indicating that the generated and real 

samples are nearly indistinguishable. In this case, the 

generator performs well and can continue optimization 

with its current parameters. However, if the 
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discriminator's output probabilities deviate significantly 

from 0.5, it implies poor sample quality from the generator. 

The discriminator's loss is then backpropagated to the 

generator, prompting parameter adjustments to enhance its 

performance. Through this adversarial training process, 

the generator and discriminator improve iteratively, with 

the generator progressively learning to produce more 

realistic data samples. 

The above describes the detailed workflow of the data 

generation model for the drying machine process 

parameters illustrated in Figure 1. Each step aims to 

optimize the generator and discriminator through 

adversarial training, ultimately enabling the generated 

samples to closely resemble real data. Based on the above 

data processing in the generation model, the modeling 

process of the data generation model is obtained, as 

suggested in Figure 2.
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Figure 2: Modeling process of the data generation model for drying machine process parameters 

 

3.2 BPNN-based discriminator and 

generator model network structure 

In the data generation model, the design of the 

discriminator and generator is crucial for the quality and 

accuracy of the generated data. The discriminator 

evaluates whether the generated data matches the real data 

distribution, while the generator aims to produce fake data 

that aligns with the real distribution. 

The main function of the discriminator is to perform 

binary classification between the fake samples generated 

by the generator and the real samples. Its input consists of 

a mixed dataset of fake samples generated by the generator 

and real samples of drying machine process parameters, 

which exhibit nonlinear relationships among the data 

groups. This dataset includes seven key parameters 

influencing the moisture content of the tobacco leaves 

during the drying process. They are the vent valve opening, 

drum wall temperature, moisture content of dried leaves, 

hot air temperature, steam valve opening of the drum wall, 

steam valve opening of the circulating air, and moisture 

content of cooled leaves [20-22]. The output value is a 

probability scalar indicating the likelihood that the 

generated fake sample data are classified as real. Due to 

the complex nonlinear relationships between these 

samples, the discriminator needs to have certain nonlinear 

mapping capabilities. Given the dataset's relatively low 

dimensionality and limited features, a three-layer fully 

connected BPNN is used as the discriminator. This 

network structure effectively handles simple binary 

classification tasks, performing both linear and nonlinear 

features, and ensuring the generated data meets accuracy 

requirements. 

The generator's goal is to produce fake data that are 

consistent with the real data distribution. To achieve this, 

the generator's network structure must formalize the 

characteristics of the fake dataset it generates and possess 

strong nonlinear learning capabilities. The input and 

output data of the generator are analyzed. Its input consists 

of randomly generated noise data with the same number 

as the real dataset, and its output is the data processed by 

the generator network to be closer to the real values. Given 

that the input data is one-dimensional and relatively 

simple, a three-layer fully connected BPNN is employed 

for the generator. 

The drying machine process parameter data have 

highly nonlinear characteristics. The BPNN's advantage 

lies in its strong nonlinear mapping capability. This allows 

it to automatically adjust structural parameters during 

training to establish complex input-output relationships 

without requiring an understanding of their intrinsic 

connections [23,24]. This makes it particularly well-suited 

for handling the nonlinear characteristics and intricate data 

relationships in drying machine process parameters. The 

three-layer network structure provides sufficient nonlinear 

representation capacity while avoiding overcomplicating 

the model. The design of a three-layer fully connected 

BPNN strikes a reasonable balance between 

computational efficiency and model complexity. 

Compared with deeper networks, the three-layer network 

has fewer parameters, reducing the risk of overfitting 

during training. This is particularly advantageous in the 

context of drying control, where the number of data 

samples is limited, as overly deep network structures may 

compromise the model's generalization ability. 

Additionally, the three-layer structure is relatively simple, 

efficiently performing linear and nonlinear mappings. 

Therefore, a three-layer fully connected BPNN is 

considered an effective choice for this work's tasks. Figure 

3 presents the network structure of the discriminator and 

generator models based on BPNN. 
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Figure 3: Diagram of the Discriminator and Generator Model Network Structure (a: Discriminator model structure; b: 

Generator model structure) 

The pseudocode for the entire model is presented in 

Figure 4. 
# Initialize the Generator and Discriminator

Initialize Generator

Initialize Discriminator

# Define the optimizers and loss functions

Define Generator Optimizer (e.g., SGD or Adam)

Define Discriminator Optimizer (e.g., SGD or Adam)

Define Generator Loss Function (e.g., Binary Cross Entropy)

Define Discriminator Loss Function (e.g., Binary Cross Entropy)

# Training process

for epoch in range(num_epochs):

    for batch in range(num_batches):

        # Get a batch of real samples

        Real_Samples = Get_Real_Samples(batch_size)

        

        # Generate fake samples

        Noise = Generate_Noise(batch_size)

        Fake_Samples = Generator(Noise)

        

        # Train the Discriminator

        # The Discriminator's goal is to label real samples as 1 and fake samples as 0

        Discriminator_Loss = Calculate_Discriminator_Loss(Real_Samples, Fake_Samples)

        Update_Discriminator(Discriminator_Loss)

        

        # Train the Generator

        # The Generator's goal is to make the Discriminator classify fake samples as real (label 1)

        Generator_Loss = Calculate_Generator_Loss(Fake_Samples)

        Update_Generator(Generator_Loss)

        

    # Output loss values for each epoch

    print("Epoch:", epoch, "Discriminator Loss:", Discriminator_Loss, "Generator Loss:", 

Generator_Loss)

# Save the trained models

Save_Model(Generator, "trained_generator_model.pth")

Save_Model(Discriminator, "trained_discriminator_model.pth")  
Figure 4: Pseudocode for model training 
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The carefully designed network structures of the 

discriminator and generator enable efficient data 

generation and classification, forming a robust foundation 

for modeling drying process parameters. 

3.3 Optimization of the data 

generation model 

Due to the intra-group data correlations and nonlinear 

characteristics between groups in the drying machine 

process parameter data with insufficient sample space, the 

original GAN model's loss function is not suitable for the 

subject of this work. Thus, optimizing the loss functions 

of both the discriminator and generator is crucial. 

During the data generation model's operation, the 

discriminator and generator models are trained alternately. 

After each generator iteration, the discriminator model is 

optimized to achieve overall model improvement. The 

optimization goal of the model is to maximize the ability 

of the discriminator, which in turn drives the generator to 

produce more realistic data. 

In the process of the data generation model, the 

discriminator and generator models are trained alternately. 

After each iteration of the generative model, the 

discriminator model is optimized to achieve the overall 

optimization of the model. The optimization process of the 

model can be expressed by equation (1): 

min
𝑆

max
𝑃

𝐻(𝑃, 𝑆) = 𝔼𝑥−𝑧0
[log 𝑃(𝑥)] + 𝔼𝑐−𝑧𝑐

[log(1 −

𝑃(𝑆(𝑐)))]   (1) 

𝑥  represents the real samples; 𝑐  is the samples 

produced by the generator; 𝑧0 refers to the distribution of 

real samples; 𝑧𝑐  stands for the distribution of samples 

generated by the generator; 𝑃(𝑥)  and 𝑃(𝑆(𝑐))  indicate 

the probability that the discriminator model classifies the 

real and generated samples as true; 𝔼  denotes the 

expectation symbol; 𝔼𝑥−𝑧0
 means the expectation for real 

samples x; 𝔼𝑐−𝑧𝑐
 represents the expectation for generated 

samples c. 

The loss function for the discriminator enhances its 

ability to distinguish between real and generated samples 

by minimizing the probability of generated samples being 

classified as real. 

In contrast, the generator optimizes the quality of its 

output by maximizing the discriminator's probability of 

misclassifying fake samples. The generator’s goal is to 

produce fake samples that achieve the highest possible 

score from the discriminator, effectively deceiving it into 

classifying the fake samples as real. Thus, the generator's 

loss function is formulated as follows: 

𝐹𝑆 = −
1

𝑚
∑ log(𝑃(𝑆(𝑐𝑖)))𝑚

𝑖=1   (2) 

m represents the number of samples; 𝑐𝑖  represents the 

ith generated sample; 𝑃(𝑆(𝑐𝑖))  denotes the probability 

that the discriminator predicts the generated sample 𝑐𝑖 as 

a real sample. The generator aims to minimize this loss 

function, ensuring its fake samples are increasingly likely 

to be judged as real by the discriminator. The 

discriminator's primary task is to distinguish real data 

from generated data, and its loss function is designed to 

accurately evaluate the similarity between generated and 

real samples. In the original GAN model, the loss function 

is typically based on cross-entropy loss, calculating the 

binary classification probability between generated and 

real samples. The loss function for the discriminator reads: 

𝐹𝑃 = −
1

𝑚
∑ log 𝑃(𝑥𝑖)𝑚

𝑖=1 −
1

𝑚
∑ log(1 − 𝑃(𝑆(𝑐𝑖)))𝑚

𝑖=1  (3) 

For the discriminator in the data generation model, an 

input x without a label is obtained. Since there are no 

labels and it is unknown whether the input is a real sample 

or a generated fake sample, the contribution 𝑄(𝑥) to the 

loss function of the data generation model is given by: 

𝑄(𝑥) = −𝑧0(𝑥) log 𝑃(𝑥) − 𝑧𝑐(𝑥) log[ 1 − 𝑃(𝑥)] (4) 

𝑧0(𝑥) and 𝑧𝑐(𝑥) represent whether sample x belongs 

to the real data distribution 𝑧0  or the generated data 

distribution 𝑧𝑐, respectively; 𝑃(𝑥) denotes the probability 

assigned by the discriminator to sample x being real. By 

solving the derivative of 𝑄(𝑥) with respect to 𝑃(𝑥), the 

optimal decision condition for the discriminator is 

obtained: 

−
𝑧0(𝑥)

𝑃(𝑥)
+

𝑧𝑐(𝑥)

1−𝑃(𝑥)
= 0  (5) 

Further simplification, the optimal discriminator 

decision function is obtained: 

𝑃∗(𝑥) =
𝑧0(𝑥)

𝑧0(𝑥)+𝑧𝑐(𝑥)
  (6) 

Analyzing the optimal discriminator, if 𝑧0(𝑥) = 0 

and 𝑧𝑐(𝑥) ≠ 0 , the optimal discriminator sets the 

probability to 0, indicating that the discriminator 

incorrectly classifies real samples as fake. If 𝑧0(𝑥) =
𝑧𝑐(𝑥), the discriminator considers the sample to have a 

50% chance of being either a real or fake sample, resulting 

in an output of 0.5.  

To further improve model performance and address 

the vanishing gradient problem during generator training, 

Jensen-Shannon (JS) divergence is introduced to measure 

the similarity between the real distribution N and the 

generated distribution W. JS divergence effectively 

quantifies the difference between two probability 

distributions and is defined as: 

{
𝐾𝐿(𝑧1‖𝑧2) = 𝐸𝑥−𝑧1

log
𝑧1

𝑧2

𝐽𝑆(𝑧1‖𝑧2) =
1

2
𝐾𝐿 (𝑧1 ‖

𝑧1+𝑧2

2
) +

1

2
𝐾𝐿 (𝑧2 ‖

𝑧1+𝑧2

2
)
 (7) 

𝐾𝐿 represents the Kullback-Leibler Divergence. By 

applying JS divergence, the optimized form of the 

generator's loss function is derived: 

min
𝑆

max
𝑃

𝐻(𝑃, 𝑆) = 2𝐽𝑆(𝑧0‖𝑧𝑐) − 2 log 2 (8) 

This improvement not only mitigates the vanishing 

gradient problem for the generator but also enhances the 

similarity between the distributions of the generated and 

real samples.  

To address the vanishing gradient issue, the loss 

function is further simplified by removing the logarithmic 

operation. The optimized loss functions for the 

discriminator and generator are as follows: 

{
𝐹𝑃 = −

1

𝑚
∑ 𝑃(𝑥𝑖)𝑚

𝑖=1 −
1

𝑚
∑ [1 − 𝑃(𝑆(𝑐𝑖))]𝑚

𝑖=1

𝐹𝑆 = −
1

𝑚
∑ 𝑃(𝑆(𝑐𝑖))𝑚

𝑖=1

 (9) 

These optimization measures are aimed at enhancing 

the training effectiveness of the generator and 

discriminator, overcoming the gradient vanishing problem 
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in GAN, and ultimately generating higher-quality drying 

machine process parameter data. 

4 Model performance validation 

4.1 Experimental setup 

The model is trained and validated using the Matlab 

platform in this experiment. 

The dataset used in the experiment includes both real 

drying machine process parameter data and generated 

noise data. The real dataset comprises multiple samples of 

drying machine process parameters collected from actual 

operations, reflecting authentic conditions across various 

drying scenarios. Collecting these data involves gathering 

process parameters from a real production environment, 

followed by detailed annotation and processing. The 

generated noise data are produced by the generator 

network, to mimic the characteristics of the real data 

distribution. By inputting random noise into the generator, 

the network learns to generate samples similar to the real 

data, continuously optimizing the quality of the generated 

data. These noise data are used during training to 

challenge the real samples, driving the generator to 

produce data closely resembling the real samples. 

First, the real training samples are imported into the 

Matlab environment, and all of these real samples are 

labeled as "1" to represent positive samples. 

Simultaneously, the noise samples generated by the 

generator are labeled as "0" to denote negative samples. 

This labeling setup ensures a clear distinction between real 

and generated data, effectively training the discriminator 

and generator models. Table 2 provides the parameter 

settings for the data generation model used in the 

experiment: 

Table 2: Experimental parameter setting 

Model Parameter Name Value 

Discriminator 

The Number of Input 

Layer Neurons 
7 

The Number of Hidden 

Layer Neurons 
13 

The Number of Output 

Layer Neurons 
1 

Batch Size 62 

Initial Learning Rate 0.00001 

Optimizer 
SGD 

Optimizer 

Generator 

The Number of Input 

Layer Neurons 
7 

The Number of Hidden 

Layer Neurons 
14 

The Number of Output 

Layer Neurons 
7 

Batch Size 62 

Initial Learning Rate 0.00001 

Activation Function Sigmoid 

Overall Model Iterations 30000 

 

The input to the discriminator consists of seven key 

parameters from the drying machine process that primarily 

affect the moisture content of the tobacco leaves. Hence, 

the number of neurons in the input layer is 7, while the 

output is a probability value, so the output layer contains 

one neuron. The number of hidden layer neurons is 

determined based on the input and output layer neurons 

using equation (10): 

𝑍 = √𝑖 + 𝑗 + 𝑎   (10) 

i and j represent the number of input and output layer 

neurons; a refers to a constant in the range [0,10], set to 

a=10. Using this equation, the number of hidden layer 

neurons for the discriminator is calculated to be 13. Given 

that the dataset contains 309 highly nonlinear samples, 

conventional full-dataset and online learning approaches 

are not suitable. To improve training accuracy while 

maintaining reasonable training time, the batch size is 

appropriately reduced based on the full dataset. In this 

experiment, the 309 real samples are divided into five 

groups, setting the batch size to 62. This configuration 

retains sufficient data characteristics to effectively guide 

model optimization while avoiding overly large data 

inputs that could slow training or overburden 

computational resources, ensuring the efficiency of the 

training process. Due to the activation function of the 

hidden layer being Sigmoid, the initial setting of the 

learning rate requires a small value to meet the changing 

requirements of the learning rate. Therefore, the initial 

learning rate is set to 0.00001. 

The number of neurons in the input layer of the 

generator is determined by the number of input parameters. 

The input consists of the process parameters with missing 

data and the process parameters that are related to them, 

totaling seven process parameters. Therefore, the number 

of neurons in the input layer is 7. The number of neurons 

in the output layer corresponds to the number of generated 

samples. To ensure the accuracy of the generator’s 

learning, the output layer should have the same number of 

neurons as the input layer, hence the output layer also has 

7 neurons. Similarly, using the equation, the number of 

neurons in the generator's hidden layer is calculated to be 

14. The batch size of the generator is determined by the 

number of groups of input data. After excluding the 

samples with missing data, 310 valid samples are 

remaining. These valid samples are divided into 5 groups, 

with 62 samples per group, and the data are fed into the 

generator network. Consequently, the batch size for the 

generator is set to 62. The data preprocessing steps in the 

experiment include normalization to ensure that the values 

of each parameter are within a similar range. This helps to 

enhance the model's training effectiveness and 

convergence speed. All experimental data are 

standardized and split into training and testing sets in a 3:1 

ratio, ensuring the reliability and reproducibility of the 

model's training and validation results. 

In this work, the model may encounter overfitting 

issues. To prevent this, early stopping is employed to 

enhance the model's robustness and generalization ability. 

During training, the error on the validation set is 

monitored, and if the error no longer decreases over 

several consecutive training rounds, the training is stopped 

early to prevent overfitting on the training set. 
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4.2 Analysis of the fit of the data 

generation model's output 

Figure 5 shows the fit of the training set. 
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Figure 5: The fit of the data generation model on the 

training set 

 

Figure 5 reveals that the model exhibits an optimal fit. 

Specifically, the R² value reaches 0.93705, indicating that 

the generative model effectively captures the distribution 

characteristics of the sample data within the training set. 

An R² value approaching 1 suggests a high correlation 

between the generated and actual sample data within the 

training set, demonstrating that the model has accurately 

learned and replicated the features of the real data. 

Figure 6 displays the fit of the data generation model 

on the testing set. 
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Figure 6: The fit of the data generation model on the 

testing set 

 

The fit curve of the data generation model on the 

testing set, as shown in Figure 6, demonstrates that the 

model also performs exceptionally well on the testing data, 

with an R² value reaching 0.9434. This result indicates that 

the generative model can accurately replicate the 

distribution characteristics of real data, even when applied 

to previously unseen data, reflecting the model's strong 

generalization ability. 

Analyzing the model's fit across the training and 

testing sets provides an overall assessment of its 

performance on the entire dataset. Figure 7 depicts the 

results. 
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Figure 7: The overall fit of the data generation model 

 

Figure 7 shows the overall fit of the data generation 

model. The results demonstrate the model's robustness and 

generalizability across the entire dataset. By analyzing the 

training and testing sets, the model maintains a high fit 

accuracy across a broader sample space, achieving an R2 

value of 0.93915. This indicates that the model effectively 

captures patterns in the training data and extends these 

patterns when encountering unseen test data. As a result, 

the quality and authenticity of the generated samples are 

preserved. This consistency confirms the model's robust 

ability to fit the global data distribution, highlighting its 

generalization ability. 

4.3 Reliability analysis of the data 

generation model 

After completing the training, the data generation model 

is used to interpolate samples into the under-sampled 

space of the drying machine process parameters. To verify 

the reliability of the data generation model, a significance 

analysis is conducted comparing the interpolated new data 

with the original dataset. This aims to ensure that the 

interpolated samples are consistent with the original 

samples in data distribution. Specifically, the significance 

of seven process parameters is tested at a 0.05 significance 

level to determine whether the interpolated data can 

preserve the distribution characteristics of the original 

dataset. 

In the significance analysis, the null hypothesis is that 

the new and original datasets share the same data 

distribution at a significance level of 0.05. The H values 

and p-values for each process parameter are obtained by 

calculating the significance test parameters, as denoted in 

Figure 8. 
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Figure 8: Significance test of the data generation model 

 

In Figure 8, the H values for all process parameters 

are 0, and the p-values are greater than 0.05. There is 

insufficient evidence to reject the null hypothesis at the 

specified significance level. Therefore, it can be inferred 

that there is no statistically significant difference between 

the new and original datasets. Specifically, the 

significance test results for each process parameter 

demonstrate that the interpolated data statistically aligns 

with the original data's distribution. This outcome verifies 

the data generation model's reliability, showing that the 

generated interpolated values successfully learn and 

preserve the data distribution characteristics of the original 

sample space. Consequently, the data generation model is 

highly reliable in filling under-sampled spaces, effectively 

enhancing the dataset's completeness without altering its 

distribution characteristics. 

An ablation experiment is conducted to evaluate the 

effectiveness of the loss function optimization. Model-1 

represents the original model; Model-2 represents the 

model without optimization of the discriminator's loss 

function; Model-3 represents the model without 

optimization of the generator's loss function; Model-4 

represents the model with neither the discriminator nor the 

generator optimized. The performance is evaluated using 

the Root Mean Square Error (RMSE) and Mean Absolute 

Error (MAE) as metrics, and the results are indicated in 

Figure 9. 
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Figure 9: Results of the ablation experiment 

 

As observed from Figure 9, model optimization 

significantly improves the quality of generated data. 

Model-1 performs the best in terms of RMSE and MAE, 

with values of 0.275 and 0.185, respectively. The removal 

of optimization for the discriminator and generator loss 

functions results in a decrease in performance. In Model-

4, where neither the discriminator nor the generator's loss 

function is optimized, the performance is the worst, with 

RMSE and MAE values of 0.311 and 0.212, respectively. 

Overall, optimizing the loss functions leads to a significant 

improvement in model performance, particularly when 

both the discriminator and the generator are optimized 

simultaneously, which maximizes the precision of data 

generation. 

To further validate the effectiveness of the model, this 

work compares the proposed model with several 

traditional modeling methods for drying machine process 

parameters. These methods include Support Vector 

Machine (SVM), Random Forest (RF), and Multi-Layer 

Perceptron (MLP), among other classical machine 

learning models. The results are listed in Table 3. 

 

Table 3: Comparison of different models 

Model RMSE MAE 

The proposed model 0.275 0.185 

SVM 0.307 0.215 

RF 0.292 0.204 

MLP 0.285 0.198 

 

Table 3 shows that the proposed model outperforms 

the SVM, RF, and MLP models in terms of both RMSE 

and MAE. This indicates that the optimized BPNN model 

can better capture the complex nonlinear relationships in 

the drying process. It generates samples that are closer to 

real data, particularly demonstrating superior performance 

on the test set with strong generalization ability. 

In addition, to further evaluate the model's robustness 

and the repeatability of the results, cross-validation is 

conducted. By employing a 5-fold cross-validation 

method, the model undergoes multiple rounds of training 

and validation to reduce the possibility of overfitting and 

ensure the stability of the results. The cross-validation 

results reveal that the model's performance is consistent 

across all folds, with a standard deviation of the R² value 

of only 0.0025, further demonstrating the model's 

robustness and reliability under different data splits. 

4.4 Discussion 

In this work, the proposed BPNN-based data generation 

model for drying machine process parameters with 

insufficient sample space achieves promising results in the 

experiments. Specifically, the model's R² value on the 

training set is 0.9322, and on the test set, it is 0.9434. The 

combined R² value for the training and test sets reaches 

0.93915, indicating that the model has good generalization 

ability within the sample space. To compare the results of 

this work, the experimental outcomes are contrasted with 

existing data generation methods in the literature. Zhou 

and Chiam [14] proposed a synthetic data generation 

strategy for the MNIST regression task, with an MAE of 
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1.179 and an RMSE of 1.978, significantly outperforming 

traditional random sampling and generator methods. 

Although this method demonstrates significant 

performance in simpler tasks, its limitation lies in its 

primary applicability to simplified datasets and tasks. It 

has not been sufficiently validated for complex process 

control and high-dimensional data generation in multi-

variable scenarios. In contrast, the proposed method 

optimizes the generation of multi-dimensional, multi-

variable parameters in the drying process. The model 

achieves high R² values on the training and test sets, 

indicating strong adaptability to real process data. 

Barbierato et al. [15] proposed a synthetic dataset 

generation method for a simple dataset with six features, 

evaluating the impact of mutual information between the 

features. This method focuses on single-dimensional data 

generation and adjusting feature importance, making it 

suitable for relatively simple decision-making problems. 

Compared to this, the proposed model can generate more 

complex multi-dimensional data while considering the 

interdependencies among process parameters in the drying 

process, offering higher industrial application value. By 

validating the model's fitting accuracy across a broader 

sample space, the proposed model demonstrates better 

scalability and reliability than the method of Barbierato et 

al. Zhang and Mikelsons [16] presented a data generation 

algorithm. This algorithm performed well in calibration 

models, achieving a mean relative error rate of 1.62% for 

all parameter estimates and an MAE of 0.108°C for the 

calibration model's output. This method effectively 

improves calibration accuracy and reduces calibration 

time. However, its core focus is on model calibration, 

primarily applied to a few variables such as temperature, 

limiting its use in complex multi-variable drying control 

problems. In contrast, the proposed generation model 

demonstrates high fitting accuracy and handles multiple 

process parameters in the drying process. Moreover, 

significance analysis is conducted on the generated data, 

verifying its reliability and statistical consistency with the 

original data. This ensures the effectiveness and 

practicality of the generated data for more complex 

control tasks. 

Through comparison, it is evident that existing 

methods have achieved good results in simpler tasks or 

specific control scenarios. However, they often face 

challenges such as inadequate adaptability, poor 

interpretability, or a disconnect between generated data 

and actual process data when addressing multi-

dimensional, complex process data. The BPNN-based 

data generation model for drying machine process 

parameters with insufficient sample space proposed in this 

work effectively expands the training sample space. 

Meanwhile, it improves the generation quality of multi-

variable parameters and maintains high fitting accuracy 

across a broader sample space. Through comprehensive 

analysis of the training and test sets, the model 

demonstrates strong generalization ability and robustness. 

However, despite the strong performance of the 

proposed method in several aspects, there are still some 

limitations. First, although the proposed model performs 

well with existing process parameter data, its generation 

capabilities may be limited when facing entirely new or 

unseen process conditions. Particularly, in extreme or 

special process scenarios, the generated data may not fully 

reflect the details of the actual process. Therefore, future 

work could focus on enhancing the adaptability of the 

generation model to handle more variable and complex 

process parameter spaces. Second, despite improving the 

quality of generated data through optimization of the 

generator network structure, the interpretability of the data 

generation process remains a challenge. In practical 

applications, ensuring strong interpretability between the 

generated data and the process parameters in actual 

production remains a crucial area for future research. 

Overall, the proposed model has demonstrated good 

performance in enhancing the accuracy and stability of the 

drying process control. Compared to existing methods, the 

proposed model better accommodates the 

multidimensional and multivariable data generation 

requirements of the drying process, showing high fitting 

accuracy on both the training and testing datasets. 

Nevertheless, the generative model has certain limitations 

when dealing with extreme process conditions or special 

data requirements. Future research should focus on further 

optimizing the adaptability and interpretability of the data 

generation algorithm to better support drying control in 

actual production settings. 

In practical applications, although the proposed 

method has yielded favorable results in generating drying 

process parameter data, significant differences in the 

process characteristics of different industrial processes 

may exist. For example, some industrial processes may 

involve more complex nonlinear relationships or 

multivariable interactions, which could increase the 

difficulty of model training. In these cases, further 

adjustments to the network structure of the generator and 

discriminator may be necessary to accommodate specific 

data distributions and process requirements. Additionally, 

data distributions under different operating conditions 

may vary. Factors such as changes in the production 

environment, equipment aging, and raw material 

differences can all affect the data generation and 

prediction performance. The model's stability and 

robustness may be tested under these variations, making it 

critical to adjust model parameters in response to new 

operating conditions to maintain the quality of generated 

samples. In this regard, adaptive training strategies or 

online learning methods may need to be introduced to 

allow the generative model to adapt to environmental 

changes in real-time. Moreover, the quality and quantity 

of the data are also significant factors affecting the model's 

generalization ability. The data generation model used in 

this work assumes that the input data is of high quality and 

sufficiently diverse. However, in some industrial 

scenarios, data may be missing, noisy, or incomplete, 

which can affect model training and prediction outcomes. 

Therefore, additional denoising and data supplementation 

strategies may need to be incorporated during the data 

preprocessing stage to ensure data quality and improve the 

model's generalization ability. In conclusion, although the 

proposed model performs well in drying control, it still 

requires appropriate adjustments and optimization when 
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applied to other industrial processes or under different 

operating conditions. 

5 Conclusion 
This work proposes a BPNN-based data generation model 

to address the insufficient sample space for drying 

machine process parameters. It demonstrates the model's 

effectiveness in expanding the training sample space and 

improving drying control through experiments. The 

following conclusions are drawn. (1) The constructed data 

generation model achieves a fitting R² of 0.93705 on the 

training set and an R² of 0.9434 on the test set. This 

indicates that the model performs well in the training set 

and maintains high predictive accuracy in the test set. (2) 

By integrating data from the training and test sets, the 

model maintains a high fitting accuracy across a broader 

sample space, with an R² value of 0.93915. This reveals 

that the model effectively captures patterns in the training 

data and extends these patterns to unseen test data, 

ensuring the quality and authenticity of the generated 

samples. (3) Significance analysis shows that the H values 

for all process parameters are 0, and the p-values are 

greater than 0.05. It illustrates that generated dataset 

shows no significant statistical difference from the 

original, validating the model's reliability. 

The proposed BPNN-based data generation model has 

achieved relatively ideal experimental results in 

generating and controlling drying machine process 

parameter data. However, its adaptability under diverse 

production conditions still requires further research and 

validation. In actual production environments, process 

conditions often experience significant fluctuations, such 

as variations in raw materials, equipment aging, and 

environmental temperature changes, which may impact 

the model's performance. Therefore, future research could 

consider incorporating a wider range of production 

conditions for validation, especially under high noise, 

dynamic changes, or extreme operating conditions, to 

comprehensively assess the model's stability, adaptability, 

and generalization ability. For instance, testing the model's 

performance under different seasons, production batches, 

or equipment scenarios could further validate its 

effectiveness in complex and dynamic production 

environments. 

Furthermore, the proposed method primarily relies on 

a fixed process parameter dataset, whereas different 

industrial processes, equipment, and production lines may 

exhibit substantial differences in parameter settings, 

production environments, and data characteristics. Hence, 

the model's cross-domain adaptability can be an important 

focus of future research. To address this, it should explore 

methods such as multi-task learning and transfer learning 

to enhance the model's self-adaptive ability under varying 

process conditions and production environments, thereby 

handling the heterogeneity of different industrial 

processes. Additionally, the proposed model has not been 

thoroughly validated in scenarios where data quality is 

lacking or missing. In practical applications, data may be 

incomplete, missing, or subject to high noise interference, 

which can significantly affect the model's training 

outcomes. Future research could explore data 

preprocessing, missing data imputation, and adaptive 

algorithms to improve the model's robustness under 

conditions of unstable data quality. 

Additionally, although the proposed model performs 

well under conditions of high-quality data, its robustness 

still needs further improvement in environments with poor 

data quality, high missing values, or significant noise. 

Therefore, future research could focus on exploring ways 

to enhance the model's performance under incomplete data 

conditions by introducing data preprocessing techniques, 

missing data imputation, or adaptive algorithms. These 

approaches can help the model address more complex 

real-world application scenarios, improving its stability 

and accuracy. 

Regarding the selection of model architecture, this 

work employs the traditional BPNN architecture, which 

performs well in handling nonlinear data. However, for 

more complex and dynamic data, other architectures, such 

as deep CNNs or long short-term memory networks, may 

perform better in capturing temporal relationships and 

local features. Therefore, future research should consider 

a comparison and selection of various neural network 

architectures, examining the strengths and weaknesses of 

different architectures under various process conditions. 

Meanwhile, it should discuss the specific constraints faced 

in architecture selection, such as computational resources, 

training time, and model complexity. 

In conclusion, future research could further deepen in 

the following areas. First, the model's adaptability testing 

is expanded to cover a wider range of production 

conditions, particularly considering the impact of complex 

environments such as high noise and dynamic changes on 

model performance. Second, cross-domain data 

generation and optimization issues under different process 

conditions and production environments are considered to 

enhance the model's adaptability to heterogeneous data. 

Finally, the challenges of unstable data quality are 

addressed by further exploring optimizing data 

preprocessing, and advanced missing data imputation 

techniques are adopted to strengthen the model's 

robustness and stability. With these improvements, future 

work could further enhance the model's adaptability and 

robustness, providing more reliable and universal 

technical support for data generation and process control 

in intelligent systems. 

References 
[1] Luo, D., Li, Y., Tang, S., Liu, A., & Zhang, L. (2022). 

The Tobacco Leaf Redrying Process Parameter 

Optimization Based on IPSO Hybrid Adaptive 

Penalty Function. Processes, 10(12), pp. 2747. 
https://doi.org/10.3390/pr10122747 

[2] Losso, K., Cardini, J., Huber, S., Kappacher, C., 

Jakschitz, T., Rainer, M., & Bonn, G. K. (2022). Rapid 

differentiation and quality control of tobacco products 

using direct analysis in real time mass spectrometry 

and liquid chromatography mass 

spectrometry. Talanta, 238, pp. 123057. 
https://doi.org/10.1016/j.talanta.2021.123057 



Back Propagation Neural Network-Enhanced Generative Model for… Informatica 49 (2025) 63–76 75 

[3] Maiyo, A. K., Kibet, J. K., & Kengara, F. O. (2023). 

A review of the characteristic properties of selected 

tobacco chemicals and their associated etiological 

risks. Reviews on Environmental Health, 38(3), pp. 

479-491. https://doi.org/10.1515/reveh-2022-0013 

[4] Lingayat, A., Zachariah, R., & Modi, A. (2022). 

Current status and prospect of integrating solar air 

heating systems for drying in various sectors and 

industries. Sustainable Energy Technologies and 

Assessments, 52, pp. 102274. 
https://doi.org/10.1016/j.seta.2022.102274 

[5] Hecht, S. S., & Hatsukami, D. K. (2022). Smokeless 

tobacco and cigarette smoking: chemical mechanisms 

and cancer prevention. Nature Reviews Cancer, 22(3), 

pp. 143-155. https://doi.org/10.1038/s41568-021-

00423-4 

[6] Zare, A., & Payvandy, P. (2023). The prediction of 

optimal conditions for the surface grafting of β-

cyclodextrin onto silk fabrics by an artificial neural 

network (ANN). Pigment & Resin Technology, 52(2), 

pp. 183-191. https://doi.org/10.1108/PRT-08-2021-

0090 

[7] Wu, J., & Liu, Y. (2024). Optimization Design of Hull 

Compartment Structure Based on 3D 

Modeling. Informatica, 48(19), pp. 159-178. 

https://doi.org/10.31449/inf.v48i19.6432 

[8] Evandari, K., Soeleman, M. A., & Pramunendar, R. A. 

(2023). BPNN Optimization With Genetic Algorithm 

For Classification of Tobacco Leaves With GLCM 

Extraction Features. Jurnal RESTI (Rekayasa Sistem 

dan Teknologi Informasi), 7(2), pp. 293-301. 
https://doi.org/10.29207/resti.v7i2.4743 

[9] Alighaleh, P., Khosravi, H., Rohani, A., Saeidirad, M. 

H., & Einafshar, S. (2022). The detection of saffron 

adulterants using a deep neural network approach 

based on RGB images taken under uncontrolled 

conditions. Expert Systems with Applications, 198, pp. 

116890. https://doi.org/10.1016/j.eswa.2022.116890 

[10] Kanjanawanishkul, K. (2022). An image-based eri 

silkworm pupa grading method using shape, color, 

and size. International Journal of Automation and 

Smart Technology, 12(1), pp. 2331-2331. 

https://doi.org/10.5875/ausmt.v12i1.2331 

[11] Mu, L., Bi, S., Yu, S., Liu, X., & Ding, X. (2022). An 

intelligent moisture prediction method for tobacco 

drying process using a multi-hierarchical 

convolutional neural network. Drying 

Technology, 40(9), pp. 1791-1803. 

https://doi.org/10.1080/07373937.2021.1876722 

[12] Odabas, M. S., Şenyer, N., & Kurt, D. (2023). 

Determination of quality grade of tobacco leaf by 

image processing on correlated color 

temperature. Concurrency and Computation: 

Practice and Experience, 35(2), pp. e7506. 
https://doi.org/10.1002/cpe.7506 

[13] Li, Z., Feng, Z., Zhang, Z., Sun, S., Chen, J., Gao, Y., ... 

& Wu, Y. (2024). Analysis of energy consumption of 

tobacco drying process based on industrial big 

data. Drying Technology, 42(2), pp. 307-317. 

https://doi.org/10.1080/07373937.2023.2288667 

[14] Zhou, T., & Chiam, K. H. (2023). Synthetic data 

generation method for data-free knowledge 

distillation in regression neural networks. Expert 

Systems with Applications, 227, pp. 120327. 

https://doi.org/10.1016/j.eswa.2023.120327 

[15] Barbierato, E., Vedova, M. L. D., Tessera, D., Toti, D., 

& Vanoli, N. (2022). A methodology for controlling 

bias and fairness in synthetic data generation. Applied 

Sciences, 12(9), pp. 4619. 
https://doi.org/10.3390/app12094619 

[16] Zhang, Y., & Mikelsons, L. (2023). Sensitivity-guided 

iterative parameter identification and data generation 

with BayesFlow and PELS-VAE for model 

calibration. Advanced Modeling and Simulation in 

Engineering Sciences, 10(1), pp. 9. 
https://doi.org/10.1186/s40323-023-00246-y 

[17] Losso, K., Cardini, J., Huber, S., Kappacher, C., 

Jakschitz, T., Rainer, M., & Bonn, G. K. (2022). Rapid 

differentiation and quality control of tobacco products 

using direct analysis in real time mass spectrometry 

and liquid chromatography mass 

spectrometry. Talanta, 238, pp. 123057. 
https://doi.org/10.1016/j.talanta.2021.123057 

[18] Li, M. (2024). Application of GAN-Based Data 

Encryption Technology in Computer Communication 

System. Informatica, 48(15), pp. 17-34. 
https://doi.org/10.31449/inf.v48i15.6390 

[19] Chen, P., Liu, H., Xin, R., Carval, T., Zhao, J., Xia, Y., 

& Zhao, Z. (2022). Effectively detecting operational 

anomalies in large-scale IoT data infrastructures by 

using a GAN-based predictive model. The Computer 

Journal, 65(11), pp. 2909-2925. 
https://doi.org/10.1093/comjnl/bxac085 

[20] Kiš, D., Budimir, A., Svitlica, B., Kalambura, S., & 

Kujundžić, S. (2024). Analysis of Tobacco Drying 

with Different Energy Sources. Tehnički 

vjesnik, 31(3), pp. 701-705. 
https://doi.org/10.17559/TV-20230428000586 

[21] Zong, J., He, X., Lin, Z., Hu, M., Xu, A., Chen, Y., ... 

& Zou, C. (2022). Effect of two drying methods on 

chemical transformations in flue-cured 

tobacco. Drying Technology, 40(1), pp. 188-196. 

https://doi.org/10.1080/07373937.2020.1779287 

[22] Khudyakov, D. A., Shorstkii, I. A., Ulyanenko, E. E., 

& Gnuchykh, E. V. (2022). Influences of cold 

atmospheric plasma pretreatment on drying kinetics, 

structural, fractional and chemical characteristics of 

tobacco leaves. Drying Technology, 40(15), pp. 3285-

3291. 

https://doi.org/10.1080/07373937.2021.2021230 

[23] Ouyang, L. (2024). Financial Risk Control of Listed 

Enterprises Based on Risk Warning Model. 

Informatica, 48(11), pp. 125-132. 
https://doi.org/10.31449/inf.v48i11.6026 

[24] Lai, H. (2024). Predicting the Growth Value of 

Technology Enterprises with an Optimized Back-

propagation Neural Network. Informatica, 48(16), pp. 

105-112. https://doi.org/10.31449/inf.v48i16.6437 

 

 

 

 

https://doi.org/10.1108/PRT-08-2021-0090
https://doi.org/10.1108/PRT-08-2021-0090
https://doi.org/10.31449/inf.v48i19.6432
https://doi.org/10.1016/j.eswa.2022.116890
https://doi.org/10.5875/ausmt.v12i1.2331
https://doi.org/10.31449/inf.v48i16.6437


76 Informatica 49 (2025) 63–76 Y. Liu et al. 

 

 


