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Near-infrared (NIR) spectroscopy is a prevalent analytical technique employed in classification and qual-
ity control across various domains. However, its efficacy is often constrained by the inherent complexity,
high dimensionality, and nonlinear characteristics of spectral data. This study introduces SMART-NIR, a
novel analytical framework designed to address these challenges. The proposed approach was evaluated
on the SpectroFood dataset, which comprises samples represented by 240 wavelength features. SMART-
NIR incorporates a multi-kernel feature extraction mechanism, a modified Vision Transformer architecture
equipped with a Dual-MLPmodule, and Kolmogorov-Arnold Networks (KAN) to enhance classification ac-
curacy. To accommodate variable-length inputs, zero-padding was employed, and model robustness was
assessed through five-fold cross-validation. The framework achieved a classification accuracy of 99.24%,
demonstrating an 8% improvement over a baseline Transformer and a 5% gain relative to a standard mul-
tilayer perceptron (MLP) classifier. Furthermore, the Dual-MLP architecture effectively reduces the num-
ber of parameters and floating-point operations (FLOPs) compared to conventional Transformer-based
feed-forward networks. These findings underscore SMART-NIR’s capability to model complex nonlinear
relationships in spectral data, positioning it as a robust solution for real-time quality assessment and anal-
ysis in dynamic and noise-prone environments.

Povzetek: SMART-NIR, novi analitični okvir, združuje večjedrno (multi-kernel) ekstrakcijo značilnosti,
izboljšan Vision Transformer (ViT) z Dual-MLP in Kolmogorov-Arnold Network (KAN) klasifikator za
obdelavo podatkov blizu-infrardeče (NIR) spektroskopije. Okvir je dosegel odlične rezultate na naboru
podatkov SpectroFood, kar potrjuje robustno modeliranje kompleksnih nelinearnih spektralnih podatkov.

1 Introduction

Near-infrared spectroscopy has become an essential analyt-
ical technique in many fields, including food science, phar-
maceuticals, chemistry, and agriculture. Its advantages in-
clude the ability to perform rapid, non-invasive, and non-
destructive analysis of samples with low operating costs
[1]. However, processing and analyzing NIR spectral data
remain challenging due to its inherent complexity [2, 3].
These main difficulties include the wide wavelength range
from 750 to 2500 nm, the non-linear wavelength relation-
ships, overlapping, and the susceptibility of NIR spectra
to environmental factors such as temperature and humidity
[3, 4, 5].
Over the years, many machine learning methods have

been applied to address the challenges in NIR spectra
processing, focusing on two main directions: classifica-
tion and regression. Traditional, widely adopted methods,
such as Principal Component Analysis, Soft Independent
Modeling of Class Analogy, Linear Discriminant Analysis,
and Partial Least Squares Discriminant Analysis, have still

achieved outstanding results for data dimensionality and
categorizing data in the past three years [6, 7, 8, 9]. Mean-
while, other methods such as Support Vector Machine, De-
cision Tree, Random Forest, Artificial Neural Network, and
Extreme Learning Machine [7, 10, 11, 12, 13] have been
effective in handling nonlinear data relationships. How-
ever, traditional machine learning is more suitable for lim-
ited data and computational resources. In addition, finding
the best preprocessing and feature extraction methods for
each dataset depends mainly on the expert’s experience.

Recently, deep learning methods have been developed
vigorously and have been successfully applied to both NIR
spectral regression and classification [14, 15, 16]. In par-
ticular, Convolutional Neural Networks (CNN) are effec-
tive in extracting local features from spectral data. In addi-
tion, Recurrent Neural Networks (RNN) [17] and its vari-
ants, such as Long Short-Term Memory Networks (LSTM)
[18, 19], have been used to process spectral data. Other ar-
chitectures, such as Autoencoders (AE) [20, 21] and Gen-
erative Adversarial Networks (GAN) [22], have also been
tested in learning representations and modeling NIR spec-
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tral data. Although these methods have succeeded, they
have some significant limitations. CNNs excel at extract-
ing local features but struggle with global features in spec-
tral data. RNNs and LSTMs can handle time series but
face vanishing or exploding gradients with long sequences.
While AEs andGANs are effective for representation learn-
ing and pattern generation, they encounter difficulties when
dealing with the complexity of spectral information. There-
fore, towards efficiently handling both short-term and long-
term relationships in data, while being able to generalize the
complex and diverse characteristics of spectral data as men-
tioned in the previous section, more suitable methods still
need to be developed.
Transformer, introduced by Google in 2017 [23], has

quickly become a pivotal architecture in natural lan-
guage processing and has subsequently been expanded to
many other areas, including NIR spectroscopy processing.
Transformer combines a multi-head self-attention (MHSA)
mechanism and a multi-layer perceptron network (MLP) in
an encoder-decoder structure, allowing simultaneous learn-
ing of global correlations and local nonlinear representa-
tions, which can efficiently process long sequences and
capture complex relationships in the data, outperforming
traditional methods such as CNN and RNN [24, 25] in pro-
cessing sequence data. For instance, the Swin Transformer
[24] effectively predicted soil properties directly from raw
NIR spectra, outperforming CNN-based approaches. In
[25], the proposed improved Transformermodel combining
spatial and channel-level representations of fNIRS signals,
using a convolutional layer and a new preprocessing mod-
ule, achieved the highest accuracy on three open datasets,
with 75.49% on the most complex 3-class classification
problem (surpassing CNN by 2.6% and LSTM by 13.55%),
and an average accuracy of 78.22% in the single-subject test
(surpassing CNN by 4.75% and LSTM by 11.33%).
Vision Transformer (ViT), a variant of Transformer

specifically designed for computer vision tasks, has demon-
strated significant potential in processing NIR spectral data.
ViT views the NIR spectrum as a series of ”patches” and ap-
plies a self-attention mechanism to learn the relationships
between these patches. In [26], ViT and CNN performed
better by efficiently processing local and global information
from spectral data encoded into 2D images. Similarly, the
CT-Netmodel in [27] recently combinedCNNandViTwith
a novel signal representation (separate 1D CNN for HbO
and HbR), achieving 98.05% and 77.61% accuracy on two
fNIRS datasets, outperforming other deep learning models.
Considering the research on processing pseudo-spectral im-
ages generated from spectra on both traditional Transformer
and ViT architectures, this is a relatively new but promising
approach. However, it still has limitations in generalizabil-
ity on different objects, has many hyperparameters to tune,
faces challenges of high computational complexity, espe-
cially in the self-attention mechanism, as well as the need
to reduce the number of unwanted features from the data
to be able to deploy more widely in practice. Moreover,
especially with the trend of using handheld spectroscopic

devices as alternatives to laboratory benchtop instruments,
NIR spectral data fluctuates sensitively with environmental
factors, requiring greater flexibility and adaptability from
machine learning models.
Introduced in April 2024, Kolmogorov-Arnold Net-

works (KAN) emerged as a promising neural network ar-
chitecture considered a viable alternative to MLP [28].
Based on the Kolmogorov-Arnold representation theorem,
KAN uses learnable activation functions on edges instead
of fixed weights or activation functions like MLP. This
method enables more efficient modeling of complex non-
linear relationships and enhances interpretability through
symbolic regression. It opens up a new research direc-
tion for combining the advantages of ViT and KAN in NIR
spectrum processing. As far as we know, this study is un-
precedented. In this study, we propose a new SMART-NIR
model with the main architecture including:

1. The multi-kernel block integrates kernels from 4×1 to
32 × 1 in parallel to diversify feature extraction. The
concatenated outputs enable multi-scale feature repre-
sentation, balancing local details and global context,
which helps reduce noise and capture broader trends.
For classification tasks, this design enhances discrimi-
native power and improves overall accuracy by allow-
ing the model to better adapt to varying patterns in the
input data.

2. Transformer Encoder is improved with Dual-MLP, re-
placing the traditional MLP by splitting the input in
half and processing it in parallel through two separate
branches, each consisting of a linear layer, GELU acti-
vation function and a linear layer, allowing the model
to simultaneously learn linear and non-linear repre-
sentations, enhancing the ability to capture complex
patterns and improving performance without signifi-
cantly increasing computational costs.

3. KAN is integrated as a complete replacement for tra-
ditional MLP classifiers in the classification head.
This approach enables the flexible approximation of
complex functions using a minimal number of pa-
rameters, without increasing the overall network size.
On NIR classification tasks, KAN outperforms tradi-
tional MLP classifiers by achieving higher accuracy
and improved generalization across diverse and noisy
data. Its ability to model non-linear relationships more
effectively makes it particularly suited for complex
spectral variations common in NIR data.

The SMART-NIR aims to build a robust self-attention
multi-kernel adaptive representation model for NIR spec-
tral data. This method significantly improves the perfor-
mance in NIR spectral classification tasks while improving
generalization and computational efficiency. In the follow-
ing sections, we will present the details of the proposed ar-
chitecture, experimental method, and performance evalua-
tion of SMART-NIR on a diverse food dataset.
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2 Related work

2.1 MLP and KAN
Over the past decades, MLPs have served as a fundamen-
tal architecture in deep learning. Even the prominent Vi-
sion Transformer architecture, while not a direct extension
of MLPs, incorporates MLP components into its architec-
ture. MLP, based on the universal approximation theorem,
consists of multiple fully connected layers with fixed acti-
vation functions [28]. For an L-layer MLP, with input vec-
tor x ∈ Rd, the output can be represented as:

MLP(x) = (WL−1 ◦ σ ◦WL−2 ◦ σ
◦ · · · ◦W1 ◦ σ ◦W0)x

whereWi is the weight matrix for the ith layer respectively,
and σ is a non-linear activation function, typically ReLU or
GELU, which is usually the same for all layers.
However, KAN has emerged as a promising alterna-

tive, offering some significant advantages over traditional
MLP for specific tasks. Unlike MLP, KAN is based on
the Kolmogorov-Arnold representation theorem and shows
better adaptive flexibility. It replaces linear weights and
fixed activation functions with learnable univariate func-
tions B-spline on network edges [28], adapting dynamically
during training to capture complex data patterns.
A single KAN layer is represented: Φ = {ϕq,p},

where p = 1, 2, ..., nin, q = 1, 2, ..., nout and ϕq,p are
parametrized functions with learnable coefficients. This
structure enables KAN to model non-linear relationships in
data effectively. AnL-layer KAN network is a composition
of L such layers:

KAN(x) = (ΦL−1 ◦ ΦL−2 ◦ ... ◦ Φ0)x

In [28], it was shown that with fewer parameters and
fewer layers, KAN outperforms MLP in learning complex
data structures. An essential advantage of KAN is its ability
to automatically discover optimal structures through spar-
sification and pruning, which helps to learn important fea-
tures and remove redundant information [29]. In addition,
KAN’s symbolic regression explainability allows for un-
derstanding the model’s decision-making process, which is
difficult with conventional deep learning architectures.
KAN has demonstrated outstanding performance in

many applications. They’ve outperformed MLP, GRU, and
LSTM in time series tasks with fewer parameters [30, 31],
while enhancing interpretability. Additionally, KANs en-
hance the interpretability of results by applying symbolic
regression on B-spline activation functions [32]. For hyper-
spectral image classification, Wav-KAN and SpectralKAN
excelled on Salinas, Pavia, and Indian Pines datasets [33].
Wav-KAN achieved 92.62% accuracy and 0.9157 kappa
coefficient overall, outperforming Spline-KAN (89.85%,
0.8793) andMLP (77.69%, 0.7119). On Indian Pines, Wav-
KAN (85.54%, 0.8348) significantly surpassed Spline-
KAN (77.31%, 0.7395) and MLP (35.13%, 0.2984). Nev-
ertheless, in a separate study [29] directly comparing KAN

andMLP across various tasks (computer vision, natural lan-
guage processing, and audio processing) while maintaining
identical parameter settings or FLOPs, KAN has yet to ex-
hibit a clear superiority.
The outcomes undeniably showcase KAN’s immense

promise. Nonetheless, substantial research is imperative to
optimize its framework and unlock its full potential in a va-
riety of machine learning applications.

2.2 Deep learning approach for NIR
spectral classification

Deep learning has emerged as a transformative paradigm
across signal processing domains, including NIR spectro-
scopic signal, offering robust methodologies for addressing
complex classification and regression tasks [34, 35]. Unlike
conventional machine learning techniques that typically de-
pend on manual feature engineering, deep learning archi-
tectures can autonomously learn hierarchical feature repre-
sentations through successive layers of nonlinear transfor-
mations applied directly to raw spectral data. These multi-
layered structures, commonly referred to as deep architec-
tures, facilitate end-to-end learning and have demonstrated
substantial efficacy in approximating complex nonlinear
functions, modeling high-dimensional datasets, and achiev-
ing strong generalization performance even when trained
on relatively limited samples [36, 35].
Within the context of NIR spectroscopy, various deep

learning models, such as CNNs, RNNs, autoencoders, and
hybrid frameworks, have exhibited significant potential
[35]. These models are particularly adept at capturing spa-
tial and temporal dependencies intrinsic to spectral data,
thereby enhancing both classification accuracy and model
robustness. CNNs, in particular, have been extensively em-
ployed due to their proficiency in extracting localized, shift-
invariant features from spectral sequences [37]. Enhanced
variants, including one-dimensional CNNs [38, 39], CNN-
RNN hybrid models [40], and Transformer-based models
[41] have further improved performance in scenarios in-
volving dynamic spectral variations or temporal dependen-
cies.
Empirical studies have demonstrated the diverse appli-

cability and advantages of deep learning in NIR spectral
analysis. Autoencoder-based models, for instance, have
been successfully employed in the non-destructive and
rapid analysis of bright-blue pigments in cosmetic creams,
achieving high predictive accuracy while reducing compu-
tational overhead [42]. CNN-based transfer learning ap-
proaches have also proven effective in pharmaceutical ap-
plications, notably in drug classification tasks, where they
attained high accuracy with minimal labeled data [43]. In
agricultural and food quality control domains, CNNs have
been deployed to assess product freshness [44], predict soil
properties [37, 45], and classify fruits and dried produce
[39, 46], consistently outperforming traditional chemomet-
ric approaches in predictive capability.
Beyond standard CNN architectures, more specialized
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and hybrid deep learning models have been developed to
further optimize learning processes and improve perfor-
mance. These include stacked autoencoders (SAEs) [36],
variational autoencoders (VAEs) [47], and local recep-
tive field–based extreme learning machines (LRF–ELMs)
[48, 49]. Additionally, composite models such as convolu-
tional neural networks combined with gravitational reser-
voir computing (CNN-GRC-ELM) [50] and CNNs inte-
grated with decision trees [51] have been proposed to en-
hance robustness and interpretability.
Despite the evident benefits, the application of deep

learning in NIR spectroscopy is not without challenges.
Key limitations include the dependence on large, annotated
datasets for effective training [52, 35], sensitivity to pre-
processing methods [53, 54], and the substantial computa-
tional resources often required for model optimization and
deployment [37]. Furthermore, in many studies, evalua-
tion has been conducted on relatively small experimental
datasets, with limited comparative analysis against alter-
native deep learning frameworks [38, 50]. Model inter-
pretability also remains a critical concern, particularly for
real-world industrial deployment, where transparency and
explainability are essential [35]. Addressing these limi-
tations through the development of interpretable architec-
tures, hybrid learning strategies, and efficient transfer learn-
ing mechanisms is an important direction for future re-
search.
In conclusion, deep learning offers a highly adaptable

and potent framework for NIR spectral classification and
analysis. Its ability to automatically extract complex, non-
linear patterns from spectral data enables its application
across a wide range of sectors, including food safety, envi-
ronmental monitoring, pharmaceutical quality control, and
agricultural assessment. As deep learning models continue
to evolve and larger, more diverse datasets become avail-
able, their role in advancing the capabilities of NIR spec-
troscopy is expected to become increasingly pivotal.

3 Methodology

3.1 Multi-kernel convolution analysis
The study explores how kernel dimensions affect feature
extraction by analyzing the outputs of four convolutional
layers. These layers process a 512× 1 signal using kernels
of increasing size, spanning from 4 × 1 to 32 × 1. The
results demonstrate that the kernel size is a significant factor
in determining the effectiveness of feature learning.
Employing a small kernel size 4 × 1 within a convolu-

tional layer restricts the receptive field to proximate pix-
els, enabling the capture of fine-grained, localized features.
Consequently, this configuration excels at discerning high-
frequency components and short-term temporal patterns.
However, the sensitivity to local information can render the
model susceptible to noise interference, potentially leading
to inaccurate representations, especially when processing
data with high noise levels.

Larger kernel sizes, such as 8 × 1, 16 × 1, and 32 × 1,
expand the convolutional receptive field, enabling the cap-
ture of broader contextual information. This configuration
is particularly effective in extracting low-frequency com-
ponents, long-range temporal dependencies, and amplitude
variations within the input data. However, the computa-
tional overhead associatedwith large kernels can negatively
impact model performance and efficiency. To mitigate this,
a multi-scale approach incorporating both small and large
kernels is often employed.

3.2 SMART-NIR architecture

The ViT architecture excels in capturing global features and
offers scalable designs. However, traditional ViT-based
methods for image classification often employ 3×3 convo-
lutional projections during feature embedding, which may
not optimally preserve crucial signal characteristics. To ad-
dress this limitation and enhance global feature extraction,
we propose a novel SMART-NIR model, that effectively
captures a richer set of signal characteristics within each to-
ken. The overall architecture of SMART-NIR is presented
in Figure 1.

3.2.1 Multi-kernel block

The input signal is represented as a vector r of length
L. This vector is subsequently reshaped into a three-
dimensional tensor I with dimensions 1 × L × 1, where
L is the signal length, fixed at 512 for this study. A paral-
lel multi-kernel architecture is employed, consisting of four
processing branches equipped with kernel sizes of 4 × 1,
8 × 1, 16 × 1, and 32 × 1, respectively. This configura-
tion facilitates the extraction of features at multiple scales,
as illustrated in Figure 1. A kernel K with dimensions
Cout×Kw×Kh is applied in the convolutional layer to ex-
tract features from the input data. Here, Cout, Kw, and Kh

correspond to the number of output channels, kernel width,
and kernel height, respectively. The operation incorporates
paddingP and strideS. The output tensor from this process
can be computed according to the following equations:

O1 = Conv (I,W1,K1 = (Cout, 4, 1), S, P1 = (0, 0)) ,

O2 = Conv (I,W2,K2 = (Cout, 8, 1), S, P2 = (3, 0)) ,

O3 = Conv (I,W3,K3 = (Cout, 16, 1), S, P3 = (7, 0)) ,

O4 = Conv (I,W4,K4 = (Cout, 32, 1), S, P4 = (15, 0)) .

Here,Wi represents the weights of the convolutional op-
erations, respectively, where i ∈ {1, 2, 3, 4}. A stride of
(4, 1) is applied consistently across all convolutions. The
multi-kernel module produces a final output tensor, X0, by
concatenating the output tensors from each convolutional
layer (O1, O2, O3, and O4) along the channel dimension.
This results in a tensor with a depth equal to the sum of the
depths of the individual output tensors.
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Figure 1: SMART-NIR architecture

3.2.2 Position embedding

The output of the multi-kernel block, denoted as X0, has
dimensions Cout × Hout × 1, where Cout is the total num-
ber of output channels and Hout is the output height cal-
culated as Hout = (L − K + 2P )/S + 1. A linear
position embedding is generated by first transposing the
output tensor, X0, and then flattening the resulting ten-
sor along the spatial dimensions. This flattened output is
then concatenated with the token xcls, followed by the ad-
dition of a learnable positional bias Epos with dimensions
(Hout + 1) × Cout. The resulting output, X1, can be ex-
pressed as: X1 = Concat(xcls,XT

0 ) + Epos.

3.2.3 The transformer encoder

This module is designed to capture complex dependencies
within the input sequence. It is composed of a stack of
layers, each of which includes a multi-head self-attention
mechanism followed by a feedforward neural network.
This alternating structure enables the model to effectively
process and understand the relationships between different
elements of the input data. Layer normalization (LN) is uti-
lized as a preprocessing step for each block, and skip con-
nections help to mitigate the vanishing gradient problem.
Multi-Head Self-Attention: is a core building block of

transformer architectures. Drawing on the principle of self-
attention, it enables the model to create weighted represen-
tations of input features by accounting for their interdepen-
dencies within a sequence. Unlike traditional sequential
processing, this approach allows the model to identify com-
plex relationships and dependencies that might be difficult
to detect in a linear sequence. This mechanism allows the
model to capture complex relationships between elements
within the input sequence, enhancing its ability to model
long-range dependencies.
In this research, the input sequence X1 ∈ R(Hout+1)×Cout

is employed. To compute the weighted sum of sequence
elements, the generation of three key vectors is essential:
the Query vector (Q), the Key vector (K), and the Value
vector (V). The Query vector, Q, is derived by multiply-
ing X1 byWQ: Q = X1WQ. Subsequently, the Key vec-
tor,K, is created through the multiplication ofX1 andWK :
K = X1WK . Finally, the Value vector, V, is obtained by
multiplyingX1 andWV : V = X1WV . These three vectors,
Q, K, and V, serve as the basis for further calculations.
The attention mechanism calculates the attention weight

between each pair of tokens by computing the dot prod-
uct of their corresponding query and key vectors. This re-
sult is then scaled by the inverse of the square root of the
key vector’s dimensionality to maintain numerical stability.
The scaled dot products are then passed through a softmax
function, producing a set of normalized attention weights
that indicate the relative importance of each token in the
sequence with respect to the others:

SA(X1) = softmax
(

QKT

√
Hout + 1

)
V

whereWQ,WK , andWV are trainable weight matrices.
MHSA extends the standard self-attention mechanism

by performing multiple parallel attention computations,
known as heads. Each head independently processes the
input data through a distinct learned linear projection, en-
abling the capture of diverse relational features within the
input. The concatenated outputs from all attention heads
are subjected to a linear transformation, yielding the final
MHSA output. This process can be formally expressed as:
MHSA(z) = Concat(SA1(X1), SA2(X1), ..., SANh

(X1)),
where Nh denotes the number of heads.
Dual-MLP architecture is introduced as a method to

decrease the computational demands of the Transformer
model while maintaining or even improving its perfor-
mance. By splitting the MLP input into two equal parts,
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the model is enabled to learn diverse patterns more effec-
tively while maintaining computational efficiency. This
approach increases model capacity and flexibility without
incurring significant overhead due to its parallel process-
ing nature. The dual-branch architecture offers a special-
ized approach to data feature extraction, resulting in en-
hanced performance when handling intricate data patterns.
The MHSA block’s output tokens z are partitioned into two
equal-sized components, m and n, by splitting them along
their last axis. These parts are then subjected to separate
linear transformations to form the Dual-MLP, as detailed
below:

Dual-MLP = Concat(Wfc4GELU(Wfc2m),

Wfc3GELU(Wfc1n))

where Wfc1, ..., Wfc4 are the trainable parameters that de-
fine the linear transformations used in the four layers de-
picted in Figure 1.

3.2.4 Classifier

The task is performed using either KAN orMLP configured
with two hidden layers with decreasing dimensionality (32,
16). In the case of KAN, as illustrated in the Figure 2, each
connection between layers is not a simple linear weight as in
traditionalMLPs. Instead, KAN replaces the typical weight
matrices with learnable univariate functions (denoted as red
blocks in the diagram), which are applied to each input di-
mension individually.

Figure 2: Integration of KAN into SMART-NIR

Each of these functions can learn complex nonlinear
transformations, and the outputs are then summed to pro-
duce activations, similar to standard neural networks. This
structure is inspired by the Kolmogorov–Arnold represen-
tation theorem, which states that any multivariate continu-
ous function can be decomposed into a finite sum of uni-
variate functions of linear combinations.
In the Figure 2, the input features f after the encoding pro-

cess are passed throughmultiple univariate function blocks.
The results are summed (

∑
) to form the hidden layer h,

which is then processed further to produce the final predic-
tion logits p. Notably, KANs do not rely solely on linear
matrix multiplications but instead leverage function-based
transformations, which enhance the expressiveness of the
model while preserving interpretability.

4 Experimental

4.1 Dataset
The dataset employed in this study was curated by Mal-

ounas Ioannis et al [55]. It comprises 1028 NIR spectral
measurements derived from four distinct food categories:
apples, broccoli, leeks, and mushrooms. Spectral data was
collected across a wavelength range extending from 430 to
900 nm, with a resolution of 1.12 nm per pixel, resulting in
a total of 240 wavelength dimensions. Figure 3 presents a
visual representation of the sample size for each food cate-
gory, while Figure 4 depicts the spectral measurements ob-
tained for each category. A notable degree of uniformity
was observed in the sample size across food types, with val-
ues ranging between 240 and 300 samples.
The spectral data, composed of 240 wavelength dimen-

sions, was directly fed into the model. Given the model’s
architecture was designed for a 512-dimensional input, a
discrepancy arose. To reconcile this dimensional dispar-
ity, zero-padding, a standard data preprocessing technique,
was applied. This process involved appending zeros to both
extremities of each spectrum, effectively expanding its di-
mensionality to 512. This manipulation not only ensures
dimensional compatibility with the model input but also
helps preserve edge information in spectral data, similar
to its benefits in image processing. This reduces bound-
ary effects and allows the model to better capture patterns
across the full spectrum, enhancing classification perfor-
mance [56].

4.2 Implementation details
The entire training and evaluation process was conducted
on the Windows 10 operating system, utilizing an Intel®
Xeon® Platinum 8470Q processor and an NVIDIA DGX
A100 graphics card. The software employed Python ver-
sion 3.10 and the Pytorch CUDA 12.1 framework.
The entire dataset was partitioned into 5 non-overlapping

subsets using stratified 5-fold cross-validation, ensuring
that the class distribution in each fold matched the overall
target distribution. In each round of validation, one fold
was used as the test set while the remaining four served
as the training set. The evaluation metrics were averaged
across the five folds to obtain a robust estimate of model
performance. To ensure reproducibility, a fixed random
seed (43) was used during data splitting and throughout
training. To mitigate class imbalance within each training
fold, class balancingwas applied via sampling, allowing the
model to receive an equitable representation of all classes
during training.
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Figure 3: Number of samples for each food category

Figure 4: NIR spectral measurements obtained for each food category

To assess the model’s robustness under noisy condi-
tions, additive Gaussian noise was introduced to the test
set in each fold. Specifically, zero-mean Gaussian noise
with a random standard deviation sampled from the range
[0.1, 0.5] (with a step of 0.1) was applied to each wave-
length to simulate sensor noise and real-world variation in
spectral measurements.

All models were trained heuristically for 200 epochs
using Stochastic Gradient Descent (SGD) with an initial
learning rate of 10−5. The learning rate was dynamically
adjusted using the Cosine Annealing with Warm-Up sched-
ule. The training objective was defined by the Multi-Class
Cross-Entropy loss, appropriate for the classification task.

KAN classifier integrated in SMART-NIR is trained us-
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ing a gradient-based optimization approach similar to tradi-
tional neural networks, but with key differences in param-
eterization and initialization. Each connection in a KAN is
associated with a learnable univariate function, using spline
functions such as cubic B-splines or piecewise polynomials,
rather than a scalar weight. These univariate functions are
typically initialized to behave like identity functions (e.g.,
f(x) ≈ x) to ensure that the network starts in a stable,
near-linear regime. The coefficients or control points of the
spline functions are the trainable parameters in the model.

4.3 Evaluation
4.3.1 Quantitative results

To evaluate the effectiveness of the proposed method, we
compared it against several well-establishedmachine learn-
ing and deep learning approaches that are commonly used
in spectral analysis. These include traditional models like
MLP [57], KAN [29], and Random Forests, as well as ad-
vanced deep learning architectures such as 1D CNN [58],
hybrid CNN-LSTM [59], and Transformer [23], which
serve as a strong baseline in sequence modeling tasks.
The experimental results, presented in Table 1, clearly

demonstrate the superior performance of SMART-NIR
across all evaluation metrics. While conventional models
such as MLP, KAN, and Random Forest achieved classifi-
cation accuracies in the range of approximately 81–82%,
deep learning models like CNN (86.81%), CNN-LSTM
(87.63%), and baseline Transformer (91.29%) showed im-
proved performance. However, SMART-NIR significantly
outperformed all other methods, achieving an impressive
99.01% accuracy. This represents nearly an 8% improve-
ment over the Transformer baseline. Moreover, SMART-
NIR achieved consistently high Precision, Recall, and F1-
Score values (all around 0.986), indicating not only high
accuracy but also balanced and robust classification perfor-
mance.
These findings highlight not only the technical advan-

tages of SMART-NIR, particularly under noisy data con-
ditions (simulated by adding noise to test robustness), but
also its practical potential in real-world NIR-based applica-
tions. Therefore, SMART-NIR is not only a methodologi-
cal advancement but also a meaningful contribution toward
improving the reliability and accuracy of NIR-based clas-
sification systems.

4.3.2 Ablation study

An examination of the influence exerted by hyperparame-
ters upon the performance of SMART-NIR is undertaken.
Specifically, attention is directed towards pivotal hyperpa-
rameters such as kernel dimensions within the Multi Kernel
and the quantity of layers and heads composing the trans-
former encoder. A series of comparative experiments is
conducted with the objective of analysing the impact of
variations in these hyperparameters upon SMART-NIR per-
formance.

An investigation into kernel size was undertaken to
ascertain the optimal multi-kernel configuration for the
SMART-NIR model. Input and output channel dimensions
weremaintained at constant values ofCin andCout, respec-
tively. Consequently, the modulation of kernel size was pri-
oritized to optimize the multi-kernel structure. Both single
and multi-kernel configurations were subjected to evalua-
tion, as detailed in Table 2. A gradual increment in accu-
racy was observed as kernel size was augmented. Based on
these empirical findings, a multi-kernel configuration was
implemented to augment feature extraction from the input
spectra. Moreover, the substitution of the MLP classifier
with KAN resulted in a substantial accuracy enhancement
of approximately 5%, not only for the multi-kernel model
but also for the single-kernel counterpart.
To further evaluate model robustness, noise was added to

the input spectra to simulate real-world perturbations. As
shown in Table 2, although a slight decrease in accuracy
was observed across all configurations, the performance
drop was not substantial. This can be attributed to the inher-
ent separability of NIR spectral patterns between different
classes, which provides a degree of resilience against input
noise.
Notably, the multi-kernel configurations continued to

outperform single-kernel ones even in noisy conditions,
suggesting that multi-scale feature extraction contributes
positively to robustness. Among the classifiers, the KAN-
based models retained high accuracy and stable precision,
recall, and F1-score values, confirming their superior gen-
eralization ability. The multi-kernel KAN model remained
the top performer under noise, achieving 99.01% accuracy,
indicating that SMART-NIRmaintains strong classification
capabilities even when faced with spectral variations.
An analysis of the number of layers (NL) and number

of heads (Nh) was conducted to optimize the transformer
architecture within the SMART-NIR. To maintain a consis-
tent model complexity, the relationship between the num-
ber of parameters and the number of floating-point opera-
tions (FLOPs) was considered.
The input features are projected using multiple convolu-

tion kernels of sizes k ∈ {4, 8, 16, 32}, each producing an
output with Cout channels. Each convolution contributes
Cin × Cout × k weights and Cout biases. Summing over
all kernel sizes:

PMK =
∑

k∈{4;8;16;32}

Cin × Cout × k + Cout

= 64× Cout

Learnable positional encodings are added to the patch
embeddings. Each of the Np patches is associated with a
vector of size 4Cout, resulting in:

PPE = Np × 4Cout = 256× Cout

The encoder consists of NL layers, each with Nh atten-
tion heads. The parameters include the query, key, value,
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Table 1: Comparison performance of SMART-NIR with different classification methods (noise adding)
Method Accuracy Precision Recall F1-Score

MLP (Single) 81.52± 0.41 0.813± 0.031 0.802± 0.029 0.807± 0.030
KAN (Single) 81.78± 0.39 0.784± 0.047 0.811± 0.056 0.797± 0.051
Random Forest 82.27± 0.42 0.812± 0.041 0.819± 0.049 0.815± 0.045
CNN (1D) 86.81± 0.48 0.861± 0.042 0.862± 0.041 0.861± 0.041
CNN-LSTM 87.63± 0.42 0.876± 0.031 0.873± 0.020 0.874± 0.024

Transformer (baseline) 91.29± 0.52 0.911± 0.019 0.919± 0.020 0.915± 0.019
SMART-NIR 99.01± 0.36 0.987± 0.026 0.986± 0.025 0.986± 0.025

Table 2: Comparison of the performance of the model using Dual-MLP, two types of classifiers, and different kernel
sizes with NL = 4, Nh = 4, and Cout = 64.

Classifier Kernel Size Accuracy Precision Recall F1-Score
W/o Noise Adding

MLP

4×1 91.21± 0.85 0.907± 0.025 0.905± 0.027 0.906± 0.024
8×1 92.84± 0.78 0.857± 0.030 0.924± 0.026 0.889± 0.027
16×1 93.63± 0.75 0.930± 0.022 0.864± 0.028 0.897± 0.025
32×1 93.87± 0.70 0.941± 0.020 0.884± 0.024 0.911± 0.022

Multi-kernel 94.63± 0.68 0.933± 0.018 0.938± 0.019 0.935± 0.017

KAN

4×1 98.33± 0.45 0.980± 0.026 0.971± 0.027 0.976± 0.026
8×1 99.11± 0.35 0.954± 0.027 0.956± 0.025 0.955± 0.025
16×1 99.16± 0.30 0.987± 0.024 0.980± 0.024 0.983± 0.024
32×1 99.18± 0.28 0.973± 0.026 0.997± 0.023 0.985± 0.024

Multi-kernel 99.24± 0.32 0.993± 0.025 0.991± 0.024 0.992± 0.024
Noise Adding

MLP

4×1 89.03± 0.92 0.884± 0.030 0.881± 0.032 0.882± 0.028
8×1 90.45± 0.88 0.836± 0.033 0.904± 0.029 0.868± 0.030
16×1 91.28± 0.85 0.908± 0.028 0.842± 0.030 0.874± 0.029
32×1 91.54± 0.81 0.917± 0.025 0.862± 0.027 0.889± 0.026

Multi-kernel 92.31± 0.76 0.911± 0.023 0.917± 0.022 0.914± 0.021

KAN

4×1 97.45± 0.52 0.972± 0.029 0.963± 0.028 0.967± 0.028
8×1 98.62± 0.43 0.946± 0.030 0.949± 0.029 0.947± 0.029
16×1 98.79± 0.39 0.980± 0.027 0.973± 0.026 0.976± 0.026
32×1 98.85± 0.37 0.967± 0.028 0.991± 0.025 0.979± 0.026

Multi-kernel 99.01± 0.36 0.987± 0.026 0.986± 0.025 0.986± 0.025

and output projections (each withC2
out+Cout parameters),

and a Dual-MLP with two parallel branches, each consist-
ing of two linear layers: the first projects to Hhidden

2 and the
second projects back to Cout

2 . The total encoder parameters
are given by:

PEnc = NL ×
(
Nh ×

(
4×

(
C2

out + Cout

)
+ 4×

(Cout

2
× Hhidden

2

)))
The classification head includes a projection from Cout

to 32- and 16-dimensional space, followed by a final clas-
sification layer projecting to Nclass classes:

Pcls = Cout × 32 + 32× 16 + 16×Nclass

The total number of parameters Ptotal in the proposed
SMART-NIR is computed as the sum of parameters across

four main components: multi-kernel convolutional projec-
tion (PMK ), positional encoding (PPE), Transformer en-
coder layers (PEnc), and the final classification head (Pcls):

Ptotal = PMK + PPE + PEnc + Pcls

This study investigates model variations within a param-
eter range spanning from 100K to 1000K with Hhidden =
128, intending to facilitate a comprehensive analysis of
diverse model scales while acknowledging computational
limitations. The results presented in Table 3 indicate that
substantial improvements in accuracy are achieved through
the augmentation of NL, Nh, and Cout. These empirical
findings suggest that the selection of NL = 6, Nh = 6 and
Cout = 64 yields optimal accuracy.
A comparative analysis of computational complexity

and accuracy was undertaken between the proposed Dual-
MLP and MLP components within the transformer en-
coder, as summarised in Table 4. The Dual-MLP mod-
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Table 3: Comparison performance of SMART-NIR with different hyperparameters using Dual-MLP and KAN as
classifiers (noise adding).

NL Nh Cout Size (params) FLOPs (M) Accuracy (%)
4 4 32 145K 12.1 98.91± 0.42
4 4 64 420K 41.9 98.95± 0.40
4 6 32 216K 12.1 98.92± 0.39
4 6 64 619K 41.9 98.96± 0.37
6 4 32 212K 14.2 98.93± 0.38
6 6 64 917K 47.2 99.01± 0.36

Figure 5: Confusion matrix showing the classification per-
formance of Fold 2

ule attained the highest accuracy of 99.01% while simul-
taneously exhibiting an apprximate 25% reduction in both
floating-point operations (FLOPs) and parameter count rel-
ative to the MLP. The Dual-MLP incorporates a linear pro-
jection of half the original MLP size, resulting in an ap-
proximate 25% reduction in parameters compared to the
MLP. Dual-MLP demonstrated notably reduced computa-
tional demands compared to standard MLP, as measured by
FLOPs. These results strongly support the conclusion that
Dual-MLP is the optimal feed-forward choice for Trans-
former architectures.
As shown in Table 5, the model demonstrates a substan-

tial performance advantage over the conventional Trans-
formermodel, achieving an accuracy increase of nearly 8%.
Table 6 provides a detailed breakdown of the 5-fold cross-
validation results for the SMART-NIR model, which was
evaluated using the optimal hyperparameters. The confu-
sion matrix in Figure 5 illustrates an example of the classi-
fication result from one fold.
Table 7 presents a comparison of inference time be-

tween SMART-NIR and a traditional Transformer architec-
ture across different configurations of the number of lay-
ers (NL) and attention heads (Nh). The results clearly
demonstrate that SMART-NIR consistently achieves signif-
icantly lower inference times than the Transformer in all
tested settings. For instance, with NL = 4 and Nh = 4,
SMART-NIR requires only 198.4 ± 14.7 ms, whereas the

Transformer takes 235.2 ± 12.9 ms. Even in more com-
plex settings such as NL = 6 and Nh = 6, SMART-NIR
maintains its efficiency with 293.4± 15.3ms, compared to
377.9 ± 15.2 ms for the Transformer. These results high-
light SMART-NIR’s computational efficiency and suggest
its strong potential for real-time or latency-sensitive appli-
cations where fast inference is critical.
Table 8 presents the evaluation results of the SMART-

NIRmodel using different stride values. It is evident that as
the stride increases, the model’s performance consistently
declines across all metrics, including Accuracy, Precision,
Recall, and F1-Score.
Specifically, with a stride of 1, the model achieves the

best performance, attaining an Accuracy of 99.01% and
high Precision, Recall, and F1-Score values (all around
0.986–0.987). When the stride increases to 2, these met-
rics decrease moderately, and with a stride of 3, the decline
becomesmore pronounced (Accuracy drops to 97.80%, and
F1-Score to 0.957).
This trend can be attributed to the effect of stride on fea-

ture extraction from the NIR spectral data. A smaller stride
allows the model to capture more fine-grained spectral in-
formation, which is crucial for distinguishing subtle differ-
ences between classes. In contrast, a larger stride reduces
the resolution of the input features, potentially omitting in-
formative patterns necessary for accurate classification.

4.4 Discussion
The experimental results clearly demonstrate the effective-
ness of the proposed SMART-NIR architecture in compari-
son to conventional transformer-based models. A key con-
tributor to this performance gain is the incorporation of
KAN as a classifier. As shown in Table 2, replacing the
standard MLP with KAN resulted in a substantial increase
in classification accuracy, approximately +5%, regardless
of the kernel size. This confirms KAN’s superior ability to
capture non-linear relationships within spectral data, which
is critical in NIR classification tasks.
Although prior studies [29] have indicated that KAN

tends to show significant advantages primarily in symbolic
formula representation tasks, this insight can help explain
why KAN is particularly effective in the SMART-NIR set-
ting. NIR spectral data, despite being real-valued, often re-
flects underlying physical or chemical relationships that are
structured, continuous, and locally smooth, properties com-
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Table 4: Comparison performance of model using MLP and Dual-MLP with KAN as classifier, multi-kernel and
NL = 6, Nh = 6 and Cout = 64 (noise adding).

Network Size (params) FLOPs (M) Accuracy (%)
MLP 1211K 66.1 99.00± 0.34

Dual-MLP 917K 47.2 99.01± 0.36

Table 5: Performance comparison of SMART-NIR (Multi-
kernel input embedding, Dual-MLP and KAN classifiers)
and baseline Transformer (single kernel input embedding,
standardMLP encoder and classifier), under varying hyper-
parameters (Cout = 64, noise adding).

NL Nh
Accuracy (%)

SMART-NIR Transformer
4 4 98.95± 0.40 89.03± 0.92
4 6 98.96± 0.37 90.18± 0.75
6 6 99.01± 0.36 91.29± 0.52

monly found in symbolic or functional domains. Thus, the
NIR classification task shares characteristics with symbolic
function approximation, where KAN has proven to excel.
Therefore, the performance gain observed in SMART-NIR
can be interpreted as a natural extension of KAN’s strength
in modeling structured, low-dimensional, and function-like
patterns. The use of learnable B-spline activation functions
allows KAN to adaptively fit localized variations in spec-
tral features, enabling more expressive representations than
fixed non-linearities typically used in MLPs. This property
is particularly beneficial for NIR data, which requires nu-
anced modeling of small absorption peaks or shifts.
Meanwhile, as reported in Table 5, SMART-NIR con-

sistently outperforms the baseline Transformer across all
examined configurations, with an accuracy gain of up to
8%, while also maintaining lower computational complex-
ity due to architectural refinements such as the Dual-MLP
and the integration of KAN. Furthermore, the introduction
of Dual-MLP not only improved model accuracy but also
significantly reduced computational costs. As detailed in
Table 4, the Dual-MLP module achieved equivalent or bet-
ter performance than its standard MLP counterpart while
reducing both the parameter count and FLOPs by approx-
imately 25%. This efficiency makes SMART-NIR espe-
cially suitable for deployment in resource-constrained envi-
ronments, where model compactness and speed are critical.
While these results are promising, it is important to ac-

knowledge the limitations related to the dataset size. The
experiments were conducted on a relatively small dataset
comprising only 1028 samples, which may raise con-
cerns regarding model generalization. Although SMART-
NIR demonstrated stable performance across 5-fold cross-
validation, as shown in Table 6, further validation on
larger and more diverse datasets is necessary to confirm the
model’s robustness and applicability to broader NIR sens-
ing tasks.

Lastly, the ablation studies on kernel size and transformer
hyperparameters (Tables 2 and 3) offer additional insights
into the model’s design. The multi-kernel configuration
led to improved feature extraction, and optimal settings of
NL = 6, Nh = 6, and Cout = 64 were found to bal-
ance accuracy and complexity most effectively. These find-
ings highlight the importance of careful architectural and
hyperparameter selection in achieving state-of-the-art per-
formance.

5 Conclusion
This study proposed SMART-NIR, a novel adaptive rep-
resentation architecture for NIR spectral analysis, combin-
ing three main components: a multi-kernel block for multi-
scale feature extraction, an improved Vision Transformer
Encoder with Dual-MLP to capture global relationships,
and KAN for nonlinear classification.
Our experimental results demonstrate the significant per-

formance of SMART-NIR with an average accuracy of
99.24% in classifying four food categories through 5-fold
cross-validation, outperforming the traditional Transformer
by about 8%. The model balances performance and com-
putational complexity, significantly reducing the number of
parameters and FLOPs. Specifically, Dual-MLP reduces
the number of parameters and FLOPs by 25% compared to
the standard MLP while maintaining high accuracy. Multi-
kernel block demonstrates efficient feature extraction at
multiple scales. Notably, KAN improves the accuracy by
about 5% compared to the traditional MLP, demonstrating
the ability to approximate complex functions with few pa-
rameters accurately.
The optimal configurationwas determined to beNL = 6,

Nh = 6, and Cout = 64, balancing performance and com-
plexity. Cross-validation results showed the model has sta-
ble performance with high accuracy, precision, sensitivity,
and F1-score across folds. These improvements effectively
handle the complexity of NIR spectral data, balancing high
accuracy and computational efficiency. This opens up the
potential for broad application in near-infrared spectrum
classification tasks, especially when integrated on mobile
devices or processing spectra measured in real-world envi-
ronments with high variability.
Building on this research, we intend to extend the identi-

fication and prediction of chemical substances onNIR spec-
tral data in various types of food collected from natural en-
vironments. Besides, real-time monitoring of the dynamic
spectrum or optimizing computational resources is also a
potential research direction. This research also serves as a
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Table 6: Evaluation of SMART-NIR with optimal hyperparameters through 5-fold cross validation (w/o noise adding)
Fold F1-Score Precision Recall Accuracy
Fold 1 0.993 0.997 0.989 99.53
Fold 2 0.986 0.986 0.986 99.37
Fold 3 0.995 0.996 0.994 98.93
Fold 4 0.991 0.993 0.990 98.90
Fold 5 0.995 0.993 0.996 99.47
Average 0.992± 0.004 0.993± 0.005 0.991± 0.004 99.24± 0.32

Table 7: Comparison of inference time for 100 samples of
SMART-NIR (Multi-kernel input embedding, Dual-MLP
and KAN classifiers), and baseline Transformer architec-
ture (single kernel input embedding, standardMLP encoder
and classifier), under varying hyperparameters. (Cout =
64)

NL Nh
Time (ms)

SMART-NIR Transformer
4 4 198.4± 14.7 235.2± 12.9
4 6 212.3± 16.1 248.6± 14.1
6 6 293.4± 15.3 377.9± 15.2

Table 8: The evaluation results of SMART-NIR with dif-
ferent stride values
Stride Accuracy Precision Recall F1-Score
1 99.01± 0.36 0.99± 0.03 0.99± 0.03 0.99± 0.03
2 98.50± 0.40 0.98± 0.03 0.97± 0.03 0.97± 0.03
3 97.80± 0.50 0.96± 0.04 0.96± 0.03 0.96± 0.03

basis for implementing and developing integrated mobile
applications for rapid inspection tasks based on NIR spec-
tra.
It can be seen that the SMART-NIR architecture not only

contributes significantly to the food industry in particular
but also has the potential to expand to safety quality in-
spection in many fields, corresponding to its ability to learn
and adapt flexibly to different types of data. This strongly
promotes research and dramatically contributes to ensuring
quality safety in many areas of our real life.
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